SIAM J. SCI. STAT. COMPUT. (€} 1988 Society for Industrial and Applied Mathematics
Vol. 9, No. 2, March 1988 005

THE IMPACT OF HARDWARE GATHER/SCATTER ON SPARSE GAUSSIAN
ELIMINATION*

JOHN G. LEWIST AND HORST D. SIMONY

Abstract. Recent vector supercomputers provide vector memory access to “randomly” indexed vectors,
whereas early vector supercomputers required contiguously or regularly indexed vectors. This additional
capability, known as “hardware gather/scatter,” can be used to great effect in general sparse Gaussian
elimination. In this note we present some examples that show the impact of this change in hardware on the
choice of algorithms for sparse Gaussian elimination. Common folk wisdom holds that general sparse
Gaussian elimination algorithms do not perform well on vector computers. Our numerical results demonstrate
that hardware gather/scatter allows general sparse elimination algorithms to outperform algorithms based
on a band, envelope, or block structure on such computers.

Key words. sparse Gaussian elimination, sparse matrices, reordering algorithms, vector computers,
vectorization, hardware gather/scatter

AMS(MOS) subject classification. 65F05

Background. Early experience with sparse Gaussian elimination on vector com-
puters [3] showed none of the dramatic improvements in speedup encountered in other
linear algebra computations. This is due to the fact that Gaussian elimination with a
sparse data structure requires access to irregularly spaced data. Early vector computers,
such as the CRAY-1 and the CYBER 205 computers, allow vector memory transfers
only for contiguously or regularly spaced vectors. Most sparse Gaussian elimination
algorithms spend the vast majority of the factorization execution time in a loop of the |
following type: r

INTEGER I, N, M
INTEGER INDEX (M)
REAL A, X(M), Y(N)

DO10T=1, M :
Y(INDEX (I)) = A * X(I)+ Y(INDEX I)) |
10 CONTINUE :

The indexing or indirect addressing for the vector Y creates irregular spacing in the
data and prevents use of the vector arithmetic units on early vector computers.

This loop is often referred to as a sparse or indexed SAXPY. The efficiency of
the implementation of this loop determines the performance of the sparse factorization
algorithm. Because of the importance of this loop, or kernel, a subroutine called
SAXPYI, which follows the spirit and the notation of the BLAS [6], has been proposed
as a facility in extensions of the BLAS [2]. i

The use of the SAXPY] loop as presented above, in FORTRAN, would resultin |
no use of the vector hardware of early supercomputers. The loop would be executed
using scalar instructions only, producing no speedup at all over equivalent scalar
computers. Indeed, the indexing of the result vector Y prevents vectorization on any
existing vector computer unless it is known that the indices are distinct. Even on current

* Received by the editors June 23, 1986; accepted for publication (in revised form) April 15, 1987.
T Boeing Computer Services, Engineering Technology Applications, Seattle, Washington 98124,

304

THE IMPACT OF HARDWARE GATHER/SCATTER 305

vector computers, the SAXPYT loop does not vectorize without using directives to the
compiler.

When the indices are known to be distinct the indexed SAXPY loop can be
rewritten to allow some use of the vector hardware on any vector computer. Dembart
and Neves [1] analyzed seven different formulations of this loop on a CDC STAR
100, and determined that there were combinations of vector length and vector density
for which each of the formulations was fastest. Similar analyses by these authors for
the CYBER 203 and 205 showed corresponding results, although the ratios changed.
For reasonable combinations of vector length and vector density the most important
of the six alternatives to the original scalar code was the same on all three machines.
This alternative is:

C
C gather the sparse elements into a dense vector
C
DO 100 I=1, M
TEMP (I)= Y(INDEX (I))
100 CONTINUE
C
(&) perform a vectorizable dense SAXPY
C
DO20I=1, M
TEMP (I)=TEMP (I)+A* X(I)
200 CONTINUE
C
&5 scatter the elements back into the sparse vector
C

DO 300 I=1, M
Y(INDEX (I))=TEMP (I)
300 CONTINUE

Although this looks far more complicated than the original loop, it permits the
use of the vector arithmetic units for the numerical loop. The nonvectorizable memory
transfers are isolated to separate loops that could be made more efficient by using
assembly language subroutines (albeit in scalar mode). This formulation of the indexed
SAXPY is known as a GATHER-SAXPY-SCATTER (GSS) implementation, for the
operations performed in turn by the three loops.

