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Abstract. In this note we prove lower bounds on the components of the

eigenvector associated with the dominant eigenvalue of a graph. These

bounds depend only on the eccentricity of the corresponding node and on

the eigenvalue As corrollary lower bounds on the dominant eigenvalue

are derived, which depend on the diameter of the graph. These bounds

were motivated by a heuristic algorithm for finding peripheral nodes in

a graph. VJe present this algorithm and indicate its use in sparse matrix

computations



2

(one-way disection, nested disection) 4], require the determination of a

A widely used algorithm for this purpose is due to Gibbs, rode, and Stock-

This

algorithm does not guarantee to find a peripheral node. There exist exam-

pIes, where this algorithm fares particularly badly. Here we introduce a

quite different algorithm, which (unfortunately) does not guarantee to

find a peripheral node either

However, while studying this algorithm, several new bounds on the

dominant eigenvalue and associated eigenvector of the adjacency matrix of

a graph were obtained. which are interesting in their own right. The eigen.

vectors of the adjacency matrix of a graph have so far received only

marginal attention (c.f. [3]) There are, however, recent results [1],

which indicate that certain algebraic properties of the eigenvectors of the

adjacency matrix can be related to structural properties of the underlying

graph.

This area of research poses some challenging new questions and we

will indicate some open problems in this note

Here we consider an undirected, connected graph G = (X,E), where X is

the set of nodes, and E is the set of edges. The elements a.. of the
J.)

adjacency matrix A of G are defined by

if node i and j are adjacent, or if i = j

a.. 

=
1J

(1.1)

otherwise
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This definition differs from the common definition of an adjacency matrix

in as far as we also set a.. = 1, whereas usually the diagonal elements
J.J

If G is the ordered graph of a symmetric positiveare set to be zero.

definite matrix M, this definition proves to be more useful for our pur-

poses. In this case the a could be defined directly by
ij

if m.. ;I!' 0
II

a.. =
1J (1.2)

if = 0,m
ij

i.e. the adjacency matrix reflects directly the zero-nonzero structure

of a given matrix and is therefore the appropriate tool for sparse matrix

computations.

Since we assumed G to be connected, the matrix A is indecomposable.

By the Perron-Frobenius theorem, A has a simple, positive eigenvalue A.

The corresponding eigenvector v = (vl,v2,...vn)T has all components vi> 0,

n
i = I,.. .,n. Here n = Ixl. Therefore v can be normalized such that r v. =1

. 1 J.J.=
In the following we will only deal with A and v, such that

Av = Av, = 1, v. > 0
]. (1.3)for i = 1,...,n

n
I v.

i=l J.

No confusion with other eigenvalues and vectors is possible.

Vie are also going to use the notation Al > A2' which means that all

elements of the matrix Al are larger than the corresponding elements of AZ"

A > a for a E ~ means that all elements of A are larger than a We will

use the same notation for vectors

For a node xi E X the degree xi' i. e. the number of adj acent nodes is

denoted by deg(x.).
].

d(x.,x.) denotes the distance of two nodes x. and x.,
1 J 1 J
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the length of the shortest path connecting x. and x._!heeccentricity
1 J

i.e

is the quantityof a node xi

(1.4)e(xo) = max d(x..x.
1 0- 1 1 J

J- ,.. .,n

The diameter of G is then defined by

(1.5)c(G) = max e(x.).
. 1 11= ,...,n

A node X. E X is said to be nerinheral if its eccentricity is equal to itsJ. r ---r --

diameter, i.e. if o(G) = e(x.).
1

For a subset Y .=. X, the adjacency ~ £f!, denoted by Adj (Y) is

{x. ,x.}e: E for some x. e: Y}
]. ] ]

(1.6)Adj (Y) = {x. E X-Y
1

For a node x E X, the level structure rooted ~ ~ is the partitioning

L(x) of X satisfying

where L1 (x) = Adj (La (x))

1. (x) = Adj (1. 1 (x)) -1. 2 Cx)1 1- 1-
and i=2..3, ,e(x)..

