
IBM Reliable Scalable Cluster Technology for AIX 5L

LAPI Programming Guide

SA22-7936-02

���

IBM Reliable Scalable Cluster Technology for AIX 5L

LAPI Programming Guide

SA22-7936-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 291.

Third Edition (April 2005)

This edition applies to:

v version 5, release 2 of IBM AIX 5L for POWER™ (product number 5765-E62) with the 5200-06 Recommended

Maintenance package

v version 5, release 3 of IBM AIX 5L for POWER (product number 5765-G03)

v all subsequent releases and modifications until otherwise indicated in new editions

Vertical lines (│) in the left margin indicate technical changes to the previous edition of this book.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are

not stocked at the address given below.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has

been removed, address your comments to:

 IBM Corporation, Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States and Canada): 1+845+432-9405

 FAX (Other Countries)

 Your International Access Code +1+845+432-9405

 IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)

 Internet: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2003, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|

Contents

Figures . ix

Tables . xi

About this book . xiii

Who should use this book . xiii

Conventions and terminology used in this book xiii

Conventions . xiii

Terminology . xiv

Prerequisite and related information xiv

Using LookAt to find message explanations xv

How to send your comments . xvi

Part 1. LAPI concepts . 1

Chapter 1. What is the low-level application programming interface (LAPI)? 3

Why use LAPI? . 7

Chapter 2. An overview of LAPI 9

Initialization and termination . 10

Querying and setting up the runtime environment 10

Address-related functions . 10

Put and get functions . 11

Active messages . 12

Non-contiguous data transfer . 12

Remote read-modify-write functions 13

Generic data transfer functions 14

Progress-monitoring functions 15

Message ordering functions . 16

Utility functions . 16

Error message functions . 16

Recovery-related functions . 16

Chapter 3. What’s new in LAPI? 19

Tips for LAPI users . 21

Part 2. Basic LAPI tasks . 23

Chapter 4. Installing RSCT LAPI 25

Requirements . 25

Hardware . 25

Software . 25

How is RSCT LAPI packaged? 25

RSCT LAPI filesets . 26

Installation steps . 27

Uninstallation steps . 27

Migration and coexistence . 28

Chapter 5. Setting up, initializing, and terminating LAPI 29

Setting and querying the LAPI environment 29

Setting environment variables 29

Initializing LAPI . 31

© Copyright IBM Corp. 2003, 2005 iii

||
||

||

||

Terminating LAPI . 33

Chapter 6. Transferring data 35

Data transfer operations . 35

Flow of ″put″ operations . 35

Flow of ″get″ operations . 36

Flow of read-modify-write operations 37

Non-contiguous data transfer . 37

Using vectors . 37

Using data gather/scatter programs (DGSPs) 43

Detecting completion . 47

LAPI handlers . 47

LAPI counters . 52

Specifying target-side addresses 53

Additional progress functions 53

Chapter 7. Active messaging 55

Flow of active message operations 55

Using LAPI_Amsend: a complete LAPI program 56

Chapter 8. Collecting statistics 63

Printing data transfer statistics 63

Querying US and UDP/IP statistics 63

Querying local send statistics 63

Querying shared memory statistics 64

Chapter 9. Using LAPI’s profiling interface 65

Performing name-shift profiling 66

A sample profiling program . 68

Chapter 10. Compiling and running LAPI programs 71

Part 3. Advanced LAPI tasks . 73

Chapter 11. Advanced programming 75

The enhanced header handler interface 75

Inline completion handlers . 77

LAPI performance considerations 78

Use of handlers . 78

Running in interrupt mode . 78

Running in UDP/IP mode . 78

User header data . 79

Send-side copy of small messages 79

Receive-side optimization for single-packet messages 79

Tunable environment variables 80

32-bit and 64-bit interoperability 81

The lapi_long_t datatype . 81

The LAPI_Address_init64 subroutine 81

The LAPI_Xfer interface . 81

Chapter 12. Lock sharing . 83

Scenarios without lock sharing 83

Scenarios with lock sharing . 87

Correctness of lock sharing . 91

Implications and restrictions . 93

Initialization and termination 93

iv IBM RSCT for AIX 5L: LAPI Programming Guide

||
||
||
||
||

||
||
||

||

||

Other LAPI calls . 94

Callbacks . 94

Long critical sections . 94

Lock preemption . 94

Receive/timer interrupts . 94

Performance of multi-threaded programs 95

Compatibility . 95

A sample lock sharing program 95

Chapter 13. Bulk transfer of messages 99

Chapter 14. Striping, failover, and recovery 103

Using failover and recovery . 103

Monitoring adapter status 103

Requesting the use of multiple adapters 104

Failover and recovery restrictions 106

Data striping . 106

Communication and memory considerations 108

IP communication . 108

US communication . 109

Chapter 15. Threaded programming 111

General guidelines . 111

Using LAPI_Address_init . 111

Making global fence calls . 112

Making ″wait on counter″ calls 112

Synchronizing threads across tasks 112

Using handlers . 112

LAPI threads . 113

Chapter 16. Using LAPI on a standalone system 115

Standalone setup . 115

Standalone initialization . 117

Using UDP/IP mode . 117

Using US mode . 117

Compiling LAPI programs on a standalone system 118

Part 4. LAPI reference . 119

Chapter 17. LAPI man pages 121

lapi_subroutines . 122

Chapter 18. Subroutines for all systems (PE and standalone) 125

LAPI_Addr_get . 126

LAPI_Addr_set . 128

LAPI_Address . 130

LAPI_Address_init . 132

LAPI_Address_init64 . 134

LAPI_Amsend . 136

LAPI_Amsendv . 143

LAPI_Fence . 149

LAPI_Get . 151

LAPI_Getcntr . 154

LAPI_Getv . 156

LAPI_Gfence . 161

LAPI_Init . 163

Contents v

||
||

||
||
||
||
||

||
||

LAPI_Msg_string . 169

LAPI_Msgpoll . 171

LAPI_Probe . 174

LAPI_Put . 176

LAPI_Putv . 179

LAPI_Qenv . 184

LAPI_Rmw . 188

LAPI_Rmw64 . 192

LAPI_Senv . 196

LAPI_Setcntr . 198

LAPI_Term . 201

LAPI_Util . 203

LAPI_Waitcntr . 217

LAPI_Xfer . 219

Chapter 19. Subroutines for standalone systems 235

LAPI_Nopoll_wait . 236

LAPI_Purge_totask . 238

LAPI_Resume_totask . 240

LAPI_Setcntr_wstatus . 242

Chapter 20. LAPI sample programs 245

Sample program directory structure 245

Using the LAPI sample programs 250

Summary of constructs and techniques for LAPI programming 250

Appendix A. Product-related information 253

RSCT version . 253

ISO 9000 . 253

Product-related feedback . 254

Appendix B. LAPI execution models 255

The IP/US execution model . 255

The shared memory execution model 257

Cross memory kernel extension 258

LAPI shared memory: functional flow 259

LAPI shared memory: requirements and restrictions 259

Appendix C. LAPI messages, return codes, and return values 261

LAPI attention messages . 261

LAPI return codes . 261

LAPI error codes . 261

LAPI return values . 264

Appendix D. LAPI environment variables and runtime attributes 269

Environment variables . 269

Variables for communication 269

Variables for data transfer 269

Variables for diagnostics . 270

Variables for performance tuning 270

Variables for POE . 271

Variables for shared memory 274

Variables for standalone systems 274

Runtime attributes . 275

Attributes you can query or set 275

Attributes you can query . 276

vi IBM RSCT for AIX 5L: LAPI Programming Guide

Appendix E. LAPI datatypes 279

Appendix F. LAPI constants and size limits 283

Appendix G. LAPI restrictions 285

General restrictions . 285

Use of segment registers (32-bit applications only) 285

Other restrictions . 285

Glossary . 287

Notices . 291

Trademarks . 292

Index . 295

Contents vii

||

viii IBM RSCT for AIX 5L: LAPI Programming Guide

Figures

 1. How LAPI sets up the mode of communication . 31

 2. The sequence of events for a ″put″ operation . 36

 3. The sequence of events for a ″get″ operation . 36

 4. The sequence of events for a read-modify-write operation 37

 5. Transferring data with type LAPI_GEN_IOVECTOR 40

 6. Transferring data with type LAPI_GEN_STRIDED_XFER 41

 7. The completion handler queue . 51

 8. The sequence of events for an active message operation 56

 9. Inline completion handler flow . 77

10. A program initiates a call to LAPI, without lock sharing 84

11. LAPI initiates a callback, without lock sharing . 85

12. A program initiates a call to LAPI, with embedded up- and down- calls 86

13. LAPI initiates a callback, with embedded up- and down- calls 87

14. A program initiates a call to LAPI, with one lock acquisition and release pair 88

15. LAPI initiates a callback, with one lock acquisition and release pair 89

16. A program initiates a call to LAPI, with embedded up- and down- calls and one lock acquisition

and release pair . 90

17. LAPI initiates a callback, with embedded up- and down- calls and one lock acquisition and release

pair . 91

18. Critical sections under lock sharing . 93

19. LAPI packet data flow . 100

20. LAPI bulk data flow . 101

21. Execution sequence of the accumulate_and_return.Am sample 248

22. Execution sequence of the accumulate_and_return.Put sample 248

23. A LAPI thread model . 256

24. LAPI_Put without shared memory . 258

25. LAPI_Put with shared memory . 258

© Copyright IBM Corp. 2003, 2005 ix

x IBM RSCT for AIX 5L: LAPI Programming Guide

Tables

 1. Typographic conventions . xiii

 2. Terminology . xiv

 3. Changes in this edition . 19

 4. Changes in the second edition . 19

 5. Changes in the first edition . 20

 6. Differences between LAPI versions . 21

 7. Rules for vector transfer . 43

 8. LAPI handlers . 52

 9. LAPI counters . 53

10. LAPI profiling interfaces . 65

11. Compiling LAPI programs on a system that is running PE 71

12. Failover and recovery operations . 106

13. Compiling LAPI programs on a standalone system 118

14. lapi_util_type_t types . 204

15. The lapi_reg_dgsp_t fields . 205

16. The lapi_resv_dgsp_t fields . 205

17. The lapi_dref_dgsp_t fields . 206

18. The lapi_reg_ddm_t fields . 206

19. The lapi_pack_dgsp_t fields . 207

20. The lapi_unpack_dgsp_t fields . 207

21. The lapi_add_udp_port_t fields . 208

22. The lapi_thread_func_t fields . 208

23. LAPI_Xfer structure types . 220

24. LAPI_Amsend and lapi_am_t equivalents . 221

25. LAPI_Amsendv and lapi_amv_t equivalents . 222

26. The lapi_amdgsp_t fields . 223

27. LAPI_Get and lapi_get_t equivalents . 225

28. LAPI_Getv and lapi_getv_t equivalents . 225

29. LAPI_Put and lapi_put_t equivalents . 226

30. LAPI_Putv and lapi_putv_t equivalents . 227

31. LAPI_Rmw and lapi_rmw_t equivalents . 228

32. Constructs and techniques for LAPI programming 250

33. LAPI attention messages . 261

34. LAPI return codes . 261

35. LAPI error codes . 261

36. LAPI return values . 264

37. Environment variables for communication . 269

38. Environment variables for data transfer . 269

39. Environment variables for diagnostics . 270

40. Environment variables for performance tuning . 270

41. Environment variables for POE . 272

42. Environment variables for shared memory . 274

43. Environment variables for standalone systems 274

44. Runtime attributes you can query or set . 275

45. Attributes that return integers . 276

46. Attributes that return multiple values . 277

47. LAPI datatypes . 279

© Copyright IBM Corp. 2003, 2005 xi

||
||

||

xii IBM RSCT for AIX 5L: LAPI Programming Guide

About this book

This book includes conceptual, procedural, and reference information about the

low-level application programming interface (LAPI).

Who should use this book

This book is intended for programmers who want to write and run LAPI programs

on the AIX® operating system. The programmer should be experienced with UNIX®,

networked systems, and the C or FORTRAN programming language.

Conventions and terminology used in this book

Conventions

This book uses the typographic conventions shown in Table 1:

 Table 1. Typographic conventions

Convention Usage

bold Bold words or characters represent system elements that you must use literally, such

as the names of commands, constants, datatypes, directories, environment variables,

files, flags, paths, return values, structures, and subroutines.

constant width Examples and information that the system displays appear in constant-width

typeface.

italic Italicized words or characters represent the values of programming variables or

parameters that you must supply.

Italics are also used for book titles, for the first use of a glossary term, and for general

emphasis in text.

underlined 1. When used to show the size of a parameter, a comparison of values, or a range of

values, valid values for the query parameter of the LAPI_Qenv subroutine are

underlined. For example:

NUM_TASKS

is a shorthand notation for:

LAPI_Qenv(hndl, NUM_TASKS, ret_val)

For a list of the query parameter’s valid values, see “LAPI_Qenv” on page 184.

2. Underlined characters are also a shorthand notation for:

LAPI_Xfer with transfer type LAPI_xfer-type_XFER

The eight valid values for xfer-type are: LAPI_AM_XFER, LAPI_AMV_XFER,

LAPI_DGSP_XFER, LAPI_GET_XFER, LAPI_GETV_XFER, LAPI_PUT_XFER,

LAPI_PUTV_XFER, and LAPI_RMW_XFER

So, for example, this document would refer to:

LAPI_Xfer with transfer type LAPI_AM_XFER

as:

AM

For more information about these transfer types, see “LAPI_Xfer” on page 219.

© Copyright IBM Corp. 2003, 2005 xiii

|

Table 1. Typographic conventions (continued)

Convention Usage

│ 1. In the left margin of the book, vertical lines indicate technical changes to the

information.

2. In syntax statements, vertical lines are used as pipe characters.

[item/element] Brackets indicate an optional item or an element in an array.

... Ellipses indicate items that can be repeated.

Terminology

This book uses the terminology conventions shown in Table 2:

 Table 2. Terminology

Term Usage

HPS A shorthand notation for the High Performance Switch, which works

in conjunction with IBM®

Eserver

® p5 servers (575, 595)

pSeries® HPS A shorthand notation for the pSeries High Performance Switch,

which works in conjunction with IBM Eserver pSeries servers (655,

690)

See the “Glossary” on page 287 for definitions of some of the other terms that are

used in this book.

Prerequisite and related information

The core Reliable Scalable Cluster Technology (RSCT) publications are:

v RSCT: Administration Guide, SA22-7889, provides an overview of the RSCT

components and describes how to:

– Create and administer RSCT peer domains.

– Manage and monitor resources using the resource monitoring and control

(RMC) subsystem.

– Administer cluster security services for RSCT peer domains and CSM

management domains.

v RSCT: Diagnosis Guide, SA23-2202, describes how to diagnose and resolve

problems related to the various components of RSCT. This book is a companion

volume to RSCT: Messages, which lists the error messages that may be

generated by each RSCT component. While RSCT: Messages describes the

appropriate user responses to messages that are generated by RSCT

components, this book contains additional and more detailed diagnostic

procedures.

v RSCT: Messages, GA22-7891, lists the error messages that may be generated

by each RSCT component. For each message, this manual provides an

explanation of the message, and describes how you should respond to it.

v RSCT for AIX 5L™: Technical Reference, SA22-7890, and RSCT for Linux®:

Technical Reference, SA22-7893, provide detailed reference information about all

of the RSCT commands, daemons, files, and scripts.

In addition to these core RSCT publications, the library contains the following

publications of interest:

v RSCT: Group Services Programming Guide and Reference, SA22-7888, contains

information for programmers who want to write new clients that use the group

xiv IBM RSCT for AIX 5L: LAPI Programming Guide

|

|

||

||

||
|

||
|
|
|

|
|

services subsystem’s application programming interface (GSAPI) or who want to

add the use of group services to existing programs. This book is intended for

programmers of system management applications who want to use group

services to make their applications highly available.

v RSCT for AIX 5L: LAPI Programming Guide, SA22-7936, provides conceptual,

procedural, and reference information about the low-level application

programming interface (LAPI). LAPI is part of the AIX implementation of RSCT

only; it is not available with RSCT for Linux. LAPI is a message-passing API that

provides optimal communication performance on an IBM Eserver pSeries High

Performance Switch (pSeries HPS) or an IBM Eserver High Performance

Switch (HPS) for p5 servers.

v RSCT for AIX 5L: Managing Shared Disks, SA22-7937, describes the shared disk

management facilities of IBM Eserver Cluster 1600 server processors — the

optional virtual shared disk and recoverable virtual shared disk components of

RSCT for AIX 5L. These components are part of the AIX implementation of RSCT

only; they are not available with RSCT for Linux. This book describes how you

can use these components to manage cluster disks to enable multiple nodes to

share the information they hold. The book includes an overview of the

components and explains how to plan for them, install them, and use them to

add reliability and availability to your data storage.

An RSCT Documentation Updates file is maintained on the World Wide Web at

the following URL:

http://publib.boulder.ibm.com/clresctr/docs/rsct/docupdates.html

This file contains updates to the RSCT documentation. These updates include

documentation corrections and clarifications, as well as information (such as

needed software patches) that was discovered after the RSCT books were

published. Check the RSCT Documentation Updates file for pertinent information.

To access all RSCT documentation, refer to the IBM Eserver Cluster Information

Center. This Web site, which is located at

http://publib.boulder.ibm.com/infocenter/clresctr, contains the most recent RSCT

documentation in PDF and HTML formats.

The current RSCT books and earlier versions of the library are also available in

PDF format from the IBM Publications Center Web site, which is located at

http://www.ibm.com/shop/publications/order. It is easiest to locate a manual in

the IBM Publications Center by supplying the manual’s publication number. The

publication number for each of the RSCT books is listed after the book title in the

preceding list.

Using LookAt to find message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example:

About this book xv

|
|

|

|

|
|
|

|
|

|

|
|

Internet Explorer for Pocket PCs, Blazer, Eudora for Palm OS, or Opera for Linux

handheld devices). Link to the LookAt Mobile Edition from the LookAt Web site.

How to send your comments

Your feedback is important in helping to provide accurate, high-quality information. If

you have any comments about this book or any other RSCT documentation:

v Go to the IBM Eserver Cluster Information Center home page at:

http://publib.boulder.ibm.com/infocenter/clresctr

Click on the Contact us link to go to our feedback page, where you can enter

and submit your comments.

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Include the book title and order number, and, if applicable, the specific location of

the information about which you have comments (for example, a page number,

table number, or figure number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

xvi IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

|

Part 1. LAPI concepts

Chapter 1. What is the low-level application programming interface (LAPI)? 3

Why use LAPI? . 7

Chapter 2. An overview of LAPI 9

Initialization and termination . 10

Querying and setting up the runtime environment 10

Address-related functions . 10

Put and get functions . 11

Active messages . 12

Non-contiguous data transfer . 12

Remote read-modify-write functions 13

Generic data transfer functions 14

Progress-monitoring functions 15

Message ordering functions . 16

Utility functions . 16

Error message functions . 16

Recovery-related functions . 16

Chapter 3. What’s new in LAPI? 19

Tips for LAPI users . 21

© Copyright IBM Corp. 2003, 2005 1

2 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 1. What is the low-level application programming

interface (LAPI)?

The low-level application programming interface (LAPI) is a message-passing API

that provides a one-sided communication model. In this model, one task initiates a

communication operation to a second task. The completion of the communication

does not require the second task to take a complementary action. RSCT LAPI

provides optimal communication performance on an IBM Eserver pSeries High

Performance Switch (pSeries HPS) or an IBM Eserver High Performance Switch

(HPS) for p5 servers. PSSP LAPI provides optimal communication performance on

the SP™ Switch2.

The LAPI library provides basic operations to ″put″ data to and ″get″ data from one

or more virtual addresses of a remote task. LAPI also provides an active message

infrastructure. With active messaging, programmers can install a set of handlers

that are called and run in the address space of a target task on behalf of the task

originating the active message. Among their other uses, these handlers can be

used to dynamically determine the target address (or addresses) where data from

the originating task must be stored. You can use this generic interface to customize

LAPI functions for your environment.

Some of LAPI’s other general characteristics include:

v Flow control

v Support for large messages

v Support for generic non-contiguous messages

v Non-blocking calls

v Interrupt and polling modes

v Efficient exploitation of switch functions

v Event monitoring support (to simulate blocking calls, for example) for various

types of completion events

LAPI is meant to be used by programming libraries, and by power programmers for

whom performance is more important than code portability.

To use LAPI, you need to understand the following basic concepts and the related

LAPI characteristics:

v LAPI handle

You interact with LAPI through an opaque object called a LAPI handle. This

object is also referred to as a LAPI instance or a LAPI context. Almost without

exception, LAPI function calls take a LAPI handle as the first argument.

v Data buffer

You provide data to LAPI for reading and writing. For contiguous data transfer, a

data buffer is defined by a base address and data length. LAPI also provides a

number of methods for transferring non-contiguous data, such as multiple buffers,

repeating block/stride descriptions, and data gather/scatter programs (DGSPs).

v Origin and target

LAPI communication operations usually involve two tasks. For these operations,

origin (or source) denotes the task that initiates the LAPI operation and target (or

destination) denotes the task where the address space is accessed during the

© Copyright IBM Corp. 2003, 2005 3

|
|
|

operation. The origin and target can be the same for any of the LAPI

communication calls, but if the origin and target data areas overlap, the result of

the communication is undefined.

v Push and pull operations

A push operation transfers data from the origin task to the address space of the

target task. A pull operation transfers data from the address space of a target

task into the (local) address space of the origin task.

v Blocking and non-blocking calls

A blocking procedure returns only after the operation is complete. All LAPI

synchronization calls are blocking. There are no restrictions on the modification

of user resources.