On a CRAY-1 computer, the original indexed SAXPY loop written in FORTRAN
executes at a maximum rate of about 4 megaflops, much less than the maximum rate
of 155 megaflops this machine can achieve for other operations. Woo and Levesque
[11] analyzed the GSS formulation and showed that its maximum rate in assembly
language was around 8 megaflops. Alternatively, a good assembly language
implementation of the original loop that uses only the scalar hardware performs
asymptotically at 13 megaflops (see [10]). This implementation is never slower than
the GSS formulation, demonstrating that the SAXPYI operation is essentially a scalar
computation for the CRAY-1.

In contrast, the standard implementations of banded or variable banded Gaussian
elimination algorithms use dense SAXPY operations or dense dot products as their
fundamental inner-loops. Such implementations can achieve vector speeds on vector
computers. However, they usually do not approach the asymptotic speeds of these

306 J. G. LEWIS AND H. D. SIMON

machines because the vector lengths are limited by the bandwidth, which should not
become very large. Still, the possibility of using the vector hardware for these schemes
and the inherent performance limitation of the indexed SAXPY loop has led to the
conventional folk wisdom that (variable) banded factorization schemes will usually
outperform general sparse Gaussian elimination on vector computers.

The vector supercomputers being produced currently, in particular the CRAY
X-MP/4 and the more recent models of the CRAY X-MP/2, are equipped with
hardware facilities that permit memory access according to an index vector. That is,
these machines permit the GATHER and SCATTER loops to be performed using
vector memory transfers to and from a hardware vector register. This gather/scatter
hardware leads to a much faster implementation of SAXPYI by using the GSS
formulation. The assembly language coded implementation in VectorPak reaches 78
megaflops asymptotically. Some detailed SAXPY]I timings are given in Table 1 below.
These results are reported in [8] and [10], and were obtained by averaging over 50
executions of each loop. In each case the index vector INDEX was set as follows:
INDEX (1) = N, INDEX (2)=N -1, - - INDEX (M)=N-M+1.

The older CRAY Fortran Compiler CFT 1.13 does not make use of the hardware
for gather/scatter. A corresponding VectorPak implementation of SAXPYI has been
developed for CRAY X-MP’s without hardware gather/scatter. Both exhibit the scalar
performance characteristic of the CRAY-1. In contrast the utilization of hardware
gather/scatter either with a compiler directive to CFT 1.14 or with VectorPak shows
a dramatic improvement.

Numerical results. We present two sets of numerical results. The first isolates the
effects of the gather/scatter hardware by comparing the performance of a CRAY
X-MP/24 with this hardware to the performance of an X-MP/24 without this hardware.
The second set of results compares the performance of an X-MP/24 with hardware
gather/scatter to a CRAY 1-S (which had no option for such hardware). Together
these results demonstrate that this limited change in the hardware of vector computers
changes the algorithm of choice for many sparse problems.

Our first series of numerical results demonstrates the speed-up which can be
obtained in very large problems taken from several engineering applications by using
hardware for gather and scatter in a general sparse elimination algorithm. We used
the modified minimum degree (MD) algorithm by Liu [7] to reorder seven large
problems taken from the Harwell/Boeing sparse matrix collection [4]. A short descrip-
tion of each problem is given in Table 2 and corresponding ordering statistics are given
in Table 3. All problems, with the exception of LRGPWR, are finite element models
of large three-dimensional structures. All matrices are symmetric and positive definite.

TABLE 1
SAXPYI Speed on the CRAY X-MP/24 using 1 CPU.
(Rates given in megaflops.)

M=10 M =infinity

(ignoring the hardware for gather/scatter)

CFT 1.13 5.0 5.7

VectorPak 6.3 14.5
(using the hardware for gather/scatter)

CFT 1.14 16.1 54.6

VectorPak 16.1 78.6

7

THE IMPACT OF HARDWARE GATHER/SCATTER 307

TABLE 2
Problem description.

Problem Description
STK3562 Calgary Winter Olympics Coliseum (Olympic Saddledome)
STK3948 Offshore oil platform
STK 4884 Corps of Engineers model of dam
LRGPWR Electric power network of U.S.
ST10974 Elevated pressure vessel
ST11948 R. E. Ginna nuclear power station
ST15439 Columbia Center (76 story skyscraper)
TABLE 3

Fill-in characteristics of matrices in Table 2.
(Multiple minimum degree ordering.)