2. A Heuristic Algorithm for Finding Peripheral Notes

We are trying to find a peripheral node of the graph G, i.e. a node

with maximal eccentricity. Such a node is, on average, further away from

all other nodes.

Consider now the matrix Ak. Its (i,j)-th entry denotes the number of

different ':paths of length k leading from xi to X., where also paths are
~ J

included, which "stay for a while" at a node, because of a.. = 1. Now
J.J.
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T
1.1 .1)let u = , then the i-th component of Aku is equal to the num-

ber of paths of length k, beginning at an arbitrary node and ending in xi.

If a node x. is !'peripheral!', this number will be smaller and if a node
1

x. lies in the !'center" of the graph, this number will be larger. So for
1

k + 00 one should obtain some average number, which indicates how many

paths go lIon averagel! through a node. But with some suitable normalization,

Aku converges to the largest eigenvector v of A, unless u were orthogonal

But this cannot happen, since u = (1,.. .,1)1to this eigenvector. we

have
T n

uv= I =l~O
i=l

These arguments suggest the following very simple algorithm for finding

'~~!"_tpl1_~~~l~d~~_Q .g-~g~ ~E~-

1) Find v, the dominant eigenvector of the adjacenty matrix A

2) The node corresponding to the smallest component in v is a

"peripheral ,: node

Unfortunately this algorithm will not always produce a peripheral node as

defined in Section 1. The following graph is a typical counterexample

f~ ~X8.-/,,~~._, J--", ~, ( ~'- j ,C ,~,_£.' " ' '\ / ..-r'
, Xl;' """ "X4 I--.li, XSH X6 H l~~~fJ X7 ..; )J';Xl~ "'" ,t-'.. / ','" \ -j' .,Jc

'_/ /"-- -' "-'" '-,('
(\ X3.1} , ( XS}
'--_/ "-../

Figure 1. Counterexample.

Clearly all the nodes in the two cliques at the end (Xl'X2'X3 and XS,xg'XIO)

are peripheral. The vector v however is given by

v ~ (0.1073,0.1073,0.1073,0.1211,0.569,0.569,0.1211,0.1073,0.1073,0.1073)T

The smallest components of v are just corresponding to the '1interior" nodes

Xs and Xf,
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Although the counterexample above shows that the heuristic algorithm

from section 2 will not always produce peripheral nodes, we were able to

These
obtain lower bounds on the components of the dominant eigenvector.

bounds indicate that there is a certain inverse relationship between the

components of the eigenvector and the eccentricity of the corresponding node

Proposition 1. The components v of the d.omin~t eigenvector v satisfyi

for i = 1,2,...,n

Proof. be the

I v.
Adj(x.) J

].

denote the sum of all v. over all indices i, such that x
J .- E: Adj (x.), and

].j
I

Lk (x~

similarV., 

etc,
]

i. 

.

Now Av = AV implies that (for n > 1),

v 1 I;' v.,
--L. J-A-I L (x.)

1 1

(3.3)

i 

= 1,.. .,lli

Substituting (3.3) into itself and taking into account that x, E: Adj (x.),i

1

v. > --~ I v.,
1 -(A-I) L2(xi) J (3.4)

i 

= 1,.. .,n
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This process can be repeated e(x.
1

times so that we obtain

for

(3.5)v,

i 

= 1,2,.. .,nv>~ Ii -(X-I) Lk(xi)

k = 1,2,...,e(x.)
1

SUlllIlling up the e(xi: inequalities (3.5), it follows that

I-v.
= 1( ' e (x. ) .

1\-1) 1

e(x. '

l'I 1 I
k ( '

k=1 (A-I) Lk xi'
e(x.)v. >

J. J.-

v. > 1 n
J -e(x.) L v.

(A-I) ]. j=1 J

jfi

Therefore ./c
-') >:

1v. >
]. -e(x.)