A non-blocking procedure might return before the operation is complete and

before you can modify all of the resources that are specified in the call. All LAPI

data transfer calls are non-blocking. A non-blocking operation is considered to be

complete only after a function or an event that tests for completion indicates that

the operation is complete. LAPI provides counters and handlers to signal

completion of various events for non-blocking calls.

Completion of LAPI communication operations can be detected either by

checking the values of counters associated with LAPI operations or by the

completed execution of user-specified handlers associated with these operations.

To obtain the semantics of blocking communication with LAPI, you can combine

a LAPI communication operation with procedures that wait on LAPI completion

events.

v Counters and handlers

LAPI uses counters and handlers to notify you about such events as the arrival

of a message or the completion of a message. A counter is an opaque object;

only its value is of interest. A handler is a callback routine that you provide. LAPI

updates a counter, calls a handler, or both to notify you about an event. In terms

of notification latency, handlers are generally more efficient than counters. When

a handler is called, your program takes control immediately. On the other hand,

your program has to poll on a counter to know about any updates.

With a few notable exceptions, the use of counters and handlers is optional in

LAPI communication calls. For any counters you specify, LAPI increments the

counter at certain points in the message delivery sequence. Similarly, LAPI

invokes any optional callback handlers you specify at the appropriate point in the

operation.

v Completion of communication operation

A communication operation is considered to be complete, (with respect to the

buffer) when the buffer is reusable.

With respect to the origin buffer:

– a push operation is complete when the data has been copied out of the buffer

at the origin task and can be overwritten

– a pull operation is complete when the origin buffer holds the new data that

was obtained by the pull operation

With respect to the target buffer:

– a push operation is complete when the new data is available at the target

buffer

– a pull operation is complete when the data has been copied out of the target

buffer and the target task can overwrite that buffer

Two types of communication behavior support two different definitions of

completion:

4 IBM RSCT for AIX 5L: LAPI Programming Guide

1. In standard behavior, a communication operation is complete:

– at the origin task when it is complete with respect to the origin buffer

– at the target task when it is complete with respect to the target buffer

2. In synchronous behavior, a communication operation is complete:

– at the origin task when it is complete with respect to both the origin buffer

and the target buffer

– at the target task when it is complete with respect to the target buffer

Both standard and synchronous behaviors can be obtained for LAPI push

operations; however, only synchronous behavior can be obtained for LAPI pull

operations. When using send completion handlers for notification of message

completion, it is important to note that this only applies to the standard behavior

as defined above, for push operations.

v Message ordering and atomicity

Two LAPI operations that have the same origin task are considered to be

ordered with respect to the origin if one of the operations starts after the other

operation has completed at the origin task. Similarly, two LAPI operations that

have the same target task are considered to be ordered with respect to the target

if one of the operations starts after the other operation has completed at the

target task. If two operations are not ordered, they are considered concurrent.

LAPI provides no guarantees of ordering for concurrent communication

operations. However, LAPI does provide mechanisms that an application can use

to guarantee order.

As an example, consider the case where a node issues two standard behavior

push operations to the same target node, where the target buffer regions overlap.

These two operations may complete in any order, including the possibility of the

first push operation overlapping in time with the second push operation. The

contents of the overlapping region will be undefined, even after both push

operations complete. Using synchronous behavior for both push operations

(waiting for the first to complete before starting the second) will ensure that the

overlapping region contains the result of the second after both push operations

have completed.

v Error handling

LAPI provides you with the option of registering an error handler during LAPI

initialization. LAPI calls the error handler with an error code that is passed as a

parameter to the handler when it encounters a fatal error that would normally

cause LAPI to terminate. If no error handler is registered, LAPI terminates the job

when such fatal errors occur. LAPI also provides functions to translate a LAPI

error code — an integer value — that is passed in to the registered error handler

into a more explanatory message string.

If an error occurs during a communication operation, the error may be signaled at

the origin of the operation, the target of the operation, or both. Some errors may

be caught before the communication operation begins; these are signaled at the

origin. However, some errors will not occur until the communication is in progress

(a segmentation violation at the target, for example); these may be signaled at

either end (or at both ends) of the communication.

v Progress

Most LAPI communication calls are non-blocking and control may thus be

returned to you without the communication completing. Other LAPI calls are

therefore needed to make progress with these pending communications and to

drive them to completion. Various LAPI subroutines drive the progress of LAPI

communication explicitly or implicitly by invoking a communication dispatcher that

is internal to LAPI.

Chapter 1. What is the low-level application programming interface (LAPI)? 5

v Polling mode and interrupt mode

You can run LAPI in either polling mode or interrupt mode. In polling mode, the

sending and receiving of messages only happens when you explictly call a LAPI

function. In interrupt mode, a receive interrupt is generated for incoming

messages when your program is not in any LAPI function call. An extra thread,

which LAPI creates at initialization, is called to handle the interrupt.

v Statistics collection

Using LAPI’s query function, you can query statistics related to data that is

transferred using the user space (US) protocol or User Datagram

Protocol/Internet Protocol (UDP/IP), intra-task local copy, and shared memory. In

addition, you can print data transfer statistics.

v Profiling

LAPI’s profiling interface includes wrappers for each LAPI function, so you can

collect data about each of the LAPI calls. For example, you can write a program

that records the message size that is used in each call.

v Lock sharing

Sharing locks with LAPI provides increased efficiency in protocol layering and

user programming. When you need to use a locking mechanism to protect your

programs’ data structures, you can use the same locking mechanism that is

employed by LAPI through its lock sharing interface. This way, your program is

more tightly coupled with LAPI in terms of locking. Using a shared lock in your

program may result in improved latency and throughput, when compared to using

a separate lock.

v Failover and recovery

These LAPI functions are supported on HPS and pSeries HPS systems that have

multiple adapters per node. All of the nodes in the system must be configured as

part of a single RSCT peer domain. Using LoadLeveler® command file settings or

POE environment variables, you can request that LAPI use more than one

adapter for each of the job tasks. For jobs that are run using this configuration, if

one of the adapters allocated to the tasks of a job fails during the course of the

job run, the job will continue and LAPI will use the available adapters for

communication. If the failed adapter recovers the ability to communicate while the

job is running, LAPI recovers the use of this failed adapter for future

communication during the remainder of the job run.

v Striping

LAPI can manage the distribution of bulk transfer data among the various

communication adapters that are assigned for communication, thereby providing

LAPI clients with improved performance with regard to communication bandwidth.

By using striping in conjunction with the bulk transfer transport mechanism, LAPI

clients can experience gains in communication performance that scale linearly

with the number of adapters (up to a limit of 8) for sufficiently-large messages.

Messages that do not use the bulk transfer communication mode cannot benefit

practically from striping over multiple adapters, so LAPI uses only one of the

assigned adapters for communication when bulk transfer is turned off with

environment variable settings or for small messages, which do not use bulk

transfer. Even when striping is not done, the other assigned adapters serve as

backups for LAPI’s failover and recovery function.

v Standalone operation

You can use LAPI with or without the parallel operating environment (POE)

component of the IBM Parallel Environment for AIX 5L (PE) licensed program.

LAPI is referred to as operating in standalone mode if you use it without PE. In

certain situations, such as failure recovery, you will have greater flexibility if you

6 IBM RSCT for AIX 5L: LAPI Programming Guide

|

|
|
|
|

|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

use LAPI in standalone mode, as opposed to the enhanced usability that comes

with using LAPI in conjunction with POE.

Why use LAPI?

LAPI provides the following advantages over other messaging layers:

v Performance

LAPI provides basic functions for optimal performance. In particular, LAPI

provides low latency on short messages using the user space (US) protocol and

high bandwidth on large messages.

v Flexibility

LAPI’s one-sided communication model provides flexibility because the

completion of an operation by one task does not require any other task to take a

complementary action. This model is supported by the use of virtual addressing.

Addresses in the target task address space are passed to LAPI communication

calls by the origin task. These addresses can refer to remote data buffers,

handlers, or counters. The use of target addresses allows data to be delivered

without any need for explicit action by the target task.

Two-sided communication can be simulated using LAPI’s communication calls in

conjunction with various event-monitoring routines (such as waiting for counter

values or execution of specified handlers, for example).

RSCT LAPI provides a lower-level interface to an HPS or a pSeries HPS (as

does PSSP LAPI to an SP Switch2) than either the Message Passing Interface

(MPI) or the Internet Protocol (IP), so you can choose how much additional

communication protocol needs to be added.

With the addition of LAPI messaging support over UDP/IP, applications that are

written using LAPI can be executed over any cluster of processors running AIX

5.2 or 5.3.

v Reliability

Using LAPI guarantees delivery of messages. Errors that are not directly related

to the application are not propagated back to the application.

v Availability

In systems with multi-adapter nodes, if jobs are launched with settings to request

use of multiple adapters within the job tasks, when an adapter fails, LAPI

switches communication over to another, available adapter. If the original adapter

regains the use of the connection during the course of the job run, LAPI recovers

the use of this adapter for communication for the remainder of the job run. In

addition, checkpoint and restart operations continue to be supported during these

failures and recoveries.

v Extendibility

LAPI supports programmer-defined handlers that are called when a message

arrives, so you can customize LAPI for your specific environment. For example,

you can write completion handler functions to communicate data that helps

maintain user program state. With such handlers, you can, in effect, extend

LAPI’s active message functionality to do your specific state update operations

for you, in addition to the handlers’ normal function of transferring data.

Chapter 1. What is the low-level application programming interface (LAPI)? 7

|
|

8 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 2. An overview of LAPI

This chapter provides a functional overview of the various subroutines that

constitute the low-level application programming interface. LAPI subroutines provide

a wide variety of functions that can be used efficiently and flexibly to obtain most

behaviors required from any parallel programming API.

In general, LAPI functions:

v Are non-blocking calls.

v Provide polling mode and interrupt mode.

v Indicate the completion of a message or operation either by incrementing

counters or by running user-specified handlers. Counters and handlers are

available at both the sending and receiving side, depending on the API call.

v Provide C and FORTRAN subroutine bindings.

v Provide extern ″C″ declarations for C++ programming.

v Provide profiling interfaces for C, C++, and FORTRAN programs.

v Do not guarantee order of message delivery.

Complementary functions provide for checking completion of operations and for

enforcing relative ordering if required. Additionally, LAPI functions allow tasks to

exchange addresses that will be used in LAPI operations.

LAPI functions (and related subroutines) include:

v Functions to initialize and terminate LAPI (LAPI_Init, LAPI_Term)

v Functions to query and and set up the runtime environment (LAPI_Qenv,

LAPI_Senv)

v Address-related functions (LAPI_Address, LAPI_Address_init,

LAPI_Address_init64, LAPI_Addr_get, LAPI_Addr_set)

The LAPI_Address_init64 subroutine treats all data as 64-bit values, so it can

support communication between 32-bit and 64-bit tasks.

v Put and get functions (LAPI_Put, LAPI_Get, LAPI_Xfer)

v Active message functions (LAPI_Amsend, LAPI_Xfer)

v Non-contiguous data transfer functions (LAPI_Amsendv, LAPI_Getv,

LAPI_Putv, LAPI_Xfer)

v Remote read-modify-write functions (LAPI_Rmw, LAPI_Rmw64, LAPI_Xfer)

The LAPI_Rmw64 subroutine treats all data as 64-bit values, so it can support

communication between 32-bit and 64-bit tasks.

v A wrapper function for all generic data transfer calls that includes support for

32-bit/64-bit interoperability and an optional send completion handler (LAPI_Xfer)

v Progress-monitoring functions (LAPI_Getcntr, LAPI_Msgpoll, LAPI_Probe,

LAPI_Setcntr, LAPI_Waitcntr)

v Message ordering functions (LAPI_Fence, LAPI_Gfence)

v A wrapper function that provides additional utilities (LAPI_Util)

v Error message functions (LAPI_Msg_string)

v Recovery-related functions for standalone systems (LAPI_Nopoll_wait,

LAPI_Purge_totask, LAPI_Resume_totask, LAPI_Setcntr_wstatus)

These functions are explained in more detail in the following sections.

© Copyright IBM Corp. 2003, 2005 9

|

Initialization and termination

LAPI uses a number of internal structures to enable it to perform message-passing

operations on behalf of the user. Memory must be allocated for these internal

structures, and the structures must be appropriately initialized before any LAPI

communication is performed. Correspondingly, when all LAPI communication is

done, memory used by LAPI structures must be freed and potentially reused by the

user program.

The LAPI_Init subroutine is used to allocate memory for LAPI’s communication

structures and to initialize them. It returns a unique handle that represents a single

LAPI communication context. This handle is subsequently passed as a parameter to

each of the other LAPI functions. LAPI_Init takes in a parameter of type

lapi_info_t. The fields in this structure are used to specify various initialization

parameters. LAPI_Init reads in various environment variables and sets up various

communication channels based on the values of these variables. For example, the

user can set environment variables to indicate whether communication will take

place using the user space (US) protocol or the user datagram protocol (UDP) and

whether to use shared memory.

The LAPI_Term subroutine is used to free memory associated with LAPI’s

communication structures. It takes a LAPI handle as a parameter and uses it to

terminate the corresponding communication context. Once LAPI_Term is called, no

further LAPI communication can be performed on the handle that has been

terminated. Typically, LAPI_Init is called once at the beginning of the user program

and LAPI_Term is called just before the user program terminates. However, LAPI

allows a handle to be initialized after it has been terminated.

Querying and setting up the runtime environment

A number of variables constitute LAPI’s runtime state. Many of these variables can

be queried at runtime. For example, it is often useful (if not always required) to

know the number of tasks in a given job as well as the identity of the current task

and to design the user program to take actions according to their values. Many of

LAPI’s runtime state variables can also be set to alter LAPI’s behavior through the

job execution and to tune LAPI’s performance. For example, it may be useful to turn

off interrupts to signal incoming packets when the user program explicitly makes a

number of calls to various LAPI progress routines.

The LAPI_Qenv subroutine is used to query elements of LAPI’s runtime state. The

LAPI_Senv subroutine correspondingly allows the programmer to set the value of

various elements of LAPI’s runtime state. LAPI defines an enumeration of query

types (lapi_query_t). A parameter of this type is passed to LAPI_Qenv or

LAPI_Senv to indicate the value to query or set, respectively.

Address-related functions

Many of LAPI’s communication operations take advantage of virtual addresses in

the remote task’s address space. An address might refer to a buffer location or a

handler function on the target task. For example, LAPI’s active message functions

are passed the address of a header handler that executes on the target task upon

the arrival of the first packet of a message.

The LAPI_Address_init collective operation allows tasks to exchange virtual

addresses of mutual interest. Such a function is especially required in the typical

10 IBM RSCT for AIX 5L: LAPI Programming Guide

scenario where tasks do not have identical address maps. The LAPI_Address_init

function takes in a virtual address and the address of a local buffer that is large

enough to hold one address from each of the tasks in the job. When the function

returns, the local buffer has virtual addresses from each of the tasks, at indices that

correspond to each task’s ID.

The LAPI_Address_init64 collective operation is similar to LAPI_Address_init, but

handles 64-bit operand addresses and 32-bit operand addresses.

LAPI also provides operations to register and retrieve active message header

handlers as specific indices (referred to as address handles) in a table of handler

functions that is maintained by LAPI. These user-defined address handles can be

used instead of the virtual addresses of the header handler functions. The

LAPI_Addr_set subroutine registers a header handler function at the index passed

in by the caller. The LAPI_Addr_get subroutine retrieves the address of the header

handler function stored at a given index. If all tasks of the job are programmed to

register and use the same indices for specific header handler functions, a collective

LAPI_Address_init call to set up the address table can be avoided

FORTRAN programmers:

Because there is no concept of address (&) in FORTRAN, LAPI provides the

LAPI_Address subroutine, which FORTRAN programs can call when a value

needs to be treated as an address.

Put and get functions

LAPI includes subroutines that provide the user with a Remote Memory Copy

interface, allowing the direct transfer of contiguous data to or from the virtual

address of a remote task. These subroutines support ″pull″ and ″push″ operations.

The LAPI_Get subroutine copies (or ″pulls″) data from the address space of a

target task into the address space of the origin task. The LAPI_Put subroutine

copies (or ″pushes″) data into the address space of a target task from the address

space of the origin task. Other primary characteristics of the LAPI_Put and

LAPI_Get functions include the following:

v The basic data transfer operations are memory-to-memory copy operations that

transfer data from one virtual address space to another virtual address space.

v The operations are unilateral. One task initiates an operation, but the completion

of the operation does not require the other task to take some complementary

action. (This model is different from the more common send-receive

communication model, in which a send operation from one task requires a

complementary receive operation with matching parameters at the target task to

be posted for completion.)

v The initiating task specifies the virtual address of the source of the data and the

virtual address of the destination of the data (as opposed to a send and receive

task, in which each side specifies the address in its own address space). As

described in “Address-related functions” on page 10, LAPI provides the

LAPI_Address_init and LAPI_Address_init64 subroutines to obtain virtual

addresses in a remote task’s address space to or from which data needs to be

copied. These virtual addresses must be obtained before making the LAPI_Put

and LAPI_Get calls.

Chapter 2. An overview of LAPI 11

v Because data transfer operations are unilateral and no synchronization between

the two tasks is implied, additional primitives are provided for explicit task

synchronization when such synchronization is necessary for program

correctness.

Active messages

In many cases, it is impractical to exchange virtual addresses for all communication

performed during a job. Instead, it is useful to decide on the buffer address to which

incoming data must be stored when the data arrives at the target, based on

information about the state of the target task. Such a decision would be taken, for

example, by executing a function in the target task’s address space that examines

data in the incoming message and the state of the target task to decide where the

data must be stored. It is also similarly useful to be able to define and execute a

user-specified procedure at the target task as soon as a message is completely

transferred into the target task’s address space. Such a procedure can be used, for

example, to automatically process the message data at the target and to send any

necessary reply messages.

LAPI’s active message subroutine, LAPI_Amsend, provides users with this ability

to calculate the target buffer address at the destination by allowing the caller to

specify the address of a header handler function in the target task’s address space

as one of its parameters. The header handler function is executed at the target as

soon as the first packet of a message arrives and returns the address of the target

task buffer where the message data must be stored. The header handler function

may also change reference parameters passed into it to specify a completion

handler function and a parameter that should be passed to it. The completion

handler function, if specified, will be executed by LAPI as soon as the entire

message is transferred into the address returned by the header handler. The

LAPI_Amsend subroutine transfers contiguous messages only.

LAPI’s underlying active message infrastructure has the following characteristics:

v It includes the address of a user-specified handler. When the active message

arrives at the target task, the specified handler is called. This handler runs in the

address space of the target task.

v Optionally, the active message might also bring with it user header data from the

originating task that could aid in the computation of the target buffer address by

the header handler function, or in the future processing of actual message data.

v Operations are unilateral in the sense that the LAPI client on the target task does

not have to take explicit action for the active message to complete.

v The handler that is called must return the address of storage buffers for arriving

data.

v If the LAPI_Addr_set subroutine (described in “Address-related functions” on

page 10) is used to register the address of a header handler at a specific

address handle, that address handle may be passed in to LAPI_Amsend in

place of the header handler address.

Non-contiguous data transfer

The LAPI_Put and LAPI_Get subroutines (described in “Put and get functions” on

page 11) and the LAPI_Amsend subroutine (described in “Active messages”) can

be used to transfer data that is laid out in contiguous portions of memory. Very

often, though, data that is laid out in non-contiguous memory locations may need to

be transferred between tasks. Such non-contiguous data is often referred to as a

vector. Although it is possible to transfer a non-contiguous vector through multiple

12 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Put, LAPI_Get, or LAPI_Amsend calls, it is much more efficient to simply

specify the layout of the data at the source or target task and make a single LAPI

call that transfers data between the specified non-contiguous regions. At a

minimum, having such a call reduces the locking overhead associated with every

LAPI call that is incurred to maintain the integrity of LAPI’s internal data structures.

LAPI provides a lapi_vec_t datatype that can be used to describe the layout of

non-contiguous (vector) data and three subroutines (LAPI_Putv, LAPI_Getv, and

LAPI_Amsendv) to transfer this data in a similar manner to LAPI_Put, LAPI_Get,

and LAPI_Amsend. LAPI_Putv transfers vector data from the calling task to a

target task, LAPI_Getv transfers vector data from a target task to the caller task,

and LAPI_Amsendv specifies a header handler function that is executed at the

message target to obtain a vector description of where data must be stored at the

target. Descriptions of the source and target vectors, as pointers to the lapi_vec_t

types, are passed in to the LAPI_Putv and LAPI_Getv subroutines. The

LAPI_Amsendv subroutine only requires the source vector description. A target

vector description is returned by the header handler in a manner similar to the way

a single buffer is returned by the header handler in a LAPI_Amsend call. The

vector description with the lapi_vec_t structure includes information that directly or

indirectly indicates the starting buffer addresses and lengths of each of the

non-contiguous source and target regions. LAPI does not require that

non-contiguous data at the source and destination be laid out in identical fashion.