Problem N A, i Loubs Fiv Sops

STK3562 3,562 78,174 275,360 22,036 16,355,839 554,282
STK3948 3,948 56,934 647,274 59,935 82,845,152 1,298,496
STK4884 4,884 142,747 736,294 49,812 74,923,505 1,477,472
LRGPWR 5,300 8,271 22,764 16,796 142,921 50,828
ST10974 10,974 208,838 994 885 92,969 72,642,932 2,000,744
ST11948 11,948 68,571 650,777 102,569 70,911,248 1,313,502
ST15439 15,439 118,401 1401,129 179,537 143,983,290 2,833,136

The columns are as follows:

N Order of the matrix,

A Nonzeros in lower triangle of the original matrix,

L, Nonzeros in the Cholesky factor of A,

L.y Number of distinet subscripts required for compressed subscripts,
Number of multiply-add pairs performed during factorization,

S, Number of multiply-add pairs performed during solve.

The numbers in Table 3 show that the factors of all but the power network problem
LRGPWR have a substantial number of nonzeros per row. We expect to realize much
of the theoretical speedups due to hardware gather/scatter on these practical applica-
tions.

All problems were solved using four different implementations of the key SAXPYI
loop. Two implementations were derived from a single FORTRAN code created by
modifying the original source code by the insertion of a few compiler directives to
effect the vectorization of the key loops. (As discussed earlier, the compiler cannot
assume the indices are distinct unless told so.) The FORTRAN code with inserted
compiler directives was then compiled twice under CFT 1.14. Using a compiler option,
code was generated separately for a CRAY X-MP with hardware gather/scatter and
fora CRAY X-MP without hardware gather/scatter.

Two further implementations were derived by replacing the FORTRAN SAXPYI
loops with calls to an optimized CRAY assembly language implementation of SAXPYI
from VectorPak [10]. This modified code was also compiled under CFT 1.14 and
executed twice, using the VectorPak library for CRAY X-MP’s without gather/scatter
and then the corresponding library for machines with gather/scatter. Tables 4 and 5
present the execution times obtained for factorization and solution for the four
implementations. All execution times are listed relative to the time obtained calling
VectorPak for machines with gather/scatter. The actual execution time in seconds for

308 J. G. LEWIS AND H. D. SIMON

TABLE 4
Relative execution times for sparse matrix factorization.
(Normalized so that VectorPak with g/s = 1.00.)

CFT 1.14 CFT 1.14 VectorPak

Problem no g/s with g/s no g/s
STK3562 6.33 1.14 2.54
STK3948 9.66 1.24 3.25
STK4884 8.70 1.20 3.14
LRGPWR 1.25 0.93 1.17
ST10974 7.24 1.16 2.80
ST11948 8.75 1.22 3.12
ST15439 8.78 1.25 3.15
TABLE 5

Relative execution times for sparse forward and back substitution.
(Normalized so that VectorPak with g/s=1.00.)

CFT 1.14 CFT 1.14 VectorPak

Problem no g/s with g/s no g/s
STK3562 6.94 1.48 2.55
STK3948 9.22 1.47 313
STK4884 8.77 1.39 3.00
LRGPWR 1.96 1.57 1.11
ST10974 7.45 1.48 2.68
ST11948 5.94 1.50 2.23
ST15439 7.54 1.49 2.68

the implementation that calls VectorPak for hardware gather/scatter is given in Table
6, together with the execution times for an envelope factorization based on the reverse
Cuthill-McKee (RCM) algorithm from [5]. This envelope factorization has been
optimized by calling the assembly language implementation of SDOT in VectorPak.

Tables 4 and 5 show clearly the direct benefits of the hardware gather/scatter
feature for general sparse elimination schemes. The factorization and solution of the
structures problems are in some cases almost an order of magnitude faster. Only the
very sparse network problem benefits little because the number of nonzeros per row
is too small. (The factored matrix from LRGPWR has only about 9 nonzeros per row
on average.)