].e (x.) (A-I) +1
].

for

i = 1,2,.. .,n

,~vfl

and this is also correct for n = 1. 0

Proposition 2.

A .?:. 1 + a/V

(3.6)Proof.

From (3.1) it follows

1>i 
-CCA-l)C+lv fori=l,...,n,

Summing up for i = 1,.. .,n and rearranging yields the result. 0

In order to prove Proposition 3, the following Lemma is needed

Lemma. Let a~~) be the (i,j)-th entry of the matrix Ak, k = 1,2,3,.
1J

Then it holds that

(k) > 1
;::?aij -

for 

all i,j with d(x.,x.) = k
]. J (3.7)

/

for 

all i,j with d(x.,x.) < k
1. J (3.8)V1 ~ -;'
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Proof. 

If d(x.,x.)
-]. J

leading from x. to X., and (3.7) follows
]. J

We show (3.8) by induction. ~

= k then there exists at least one path of length k

For k = I we have a~: > I for all i,j
1J -

.' somewith d(x.,x.) < 1, i.e. for all diagonal elements. Suppose now fo!
1 J

k > 1 it holds that a~~-l) > k-l for all i,j with d(x.,x.) < k -1.
1J -1 J

(k). . ba.. J.s gJ.ven y
J.J

Now a~~) = 1 and since the graph is connected, there exists at least one
JJ

m, 1 < m < n, m ~ j, such that a(~
--mJ

= 1. Therefore

> (k-l) (1)a.. a..
-J.J JJ

(k-1)It remains to be shown that a. > 1.
J.m -

\~e have d(x. ,x.) < k-l and
1 J

d(x.,x) = 1.
J m

Therefore

d(x.,x ) < d(x. ,x.) + d(x.,x ) < k -1 + 1 = k.
1-m- 1-J Jm

Now if d(x.,x ) = k -1, we can apply (3.7) and if d(x.,x ) < k -1, the
1 m 1 m

result follows by induction. 0

Proposition 3. 1
e(x. )A ]. +1

(3.9)for i = 1,...,n

.Let a~~) be the (i,j)-th entry of Ak as before, and let D be the
__0 1J

distance matrix of the gra~h, i.e. D = (d. .), where
-1J

Proof
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= d(xi,Xj i = 1,.. .,n

j = 1.. ...n

can be made for k = 1,2,.

ij

1.1sing (3.7) and (3.8):

k
\\k "../

for all i,j with d(x. ,x.) <:'~X:c'ept
1 J \,' (3.10)

for the diagonal elements where d..
J.J.

= 0

(k» 1a. 
.J.] -

for all i,j with d(x. ,x.) = k
1 J (3.11)d.. = k

J.J

(k)= 0a. .
J.J

for all i.j with d(x. .x.) > k+l1. ] -

(3.12)d.. 

> k+l1J -

Taking (3.l0)-~2) together in matrix form it holds that

I + Ak "..,I 
I

q-
+ D > Ik+l for k = 1,2,3,... , (3.13)'fw~~ (1-'"

where I is the n x n identity matrix
" /'""

Le~(9be the n x n matrix with all

entries equal to one, then (3.13) can be written

I + Ak + D.?:. (k+l)U

Therefore k
v + A v + Dv.:::. (k+l)Uv = (k+l)u, (3.14)

The i-th co~ponent of Dv can be bounded as follows

n n n
(Dv). = I d.nvn = I d(x.,xn)vn 2 e(x.) I Vn = e(x.)

1 ~=1 1N N 9..=1 1 N N 1 9..=1 N 1 (3.15)
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for i=1,2,...,n and k=l,2,3,... (3.16)

If k is chosen to be e(x.), then (3.9) follows. 0
].

some worse bounds because of the rapidly growing denominator.

Proposition 4.