Remote read-modify-write functions

Multi-threaded, single-process programs often use atomic read-modify-write (RMW)

operations to check and change the values of shared variables from multiple

threads, thereby avoiding possible inconsistencies due to the effects of caching in

the underlying architecture. To avoid more significant locking overheads, RMW

operations are often used to synchronize among threads. With the LAPI_Rmw

subroutine, a calling task in a parallel, multi-process program can atomically check

and change the value of a remote task’s variable. For example, you can use

LAPI_Rmw to synchronize a pair of tasks in a job based on the value of a ″shared″

variable that is located on one of the tasks. LAPI_Rmw provides you with an

alternative to using other LAPI calls that facilitate synchronization among all of the

tasks in a job.

With LAPI_Rmw, the operation is performed at the target task on the remote

address that is specified by the target variable. The operation takes in one or more

input values from the origin and performs one of four selected operations on a

variable from the target task using these origin task input values. Depending on the

result of this operation, LAPI replaces the target task variable with a value dictated

by the result of the operation. The previous value of the target variable is then

returned to the origin by modifying an origin task variable. This variable’s address is

passed in as one of the parameters to the LAPI_Rmw subroutine. The four different

read-modify-write operations are as follows:

1. SWAP replaces the target task variable with the value specified by the calling

task and returns the original value of the target task variable by setting the

specified origin task variable.

2. COMPARE_AND_SWAP compares an input value with the value of the target

variable, and if they are equal, replaces the target task variable with another

specified input value.

Chapter 2. An overview of LAPI 13

3. FETCH_AND_ADD adds the specified input value to the target task variable

and stores the result in the target task variable. FETCH_AND_ADD returns the

original value of the target task variable (before performing the addition) by

setting the specified origin task variable.

4. FETCH_AND_OR does a bit-wise OR of the specified input value with the value

in the target task variable and stores the result in the target task variable. Like

FETCH_AND_ADD, FETCH_AND_OR also returns the original value of the

target task variable.

Completion is signaled at the origin if an origin counter is specified with the

operation. It is important to note that LAPI_Rmw operations are atomic with respect

to the target, but not necessarily with respect to the origin. That is, two successive

LAPI_Rmw calls from a task to the same origin variable at a target task may be

executed in any order at the target task, with the only guarantee that each will

execute atomically at the target.

The LAPI_Rmw64 subroutine provides the same function as LAPI_Rmw for a

64-bit data structure.

Generic data transfer functions

The contiguous and non-contiguous LAPI subroutines described in the previous

sections have some limitations. These limitations include: (1) there is no option to

specify a send completion handler that can be executed when the source buffer is

reusable, so the sending side must use counters to determine origin buffer

availability, (2) there is no support for 32-bit and 64-bit interoperability, and (3) there

is no support for flags that can be used to direct transfer-specific behavior.

These limitations are resolved by the LAPI_Xfer subroutine. This subroutine takes a

LAPI handle and a pointer to union of structures as arguments. Each structure in

the union corresponds to one of the data transfer functions described in the

previous sections, with the first element of the structure specifying the type of

transfer, such as Put, Get, or Am. Each structure contains fields that correspond to

the parameters in the corresponding LAPI data transfer call (for example, the

structure for the Put transfer has fields for each of the parameters in LAPI_Put),

with type modifications and additional fields to achieve the enhanced functionality

mentioned above. For example, each structure has a field for an optional send

completion handler (or, in the case of Get, for a receive completion handler), and a

flags field to control specific behavior relating to the data transfer. In addition, all

address parameters that belong to a remote task (such as the target counter

address) are specified as a new lapi_long_t type that allows remote 64-bit

addresses to be represented on 32-bit tasks. There is a LAPI_Xfer call

corresponding to each of the LAPI data transfer calls described in the previous

sections, with the LAPI_Xfer call supporting a functional superset of the

corresponding LAPI data transfer call. Data transfer between 32-bit and 64-bit tasks

must use LAPI_Xfer.

The LAPI_Xfer subroutine provides a transfer type for non-contiguous messages

that has no corresponding LAPI data transfer call. This LAPI_Xfer call is somewhat

analogous to the LAPI_Amsendv call with one major difference: the layout of

non-contiguous data is described for this transfer type using commands of a simple,

assembly-type language. Such a description of the layout of non-contiguous data is

called a data gather/scatter program (DGSP). A DGSP description of

non-contiguous data can be used to capture more powerful datatypes than can be

captured by LAPI’s vector description structures alone (for example, recursive

datatypes can be more easily described with a DGSP). Before it is used, a DGSP

14 IBM RSCT for AIX 5L: LAPI Programming Guide

must be registered with the LAPI_Util subroutine. LAPI_Util returns a DGSP

handle that can be used to refer to the corresponding DGSP. The LAPI_Xfer call to

transfer non-contiguous data using DGSP takes in a DGSP handle describing the

source data layout as input and transfers data to the destination by running the

corresponding DGSP. At the destination, the data can be written either contiguously

or written in a manner described by a different DGSP. A DGSP handle describing

the data layout at the target must be returned through one of the parameters of an

enhanced (but binary-compatible) header handler interface (see “The header

handler” on page 48 for more information). This DGSP is then run at the target to

store the non-contiguous message data into appropriate target buffers.

For more information, see “LAPI_Xfer” on page 219.

Progress-monitoring functions

As discussed in Chapter 1, progress operations are necessitated, when in polling

mode, by the asynchronous nature of LAPI communication, and are provided by

LAPI to drive pending communication operations to completion. These functions are

used to explicitly invoke an internal LAPI communication dispatcher. The dispatcher

will ensure that progress is made on any pending send or receive operations. If

LAPI is running in interrupt mode, the progress operations are not strictly

necessary.

The LAPI_Probe subroutine is used in polling mode to explicitly invoke LAPI’s

internal communication dispatcher once. This subroutine is typically called in a loop

that also checks for the occurrence of some completion event (for example, an

update to a LAPI counter value or an internal variable updated by the execution of

a handler function).

A LAPI user may want to monitor a number of events, such as availability of the

source buffer, availability of the target buffer, or completion of message

transmission. LAPI provides the origin counter, target counter, and completion

counter, respectively, to monitor each of these three events. LAPI also provides

methods to set and monitor the values of counters. In addition, LAPI provides users

with the ability to specify a send completion handler that is executed at the source

when the source buffer is reusable and a (receive) completion handler that is

executed at the target when message data has completely arrived at the target

buffer. (As discussed in “Generic data transfer functions” on page 14, send

completion handlers are available only with the LAPI_Xfer calls.)

The following functions provide the means for a task to manage the completion

state of LAPI operations using LAPI counters:

v LAPI_Waitcntr waits on a counter to reach a specified value and returns when

the counter is equal to or greater than that value (blocking). This subroutine

implicitly drives LAPI progress until the counter reaches the awaited value.

v LAPI_Getcntr gets the current value of a specified counter (non-blocking). This

subroutine is typically used in conjunction with LAPI_Probe to drive progress

while polling for counter values.

v LAPI_Setcntr sets the counter to a specified value.

v LAPI_Nopoll_wait waits for a counter update without polling (that is, without

explicitly invoking LAPI’s internal communication dispatcher).

These subroutines also provide an efficient way to order the flow of LAPI operations

or the use of such user-managed resources as buffers. For example, a series of

LAPI_Put calls to a single target and buffer requires that the contents of the buffer

Chapter 2. An overview of LAPI 15

at the target remains in step with the order of execution of the LAPI_Put calls at

the origin. Using the cmpl_cntr counter in the LAPI_Put subroutine in conjunction

with the LAPI_Waitcntr subroutine provides the necessary ordering. The use of

(receive) completion and send completion handlers allows a client to rely

exclusively on asynchronous notification rather than polling for message completion.

The send completion handler does not guarantee that data has arrived at the target;

however, it does guarantee that the user header buffers (if any) and data buffers

can be reused. The receive completion handler is called at the target after the data

transfer has completed.

The LAPI_Msgpoll subroutine is provided as a mechanism to probe continuously

for send or receive completions. It polls for a fixed number of iterations or until

some message has completed. The number of iterations for polling and the type (or

types) of completion — send, receive, or both — that the subroutine must monitor

are specified as parameters to the subroutine. LAPI_Msgpoll is especially useful

when multiple messages are outstanding and the client is waiting for any one of

them to complete.

Message ordering functions

Because LAPI does not guarantee message order by default, it provides functions

to enforce ordering among messages. The LAPI_Fence and LAPI_Gfence

subroutines provide a way to enforce the order of execution of LAPI data transfer

subroutines. LAPI subroutines that are initiated before these fencing operations are

guaranteed to complete before LAPI functions initiated after the fencing functions.

LAPI_Fence is a local operation used to guarantee that all LAPI operations initiated

by the local task and the same task thread are complete. In contrast, LAPI_Gfence

is a collective operation involving all tasks in the parallel program. A LAPI_Gfence

operation combines local fencing on all tasks of the job with a barrier operation to

synchronize the tasks in the parallel program. Both LAPI_Fence and LAPI_Gfence

operations perform a data fence, only guaranteeing that data movement is

complete. They do not perform an operation fence, which would need to include the

completed execution of any pending active message completion handlers at the

target.

Utility functions

The LAPI_Util subroutine serves as a wrapper function for such data gather/scatter

operations as registration and reservation, and for obtaining pointers to locking and

signaling functions that are associated with a shared LAPI lock.

Error message functions

The LAPI_Msg_string subroutine returns the message string that is associated

with a LAPI return code.

Recovery-related functions

The following recovery-related functions are recommended for use on standalone

systems only:

v LAPI_Nopoll_wait waits for a counter update without polling (that is, without

explicitly invoking LAPI’s internal communication dispatcher).

v LAPI_Purge_totask allows a task to cancel messages to a given destination.

v LAPI_Resume_totask re-enables the sending of messages to the task.

16 IBM RSCT for AIX 5L: LAPI Programming Guide

v LAPI_Setcntr_wstatus sets an associated destination list array and destination

status array to a counter. A corresponding LAPI_Nopoll_wait call accesses

these arrays.

Chapter 2. An overview of LAPI 17

18 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 3. What’s new in LAPI?

LAPI includes several enhancements. To take advantage of some of these

enhancements, you might need to make changes to your existing LAPI programs

(see “Tips for LAPI users” on page 21).

Major changes and additions to LAPI include:

 Table 3. Changes in this edition

Change or addition For more information, see:

For RSCT LAPI users, support for the IBM Eserver High

Performance Switch (HPS) for IBM Eserver p5 servers.

To use the HPS, you need to have version 1.4.1 (or later)

of Cluster Systems Management (CSM) for AIX 5L

(product number 5765-F67) installed on your system.

Eserver Cluster 1600: High Performance Switch

Planning, Installation, and Service for IBM eServer™ p5

Servers

Cluster Systems Management for AIX 5L and Linux:

Planning and Installation Guide

For RSCT LAPI users, striping support. “Data striping” on page 106

For RSCT LAPI users, bulk transfer of messages using

the remote direct memory access (RDMA) protocol. This

mechanism can only be used in conjunction with the HPS

or the pSeries HPS.

This support includes two new runtime attributes that let

LAPI clients get information related to bulk transfer

(BULK_XFER and BULK_MIN_MSG_SIZE).

Chapter 13, “Bulk transfer of messages,” on page 99

A new profiling interface. Chapter 9, “Using LAPI’s profiling interface,” on page 65

Two additional runtime attributes that let LAPI clients get

information about new statistics

(QUERY_LOCAL_SEND_STATISTICS and

QUERY_SHM_STATISTICS)

Chapter 8, “Collecting statistics,” on page 63

The maximum number of shared memory tasks per

operating system image has changed from 32 to 128.

“LAPI shared memory: requirements and restrictions” on

page 259

Support for 8192 user space (US) MPI tasks in a single

job.

 Table 4. Changes in the second edition

Change or addition For more information, see:

For RSCT LAPI users, failover and recovery support. “Using failover and recovery” on page 103

Lock sharing support, which includes a new LAPI utility

for shared locking and signalling functions.

v Chapter 12, “Lock sharing,” on page 83

v “LAPI_GET_THREAD_FUNC” on page 208

Environment variable changes.

New: MP_INSTANCES, MP_LAPI_INET_ADDR,

MP_RETRANSMIT_INTERVAL, MP_REXMIT_BUF_CNT,

MP_REXMIT_BUF_SIZE.

Deprecated: MP_COPY_SEND_BUF_SIZE.

“Variables for performance tuning” on page 270

© Copyright IBM Corp. 2003, 2005 19

||

||

|
|

|
|
|

|
|
|

|
|

||

|
|
|
|

|
|
|

|

||

|
|
|
|

|

|
|
|
|

|
|
|

|

Table 5. Changes in the first edition

Change or addition For more information, see:

For RSCT LAPI users, support for the IBM Eserver

pSeries High Performance Switch (pSeries HPS).

To use the pSeries HPS, you need to have version 1.3.2

(or later) of Cluster Systems Management (CSM) for AIX

5L (product number 5765-F67) installed on your system.

Eserver Cluster 1600: pSeries High Performance Switch

Planning, Installation, and Service

Cluster Systems Management for AIX 5L and Linux:

Planning and Installation Guide

The ability to run over the user datagram protocol (UDP)

rather than the user space (US) protocol.

“LAPI communication modes” on page 30

Inline completion handlers, which allow your completion

handler to be called from within the thread of execution

that completed the data transfer. For applications that rely

on completion handlers rather than counters, this can

provide a significant performance enhancement.

“Inline completion handlers” on page 77

A generalized mechanism to transfer arbitrary portions of

non-contiguous data using data gather/scatter programs

(DGSPs).

“Using data gather/scatter programs (DGSPs)” on page

43

Runtime attributes that let LAPI clients control the

communication library and get information about new

statistics (PRINT_STATISTICS and

QUERY_STATISTICS)

“LAPI_Qenv” on page 184 and “Attributes that return

multiple values” on page 277

A polling function that provides more flexible access to

invoking the LAPI dispatcher explicitly and lets you poll

for messages without polling for a specific counter.

“LAPI_Msgpoll” on page 171

Support for multi-threaded programs. LAPI calls can be

made from multiple user threads.

Chapter 15, “Threaded programming,” on page 111

For RSCT LAPI users, an efficient bulk transfer

mechanism for large data transfers. This mechanism can

only be used in conjunction with the HPS or the pSeries

HPS.

Chapter 13, “Bulk transfer of messages,” on page 99

An API call that performs various LAPI utility operations,

most notably for user DGSPs.

“LAPI_Util” on page 203

A LAPI_Xfer transfer type to support DGSP transfers:

LAPI_DGSP_XFER (DGSP).

“lapi_amdgsp_t details” on page 222

20 IBM RSCT for AIX 5L: LAPI Programming Guide

|

Table 5. Changes in the first edition (continued)

Change or addition For more information, see:

For AIX 5.2 and 5.3, several data structures. v For extended header handler support:

lapi_return_info_t (see “LAPI_Amsend” on page 136)

v For message polling: lapi_msg_info_t (see

“LAPI_Msgpoll” on page 171)

v For IP/US statistics reporting: lapi_statistics_t (see

“LAPI_Qenv” on page 184)

v For UDP support:

– lapi_add_udp_port_t (see “LAPI_Util” on page

203)

– lapi_extend_t, lapi_udp_t, lapi_udpinfo_t (see

“LAPI_Init” on page 163)

v For utility functions and DGSM data transfers (see

“LAPI_Util” on page 203):

– ddm_func_t

– lapi_add_udp_port_t

– lapi_amdgsp_t

– lapi_dg_handle_t

– lapi_dgsm_block_t

– lapi_dgsm_control_t

– lapi_dgsm_copy_t

– lapi_dgsm_gosub_t

– lapi_dgsm_iterate_t

– lapi_dgsm_mcopy_t

– lapi_dgsp_descr_t

– lapi_dref_dgsp_t

– lapi_pack_dgsp_t

– lapi_reg_ddm_t

– lapi_reg_dgsp_t

– lapi_resv_dgsp_t

– lapi_unpack_dgsp_t

– lapi_usr_fcall_t

– lapi_util_t

Tips for LAPI users

RSCT LAPI and PSSP LAPI include almost all of the same features and functions.

Here are the major differences:

 Table 6. Differences between LAPI versions

RSCT LAPI PSSP LAPI

Is part of the AIX operating system. Is a component of the IBM Parallel System Support

Programs licensed program.

Supports the IBM Eserver pSeries High Performance

Switch (pSeries HPS) and the IBM Eserver High

Performance Switch (HPS) for IBM Eserver p5 servers.

Supports the SP Switch2.

Provides support for bulk transfer of messages using the

remote direct memory access (RDMA) protocol.

Does not provide this support.

Provides support for striping, failover, and recovery. Does not provide this support.

Chapter 3. What’s new in LAPI? 21

|
|

|

|
|

|

The current version of LAPI maintains source and binary compatibility with previous

versions of LAPI. Existing LAPI binaries will run under IBM’s LoadLeveler for AIX 5L

and Parallel Environment for AIX 5L (PE) licensed programs.

To take advantage of some of LAPI’s latest features, you may need to make

changes to your existing LAPI programs. For example: for the inline completion

handler, the header handler needs to be modified to return more information to

LAPI. See “The enhanced header handler interface” on page 75.

Your existing LAPI programs can also be run standalone. In this book, the term

standalone refers to a system that is not running PE. See Chapter 16, “Using LAPI

on a standalone system,” on page 115.

For noncontiguous data transfers that are not easily described by the vector

datatypes, data gather/scatter programs (DGSPs) may provide an alternative way to

move data from one address space to another. See “Using data gather/scatter

programs (DGSPs)” on page 43.

RSCT LAPI includes an updated set of error codes. See “LAPI error codes” on

page 261.

22 IBM RSCT for AIX 5L: LAPI Programming Guide

Part 2. Basic LAPI tasks

Chapter 4. Installing RSCT LAPI 25

Requirements . 25

Hardware . 25

Software . 25

How is RSCT LAPI packaged? 25

RSCT LAPI filesets . 26

Installation steps . 27

Uninstallation steps . 27

Migration and coexistence . 28

Chapter 5. Setting up, initializing, and terminating LAPI 29

Setting and querying the LAPI environment 29

Setting environment variables 29

LAPI communication modes 30

Initializing LAPI . 31

Passing information to LAPI using lapi_info_t 31

Terminating LAPI . 33

Chapter 6. Transferring data 35

Data transfer operations . 35

Flow of ″put″ operations . 35

Flow of ″get″ operations . 36

Flow of read-modify-write operations 37

Non-contiguous data transfer . 37

Using vectors . 37

LAPI_GEN_GENERIC . 39

LAPI_GEN_IOVECTOR . 40

LAPI_GEN_STRIDED_XFER 41

Vector data transfer summary 42

Using data gather/scatter programs (DGSPs) 43

Detecting completion . 47

LAPI handlers . 47

The header handler . 48

The completion handler . 49

The send completion handler 51

LAPI handler summary . 51

LAPI counters . 52

Specifying target-side addresses 53

Additional progress functions 53

Chapter 7. Active messaging 55

Flow of active message operations 55

Using LAPI_Amsend: a complete LAPI program 56

Chapter 8. Collecting statistics 63

Printing data transfer statistics 63

Querying US and UDP/IP statistics 63

Querying local send statistics 63

Querying shared memory statistics 64

Chapter 9. Using LAPI’s profiling interface 65

Performing name-shift profiling 66

A sample profiling program . 68

© Copyright IBM Corp. 2003, 2005 23

|

||
||
||
||
||

||
||
||

Chapter 10. Compiling and running LAPI programs 71

24 IBM RSCT for AIX 5L: LAPI Programming Guide

||

Chapter 4. Installing RSCT LAPI

This chapter includes information about installing the version of LAPI that is shipped

as part of the Reliable Scalable Cluster Technology (RSCT) component of IBM’s

AIX 5.2 and 5.3 operating systems. For information about PSSP LAPI installation,

see the PSSP Read This First document.

Requirements

To make use of all of RSCT LAPI’s functions, you must make sure that the following

hardware and software requirements are satisfied.

Hardware

In order to take advantage of all of RSCT LAPI’s functions, you must be using the

following hardware:

v An IBM Eserver pSeries server (655 or 690) with the pSeries High Performance

Switch (pSeries HPS) or an IBM Eserver p5 server (575 or 595) with the High

Performance Switch (HPS).

v A minimum of two links per logical partition (LPAR).