The comparison in Table 6 shows that, contrary to standard expectations, general
sparse methods can outperform envelope solvers on vector computers. Because of the
natural vectorization of envelope methods and the essentially scalar performance of
general sparse methods on earlier vector computers, general sparse methods were
commonly thought to be noncompetitive on vector computers. Table 6 disproves this
assertion.

Our second set of numerical tests was generated to evaluate the impact of the
changing architecture on the choice of numerical algorithms for sparse Gaussian
elimination by comparing performance on a CRAY-1S (always without hardware
gather/scatter) to a CRAY X-MP with hardware gather/scatter. We solved linear
systems with five test matrices arising in reservoir simulation. These matrices were
proposed as benchmark problems by Sherman [9] and are available through the sparse
matrix collection [4]. All matrices are block seven diagonal unsymmetric matrices

THE IMPACT OF HARDWARE GATHER/SCATTER 309

TABLE 6
Execution times (sec) for factorization and solution routines.

Factorization time Solution time
Problem RCM MD RCM MD
STK3562 3.421 1.276 0.047 0.033
STK3948 7.487 4.074 0.064 0.055
STK4884 4.071 4.129 0.065 0.066
LRGPWR 3.642 0.102 0.061 0.028
ST10974 * 4.891 = 0.108
ST11948 - 3.871 * 0.094
ST15439 17.440 7.791 0.213 0.152

* Required more than 4,000,000 words of memory.

arising from reservoir models on three-dimensional grids. We solved the five linear
systems with each of the five different solution algorithms in SPARSPAK [5]. The
reverse Cuthill-McKee algorithm (RCM) is an envelope scheme, which vectorizes well
using inner products. Both the one-way dissection (OWD) and refined quotient tree
(RQT) algorithms use a block partitioning of the coefficient matrix. Much of the
computation in the block elimination scheme also vectorizes with inner products,
though the vector length is generally shorter than in RCM. Finally automated nested
dissection (AND) and quotient minimum degree (QMD) algorithms use a general
sparse data structure and SAXPYT as the inner loop for the factorization. In order to
improve performance, computationally intensive sections of the code in SPARSPAK
were replaced by calls to VectorPak subroutines, in particular by calls to SDOT and
SAXPYL.

We obtained execution times from both the CRAY-1S and on the CRAY X-MP/24
with hardware gather/scatter. In the tables below we denote the order of the problem
by N and the total number of nonzeros in the upper triangular part of the matrix by
NZ.

The average speedup for these five examples is as follows:

RCM 1.05
OWD 1.14
RQT 1.17
AND 2.70
QMD 2.74

Obviously hardware gather/scatter has a dramatic impact on the performance of the
general sparse codes (AND and QMD). Both algorithms perform three times faster
than on the CRAY-1S and now are the fastest algorithms among the ones considered
here. The relative performance of the five algorithms on the CRAY X-MP is about the
same as on a scalar machine: the general sparse algorithms, which attempt to minimize
the overall fill-in in Gaussian elimination and thus generally perform the least amount
of arithmetic, are the most efficient.

The block partitioning methods, OWD and RQT, execute faster on the CRAY
X-MP, but their relative speedup is simply due to the faster clock rate on the CRAY
X-MP and unrelated to hardware gather/scatter. In fact neither method achieves the
30 percent speedup we expect from the faster scalar speed of the X-MP. The envelope
method, using RCM, is even worse. These methods depend on vectorized dot products
in the factorization. A minor architectural change from the CRAY-1S to the X-MP