(3.17)> rn-:r

Proof:

Set k = «5 in (3.16). Then

o+l-e(x.)
J.

v. > -"
J. -Ao+l

1

.:::~
for i = 1,...,n

Summing over i and rearrangi?g yields (3.17).0

All the botmds in the propositions above are rather weak. But this

is to be expected, since they were proven for general graphs without any

further assumptions. The bounds of Proposition 1 are better for some

smaller graphs, whereas the bounds of Proposition 3 are better for larger

graphs (for larger e(xi))' It should be also noted that the bounds of

Proposition 3 are almost sharp, if the graph is a clique. Therefore, there

is not much hope to improve these bounds in all generality.

However, all bounds on the components of the eigenvector show that

there is an inverse relationship between eccentricity e(xi and the corres-

ponding v..
].
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Example:

(c.f. 

Figure 4.32 in [4]).

---, ;'--~"" ,., ,
( X5~X7 HX~)

/"'- '."r';I~ ~\X '-./'
;i .c, , \. ..,Ii \ -, ,
,;r~ ~ X2" .10 f'

'~;'
:§/"""'- ..!

(~H X6 ~:~-~;~J~.. \ ,.,!

Figure 2. Example

For this graph the following table is obtained

Here 0 = 4 A ~ 4.21 and the bound of Proposition 2and4 yield

A ::: 2.225

4j9A > ~ 1.732

Obviously none of the bounds is very good. However, the components of v
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The components vI and v4 are smallest, and these correspond to nodes of

maximal eccentricity and minimal degree.

4. Computational Aspect_s.

Suppose the graph is given in the form of an adjacency list, i.e. as

a pair of integer arrays ADJCNY, XADJ, where XADJ(J) points to the begin.

ning of the list of neighbors of x. stored in the array ADJCNY.
J

This

data structure is COnnIlon in sparse matrix computations [4]. With thes~

arrays a matrix-vector multiplication of the form v + Au can be accomplished

easily by the following lines of FORTRAN code:

DO 10 I=l,N

V(I)=U(I)

DO 53 =XAD3(I),XADJ(I+l)-1

5 V(I)=V(I)+U(ADJNCY(J))

10 CONTINUE

Using this code for the matrix-vector multiplication, the dominant eigen-

vector can be determined by the power method of the Lanczos algorithm 17]

In this context the power method seems preferable, since then the whole

computation can be performed in integer arithmetic without any multiplica-

tions..~

relative size of its components, it seems to be sufficient to do 0 steps

of the power method and then compare the components of v, without ever

normalizing the vector. (Under some circumstances this may cause integer

overflow. 

and the program has to be modified to handle this case).
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In order to evaluate the practical usefulness of the algorithm pro-

posed here. in connection with reordering schemes for sparse Gaussian

elimination. 

extensive empirical tests comparable to [6] will have to be

performed. But even without these tests, we can state the advantages of

the algorithm:

it is very easy and economical to program,

no starti?g guess has to be made, which could influence the

results of the algorithm considerably,

the bounds derived here provide at least some indication for

the success of algorithm

5. An Open Problem and Conclusion.

In connection with the results from this note, an interesting graph

theoretical problem arises. It is known [3] that in general the spectrum

of the adjacency matrix alone does not determine the graph uniquely, i.e.

there exist examples of isospectral, but not isomorphic graphs. On the

other hand, it is clear that the spectrum and all eigenvectors do deter-

mine the graph uniquely. The interesti?g question is then: can we do

with less, since the adjacency matrix is very special? More precisely one

could ask: is a graph uniquely (up to isomorphisms) determined by its

spectrum and its first k,k < n eigenvectors? Is it possible that k = 1,

or are there nonisomorphic~ isospectral graphs~ which also have the

cominant eigenvector in common?

If it turns out that the dominant eigenvector, together with the

spectrum determines the graph uniquely, all structural properties of the

graph would be determined by some algebraic relations between 2n numbers.

This would open up a fruitful new direction of research in graph theory

and its applications
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