Software

To use all of RSCT LAPI’s functions, you must have the following software installed

on your system:

v The AIX 5L operating system — AIX 5L Version 5.3 (product number 5765-G03)

or AIX 5L Version 5.2 with the 5200-06 Recommended Maintenance package

(product number 5765-E62). In particular:

– Version 1.1.1.0 with APAR IY59794 (or later) of the switch network interface

(SNI) component.

– For AIX 5.3: Version 2.4.0.0 (or later) of the group services subcomponent of

the Reliable Scalable Cluster Technology (RSCT) component of AIX 5L.

For AIX 5.2: Version 2.3.3.2 (or later) of group services. The rsct.basic.rte

fileset includes group services.

– For AIX 5.3: Version 2.4.1.0 (or later) of the LAPI subcomponent of RSCT —

specifically, the rsct.lapi.rte fileset for LAPI files and the rsct.lapi.nam fileset

for Network Availability Matrix (NAM) files.

For AIX 5.2: Version 2.3.3.0 (or later) of LAPI.

v Version 1.3.2 or Version 1.4.1 (or later) of the Cluster Systems Management for

AIX 5L licensed program (product number 5765-F67).

v Version 3.2.0.7 or Version 3.3 (or later) of the LoadLeveler for AIX 5L licensed

program (product number 5765-E69).

v Version 4.1.1 or Version 4.2 (or later) of the Parallel Environment for AIX 5L

licensed program (product number 5765-F83).

How is RSCT LAPI packaged?

The filesets for RSCT LAPI are packaged in a single rsct.lapi image. Most LAPI

files are installed in the /opt/rsct/lapi directory. Exceptions are noted in “RSCT

LAPI filesets” on page 26. Links are created within the /usr tree to such

commonly-needed files as liblapi_r.a, lapi.h, and the 32-bit version of lapif.h.

© Copyright IBM Corp. 2003, 2005 25

|

|

|

|
|
|

|

|

|

|

|
|

|

|

RSCT LAPI filesets

RSCT LAPI consists of the following filesets:

rsct.lapi.nam Contains files for the Network Availability Matrix (NAM), which is

associated with the HPS and the pSeries HPS. These files are

required for LAPI users running over the HPS or the pSeries HPS

who want to use LAPI’s failover and recovery support. See “Using

failover and recovery” on page 103 for more information.

 The rsct.lapi.rte fileset is an installation prerequisite for this fileset.

rsct.lapi.rte Contains LAPI’s runtime environment, including headers and

libraries. It is a prerequisite for the other LAPI filesets.

 The following files are installed from this fileset into /opt/rsct/lapi:

include/lapi.h LAPI’s C header file, with a link in /usr/include

include/lapif.h

LAPI’s 32-bit FORTRAN header file, with a link in

/usr/include

include64/lapif.h

LAPI’s 64-bit FORTRAN header file (no link)

lib/liblapi_r.a LAPI’s library file, with a link in /usr/lib

libtrace/liblapi_r.a

LAPI’s library file with tracing enabled

lib/lapisub.exp

Subroutine export file, with a link in /usr/lib

lib/lapisub64.exp

Subroutine export file (64-bit version), with a link in

/usr/lib

dev/include/css_shared.h

Header file that contains communication subsystem

(CSS) information (required by LAPI)

 The following files are installed directly into the /usr/lib tree:

drivers/zcmem_ke

Contains the kernel services that LAPI uses for

shared memory

methods/cfgzcmem

Loads the shared memory kernel extension (binary

file). AIX is automatically updated so that the

configuration is done at boot time.

methods/ucfgzcmem

Unloads the shared memory kernel extension

(binary file). AIX is automatically updated so that

the configuration is done at boot time.

 These files provide LAPI’s message catalog for AIX 5.2:

v nls/msg/C/liblapi.cat

v nls/msg/en_US/liblapi.cat

v nls/msg/En_US/liblapi.cat

26 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

These files provide LAPI’s message catalog for AIX 5.3:

v nls/msg/C/liblapi.cat

v nls/msg/ca_ES/liblapi.cat

v nls/msg/cs_CZ/liblapi.cat

v nls/msg/de_DE/liblapi.cat

v nls/msg/en_US/liblapi.cat

v nls/msg/En_US/liblapi.cat

v nls/msg/es_ES/liblapi.cat

v nls/msg/fr_FR/liblapi.cat

v nls/msg/hu_HU/liblapi.cat

v nls/msg/it_IT/liblapi.cat

v nls/msg/ja_JP/liblapi.cat

v nls/msg/ko_KR/liblapi.cat

v nls/msg/pl_PL/liblapi.cat

v nls/msg/pt_BR/liblapi.cat

v nls/msg/ru_RU/liblapi.cat

v nls/msg/sk_SK/liblapi.cat

v nls/msg/zh_CN/liblapi.cat

v nls/msg/zh_TW/liblapi.cat

rsct.lapi.samp

Contains LAPI’s sample files. These files are not required, but are

recommended. LAPI has an extensive set of sample files that

demonstrate various aspects of the API, including new features.

See Chapter 20, “LAPI sample programs,” on page 245 for more

information.

Installation steps

1. If you are on a system that is running the IBM Parallel System Support

Programs (PSSP) 3.5 licensed program and you want to use RSCT LAPI, you

must uninstall the ssp.css.lapi fileset before you install the rsct.lapi.rte fileset.

Use the AIX installp command to uninstall ssp.css.lapi:

installp -u ssp.css.lapi

2. Use the AIX installp command to install the LAPI filesets. For example, to

install all of the LAPI filesets, enter:

installp -a -d rsct.lapi all

3. If you plan to use the rsct.lapi.nam fileset for failover and recovery, perform this

step:

After the installation is finished, you need to reboot the system.

See AIX 5L Version 5.2 Commands Reference or AIX 5L Version 5.3 Commands

Reference for more information on installp.

Uninstallation steps

1. Perform this step if you have the rsct.lapi.nam fileset installed on your system.

a. If you are running RSCT group services, use the stopsrc command to stop

cthagsglsm:

stopsrc -s cthagsglsm

Chapter 4. Installing RSCT LAPI 27

See AIX 5L Version 5.2 Commands Reference or AIX 5L Version 5.3

Commands Reference for more information on stopsrc.

b. Run the following command to remove the NAM pseudo-device (nampd0):

/usr/bin/rmdev -d -l nampd0

For more information about NAM, see “Network Availability Matrix (NAM)

overview” on page 103. For more information about rmdev, see AIX 5L

Version 5.2 Commands Reference or AIX 5L Version 5.3 Commands

Reference.

2. Use the installp command to uninstall the LAPI filesets. For example, to

uninstall all of the LAPI filesets, enter:

installp -u rsct.lapi

See AIX 5L Version 5.2 Commands Reference or AIX 5L Version 5.3

Commands Reference for more information on installp.

Migration and coexistence

Parallel application programs that use LAPI must use the identical level of software.

For information about the binary compatibility issues of 32-bit applications that use

striping, see “Communication and memory considerations” on page 108.

Descriptions and formats of the MP_COMMON_TASKS, MP_LAPI_INET_ADDR,

MP_LAPI_NETWORK environment variables are provided in this book for

informational purposes only. These environment variables are not intended to be

used as external programming interfaces. IBM will not guarantee that the formats or

values of these variables can continue to be used without change in future

releases. Programmers and users who choose to develop applications that depend

on these variables do so with the understanding that these variables may be

subject to future change. IBM cannot guarantee that such applications can migrate

or coexist with future releases without additional changes, nor will IBM ensure that

there will be binary compatibility of these variables.

28 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

Chapter 5. Setting up, initializing, and terminating LAPI

This chapter explains how to set up, initialize, and terminate LAPI on systems

running IBM’s Parallel Environment for AIX 5L (PE) licensed program and on

standalone systems (those not running PE). For specific information that applies

only to the use of LAPI in standalone mode, see Chapter 16, “Using LAPI on a

standalone system,” on page 115.

Setting and querying the LAPI environment

LAPI allows users to configure the LAPI environment using two different types of

variables: environment variables and runtime attributes.

Environment variables are set before job initialization. See “Environment variables”

on page 269 for more information.

Runtime attributes can be retrieved using the LAPI_Qenv subroutine and set using

the LAPI_Senv subroutine at runtime. See “LAPI_Qenv” on page 184, “LAPI_Senv”

on page 196, and “Runtime attributes” on page 275 for more information.

Setting environment variables

You must set the following environment variable before LAPI is initialized:

MP_MSG_API=[lapi | [lapi,mpi | mpi,lapi] mpi_lapi]

In a LAPI environment, the valid settings for MP_MSG_API are:

lapi Sets up LAPI communication using an exclusive adapter window.

Tasks can communicate using only LAPI calls.

lapi,mpi or mpi,lapi

Sets up LAPI and MPI communication in the same job using

separate adapter windows. Tasks can communicate using either

LAPI calls or MPI calls.

mpi_lapi Sets up MPI and LAPI communication in the same job using a

shared adapter window. This is a special setting that allows LAPI

and MPI tasks to communicate using a shared handle and common

adapter window. Currently, this shared handle is only supported for

use by MPI.

For users running POE, the default setting for this environment variable is mpi. This

setting applies to MPI communication only; it does not apply to LAPI

communication. If you are using LAPI, you cannot use the default setting, as LAPI

will not initialize if MP_MSG_API=mpi is set. You must set this environment variable

explicitly to one of the settings that allows for LAPI communication: lapi, lapi,mpi,

mpi,lapi, or mpi_lapi. See “Variables for communication” on page 269 for more

information.

The following environment variables are also commonly used:

MP_EUILIB=[ip | us] (ip is the default)

MP_PROCS=number_of_tasks_in_job

LAPI_USE_SHM=[yes | no | only] (no is the default)

© Copyright IBM Corp. 2003, 2005 29

See “Environment variables” on page 269 for more information.

LAPI communication modes

LAPI communication takes place in one of the following modes:

v User space (US) over the HPS or the pSeries HPS (for RSCT LAPI users).

v User Datagram Protocol / Internet Protocol (UDP/IP) over the HPS or the pSeries

HPS (for RSCT LAPI users) or any other device that supports IP communication

(for all LAPI users).

v Shared memory, for tasks that are running on the same node (for all LAPI users).

This document refers to such tasks as common tasks.

For a given job, US and UDP/IP communication are mutually exclusive.

It is also possible to combine shared memory mode with one of the other two

modes. There are a number of possibilities:

1. If LAPI_USE_SHM=no (or is not set, as no is the default) and:

a. MP_EUILIB=ip (or is not set, as ip is the default), LAPI sets up all tasks to

communicate using UDP/IP.

b. MP_EUILIB=us, LAPI sets up all tasks to communicate using the user

space (US) protocol.

2. If LAPI_USE_SHM=yes, an attempt is made to initialize shared memory among

all common tasks. In addition, LAPI sets up communication based on the setting

of MP_EUILIB as described in 1a and 1b above. This is the mode of

communication for any tasks:

v that are not on the same node

v for which shared memory setup fails

3. If LAPI_USE_SHM=only and:

a. All tasks are common, LAPI attempts to set up shared memory

communication among all tasks. If this attempt fails, LAPI_Init returns an

error.

b. All tasks are not common (the job is spread across multiple nodes),

initialization fails and LAPI_Init returns an error.

Figure 1 on page 31 illustrates LAPI’s sequence of events for setting up the mode

of communication.

30 IBM RSCT for AIX 5L: LAPI Programming Guide

|

|
|

Initializing LAPI

To initialize LAPI, follow these steps:

1. Set environment variables (as described in “Setting environment variables” on

page 29) before the user application is invoked. The remaining steps are done

in the user application.

2. Clear lapi_info_t, then set any fields.

See “LAPI_Init” on page 163 for the lapi_info_t structure. See “Passing

information to LAPI using lapi_info_t” and “Registering an error handler” on

page 32 for more information about using this structure.

3. Call LAPI_Init.

See “LAPI_Init” on page 163 for more information about using LAPI_Init,

including various examples of LAPI initialization.

Passing information to LAPI using lapi_info_t

The second argument to LAPI_Init is the address of a lapi_info_t structure. You

can use this structure to pass certain information to LAPI. Certain fields in the

structure are reserved for future use and should be cleared before calling

yes

yes

onlyyes

no

no

no

Set

ails

up of
communication

mode f

S

finishes
successfully

etup of
communication
mode

If
LAPI_USE_SHM

is set to...

Set up
communication

based on
MP_EUILIB

Set up
shared memory
among all tasks

Begin

...are all tasks
common?

Set up
shared memory

among
common tasks

Success?

Figure 1. How LAPI sets up the mode of communication

Chapter 5. Setting up, initializing, and terminating LAPI 31

LAPI_Init. It is strongly recommended that the entire structure be cleared, and then

only desired fields get set. You can clear the memory of a lapi_info_t structure

using the AIX bzero subroutine. For example, suppose you have a structure

declared as follows:

lapi_info_t info_struct;

You would clear this structure by calling:

bzero(&info_struct,sizeof(lapi_info_t));

For more information about lapi_info_t, see “LAPI_Init” on page 163. For more

information about bzero, see AIX 5L Version 5.2 Technical Reference: Base

Operating System and Extensions, Volume 1 or AIX 5L Version 5.3 Technical

Reference: Base Operating System and Extensions, Volume 1.

Registering an error handler: Use the err_hndlr field in lapi_info_t to register an

error handler that you provide. Your error handler is invoked by the occurrence of

an asynchronous error. LAPI calls its own internal error handler, which then calls

your error handler, if it is registered.

If your error handler is registered, you can control whether execution will continue,

based on the type of error that is returned. You can choose to dump information,

terminate the job from within its error handler, or both. If the user handler returns,

LAPI continues execution. If the error handler you provided is not registered, LAPI’s

internal error handler will terminate the job.

Normally, an error handler terminates. Your error handler is intended for the types of

actions that are performed by the atexit subroutine, so you should do cleanup

processing and exit. If you don’t exit, LAPI’s state is undefined. For example, there

is no guarantee that outstanding messages will complete.

The format of a user-provided error handler follows:

void my_err_hndlr(lapi_handle_t *hndl, int *error_code, lapi_err_t *err_type,

 int *task_ID, int *src)

{

 char errstring[100]; /* for error code translation */

 /* get the error code string to decipher the error */

 LAPI_Msg_string(*error_code, errstring);

 fprintf(stderr, "%s\n", errstring);

 if (you want to terminate) {

 LAPI_Term(*hndl); /* to terminate LAPI */

 exit(some_return_code);

 }

 /* any additional processing */

 return; /* signal to LAPI that the error is not */

 /* fatal and execution should continue */

}

{ ...
 lapi_handle_t hndl;

 lapi_info_t info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 /* set the error handler pointer */

 info.err_hndlr = (LAPI_err_hndlr) my_err_hndlr;

32 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

LAPI_Init(&hndl, &info); ...
}

For information about atexit, bzero, exit and fprintf, see AIX 5L Version 5.2

Technical Reference: Base Operating System and Extensions, Volume 1 or AIX 5L

Version 5.3 Technical Reference: Base Operating System and Extensions, Volume

1.

Terminating LAPI

Use the LAPI_Term subroutine to terminate a LAPI context that is specified by a

particular LAPI handle. For example:

LAPI_Term(hndl);

Any LAPI notification threads that are associated with this context are terminated. If

any LAPI calls are made using hndl after LAPI_Term is called, an error occurs. See

“LAPI_Term” on page 201 for more information.

Chapter 5. Setting up, initializing, and terminating LAPI 33

34 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 6. Transferring data

LAPI provides ″put″, ″get″, and read-modify-write (RMW) functions for data transfer.

LAPI’s ″put″ and ″get″ functions are non-blocking calls. A ″put″ operation copies

data from a specified region in the origin address space to the specified region in

the target address space. A ″get″ operation copies data from a specified region in

the target address space to a specified region in the origin address space.

Completion of the operation is signaled if counters are specified.

For ″get″ functions, only synchronous operation is possible. For ″put″ functions,

both standard and synchronous operations are supported. A standard ″put″

operation is provided by incrementing the origin counter (org_cntr) when the origin

buffer can be reused. To guarantee the standard behavior of the LAPI ″put″

operations, you can use the LAPI_Waitcntr subroutine in conjunction with the origin

counter (org_cntr). A synchronous ″put″ operation is provided by incrementing the

completion counter (cmpl_cntr) after the data has been written into the target buffer.

To guarantee the synchronous behavior of the LAPI ″put″ operations, you can use

the LAPI_Waitcntr subroutine in conjunction with the origin counter (org_cntr). See

“Flow of ″put″ operations” and “Flow of ″get″ operations” on page 36 for more

information.

The LAPI_Xfer subroutine provides functions that are similar to LAPI_Put and

LAPI_Get, with some enhancements. See “LAPI_Xfer” on page 219 for more

information.

For RMW information, see “Flow of read-modify-write operations” on page 37.

For users of the HPS or the pSeries HPS, RSCT LAPI supports bulk message

transfer using the remote direct memory access (RDMA) protocol. See Chapter 13,

“Bulk transfer of messages,” on page 99 for more information.

Data transfer operations

Information about the flow of LAPI’s data transfer operations follows.

Flow of ″put″ operations

Figure 2 on page 36 illustrates the sequence of events for a LAPI_Put, LAPI_Putv,

PUT, or PUTV operation. If an origin counter is specified, it is incremented by LAPI

on the sending side when the send-side data buffer is available for reuse. If a target

counter is specified, it is incremented by LAPI on the target side upon message

completion. If a completion counter is specified, LAPI sends an internal message to

the original sender. Upon receipt of this message, the completion counter is

incremented by LAPI at the origin.

© Copyright IBM Corp. 2003, 2005 35

|
|

Flow of ″get″ operations

Figure 3 illustrates the sequence of events for a LAPI_Get, LAPI_Getv, GET, or

GETV operation. In this case, the ″source″ is actually the receiver of the message,

and the target can be thought of as the ″sender″. Because the direction of the data

transfer is from the target to the source, it is helpful to think of the origin and target

counters switching roles from the ″put″ case. If an origin counter is specified, it is

incremented on the source task when the message completes. If a target counter is

specified, it is incremented on the target side once the target data buffer is available

(that is, when its contents can be modified without corrupting the message in

transit). Because the origin counter actually signifies message completion, there is

no completion counter for ″get″ operations.

Task 0 Task 1

Data transfer begins

Data transfer ends
Origin buffer becomes available
Origin counter is incremented

Data is completely received at target

Target counter is incremented

Completion
counter is incremented

LAPI
internal

communication

Message
data

Figure 2. The sequence of events for a ″put″ operation

Task 0 Task 1

Data transfer begins

Data transfer ends

Origin counter is incremented

Target buffer becomes available

Target counter is incremented

Message
data

LAPI
internal

communication

Figure 3. The sequence of events for a ″get″ operation

36 IBM RSCT for AIX 5L: LAPI Programming Guide

Flow of read-modify-write operations

Figure 4 illustrates the sequence of events for a LAPI_Rmw operation or a

LAPI_Rmw64 operation. Only the origin counter is supported, and its behavior is

similar to that of the origin counter in the LAPI_Get case.

Non-contiguous data transfer

LAPI supports two types of non-contiguous data transfer: LAPI vectors and data

gather/scatter programs (DGSPs). Use LAPI vectors when the data to be

transferred can be described simply, such as through the explicit specification of

multiple buffer address/length pairs, or through the repetition of a data template that

is described by a block size and stride. For more complex transfers, such as

through recursive data descriptions, use one or more DGSPs.

Using vectors

LAPI vector transfers involve the specification of an origin vector description and a

target vector description, each of type lapi_vec_t. The API calls for vector data

transfer are: LAPI_Amsendv, LAPI_Getv, LAPI_Putv, AMV, GETV, and PUTV.

These APIs are vector-based versions of the basic API calls of the same name:

LAPI_Amsend, LAPI_Get, LAPI_Put, AM, GET, and PUT. For instance,

LAPI_Amsendv can be thought of as ″LAPI_Amsend with vectors.″ This document

refers to the three non-vector calls (LAPI_Amsend, LAPI_Get, and LAPI_Put) as

basic calls and the type of transfer that is associated with these basic calls as

scalar transfer. The corresponding LAPI vector calls (LAPI_Amsendv, LAPI_Getv,

and LAPI_Putv) are referred to as vector calls and the type of transfer that is

associated with these calls as vector transfer.

LAPI vector transfers are set up similarly to scalar transfers. The difference lies in

the data specification. For a basic transfer, an origin address, target address, and

data length are required. For a vector transfer, two vector descriptions are required

— one for the origin and one for the target. Consider the basic LAPI_Amsend call.

The origin task provides an origin buffer (base address and data length) and the

address or index of a header handler on the target task. The target header handler

is expected to return a buffer address on the target task, using the origin data

Task 0 Task 1

Data transfer begins

Data transfer ends

Origin counter is incremented

Return data transfer begins

Figure 4. The sequence of events for a read-modify-write operation

Chapter 6. Transferring data 37

length as part of the target buffer definition. A data buffer in LAPI is defined by a

base address and a data length. For LAPI_Amsendv, the origin task is required to

pass in an origin vector description (instead of buffer address and data length) and

a header handler address or index. Similarly, the target header handler is expected

to return the address of a target vector description, rather than a single data buffer.