310

J. G. LEWIS AND H. D. SIMON

EXAMPLE 1
N =1,000, NZ =2,750

Total 15
CRAY-IS CRAY X-MP/24
Algorithm Factor Solve Factor Solve Total X-MP
RCM 0.309 0.010 0.291 0.008 1.07
OwWD 0.439 0.018 0.389 0.016 1.13
RQT 0.412 0.024 0.361 0.020 1.14
AND 0.187 0.011 0.086 0.007 2.13
oOMD 0.137 0.010 0.065 0.006 2.07
EXAMPLE 2
N =1,080, NZ = 14,630
Total 1S
CRAY-18 CRAY X-MP/24
Algorithm Factor Solve Factor Solve Total X-MP
RCM 1.509 0.019 1.436 0.013 1.05
OWD 1.514 0.019 1.439 0.014 1.05
RQT 3.011 0.037 2,538 0.027 1.19
AND 2.523 0.036 0.733 0.012 3.43
QMD 3.912 0.041 1.015 0.013 3.85
EXAMPLE 3
N =5,005, NZ =15,028
Total 18
CRAY-18 CRAY X-MP/24
Algorithm Factor Solve Factor Solve Total X-MP
RCM 2.648 0.055 2.615 0.043 1.02
OWD 4.134 0.101 3.516 0.081 1.18
RQT 3.774 0.124 3.229 0.103 1.17
AND 2.871 0.071 0.925 0.034 3.07
OMD 2.936 0.069 0.941 0.035 3.03
ExXAMPLE 4
N=1,104, NZ =1,341
Total 15
CRAY-18 CRAY X-MP/24
Algorithm Factor Solve Factor Solve Total X-MP
RCM 0.119 0.008 0.111 0.007 1.08
OwWD 0.214 0.020 0.186 0.017 1.16
RQT 0.182 0.024 0.156 0.020 1.17
AND 0.131 0.010 0.064 0.006 2.01
QMD 0.087 0.010 0.046 0.006 1.87
EXAMPLE 5
N =37312, NZ=11,025
Total 1S
CRAY-15 CRAY X-MP/24
Algorithm Factor Solve Factor Solve Total X-MP
RCM 1.069 0.031 1.060 0.025 1.01
OwWD 2.239 0.068 1.926 0.055 1.16
RQT 1.974 0.080 1.693 0.063 117
AND 1.984 0.048 0.688 0.023 2.86
QMD 1.896 0.046 0.650 0.023 2.88

THE IMPACT OF HARDWARE GATHER/SCATTER 311

causes dot products to have a greater vector start-up time. This change has a consider-
able effect in practice. The combination of the two architectural changes causes a
reversal in the desirability of different ordering algorithms.

A final point is worth making concerning a software issue. Our version of SPAR-
SPAK had been modified with calls to computational kernels several years ago when
it was installed on the CRAY-18S. These test examples were run again on the CRAY
X-MP without any code modifications. Through computational kernels from a kernel
library such as VectorPak the application programmer reaps the benefits of hardware
improvements without concerning himself with the often subtle details of a new
implementation. The success in using hardware gather/scatter in the context of sparse
Gaussian elimination is one example validating the concept of computational kernels
as a tool for combining portability and optimality on advanced architectures.

REFERENCES

[1] B. DEMBART AND K. NEVES, Sparse triangular factorization on vector computers, in Exploring Applica-
tions of Parallel Processing, Electric Power Research Institute, EL-566-QR, Palo Alto, CA, 1977,
pp. 22-25.

[2] D. S. DopsoN AND J. G. LEwis, Proposed sparse extensions to the basic linear algebra subprograms,
SIGNUM Newsletter, 20 (1985), pp. 22-25.

[3] L. 8. DUFF, The solution of sparse linear equations on the CRAY-1, CRAY Channels, 4 (1982), pp. 4-9.

[4] I 8. DUFF, R. GRIMES, J. LEWIS AND W. POOLE, Sparse matrix test problems, SIGNUM Newsletter,
(1982), p. 22.

[5] A. GEORGE AND J. Liu, Computer Solution of Large Sparse Positive Definite Linear Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1982,

[6] C. Lawson, R. HANSON, D. KiNcAID AND F. KROGH, Basic linear algebra subprograms for Fortran
usage, ACM Trans. Math. Software, 5 (1978), pp. 308-323.

[7] J. W. H. L1u, Modification of the minimum degree algorithm by multiple elimination, ACM Trans. Math.
Software, 11 (1985), pp. 141-153. '

[8] K. W.NEVES, The impact of changing architectures, Report ETA-TR. 26, Boeing Computet Services, ‘IESSA

[9] A. SHERMAN, Linear Algebra for Reservoir Simulation Comparison Study of Numerical Algorithms,

s50Cl 84. 5

1S Ndena}:if::f:;:;rl 9User‘s Manual, Document 20460-0501, Boeing Computer Services, 1986.

[10] VectorPak Subr . i limination routine on the Cyber 205 and the

[11] P. T. WoO AND J. M. LEVESQUE, Benchmarking a sparse elimi 2
CRAY-1, Proc. 6th SPE Symposium on Reservoir Simulation, 1982.