As another example, when using LAPI_Get, you need to specify an origin address,

a target address, and a data length. When using LAPI_Getv, you need to specify

an origin vector description and a target vector description. Using vector

descriptions gives you additional flexibility in how the data is collected on the origin

side and distributed on the target side. In all vector transfers, the type of vector to

be transferred determines the requirements on the origin and target vectors.

LAPI vectors are structures of type lapi_vec_t, defined as follows:

typedef struct {

 lapi_vectype_t vec_type;

 uint num_vecs;

 void **info;

 ulong *len;

} lapi_vec_t;

vec_type is an enumeration that describes the type of vector transfer, which can be

one of the following:

LAPI_GEN_GENERIC Supports explicit specification of the data buffers.

The number of buffers and the buffer lengths

between the origin side and the target side do not

need to match. You can only use this datatype with

LAPI_Amsendv and AMV. LAPI_GEN_GENERIC

cannot be used with LAPI_Getv, LAPI_Putv,

GETV, or PUTV.

LAPI_GEN_IOVECTOR Supports explicit specification of the data buffers on

the origin side and the target side. The number of

buffers in the origin vector description and in the

target vector description must be the same. The

lengths of the origin vector’s data buffers must

equal the lengths of the target vector’s data buffers.

LAPI_GEN_STRIDED_XFER Supports the transfer of data through one or more

iterations of sending a block and offsetting by its

stride. The data is described by a block size, stride,

and number of invocations. The origin vector

description and the target vector description must

be the same, though the strides can differ.

If vec_type is LAPI_GEN_GENERIC or LAPI_GEN_IOVECTOR, the fields are used

as follows:

num_vecs indicates the number of data vectors to transfer. Each data vector is

defined by a base address and data length.

info is the array of addresses.

len is the array of data lengths.

For example, consider the following vector description:

38 IBM RSCT for AIX 5L: LAPI Programming Guide

vec_type = LAPI_GEN_IOVECTOR

num_vecs = 3

info = {addr_0, addr_1, addr_2}

len = {len_0, len_1, len_2}

For an origin vector, LAPI would read len_0 bytes from addr_0, len_1 bytes from

addr_1, and len_2 bytes from addr_2. For a target vector, LAPI would write len_0

bytes to addr_0, len_1 bytes to addr_1, and len_2 bytes to addr_2.

Recall that vector transfers require an origin vector and a target vector. For

LAPI_Amsendv calls, the origin vector is passed to the API call on the origin task.

The address of the target vector is returned by the target header handler.

LAPI_GEN_GENERIC

For transfers of type LAPI_GEN_GENERIC, the target vector description must also

have type LAPI_GEN_GENERIC. Use this datatype only with LAPI_Amsendv and

AMV. The contents of the info and len arrays are unrestricted in the generic case;

the number of vectors and the length of vectors on the origin and target do not

need to match. In this case, LAPI transfers a given number of bytes in

noncontiguous buffers specified by the origin vector to a set of noncontiguous

buffers specified by the target vector.

If the sum of target vector data lengths (say TGT_LEN) is less than the sum of

origin vector data lengths (say ORG_LEN), only the first TGT_LEN bytes from the

origin buffers are transferred and the remaining bytes are discarded. If TGT_LEN is

greater than ORG_LEN, all ORG_LEN bytes are transferred. The rest of the target

area is left alone. Consider the following example:

Origin_vector: {

 num_vecs = 3;

 info = {orgaddr_0, orgaddr_1, orgaddr_2};

 len = {5, 10, 5}

}

Target_vector: {

 num_vecs = 4;

 info = {tgtaddr_0, tgtaddr_1, tgtaddr_2, tgtaddr_3};

 len = {12, 2, 4, 2}

}

LAPI copies data as follows:

1. 5 bytes from orgaddr_0 to tgtaddr_0 (leaves 7 bytes of space at a 5-byte

offset from tgtaddr_0)

2. 7 bytes from orgaddr_1 to remaining space in tgtaddr_0, which leaves 3 bytes

of data to transfer from orgaddr_1

3. 2 bytes from orgaddr_1 to tgtaddr_1, which leaves 1 byte to transfer from

orgaddr_1

4. 1 byte from orgaddr_1 followed by 3 bytes from orgaddr_2 to tgt_addr_2,

which leaves 2 bytes to transfer from orgaddr_2

5. 2 bytes from orgaddr_2 to tgtaddr_3

LAPI copies data from the origin until the space described by the target is filled. For

example:

Origin_vector: {

 num_vecs = 1;

 info = {orgaddr_0};

 len = {20}

}

Chapter 6. Transferring data 39

Target_vector: {

 num_vecs = 2;

 info = {tgtaddr_0, tgtaddr_1};

 len = {5, 10}

}

LAPI copies 5 bytes from orgaddr_0 to tgtaddr_0 and the next 10 bytes from

orgaddr_0 to tgtaddr_1. The remaining 5 bytes from orgaddr_0 are not copied.

LAPI_GEN_IOVECTOR

For transfers of type LAPI_GEN_IOVECTOR, the lengths of the vectors must match

and the target vector description must match the origin vector description. More

specifically, the target vector description must:

v Also have type LAPI_GEN_IOVECTOR.

v Have the same num_vecs as the origin vector.

v Initialize the info array with num_vecs addresses in the target address space.

v Initialize the len array with num_vecs lengths. The values of those lengths must

be the same as the values in the len array of the origin vector. In other words, for

origin vector o_vec and target vector t_vec, o_vec.len[i] must equal t_vec.len[i]

for all i (0 <= i < num_vecs).

For LAPI vectors origin_vector and target_vector described similarly to the

example above, data is copied as follows: for all i, origin_vector.len[i] bytes are

transferred from the address at origin_vector.info[i] to the address at

target_vector.info[i].

Figure 5 shows how LAPI transfers data using type LAPI_GEN_IOVECTOR:

 In this case, four transfers take place:

1. d0 bytes are transferred from a0 on the origin task to b0 on the target task

num_vecs=4;
info[0] = a0;
info[1] = a1;
info[2] = a2;
info[3] = a3;
len[0] = d0;
len[1] = d1;
len[2] = d2;
len[3] = d3;

num_vecs=4;
info[0] = b0;
info[1] = b1;
info[2] = b2;
info[3] = b3;

len[0] = d0;
len[1] = d1;
len[2] = d2;
len[3] = d3;

Origin task Target task

a0

d0

b0

d0

a2

d2

b2

d2

a1

d1

b1

d1

a3

d3

b3

d3

Figure 5. Transferring data with type LAPI_GEN_IOVECTOR

40 IBM RSCT for AIX 5L: LAPI Programming Guide

2. d1 bytes are transferred from a1 on the origin task to b1 on the target task

3. d2 bytes are transferred from a2 on the origin task to b2 on the target task

4. d3 bytes are transferred from a3 on the origin task to b3 on the target task

LAPI_GEN_STRIDED_XFER

For transfers of type LAPI_GEN_STRIDED_XFER:

v the target vector description must match the origin vector description (though the

strides can differ)

v the info array of the origin and target vectors is used differently than it is for

non-strided vector data transfer:

Rather than specifying the set of addresses, the info array of the origin and target

vectors is used to specify a data block ″template″, consisting of a base address,

block size, and stride. LAPI thus expects the info array to contain three integers.

The first integer contains the base address, the second integer contains the block

size to copy, and the third integer contains the byte stride. In this case, num_vecs

indicates the number of blocks of data that LAPI should copy, where the first block

begins at the base address. The number of bytes to copy in each block is given by

the block size and the starting address for all but the first block is given by previous

address + stride. The total amount of data to be copied will be

num_vecs*block_size. The len field of the vector description structure is not used

for LAPI_GEN_STRIDED_XFER, so any values it contains are ignored. Consider

the following example:

Origin_vector: {

 num_vecs = 3;

 info = {orgaddr, 5, 8}

}

Based on this description, LAPI will transfer 5 bytes from orgaddr, 5 bytes from

orgaddr+8 and 5 bytes from orgaddr+16.

Figure 6 shows how LAPI transfers data using type LAPI_GEN_STRIDED_XFER:

 From the vector descriptions represented in Figure 6:

num_vecs=3;
info[0] = A;
info[1] = o_blk_sz;
info[2] = o_stride;
len = dont_care;

num_vecs=3;
info[0] = B;
info[1] = o_blk_sz;
info[2] = t_stride;
len = dont_care;

Origin task Target task

o_stride

o_blk_sz

t_stride

o_blk_sz

A B

Figure 6. Transferring data with type LAPI_GEN_STRIDED_XFER

Chapter 6. Transferring data 41

1. o_blk_sz bytes are transferred from A on the origin task to B on the origin task

2. o_blk_sz bytes are transferred from A+o_stride on the origin task to B+t_stride

on the target task

3. o_blk_sz bytes are transferred from A+(2*o_stride) on the origin task to

B+(2*t_stride) on the target task

Vector data transfer summary

Table 7 on page 43 summarizes the rules for transferring data using vectors.

42 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 7. Rules for vector transfer

Type of transfer Data is specified... Target vector rules The origin vector

resides:

The target vector

resides:

LAPI_GEN_GENERIC By explicit lists of

origin and target

buffers.

The vec_type field

must match the

origin vector type.

On the origin for

LAPI_Amsendv

only.

On the target for

LAPI_Amsendv

only. The addresses

in the info array

should be in the

target address

space.

LAPI_GEN_IOVECTOR By explicit lists of

origin and target

buffers.

The vec_type and

num_vecs fields

and values in the

len array must

match the origin

vector type.

On the origin for all

vector API calls

(LAPI_Amsendv,

LAPI_Getv, and

LAPI_Putv).

On the origin for

LAPI_Getv and

LAPI_Putv. On the

target for

LAPI_Amsendv.

The addresses in

the info array

should be in the

target address

space.

LAPI_GEN_STRIDED_XFER With a block size,

stride size, and the

number of blocks to

transfer.

The vec_type field

and the contents of

the info array must

match the origin

vector type (though

the strides can

differ).

On the origin for all

vector API calls

(LAPI_Amsendv,

LAPI_Getv, and

LAPI_Putv).

On the origin for

LAPI_Getv and

LAPI_Putv. On the

target for

LAPI_Amsendv.

Using data gather/scatter programs (DGSPs)

LAPI supports the data gather/scatter program (DGSP) as a mechanism for

describing data layouts in memory so certain LAPI functions can operate directly on

non-contiguous user buffers. This support is motivated by the need to support MPI

datatype constructors. The MPI standard defines an API for specifying any possible

data layout with a user-defined datatype. MPI_Send gathers data according to the

datatype definition and transmits this data over the network. Likewise, an MPI_Recv

can accept data from the network and scatter it to any layout in memory under

control of an MPI datatype. The DGSP provides a compact and complete method of

implementing any data layout an MPI user can specify using the MPI datatype

constructors. The MPI library incorporates a ″compiler″ that is run at an MPI_Type

commit call to construct the DGSP that corresponds to the user-defined datatype.

Like computer object code, the DGSP is not intended as a human-readable

specification.

It is possible for LAPI users to construct a DGSP by hand, just as it is possible for

someone to write a computer program directly in object code. For anything with

significant complexity, it is expected that the LAPI application that uses DGSP will

incorporate some form of ″code generator″ that can generate DGSP code from

some layout specification appropriate to the application data structures. This section

documents the data gather/scatter instruction set with which LAPI applications can

create DGSP codes. A DGSP consists of a descriptor and a ″code″ array of

integers. The instruction counter (IC) of the DGSM, which is the DGSP interpreter

within LAPI, is an index into this array of integers. Therefore, the addressing unit of

the DGSM is one integer, just as the addressing unit of most computer hardware is

one byte.

Chapter 6. Transferring data 43

LAPI provides the LAPI_VERIFY_DGSP environment variable as a validation option

to help LAPI users who create their own DGSPs and want to validate them as they

are registered. Validating these DGSPS will catch many, but not all, possible errors.

Validation may especially be needed because multiple DGSP transfers could be in

progress concurrently and the DGSM runs to handle these data transfers need to

report their failures asynchronously, which could make it difficult for a LAPI user

who creates several DGSPs to know which DGSP was running at the failure point.

The most common result of an uncatchable error in a user-created DGSP is a

segmentation fault, which occurs asynchronously. Debugging a faulty DGSP can be

challenging.

Each instruction for the DGSM is encoded as a structure that can be mapped into

an integer ″code″ array. LAPI’s header files provide a macro for each instruction

that can be used to update the IC as instructions are added to a DGSP. In the

example below, a COPY instruction is built and macro LAPI_DGSM_COPY_SIZE is

used to advance the IC to the proper location for building the next instruction, which

will be an ITERATE. You must include an ITERATE instruction in every LAPI DGSP,

even if you don’t think you’ll run the program more than once. The suggested

technique for building instructions is to declare a set of pointers, one per instruction

type and map the instruction structure into the code array as follows:

lapi_dgsm_copy_t pCopy;

lapi_dgsm_iterate_t pIterate; ...
ic = 0;

pCopy = (lapi_dgsm_copy_t*) &code[ic];

pCopy->opcode = LAPI_DGSM_COPY;

pCopy->bytes = 5;

pCopy->offset = 0;

ic += LAPI_DGSM_COPY_SIZE;

pIterate = (lapi_dgsm_iterate_t*) &code[ic];

piterate->opcode = LAPI_DGSM_ITERATE; ...

Each complete DGSP represents the gather or scatter of a specific number of bytes

of data. It can be helpful to visualize a DGSP as a sieve or template that can be

positioned on a memory buffer to let some byte ranges show through while masking

others. A LAPI operation that uses a DGSP also specifies the address of a user

buffer and a number of bytes to be processed. If the number of bytes to be

processed is greater than the DGSP represents, the DGSP is reinterpreted as many

times as needed. The DGSP template is first positioned at offset 0 in the user buffer

and is advanced by some stride each additional time it is interpreted. The DGSP

descriptor guides this process, so it is essential that the content of the descriptor be

understood. This descriptor is represented by the following structure:

typedef enum {LAPI_DGSM_SPARSE=0, LAPI_DGSM_CONTIG,

 LAPI_DGSM_UNIT} lapi_dgsp_density_t;

typedef struct {

 int *code; /* array containing the DGSP code */

 int code_size; /* size of the DGSP code array */

 int depth; /* required DGSM stack depth */

 lapi_dgsp_density_t density; /* lapi_dgsp_density_t datatype */

 long size; /* datatype packed size */

 long extent; /* datatype extent (stride between reps) */

 long lext; /* leftmost data byte position */

 long rext; /* rightmost data byte position */

 int atom_size; /* 0 or packet filling unit */

} lapi_dgsp_descr_t;

where:

44 IBM RSCT for AIX 5L: LAPI Programming Guide

code is a pointer to the integer array in which the DGSP has been built.

code_size is the number of integers in the code array.

depth specifies the maximum subroutine activation depth in the DGSP. At

a minumum, a DGSP has a ″main″ routine. It can also have

″subroutines″. The ″machine″ that interprets the DGSP uses a

stack. For a DGSP that has only a ″main″ routine (because it does

not use a GOSUB instruction), depth is equal to 1.

density is one of three enumerated values:

LAPI_DGSM_SPARSE

indicates that the DGSP data layout has internal

gaps.

LAPI_DGSM_CONTIG

indicates that the DGSP data layout is contiguous,

but there is a gap either before or after the

contiguous section. That is, if the DGSP must be

interpreted more than once, the DGSM must deal

with a gap.

LAPI_DGSM_UNIT

indicates that the DGSP data layout is contiguous

and interpreting the DGSP more than once still

represents a contiguous layout.

size is the number of bytes represented by a single application of the

DGSP.

extent is the stride for repeated interpretation of the DGSP, that is, the

number of bytes to advance the template within the user buffer for

the next application.

lext is the offset of the leftmost byte (toward the low address)

represented by the DGSP.

rext is the the offset just past the rightmost byte (toward the high

address) represented by the DGSP.

atom_size indicates that LAPI can choose the number of bytes per packet (if

atom_size is set to 0, which is the norm). If atom_size is set to a

non-zero value, every packet will contain an integral number of

″atoms″.

Consider a C structure that contains one integer followed by one character. The C

compiler will put the integer at offset 0 in the structure and the character at offset 4.

If an array of such structures is declared, the compiler word-aligns each array

element so that there is a 3-byte gap. An efficient DGSP for this structure has two

instructions: a COPY and an ITERATE. The code will be discussed in more detail

later.

A DGSP descriptor for this structure would be constructed as follows:

int code[LAPI_DGSM_COPY_SIZE+LAPI_DGSM_ITERATE_SIZE];

lapi_dgsp_descr_t dgsp_d;

dgsp_d.code = &code[0];

dgsp_d.code_size = LAPI_DGSM_COPY_SIZE+LAPI_DGSM_ITERATE_SIZE;

dgsp_d.depth = 1;

dgsp_d.density = LAPI_DGSM_CONTIG;

dgsp_d.size = 5;

Chapter 6. Transferring data 45

dgsp_d.extent = 8;

dgsp_d.lext = 0;

dgsp_d.rext = 5;

dgsp_d.atom_size = 0;

A LAPI_Xfer call that used this DGSP to send the first three elements from an

array of such structures would specify array[0] as the buffer address and 15 as the

number of bytes. The DGSP would be interpreted 3 times, first at byte offset 0, then

at byte offset 8, and finally at byte offset 16. The instruction set of the DGSM

contains five instructions, each of which is discussed in some detail below. The first

field in any instruction is the opcode. The other fields are different for each

instruction and are discussed below.

LAPI_DGSM_COPY

is the first of two instructions to move data. A COPY instruction represents a

single contiguous block of bytes to be transfered. The instruction fields are

bytes and offset.

LAPI_DGSM_MCOPY

is the second of two instructions to move data. An MCOPY instruction is a

variable-length instruction that defines one or more contiguous blocks to

copy. The MCOPY count field specifies how many block descriptions it

contains. Each block description is a block displacement (block_disp, block

length (block_len) tuple. If pMcopy is a pointer to an MCOPY instruction,

block description fields can be identified as:

pMcopy->block[i].block_len and pMcopy->block[i].block_disp.

Because the first block is included in LAPI_DGSM_MCOPY_SIZE, the size

of the instruction is:

LAPI_DGSM_MCOPY_SIZE + (count-1) * LAPI_DGSM_MCOPY_BLOCK_SIZE

LAPI_DGSM_GOSUB

calls a DGSP subroutine. The subroutine runs with its own stack frame and

does not change the state of the calling stack frame. The subroutine can be

visualized as a subordinate template to be applied one or more times within

a single application of the containing template. The reps field specifies how

many times, offset specifies the position relative to the current template

base in bytes, and stride specifies how far to advance the subordinate

template after each repetition. The to_loc and ret_loc are both IC-relative

jumps that are based on the instruction counter at the GOSUB instruction.

For a normal return to the instruction that follows the GOSUB instruction,

the ret_loc field is set to LAPI_DGSM_GOSUB_SIZE. The to_loc field is

always set to the distance from the GOSUB opcode to the opcode of the

first instruction of the subroutine.

LAPI_DGSM_ITERATE

must terminate each DGSP ″main″ program as well as any subroutine

within a DGSP. A DGSP with a depth of 1 has a ″main″ routine, but no

subroutines. ITERATE will decrement the repetitions counter in the current

stack frame. If the counter is not yet zero, ITERATE will branch to its

iter_loc target to interpret the DGSP or subroutine again at its new position

within the buffer. If the counter is 0, the ITERATE pops the stack and

branches to the subroutine return point. The iter_loc value is the distance

from the ITERATE opcode to the first opcode of the DGSP or subroutine.

The values are normally negative.

LAPI_DGSM_CONTROL

is only used in a scatter-side DGSP and in conjunction with a data

distribution manager (DDM) function. Most DGSPs will have no CONTROL

46 IBM RSCT for AIX 5L: LAPI Programming Guide

instruction and the DGSM mode is non-CONTROL by default. A CONTROL

puts the scatter DGSM in a mode where every copy operation is done by a

call to the registered DDM function. The operation and operand field values

are saved by the DGSM when a CONTROL instruction is encountered and

are passed as parameters to every DDM function call. An example of using

a DDM function is to construct an accumulate reduction operation for

arriving data. A DDM (reduction) function could be written that does more

than one kind of arithmetic operation and can handle more than one kind of

operand. These parameters allow the CONTROL instruction to tell the

reduction function what kind of operand and operation it is working on. A

DDM function which does not require this versatility may ignore these

parameters. Any non-negative value for the operation field puts the DGSM

into CONTROL mode. An operation field with value LAPI_DGSM_NO_CTL

takes the machine out of CONTROL mode. Because a reduction function

must operate on full operands, the sender side DGSP must specify an atom

size that matches the operand size. If the DDM expects to operate on

16-byte REALs, atom_size must be 16 so thst all transmitted packets

contain a multiple of 16 bytes. Also, because LAPI may bypass the scatter

DGSM when the data is contiguous, any DGSP that contains a CONTROL

instruction must be labeled LAPI_DGSM_SPARSE to force the data

through the DGSM, which will honor the CONTROL instruction.

See “LAPI_Util” on page 203 for a sample program that creates and registers a

DGSP.

Detecting completion

LAPI gives users two main approaches for notification of event occurrence during

data transmission: handlers and counters. Handlers are registered with LAPI as

callback pointers to be invoked at certain well-defined points during message

transfer. Counters are implemented as abstract data types and managed through a

set of LAPI API calls.

LAPI handlers

LAPI uses an active messaging infrastructure. Message retrieval involves the

invocation of an asynchronous, active-message handler to process the incoming

message. LAPI provides a way for users to register their own receive-side handlers

through the LAPI_Amsend and LAPI_Amsendv subroutines, as well as through

LAPI_Xfer with transfer types LAPI_AM_XFER (AM), LAPI_AMV_XFER (AMV),

and LAPI_DGSP_XFER (DGSP). For certain transfer types, LAPI_Xfer also

provides a send-side handler to run once the send-side data buffer is available for

re-use.

LAPI provides three types of handlers that you can register to run at certain points

during data transmission:

Header handler

Runs on the receiving side upon the arrival of the first message packet. You

need to provide a callback pointer to a header handler function when using

the API calls that support it, namely LAPI_Amsend, LAPI_Amsendv, AM,

AMV, and DGSP. See “The header handler” on page 48 for more

information.

 In addition to the callback pointer, you can optionally provide an index into

the header handler function table. See “LAPI_Addr_set” on page 128 for

more information.

Chapter 6. Transferring data 47

Completion handler (or receive completion handler)

Runs at the target task upon message completion. Its use is optional, and

is supported for the same set of API calls as the header handler. LAPI

provides a completion handler parameter pointer so you can pass data from

the header to the completion handler. The receive completion handler can

also be specified in the call to LAPI_Xfer for the LAPI_GET_XFER and

LAPI_GETV_XFER transfer types. Recall that in these ″get″ calls, the

receiver is same as the original task that makes the ″get″ LAPI_Xfer call.

See “The completion handler” on page 49 for more information.

Send completion handler

Is available only when you use LAPI_Xfer for all transfer types, except

LAPI_GET_XFER and LAPI_GETV_XFER. As previously indicated, LAPI

only supports synchronous behavior with its ″get″ calls, so send completion

notification is not supported. This handler is invoked on the sending side

when the sending data buffer is available for modification. As with the

receive completion handler, LAPI provides a parameter pointer with which

you can pass information in to the send completion handler, and its use is

optional. See “The send completion handler” on page 51 for more

information.

The header handler

LAPI header handlers are defined to be of the following type:

typedef void * (hdr_hndlr_t)(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 ulong *msg_len, compl_hndlr_t **comp_h,

 void **uinfo);

The header handler runs on the target task upon the arrival of the first message

packet. As shown above, the header handler must return an address value to LAPI.

This value is interpreted by LAPI as the base address of the data buffer where it

must write the message on the target. Because of this, a header handler must be

provided by the user for API calls that support its use. For the LAPI_Amsendv call,

the header handler returns a pointer to a lapi_vec_t structure.

Additional information related to the arriving message at the target can be passed

back to LAPI through reference parameters of the header handler. For example, if

you want to use a completion handler for post-processing of the message after it

has completely arrived at the target, a pointer to the completion handler must be

returned to LAPI through one of the header handler parameters (denoted by

comp_h in the header handler type definition above). Similarly, a parameter to the

completion handler is also set and returned by way of another of the header

handler parameters (denoted by uinfo in the header handler type definition). Note

that the use of a completion handler is optional, so if either of the pointers is not

going to be used, you need to set these header handler parameters to NULL within

the header handler. Otherwise, LAPI will interpret the value as a valid function

callback address and attempt to invoke it on message completion, which will almost

certainly lead to a memory fault. You can use a completion handler and still set the

parameter pointer to NULL (LAPI will simply invoke the completion handler without

any parameters). If you set the completion handler as NULL and assign some

non-zero value for the parameter pointer, the parameter pointer will be ignored.

To define a header handler:

1. Without using a completion handler:

void *my_hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 ulong *msg_len, compl_hndlr_t **comp_h, void **uinfo) {

 /* some user code */

48 IBM RSCT for AIX 5L: LAPI Programming Guide

*comp_h = NULL;

 *uinfo = NULL;

 return data_buffer;

}

2. Using a completion handler without a parameter:

void *my_hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 ulong *msg_len, compl_hndlr_t **comp_h, void **uinfo) {

 /* pass the completion handler back by reference */

 *comp_h = compl_hndlr;

 *uinfo = NULL;

 return data_buffer;

}

For an example that illustrates the use of a completion handler and a completion

handler parameter, see “The completion handler.”

For advanced programming information, see “The enhanced header handler

interface” on page 75.

The completion handler

LAPI calls the completion handler after the final packet of the message has been

completely received into the target buffers. Unlike header handlers, completion

handlers are optional. LAPI completion handlers are defined to be of the following

type:

typedef void (compl_hndlr_t)(lapi_handle_t *hndl, void *completion_param);

LAPI provides a facility with which you can pass information from the header

handler to the completion handler. You set both the completion handler pointer and

completion handler parameter pointer in the header handler (returned to LAPI by

reference parameters). An example of using a completion handler and completion

handler parameter follows. Note that this example uses a user-defined type for the

completion parameter. It is possible through C type-casting to send in a single long

or int value through this parameter instead of sending in a pointer to a complex

datatype.

To use a completion handler with a completion handler parameter:

/* user-defined structure for data to pass */

typedef struct {

 int a;

 char b;

} user_compl_t;

/* user’s completion handler */

void compl_hndlr(lapi_handle_t *hndl, void *completion_param)

{

 /*

 ** LAPI passes the uinfo parameter that was returned through the

 ** header handler in to the completion_param argument. We recast

 ** the parameter to be our defined type.

 */

 user_compl_t * compl_t = (user_compl_t *) completion_param;

 /* use data from the parameter, execute other statements, */

 /* then free the parameter */

}

Chapter 6. Transferring data 49

/* user’s header handler */

void *my_hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 ulong *msg_len, compl_hndlr_t **comp_h,

 void **uinfo) {

 user_compl_t *compl_t;

 /* malloc and store values in compl_t here; completion handler should free */

 /* this is how reference parameters are used to pass the pointers to LAPI */

 *comp_h = compl_hndlr;

 *uinfo = (void *) compl_t;

 return data_buffer;

}

A common use of the completion handler is to set a user-managed (as opposed to

LAPI-managed) counter on which another thread is waiting. For example:

volatile int user_cntr;

 ...

/* user’s completion handler */

void compl_hndlr(lapi_handle_t *hndl, void * completion_param)

{

 user_cntr++;

}

/* some other routine */

{

 /* some LAPI calls */

 ...

 while (user_cntr < some_threshold) {

 /* do other work */

 }

}

Completion handler execution: To ensure progress on other messages during

completion handler execution, LAPI maintains a queue of completion handlers,

which is serviced by a dedicated completion handler thread. Under normal

execution, completion handler pointers are enqueued by the dispatcher at message

completion and then executed within this separate thread. See Figure 7 on page 51.

50 IBM RSCT for AIX 5L: LAPI Programming Guide

The use of a separate thread allows the dispatcher to make progress on other

messages while the completion handler executes. If you set a completion handler

using the header handler reference parameter, the LAPI dispatcher will enqueue the

completion handler to the completion handler queue upon message completion.

If a number of handlers pile up, there may be some lag in completion handler

execution. LAPI provides users with a mechanism for requesting that this process

be short-circuited on a per-message basis and that completion handlers be run

inline if possible. As discussed in “The enhanced header handler interface” on page

75, this can be done by setting the ret_flags field in the lapi_return_info_t structure

to LAPI_LOCAL_STATE or LAPI_SEND_REPLY. See “Inline completion handlers”

on page 77 for more information.

The send completion handler

LAPI provides users with the ability to provide a callback for send completion. This

handler runs on the sending side. As with the (receive) completion handler, the use

of a send completion handler is optional. If a send completion handler is specified

by setting the corresponding field in the structure that is passed in to LAPI_Xfer to

a non-NULL value, LAPI calls this handler when the send-side data buffer is

available for reuse. Note that the send completion handler is only available through

the LAPI_Xfer interface to the API calls. LAPI_Xfer also provides a parameter

pointer for passing information in to the send completion handler. The handler’s

signature is as follows:

void send_compl_hndlr(lapi_handle_t *hndl, void *completion_param, lapi_sh_info_t *info);

To use the send completion handler in C, set the shdlr pointer (and optionally, the

sinfo pointer) of the lapi_xfer_t union of LAPI_Xfer to a non-NULL value. For

example:

lapi_xfer_t xfer_struct;

some_user_type *info_ptr;

 ...

xfer_struct.Am.shdlr = (scompl_hndlr_t *) send_compl_hndlr;

xfer_struct.Am.sinfo = (void *) info_ptr;

 ...
LAPI_Xfer(hndl, &xfer_struct);

LAPI handler summary

Table 8 on page 52 provides summary information about the various handlers.

LAPI dispatcher

Enqueues
completion handlers

upon
message completion

Completion handler
thread

Dequeues and
executes

completion handlers

Completion handler
queue

Figure 7. The completion handler queue

Chapter 6. Transferring data 51

Table 8. LAPI handlers

Type of

handler

Resides

on:

Which subroutines

use it?

How do I specify it? How is it used? When does it run?

Header The target

task

Required for

LAPI_Amsend,

LAPI_Amsendv, AM,

AMV, and DGSP

Pass it as a callback

pointer to the API call

or (in C) pass it as a

member of a

lapi_xfer_t union for

LAPI_Xfer. In

addition to the

callback pointer,

optionally provide an

index in to the header

handler function

table.

Must return the

target-side data buffer

address to LAPI.

Optionally, sets

completion handler

and completion

handler parameter

pointers through

reference parameters.

Upon arrival of the

first data packet at

the target task

Completion The origin

task

Optional for GET and

GETV

Callback pointer set

as a member of a

lapi_xfer_t union for

LAPI_Xfer (in C)

Data can be passed

through a parameter

pointer set as a

member of a

lapi_xfer_t union for

LAPI_Xfer (in C)

Upon arrival of the

last packet of the

GET or GETV

transfer

Completion The target

task

Optional for

LAPI_Amsend,

LAPI_Amsendv, AM,

AMV, and DGSP

Callback pointer set

in the header handler

(user’s option)

Data can be passed

through a parameter

pointer set in the

header handler

Upon arrival of final

data packet at the

target task (message

completion)

Send

completion

The origin

task

Optional for AM,

AMV, DGSP, PUT,

PUTV, and RMW

Callback pointer set

as a member of a

lapi_xfer_t union for

LAPI_Xfer (in C).

User’s option.

Data can be passed

through a parameter

pointer set as a

member of a

lapi_xfer_t union for

LAPI_Xfer (in C)

Upon availability of

the send-side data

buffer

LAPI counters

LAPI also provides a number of internally-managed counters, with a set of API calls

for setting, getting and waiting on counter values. Three types of counters are

provided:

Origin counter

Resides in the address space of the origin task. LAPI increments

this counter when the send-side data buffer is available for reuse.

Target counter

Resides in the address space of the target task. LAPI increments

this counter upon message completion at the target.

Completion counter

Resides in the address space of the sending side. LAPI increments

this counter upon message completion at the target. LAPI sends an

internal message back to the sender to indicate message

completion.

LAPI provides three subroutines for counter manipulation:

LAPI_Getcntr(lapi_handle_t hndl, lapi_cntr_t *cntr, int *val)

Sets val to the value currently stored by cntr.

52 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Setcntr(lapi_handle_t hndl, lapi_cntr_t *cntr, int val)

Sets the value of the counter (cntr) to val.

LAPI_Waitcntr(lapi_handle_t hndl, lapi_cntr_t *cntr, int val, int *cur_cntr_val)

Blocks until the value of the counter (cntr) reaches val. LAPI_Waitcntr

stores the current value of the counter in cur_cntr_val and decrements the

counter’s value by val before returning. The final value of the counter after

this call does not need to be 0. (Consider, for example, a call to this

subroutine after the value of the counter has already reached a value

greater than val.)

Table 9 provides summary information about the various counters.

 Table 9. LAPI counters

Type of

counter

Resides on: Which subroutines use

it?

How do I

specify it?

When is the counter incremented?

Origin The origin

task

LAPI_Amsend,

LAPI_Amsendv,

LAPI_Get, LAPI_Getv,

LAPI_Put, LAPI_Putv,

GET, GETV PUT, and

PUTV

Pass it as an

argument to

an API call

Upon availability of the origin data buffer.

For LAPI_Get, LAPI_Getv GET, and

GETV: upon completion of message

delivery.

For LAPI_Rmw, LAPI_Rmw64, and

RMW: upon completion of return

message delivery.

Target The target

task

LAPI_Amsend,

LAPI_Amsendv,

LAPI_Get, LAPI_Put,

LAPI_Putv, GET, and PUT

Pass it as an

argument to

an API call

Upon completion of message delivery.

For LAPI_Get, LAPI_Getv, GET, or

GETV: upon availability of the target data

buffer.

Completion The origin

task

LAPI_Amsend,

LAPI_Amsendv,

LAPI_Put, LAPI_Putv, and

PUT

Pass it as an

argument to

an API call

Upon return of completion handler (if

used), or on completion of message

delivery (an internal message notifies the

origin task in either case)

Specifying target-side addresses

When working with any target-side addresses for handlers, counters, or data

buffers, a value in the target task’s address space must be specified, often by the

origin task. In those instances, it is important to remember that the address must be

obtained from the target task. The normal mechanism for doing so is to use

LAPI_Address_init or LAPI_Address_init64. If you are using the LAPI_Xfer

interface for data communication, remote-side addresses are of type lapi_long_t,

and must be obtained using LAPI_Address_init64.

Additional progress functions

LAPI provides functions for checking status while awaiting message delivery. Recall

that progress is made in the LAPI dispatcher. When LAPI is used in polling mode

(interrupts are turned off), it is possible that message packets have arrived, but the

dispatcher does not get called (if nothing is being sent, for example). The user can

invoke the dispatcher explicitly by calling LAPI_Probe on a LAPI handle. A call to

LAPI_Probe will cause the dispatcher to check for the arrival of any message

packets. See “LAPI_Probe” on page 174 for more information.

With the LAPI_Msgpoll subroutine, LAPI provides a means of running the

dispatcher several times until either progress is made or a specified maximum

Chapter 6. Transferring data 53

number of dispatcher loops have executed. Here, progress is defined as the

completion of either a message send operation or a message receive operation.

See “LAPI_Msgpoll” on page 171 for more information.

54 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 7. Active messaging

The active message function (LAPI_Amsend) is a non-blocking call that causes the

specified active message handler to be invoked and executed in the address space

of the target process. Completion of the operation is signaled if counters are

specified. Both standard and synchronous behaviors are supported. The

LAPI_Amsend subroutine provides two counters: the origin counter (org_cntr) and

the completion counter (cmpl_cntr), which can be used to provide the two

behaviors. With standard behavior, LAPI increments the origin counter (org_cntr)

when the origin buffer can be reused. With synchronous behavior, LAPI increments

the completion counter (cmpl_cntr) after the completion handler has completed

execution.

The LAPI_Xfer subroutine provides functions that are similar to LAPI_Amsend,

with some enhancements. See “LAPI_Xfer” on page 219 for more information.

Flow of active message operations

Figure 8 on page 56 illustrates the sequence of events for a LAPI_Amsend

operation or a LAPI_Amsendv operation. Because they use a header handler and

a completion handler, active message operations are more complex than transfer

operations. Upon arrival of the first packet, the user header handler is called. This

handler is always run inline. For this reason, it is important to keep the body of the

header handler small so that progress on other messages will not be blocked for

long. The header handler returns a data buffer address to LAPI, which writes the

data starting at that address. Once the final packet arrives, LAPI increments the

target counter and either directly invokes or enqueues the completion handler for

later execution in a completion handler thread. See “The completion handler” on

page 49 for more information.

© Copyright IBM Corp. 2003, 2005 55

Using LAPI_Amsend: a complete LAPI program

This section contains a complete listing of a LAPI program. A line-by-line description

of the program follows this listing. The source code shown demonstrates a single

LAPI_Amsend call, complete with header handler and completion handler

definitions. This listing is a modified version of the sample program Am.c, which is

available in the LAPI samples directory (/opt/rsct/lapi/samples/lapi_api). For more

information, see Chapter 20, “LAPI sample programs,” on page 245.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <string.h>

4 #include <unistd.h>

5 #include <lapi.h>

6

7 /* for any error messages returned by LAPI */

8 char err_msg_buf[LAPI_MAX_ERR_STRING];

9

10 /* constant for array lengths */

11 #define ARRAYLEN 10

12

13 /* list of header handler addresses */

14 void **hdr_hndlr_list;

15

16 /* stores initial value on src and final value on tgt */

17 int data_buffer[ARRAYLEN];

18

19 /* updates on src at msg completion */

20 lapi_cntr_t compl_cntr;

21

22 /*

23 ** completion handler that runs on the target after completion

Task 0 Task 1

Data transfer begins

Data transfer ends

Origin counter is incremented when
the origin buffer is available

Data is completely received at target

Target counter is incremented

Completion handler is executed

First packet is received
Header handler is invoked

Completion
counter is incremented

LAPI
internal

communication

Message
data

Figure 8. The sequence of events for an active message operation

56 IBM RSCT for AIX 5L: LAPI Programming Guide

24 ** of message delivery. prints the contents of the data

25 ** buffer that is the target of the LAPI_Amsend call.

26 */

27 void compl_hndlr(lapi_handle_t *hndl, void *completion_param)

28 {

29 int i; /* loop counter */

30

31 printf("Greetings from the completion handler...\n");

32 for(i = 0; i < ARRAYLEN; i++) {

33 printf("final buffer[%d]: %d\n",i, data_buffer[i]);

34 }

35

36 }

37

38 /* header handler that runs on target when first packet arrives.

39 ** sets the completion_handler pointer and returns the address

40 ** of the data buffer for message delivery. LAPI writes the

41 ** Amsend data at this address.

42 */

43 void *header_handler(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

44 ulong *msg_len, compl_hndlr_t **comp_h,

45 void **info) {

46

47 /* pass the completion handler back by reference */

48 *comp_h = compl_hndlr;

49

50 return data_buffer;

51 }

52

53

54 int main(int argc, char **argv)

55 {

56

57 lapi_handle_t hndl; /* LAPI handle */

58 lapi_info_t info; /* Info to pass to */

59 /* LAPI_Init */

60 int task_id; /* Our LAPI task ID */

61 int num_tasks; /* Total number of tasks */

62 int i; /* Loop counter */

63 int val; /* Needed for waitcntr call */

64 int buddy; /* Our communication */

65 /* partner */

66

67 /*

68 ** Clear the structure. Not passing any information

69 ** to initialize through this structure.

70 */

71 bzero(&info, sizeof(lapi_info_t));

72

73 /* Initialize the LAPI handle */

74 LAPI_Init(&hndl, &info);

75

76 /* Query LAPI for our task ID */

77 LAPI_Qenv(hndl, TASK_ID, &task_id);

78

79 /* Query LAPI for the total number of tasks in the job */

80 LAPI_Qenv(hndl, NUM_TASKS, &num_tasks);

81

82 /* This example only supports even numbers of tasks */

83 if ((num_tasks < 2) || ((num_tasks % 2) != 0)) {

84 fprintf(stderr,"ERROR: this example requires an even"

85 "number of tasks, but has been invoked with"

86 " %d\n", num_tasks);

87 exit(1);

88 }

89

90 /* get address of header handler on target */

Chapter 7. Active messaging 57

91 hdr_hndlr_list = (void **)malloc(num_tasks*(sizeof(void *)));

92 LAPI_Address_init(hndl, (void *)header_handler,

93 hdr_hndlr_list);

94

95 /*

96 ** up to this point, all instructions have executed on all

97 ** tasks. we now begin differentiating tasks.

98 */

99 if ((task_id %2) == 0) { /* message source */

100

101 /* set up buddy pairs as (0,1), (2,3), and so on */

102 buddy = task_id+1;

103

104 /* initialize data buffer */

105 for (i = 0; i < ARRAYLEN; i++) {

106 data_buffer[i] = i*buddy;

107 }

108

109 /*

110 ** initialize the completion counter. When it increments,

111 ** we know that the completion handler has returned

112 */

113 LAPI_Setcntr(hndl,&compl_cntr,0);

114

115 /* collective call. synchronize before starting data transfer */

116 LAPI_Gfence(hndl);

117

118 /*

119 ** execute the data transfer to our buddy task. send

120 ** ARRAYLEN integers, starting with data_buffer[0].

121 */

122 LAPI_Amsend(hndl, buddy,

123 hdr_hndlr_list[buddy], NULL,

124 0,&(data_buffer[0]),ARRAYLEN*(sizeof(int)),

125 NULL, NULL, &compl_cntr);

126

127 /* wait for message completion before final termination */

128 LAPI_Waitcntr(hndl, &compl_cntr,1, &val);

129

130 } else { /* receiver */

131 /* Note: buddy = task_id-1; */

132

133 /* initialize the data buffer (not necessary, */

134 /* but provided for clarity) */

135 for (i = 0; i < ARRAYLEN; i++) {

136 data_buffer[i] = 0;

137 }

138

139 /* to match the source’s synchronization before data transfer */

140 LAPI_Gfence(hndl);

141 }

142

143 /* all tasks will execute this before termination */

144 LAPI_Gfence(hndl);

145

146 /* clean up */

147 free(hdr_hndlr_list);

148

149 /* terminate the LAPI handle */

150 LAPI_Term(hndl);

151

152 return 0;

153 }

Lines 1 to 5 include standard header files for LAPI programs.

Lines 7 and 8 declare a string buffer for retrieving messages that are associated

58 IBM RSCT for AIX 5L: LAPI Programming Guide

with non-zero LAPI return codes. Calling LAPI_Msg_string(rc,

err_msg_buf) will store the message associated with rc in

err_msg_buf.

Line 11 defines a fixed data length for this example.

Line 14 declares a pointer to maintain a list of header handler addresses for

each task. The header handler runs on the target task, so the

address that is specified for the header handler pointer must be in

the target address space.

Line 17 declares a simple data buffer. Because it is declared in common

code, each task will have this buffer allocated in its address space.

This program initializes a set of values in the sender task to this

buffer, clears this set of values in the receiver task, then transfers

the original set of values from the sender to the receiver.

Line 20 specifies the only LAPI counter that this program will require for

synchronization.

Lines 22 to 36

specifies the completion handler that runs at the target upon

completion of message delivery. When executed, this guarantees

that all data from the transfer has been written to the desired target

address. In this example, the program simply prints the results. In

practice, completion handlers can be used for many things,

including additional data manipulation or synchronization (such as

by incrementing counters that the user is managing internally).

Completion handlers are not required for active messaging calls. If

no completion handler is desired, simply pass NULL to the

completion handler pointer in the user header handler.

Lines 38 to 51

specifies the user header handler that LAPI will call when the first

packet arrives at the target. At a minimum, it must return to LAPI

the buffer address at which data is to be written. It can also return

(by reference parameters) a pointer to the user’s completion

handler and a pointer to a structure containing any information to

pass to the completion handler when it is invoked.

 Header handlers are always run inline. That is, progress on any

other messages is blocked until the header handler completes. For

this reason it is advised that the user keep execution time in the

header handler to a minimum.

Line 54 Main begins here. This example is short: only one LAPI

communication operation is done before the program exits. For this

reason, it is not a problem to keep all of the program flow in main.

Recall that a separate application of this code will be executed for

each task. As such, all code will execute on all tasks. This program

branches on task ID at line 130 to ensure that certain code only

executes on one set of tasks, and the other branch executes only

on the other set of tasks. After the branched sections, control

rejoins and the remaining code is executed on all tasks. It is helpful

to think of this fork/join model as you write LAPI programs.

Lines 57 to 65

include variable declarations. The handle is the user’s abstraction of

a LAPI instance. After initialization (line 74 in this case), the handle

is used to interact with the LAPI subsystem. Users can use the

Chapter 7. Active messaging 59

handle to query runtime parameters and execute data transfers. As

part of cleanup, the handle should be properly terminated (line

150).

 The lapi_info_t structure is used to pass certain information to

LAPI_Init. Most often, it is used for passing a pointer to the user’s

error handler. Certain fields in the structure are not used; LAPI will

return an error if these fields contain values. For this reason, it is

important to clear the structure (line 71), and then set any desired

values. This example does not use any of the fields, so the program

leaves the memory cleared. See “Registering an error handler” on

page 32 for an example of using the lapi_info_t structure to

register a user error handler.

 LAPI allows us to query our task ID. At line 99, the code stream

splits. One branch will execute on all tasks with even-numbered IDs

(task_id %2 == 0), and the other branch will execute on tasks with

odd IDs.

 In this example, task IDs are used to set up buddy pairs for data

transfer. Buddy pairs are established as (0,1), (2,3), and so on,

such that the lower task ID in the pair is the even number. The

lower (even) task ID drives the communication by sending a

message to the odd-numbered task.

 The buddy-pair concept is a specific case of task grouping, where

one task is the ″master″ for a group of tasks. The ″master task″

drives all communication and synchronization. It is possible to have

master tasks for groups of larger cardinalities. One common model

is to use task 0 as a master task and all other tasks as ″slave

tasks″.

 Similar to task_id, LAPI has a mechanism for querying the total

number of tasks in the job. Because this example communicates in

task pairs, it requires an even number of tasks. This program uses

the value queried from LAPI to check the number of tasks on line

83 and exits if this value is not even.

 The remaining, basic variables are needed for various tasks.

Line 71 clears the fields in the lapi_info_t structure before passing it to

LAPI. See the description of lines 57 to 65 for information about

lapi_info_t.

Line 74 initializes the LAPI handle. This call creates a LAPI instance and

initializes the communication subsystem. After this call completes,

any query and communication API calls can be performed on this

handle, until this handle is terminated.

Lines 76 to 80

Lines 77 and 80 are executed in most programs that use LAPI,

because the task ID and the total number of tasks in the job are

commonly-used values. See the description of lines 57 to 65 for

more information on how these values are used in this example.

Lines 82 to 88

check to make sure that the number of tasks is even. See the

description of lines 57 to 65 for more information on task topology.

Lines 90 to 93

Recall that the header handler executes on the target, but the

60 IBM RSCT for AIX 5L: LAPI Programming Guide

address of the function must be known to the source task. This

program uses the LAPI_Address_init subroutine to exchange

header handler address data among all of the tasks.

LAPI_Address_init expects a buffer with enough space to hold an

address for every task in the job, so this program does the required

malloc first at line 91, then frees it at line 147. Note that since we

are still in common code, the malloc and LAPI_Address_init call

will be executed at this point on every task, which is what we want.

Line 99 Control forks here. This branch will only be entered by

even-numbered tasks (the ″drivers″ in this example). The branch for

odd-numbered tasks begins at line 130.

Line 102 Because this task will drive, it needs to keep track of its buddy’s

task ID.

Line 104 populates the buffer with data to be transferred. The values are

relative to the ID of the buddy task so they can be easily and

uniquely verified after being received by the buddy.

Lines 109 to 113

LAPI communication API calls are non-blocking; message delivery

is asynchronous. LAPI provides counters that signify different

events. In this example, we want to know when message delivery

at our buddy is complete. For this purpose, we use a local

completion counter, which LAPI will increment once the completion

handler on the target returns. We will wait on this counter in a

LAPI_Waitcntr call at line 128, immediately after the

LAPI_Amsend call on line 122 returns.

Line 116 This is a collective data fence operation. All calls that are made

before this point have no asynchronous side effects and thus are

guaranteed to complete before we leave this fence. Our buddy has

a matching LAPI_Gfence call at line 140.

Lines 118 to 125

This is the actual communication API call. As above, all LAPI calls

are made with respect to the handle returned from LAPI_Init. We

are sending data to our buddy task. For the header handler pointer,

we pass the entry returned from the collective LAPI_Address_init

call on line 92. The address passed into the call by our buddy task

is stored at index buddy in the table.

 We are not using a user header in this example, so the next two

arguments (the user header and user header length) are NULL and

0, respectively. See the sample program

vector/accumulate_and_return.Amv.c for an example of using a

user header.

 The next argument is the base data address from which data is to

be read (&(data_buffer[0])) followed by the number of bytes to

transfer (ARRAYLEN*(sizeof(int)).

 The final three arguments are pointers to counters that LAPI will

manage. As mentioned above, we are only concerned in this case

with the completion counter. So we pass NULL for both the target

and origin counters. The target counter will increment on the target

when message delivery is complete, so if used, requires a remote

address to be passed. See the sample program xfer/Put_xfer.c for

an example of using a target counter.

Chapter 7. Active messaging 61

When used, the origin counter increments locally when the origin

data buffer is no longer needed by LAPI and can thus be reused by

the origin task. See the vector/strided.c example for demonstration

of origin counter usage.

 As mentioned above, we are using the completion counter in this

case and so pass its address.

Line 128 We wait here for LAPI to signal message completion. This

completes the branch specific to even-numbered tasks.

Line 130 This begins the branch that will only be executed by odd-numbered

(receiver) tasks.

Line 131 Our buddy is driving the communication, so we do not need its ID.

This comment is just left in as a reminder.

Lines 135 to 137

Similarly, we zero out the data space here so that we know that the

data in the final output must have come from a remote task.

Line 140 This call matches the sender’s LAPI_Gfence call on line 116.

Line 141 Code paths re-join here. All remaining code is executed on both

tasks.

Lines 143 to 150

represent a standard LAPI shutdown sequence. All tasks execute a

final LAPI_Gfence call (line 144), then clean up any allocated data

structures (line 147). Any frees should be done before executing

LAPI_Term.

Line 152 Finally, we return success. If POE is running, it will pass this code

back to AIX for the process return code.

62 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 8. Collecting statistics

You can use the LAPI_Qenv subroutine to print and query LAPI statistics. See

“LAPI_Qenv” on page 184 for more information about this subroutine.

Printing data transfer statistics

When passed the PRINT_STATISTICS query type, LAPI_Qenv sends data transfer

statistics to standard output. In this case, ret_val is unaffected. However, LAPI’s

error checking requires that the value of ret_val is not NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) for all LAPI_Qenv types (including

PRINT_STATISTICS).

Querying US and UDP/IP statistics

When passed the QUERY_STATISTICS query type, LAPI_Qenv interprets ret_val

as a pointer to type lapi_statistics_t. Upon function return, the fields of the

structure contain LAPI’s data transfer statistics for data transferred using the user

space (US) protocol or UDP/IP. QUERY_STATISTICS expects a pointer to type

lapi_statistics_t. The address of stats is cast to int *, which is required to match

the signature of LAPI_Qenv. For example:

{

lapi_statistics_t stats;

LAPI_Qenv(handle, QUERY_STATISTICS, (int *)&stats)));

}

Querying local send statistics

When passed the QUERY_LOCAL_SEND_STATISTICS query type, LAPI_Qenv

interprets ret_val as a pointer to type lapi_statistics_t. Upon function return, the

fields of the structure contain LAPI’s data transfer statistics for data transferred

through intra-task local copy. For example:

{

lapi_statistics_t stats;

LAPI_Qenv(handle, QUERY_LOCAL_SEND_STATISTICS, (int *)&stats)));

}

With this query, you can obtain the byte count of the data that is transferred through

the local copy path when the source and target are the same. The following

statistics are reported: the number of bytes sent and the number of bytes received

for the local copy path, the number of packets sent, and the number of packets

received. The number of bytes sent for a message are counted only for data

messages that are sent successfully. The number of bytes received for a message

are counted only for data messages that complete successfully. As with adapter

statistics, LAPI also provides separate sets of statistics for LAPI-only traffic and

shared traffic in the local copy path. The packet count reported for the local copy

path will always be 0 because data transfer in this path does not use packetization.

© Copyright IBM Corp. 2003, 2005 63

|

|

|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Querying shared memory statistics

When passed the QUERY_SHM_STATISTICS query type, LAPI_Qenv interprets

ret_val as a pointer to type lapi_statistics_t. Upon function return, the fields of the

structure contain LAPI’s data transfer statistics for data transferred through shared

memory. QUERY_SHM_STATISTICS expects a pointer to type lapi_statistics_t.

For example:

{

lapi_statistics_t stats;

LAPI_Qenv(handle, QUERY_SHM_STATISTICS, (int *)&stats)));

}

With this query, you can obtain the byte count of the data that is transferred through

the shared memory path when the source and target are the same. The following

statistics are reported: the number of bytes sent and the number of bytes received

for the shared memory path, the number of packets sent, the number of packets

received, and the number of retransmit packets. A packet in shared memory path

refers to a shared memory slot when using slot transfer or a shared memory

attachment when using attach transfer. The number of retransmit packets in the

shared memory path refers to the number of times when attaching a shared

memory segment fails. The number of bytes sent via shared memory is defined as

all the data bytes sent through shared memory either by slot path or attach path.

The number of bytes sent for a message are counted only for data messages that

are sent successfully. If attaching a shared memory segment does not succeed for

transferring a message and that message has been failed over to the slot path, only

slot path data bytes are counted into the number of bytes sent. The number of

bytes received for a message are counted only for data messages that complete

successfully. As with adapter statistics, LAPI also provides separate sets of

statistics for LAPI-only traffic and shared traffic in the shared memory path.

See “LAPI shared memory: functional flow” on page 259 for more information.

64 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Chapter 9. Using LAPI’s profiling interface

LAPI’s profiling interface includes wrappers for each LAPI function, so you can

collect data about each of the LAPI calls. For example, you can write a program

that records the message size that is used in each call. This interface supports

applications that are written in C, C++, and FORTRAN.

Each LAPI subroutine has a ″name-shifted″ interface. Suppose your program calls

a LAPI subroutine, such as LAPI_Get. When you link your program with the LAPI

library, the LAPI function call results in a call to the corresponding name-shifted

LAPI subroutine, in this case PLAPI_Get, using the same parameters and returning

the same function result. You can create a profiling library that contains function

implementations for each LAPI subroutine that it will override. When you link your

program with a profiling library, this library calls the corresponding name-shifted

LAPI subroutine without modifying any parameters and returns the same function

result. When LAPI function calls are profiled, a wrapper (for each LAPI function to

be profiled) collects the profiling data and calls the name-shifted LAPI subroutine

exactly as if it was called by your program.

Table 10 lists LAPI’s profiling interfaces.

 Table 10. LAPI profiling interfaces

LAPI subroutine

C and C++ profiling

interface FORTRAN profiling interfaces

LAPI_Addr_get PLAPI_Addr_get plapi_addr_get, plapi_addr_get_, PLAPI_ADDR_GET,

PLAPI_ADDR_GET_

LAPI_Addr_set PLAPI_Addr_set plapi_addr_set, plapi_addr_set_, PLAPI_ADDR_SET,

PLAPI_ADDR_SET_

LAPI_Address PLAPI_Address plapi_address, plapi_address_, PLAPI_ADDRESS,

PLAPI_ADDRESS_

LAPI_Address_init PLAPI_Address_init plapi_address_init, plapi_address_init_,

PLAPI_ADDRESS_INIT, PLAPI_ADDRESS_INIT_

LAPI_Address_init64 PLAPI_Address_init64 plapi_address_init64, plapi_address_init64_,

PLAPI_ADDRESS_INIT64, PLAPI_ADDRESS_INIT64_

LAPI_Amsend PLAPI_Amsend plapi_amsend, plapi_amsend_, PLAPI_AMSEND,

PLAPI_AMSEND_

LAPI_Amsendv PLAPI_Amsendv plapi_amsendv, plapi_amsendv_, PLAPI_AMSENDV,

PLAPI_AMSENDV_

LAPI_Fence PLAPI_Fence plapi_fence, plapi_fence_, PLAPI_FENCE,

PLAPI_FENCE_

LAPI_Get PLAPI_Get plapi_get, plapi_get_, PLAPI_GET, PLAPI_GET_

LAPI_Getcntr PLAPI_Getcntr plapi_getcntr, plapi_getcntr_, PLAPI_GETCNTR,

PLAPI_GETCNTR_

LAPI_Getv PLAPI_Getv plapi_getv, plapi_getv_, PLAPI_GETV, PLAPI_GETV_

LAPI_Gfence PLAPI_Gfence plapi_gfence, plapi_gfence_, PLAPI_GFENCE,

PLAPI_GFENCE_

LAPI_Init PLAPI_Init plapi_init, plapi_init_, PLAPI_INIT, PLAPI_INIT_

LAPI_Msg_string PLAPI_Msg_string plapi_msg_string, plapi_msg_string_,

PLAPI_MSG_STRING, PLAPI_MSG_STRING_

© Copyright IBM Corp. 2003, 2005 65

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

||

|
|
||

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||

|||
|

|||

|||
|

|||

|||
|

Table 10. LAPI profiling interfaces (continued)

LAPI subroutine

C and C++ profiling

interface FORTRAN profiling interfaces

LAPI_Msgpoll PLAPI_Msgpoll plapi_msgpoll, plapi_msgpoll_, PLAPI_MSGPOLL,

PLAPI_MSGPOLL_

LAPI_Nopoll_wait PLAPI_Nopoll_wait plapi_nopoll_wait, plapi_nopoll_wait_,

PLAPI_NOPOLL_WAIT, PLAPI_NOPOLL_WAIT_

LAPI_Probe PLAPI_Probe plapi_probe, plapi_probe_, PLAPI_PROBE,

PLAPI_PROBE_

LAPI_Purge_totask PLAPI_Purge_totask plapi_purge_totask, plapi_purge_totask_,

PLAPI_PURGE_TOTASK, PLAPI_PURGE_TOTASK_

LAPI_Put PLAPI_Put plapi_put, plapi_put_, PLAPI_PUT, PLAPI_PUT_

LAPI_Putv PLAPI_Putv plapi_putv, plapi_putv_, PLAPI_PUTV, PLAPI_PUTV_

LAPI_Qenv PLAPI_Qenv plapi_qenv, plapi_qenv_, PLAPI_QENV, PLAPI_QENV_

LAPI_Resume_totask PLAPI_Resume_totask plapi_resume_totask, plapi_resume_totask_,

PLAPI_RESUME_TOTASK, PLAPI_RESUME_TOTASK_

LAPI_Rmw PLAPI_Rmw plapi_rmw, plapi_rmw_, PLAPI_RMW, PLAPI_RMW_

LAPI_Rmw64 PLAPI_Rmw64 plapi_rmw64, plapi_rmw64_, PLAPI_RMW64,

PLAPI_RMW64_

LAPI_Senv PLAPI_Senv plapi_senv, plapi_senv_, PLAPI_SENV, PLAPI_SENV_

LAPI_Setcntr PLAPI_Setcntr plapi_setcntr, plapi_setcntr_, PLAPI_SETCNTR,

PLAPI_SETCNTR_

LAPI_Setcntr_wstatus PLAPI_Setcntr_wstatus plapi_setcntr_wstatus, plapi_setcntr_wstatus_,

PLAPI_SETCNTR_WSTATUS,

PLAPI_SETCNTR_WSTATUS_

LAPI_Term PLAPI_Term plapi_term, plapi_term_, PLAPI_TERM, PLAPI_TERM_

LAPI_Util PLAPI_Util plapi_util, plapi_util_, PLAPI_UTIL, PLAPI_UTIL_

LAPI_Waitcntr PLAPI_Waitcntr plapi_waitcntr, plapi_waitcntr_, PLAPI_WAITCNTR,

PLAPI_WAITCNTR_

LAPI_Xfer PLAPI_Xfer plapi_xfer, plapi_xfer_, PLAPI_XFER, PLAPI_XFER_

Performing name-shift profiling

To use name-shift profiling routines that are either written to the C bindings with a

LAPI program written in C, or that are written to the FORTRAN bindings with a

LAPI program written in FORTRAN, use the following steps.

Programs that use LAPI’s C language bindings can create profiling libraries using

the name-shifted interface.

v If you are both the creator and user of the profiling library and you are not using

FORTRAN, follow steps 1 through 6. If you are using FORTRAN, follow steps 1

through 4, then steps 7 through 9.

v If you are the creator of the profiling library, follow steps 1 through 4. You also

need to provide the user with the file created in step 3.

v If you are the user of the profiling library and you are not using FORTRAN, follow

steps 5 and 6. If you are using FORTRAN, start at step 7. You will need to make

sure that you have the file generated by the creator in step 3.

To perform LAPI name-shift profiling, follow the appropriate steps:

66 IBM RSCT for AIX 5L: LAPI Programming Guide

|

|
|
||

|||
|

|||
|

|||
|

|||
|

|||

|||

|||

|||
|

|||

|||
|

|||

|||
|

|||
|
|

|||

|||

|||
|

|||
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

|

1. Create a source file that contains profiling versions of all of the LAPI

subroutines you want to profile. For example, create a source file called

myprof_r.c that contains the following code:

 #include <pthread.h>

 #include <stdio.h>

 #include <lapi.h>

 int LAPI_Init(lapi_handle_t *hndl, lapi_info_t *lapi_info) {

 int rc;

 printf("Hello, from profiling layer LAPI_Init ...\n");

 rc = PLAPI_Init(hndl, lapi_info);

 printf("goodbye, from profiling layer LAPI_Init ...\n");

 return rc;

 }

 int lapi_init(lapi_handle_t *hndl, lapi_info_t *lapi_info, int *err) {

 int rc;

 printf("Hello, from profiling layer LAPI_Init ...\n");

 rc = plapi_init(hndl, lapi_info, err);

 printf("goodbye, from profiling layer LAPI_Init ...\n");

 return rc;

}

2. Compile the source file that contains your profiling LAPI routines. For example,

to compile the profiling source file you created in step 1:

cc_r -c myprof_r.c -I/usr/include

The -I flag defines the location of lapi.h.

3. Create an export file that contains all of the symbols your profiling library will

export. Begin this file with the name of your profiling library and the name of the

.o file that will contain the object code of your profiling routines. For example, to

create an export file for the profiling source file that you created in step 1,

create a file called myprof_r.exp that contains this statement:

LAPI_Init

4. Create a shared library called libmyprof_r.a that contains the profiled versions,

exporting their symbols and linking with the LAPI library, using myprof_r.exp as

shown. For example:

ld -o newmyprof_r.o myprof_r.o -bnoentry -bE:myprof_r.exp -lc_r -L/usr/lib \

 -llapi_r -lpthreads

ar rv libmyprof_r.a newmyprof_r.o

5. Link your user program:

mpcc_r -o test1 test1.c -L. -lmyprof_r

6. Run the resulting executable.

7. For a FORTRAN program using a LAPI function that you have profiled in step 1,

create a file called hwinit.f that contains the following statements:

include ’lapif.h’

integer :: handle

integer :: info(25)

integer :: ierror, i

do i=1, 25

 info(i) = 0

enddo

call LAPI_INIT(handle, info, ierror)

write(*,*) ierror

call LAPI_TERM(handle, ierror)

stop

end

8. Compile your FORTRAN program (hwinit.f) using the new library

(libmyprof_r.a):

mpxlf_r -o hwinit hwinit.f -L. -lmyprof_r

9. Run the resulting executable.

Chapter 9. Using LAPI’s profiling interface 67

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|
|
|

|

|
|
|

|
|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

A sample profiling program

A sample profiling program follows. Before it is linked with the LAPI library, the user

program should be linked with a profiling library that is formed from the following

program, using the instructions in “Performing name-shift profiling” on page 66.

Then, the time spent in LAPI_Xfer and LAPI_Msgpoll will be printed out when the

user program terminates. Note that this sample program is not multithread-safe.

#include <stdio.h>

#include <sys/time.h>

#include <lapi.h>

typedef struct timeval prof_time_t;

prof_time_t xfer_time;

prof_time_t poll_time;

void accumulate(prof_time_t *sum, prof_time_t *start, prof_time_t *stop)

{

 sum->tv_sec += stop->tv_sec - start->tv_sec;

 sum->tv_usec += stop->tv_usec - start->tv_usec;

 if (sum->tv_usec >= 1000000) {

 sum->tv_sec += 1;

 sum->tv_usec -= 1000000;

 }

 if (sum->tv_usec < 0) {

 sum->tv_sec -= 1;

 sum->tv_usec += 1000000;

 }

}

int LAPI_Init(lapi_handle_t *hndl, lapi_info_t *lapi_info)

{

 bzero(&xfer_time, sizeof(xfer_time));

 bzero(&poll_time, sizeof(poll_time));

 return PLAPI_Init(hndl, lapi_info);

}

int LAPI_Xfer(lapi_handle_t hndl, lapi_xfer_t *xfer_cmd)

{

 int rc;

 prof_time_t start, stop;

 gettimeofday(&start, NULL);

 rc = PLAPI_Xfer(hndl, xfer_cmd);

 gettimeofday(&stop, NULL);

 accumulate(&xfer_time, &start, &stop);

 return rc;

}

int LAPI_Msgpoll(lapi_handle_t hndl, uint cnt, lapi_msg_info_t *info)

{

 int rc;

 prof_time_t start, stop;

 gettimeofday(&start, NULL);

 rc = PLAPI_Msgpoll(hndl, cnt, info);

 gettimeofday(&stop, NULL);

 accumulate(&poll_time, &start, &stop);

 return rc;

}

int LAPI_Term(lapi_handle_t hndl)

{

 printf("LAPI_Xfer time: %u h %u m %u s %06u us\n",

 xfer_time.tv_sec/3600, xfer_time.tv_sec%3600/60,

68 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

xfer_time.tv_sec%60, xfer_time.tv_usec);

 printf("LAPI_Msgpoll time: %u h %u m %u s %06u us\n",

 poll_time.tv_sec/3600, poll_time.tv_sec%3600/60,

 poll_time.tv_sec%60, poll_time.tv_usec);

 return PLAPI_Term(hndl);

}

Chapter 9. Using LAPI’s profiling interface 69

|
|
|
|
|
|

|

70 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 10. Compiling and running LAPI programs

As with a serial application, you must compile a parallel C, C++, or FORTRAN

program before you can run it. The commands shown in Table 11 support programs

that use the threaded LAPI library. These commands also link in the POE partition

manager and AIX communication subsystem (CSS) interfaces.

Table 11 shows what commands to enter to compile a LAPI program on a system

that is running PE.

 Table 11. Compiling LAPI programs on a system that is running PE

To compile a C program mpcc_r program.c -o program

To compile a C++ program mpCC_r program.C -o program

To compile a FORTRAN program mpxlf_r program.f -o program

See Chapter 16, “Using LAPI on a standalone system,” on page 115 for information

about compiling LAPI programs on a system that is not running PE.

If you compiled your program using one of the commands shown in Table 11, the

CSS libraries are dynamically linked with the executable when you run your

program. Subroutines in these libraries enable POE’s home node (the node from

which the parallel program is invoked) to communicate with the parallel tasks, and

tasks with each other.

© Copyright IBM Corp. 2003, 2005 71

|

72 IBM RSCT for AIX 5L: LAPI Programming Guide

Part 3. Advanced LAPI tasks

Chapter 11. Advanced programming 75

The enhanced header handler interface 75

Inline completion handlers . 77

LAPI performance considerations 78

Use of handlers . 78

Running in interrupt mode . 78

Running in UDP/IP mode . 78

User header data . 79

Send-side copy of small messages 79

Receive-side optimization for single-packet messages 79

Tunable environment variables 80

32-bit and 64-bit interoperability 81

The lapi_long_t datatype . 81

The LAPI_Address_init64 subroutine 81

The LAPI_Xfer interface . 81

Chapter 12. Lock sharing . 83

Scenarios without lock sharing 83

Scenarios with lock sharing . 87

Correctness of lock sharing . 91

Implications and restrictions . 93

Initialization and termination 93

Other LAPI calls . 94

Callbacks . 94

Long critical sections . 94

Lock preemption . 94

Receive/timer interrupts . 94

Performance of multi-threaded programs 95

Compatibility . 95

A sample lock sharing program 95

Chapter 13. Bulk transfer of messages 99

Chapter 14. Striping, failover, and recovery 103

Using failover and recovery . 103

Monitoring adapter status 103

Network Availability Matrix (NAM) overview 103

RSCT peer domains and group services 104

Requesting the use of multiple adapters 104

Using POE environment variables 104

Using LoadLeveler JCF keywords 106

Failover and recovery restrictions 106

Data striping . 106

Communication and memory considerations 108

IP communication . 108

US communication . 109

Chapter 15. Threaded programming 111

General guidelines . 111

Using LAPI_Address_init . 111

Making global fence calls . 112

Making ″wait on counter″ calls 112

Synchronizing threads across tasks 112

© Copyright IBM Corp. 2003, 2005 73

|

||
||

||
||
||
||
||

Using handlers . 112

LAPI threads . 113

Chapter 16. Using LAPI on a standalone system 115

Standalone setup . 115

Standalone initialization . 117

Using UDP/IP mode . 117

Using US mode . 117

Compiling LAPI programs on a standalone system 118

74 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 11. Advanced programming

The enhanced header handler interface

In PSSP LAPI, the header handler was originally implemented as follows:

typedef void *(hdr_hndlr_t)(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 ulong *msg_len, compl_hndlr_t **compl_h, void **uinfo);

LAPI passes the LAPI context, user header address, user header length, and

message length in to a header handler. From the header handler, you can pass

back to LAPI a data buffer address, a completion handler, and any user-defined

information for the completion handler.

In order to allow more information exchange between LAPI and the user program,

the msg_len parameter type has been changed from ulong * to lapi_return_info_t

*, which is a pointer to the following structure:

typedef struct {

 ulong msg_len;

 int MAGIC;

 lapi_ret_flags_t ret_flags;

 lapi_ctl_flags_t ctl_flags;

 lapi_dg_handle_t dgsp_handle;

 ulong bytes;

 int src;

 void *udata_one_pkt_ptr;

} lapi_return_info_t;

Note: This applies to new or modified LAPI programs only.

With this enhanced interface, LAPI has the following new capabilities:

v running the completion handler inline as opposed to in a separate thread, which

significantly improves performance (see “Inline completion handlers” on page 77)

v options for the user to drop the message instead of delivering it (described in this

section)

v transferring data in the layout described by data gather-scatter programs

(DGSPs) (see “Using data gather/scatter programs (DGSPs)” on page 43)

v optimization for receiving one-packet messages (see “Receive-side optimization

for single-packet messages” on page 79)

This extension does not require any change in existing LAPI programs that were

coded and compiled with the original header handler interface. To these programs,

the header handler interface remains the same because 1) msg_len is the first field

in the lapi_return_info_t structure and 2) all other fields are set to default values

by LAPI before calling a header handler, so LAPI behaves exactly the same as it

does without the extension if none of the fields is changed by the header handler.

The prototype of the header handler remains the same in LAPI’s header files (as it

is shown above), but you optionally use the following extended interface to define

header handlers:

void *header_handler(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 lapi_return_info *msg_len, compl_hndlr_t **compl_h, void **uinfo);

LAPI allocates the lapi_return_info_t structure, initializes it with appropriate values,

and passes a pointer to the structure into the header handler. You can then alter the

fields of this structure as needed to convey specific information back to LAPI.

© Copyright IBM Corp. 2003, 2005 75

The lapi_return_info_t structure includes the following fields:

Field (input or output) Description

msg_len (IN) Specifies the length of the incoming message (for

compatibility with the original header handler

interface).

MAGIC (IN) Indicates the integrity of the structure. The user

must not change this field.

ret_flags (OUT) Tells LAPI how to run the completion handler (if

any).

ctl_flags (OUT) Tells LAPI to deliver, ″bury″, or drop the incoming

message.

dgsp_handle (OUT) Tells LAPI to deliver the message according to the

specified DGSP. If this field is NULL (the default),

LAPI delivers the message to the contiguous buffer

returned by the header handler.

bytes (OUT) Tells LAPI the number of bytes to deliver when a

DGSP is used. This value can be less than the

message length, but should not be greater.

src (IN) Specifies the source task ID of the message.

udata_one_pkt_ptr (IN) Specifies the pointer to the incoming data if this is a

one-packet message. Otherwise, the value is set to

NULL.

You can set ret_flags to the following values to instruct LAPI how to call the

completion handler for the incoming message:

LAPI_NORMAL Instructs LAPI to run the completion handler in the

completion handler thread.

LAPI_LOCAL_STATE Instructs LAPI to run the completion handler in the

same thread that is receiving the message. (You

guarantee that the completion handler does not

make any LAPI calls.)

LAPI_SEND_REPLY Instructs LAPI to run the completion handler in the

same thread that is receiving the message. (You

want to send a reply to the message by calling

LAPI.)

In addition, setting ctl_flags tells LAPI how to handle the incoming message besides

delivering it:

LAPI_DELIVER_MSG delivers the message as normal (the default).

LAPI_BURY_MSG does not copy data for the message. (From the

perspective of the origin side, there is no difference

between this setting and LAPI_DELIVER_MSG.)

LAPI_DROP_PKT ignores the message as if it never arrives. The

dropped packet will be retransmitted.

 Warning: Every time a packet is dropped, it will

eventually be retransmitted. If the packet is not

accepted on some follow-up retransmit, the entire

communication link will stall. Furthermore, the

76 IBM RSCT for AIX 5L: LAPI Programming Guide

|

packet acceptance cannot depend on the arrival of

other messages, because these messages may be

stalled by the dropped packet.

Note: You cannot make LAPI calls from within the header handler. For contiguous

data, you can copy the data to the buffer you specified. For non-contiguous data,

you must pass the DGSP handle and a buffer address to LAPI. LAPI will unpack

the data to the specified buffer address.

Inline completion handlers

You can prioritize the completion of certain messages by requesting that your

completion handler be run inline. LAPI runs the completion handler inline (if

possible) if you set the ret_flags field in the lapi_return_info_t structure to

LAPI_SEND_REPLY or LAPI_LOCAL_STATE. This flag is returned to LAPI as a

reference parameter in the header handler you provided.

If you request that your completion handler be run inline, LAPI attempts to acquire

the necessary send token before completion handler execution is attempted. If you

specified LAPI_SEND_REPLY, a check is made for send tokens. Only in the case

of LAPI_SEND_REPLY is it necessary to check for send tokens, because you must

not call a LAPI routine in the completion handler in the case of

LAPI_LOCAL_STATE.

If LAPI is successful in getting its internal send token without polling for a token to

free up, or if you specified LAPI_LOCAL_STATE, the completion handler is run

inline. Otherwise, LAPI enqueues the completion handler in the separate completion

handler thread. See Figure 9:

 See “LAPI_Amsend” on page 136 for more information and an example.

I/O operations and blocking calls, including blocking LAPI calls, should not be

performed within an inline completion handler. Inline completion handlers should be

short, because no progress can be made while the main thread is executing the

handler. You must use caution with inline completion handlers so that LAPI’s

internal queues do not fill up while waiting for the handler to complete. Note that

LAPI places no restrictions on completion handlers that are run ″normally″ (that is,

by the completion handler thread).

yes

no

Message
completes

Run
completion

handler
inline

Enqueue
completion

handler

Is
LAPI_SEND_REPLY

or
LAPI_LOCAL_STATE

set?

Figure 9. Inline completion handler flow

Chapter 11. Advanced programming 77

|
|
|

LAPI performance considerations

LAPI provides a one-sided programming model with a pseudo shared-memory view

of multi-task operations on distributed servers. For this reason, it is expected that

users will find the best performance when LAPI is used with interrupts turned on

(the default value). Indeed, LAPI message-passing calls communicate with a remote

task without the need for that task’s active participation in the communication. The

use of interrupts frees both the origin and target-side tasks from the need to poll for

buffer availability and message completion, respectively.

Use of handlers

There are a few points in LAPI’s message transfer sequence in which user

notification can occur. In most instances, LAPI provides notification through the

incrementing of a counter or the invocation of a user-supplied handler. LAPI’s

one-sided model tends to perform better through the use of handlers for notification,

because they involve the actual execution of user code without any explicit action

on the part of the task in question. The use of counters requires the task to poll on

the counter value. This could needlessly consume CPU cycles, depending on what

else the application has available for the CPU to work on and how counter checking

is performed.

One counter-example to the philosophy that the use of handlers provides better

performance is as follows. When running in a fully-loaded configuration (n tasks on

n CPUs), LAPI may perform better in polling mode (interrupts off). One explanation

for this anomaly has to do with the scheduling of the thread that handles interrupts.

Running in interrupt mode

LAPI runs in interrupt mode by default. Interrupts cause thread context switching,

which can adversely affect performance. For optimal performance, the user program

should turn off interrupt mode when entering a polling section and turn it on again

when exiting the polling section. To turn interrupt mode off and on, call LAPI_Senv

with the INTERRUPT_SET attribute. See “LAPI_Senv” on page 196 for more

information. Whenever the user program transfers control to LAPI by calling a LAPI

function, LAPI will drive communication traffic, so interrupts are not necessary.

Interrupts will only introduce the overhead of thread context switching if LAPI is

already polling.

For jobs running in interrupt mode, performance gains may be realized by setting

environment variables AIX_THREAD_SCOPE=S and RT_GRQ=ON. There is also

evidence to suggest that the performance of n-1 tasks on n CPUs is considerably

better than that of a fully-loaded system.

Running in UDP/IP mode

When LAPI is running over UDP/IP, it requires a certain amount of ″send space″ to

buffer packets to transmit and a certain amount of ″receive space″ to buffer packets

to receive. You can change the amount of send space by modifying the

udp_sendspace attribute of the no command. You can change the amount of

receive space by modifying the udp_recvspace attribute of the no command. Send

space and receive space are upper-bounded by the sb_max attribute of the no

command. When there is not enough receive space to hold incoming packets,

packets will be dropped, causing performance degradation. Therefore, the key

tuning factor is to have a sufficiently large sb_max value. This value depends on

the total number of tasks and the communication pattern in the job. In general, the

value of sb_max should be equal to the maximum number of tasks that

78 IBM RSCT for AIX 5L: LAPI Programming Guide

simultaneously communicate with one task multiplied by the value of the

MP_UDP_PACKET_SIZE environment variable. For more information about

MP_UDP_PACKET_SIZE, see “Variables for performance tuning” on page 270. For

more information about no, see AIX 5L Version 5.2 Commands Reference or AIX

5L Version 5.3 Commands Reference.

User header data

When you use the user header facility for LAPI message-passing calls, make sure

the user header length is a multiple of 4 (that is, an integral number of words). Due

to the layout of data within the lower-level first-in, first-out structures (FIFOs), you

will see noticeable performance gains if header lengths are an integral number of

doublewords.

Send-side copy of small messages

Because LAPI is a reliable protocol, it must handle retransmission if packets are

dropped by the lower communication layers. To do this, LAPI must maintain user

data uncorrupted until it receives acknowledgement that all packets have arrived.

Since LAPI calls are non-blocking, return from a LAPI call does not mean that the

send-side data buffer can be modified by the sending task.

LAPI provides the origin counter and send completion handler for this notification.

For small messages however, LAPI will make a local copy of the message so that

the origin buffer is reusable immediately upon return by the sending task. When

sending such messages, the user can assume that the send-side data buffer is

available for modification immediately upon return of the LAPI call. The maximum

size for this local copy can be set using the MP_REXMIT_BUF_SIZE environment

variable. The default is to perform the copy for messages of size 128 bytes or less,

counting both message data and any user header.

Receive-side optimization for single-packet messages

For single-packet messages, you can optimize the copying of data out of the

network FIFO on the receive side. LAPI provides a mechanism with which you can

copy the data directly from the receive FIFO. For single packets, LAPI passes the

data address to your header handler using the msg_len parameter of the

lapi_return_info_t mechanism. You can then access the data directly in the receive

FIFO. If you choose to copy data directly from the FIFO, it can inform LAPI that the

message does not need to be delivered by returning NULL from the header handler

without changing lapi_return_info_t. Recall that the header handler returns the

base address of the target data buffer. A NULL value indicates to LAPI that no data

is to be copied. An alternative way to indicate to LAPI to not copy the message data

is to set the ctl_flag field in lapi_return_info_t to LAPI_BURY_MSG. You must

contain the data from the receive FIFO within the header handler when using this

optimization. Upon header handler return, LAPI informs the communication

subsystem that the receive FIFO slot is available for modification.

Here is a sample header handler that uses this method for fast retrieval of a

single-packet message:

void *header_handler(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 ulong *msg_len, compl_hndlr_t **compl_h, void **uinfo);

 lapi_return_info_t *ret_info_ptr; /* struct pointer */

 void *base_addr; /* base address to pull from, could also be */

 /* a pointer to a user-defined datatype */

 long msg_len; /* first field of struct is the msg length */

 /* grab struct */

Chapter 11. Advanced programming 79

ret_info_ptr = (lapi_return_info_t *) ret_info;

 base_addr = (void *) (ret_info_ptr->udata_one_pkt_ptr);

 msg_len = ret_info_ptr->msg_len;

 /* process data at base_addr */

 /* inform LAPI not to copy data */

 return NULL;

}

Tunable environment variables

The following environment variables are considered user-tunable for performance:

MP_ACK_THRESH Sets the number of packets that are received

before LAPI returns a batch of acknowledgments to

the sending task. If you do not set this variable,

LAPI sets the default value according to the type of

communication adapter that is being used.

 Note: If you decide to set this variable, proceed with

caution.

 The value must be in the range

1 <= MP_ACK_THRESH <= 31. A value that is too

small will result in high-acknowledgment traffic

generated by the job consisting of a large number

of small packets. A value that is too large may

impede progress on the sending side and slow

down the entire job, because send-side flow control

will prevent the transmission of additional packets

until packets are acknowledged.

MP_BULK_MIN_MSG_SIZE Changes the minimum message size for which

LAPI will attempt to make bulk transfers. This

environment variable is a hint that may or may not

be honored by the communication library.

 See Chapter 13, “Bulk transfer of messages,” on

page 99 for more information.

MP_POLLING_INTERVAL Controls the interval for LAPI timer pops (in

microseconds). Timer pops cause LAPI to go

through its acknowledgment and retransmit

processing logic. The default is 400000 (400

milliseconds).

MP_RETRANSMIT_INTERVAL

Controls how often the communication subsystem

library checks to see if it should retransmit packets

that have not been acknowledged. The value

specified is the number of polling loops between

checks. The default is 1000000.

MP_REXMIT_BUF_CNT Specifies the number of buffers that LAPI must

allocate. The size of each buffer is defined by

MP_REXMIT_BUF_SIZE. This count indicates the

number of in-flight messages smaller than

MP_REXMIT_BUF_SIZE that LAPI can store in its

local buffers in order to free up the user’s message

buffers more quickly. The default is 128.

80 IBM RSCT for AIX 5L: LAPI Programming Guide

MP_REXMIT_BUF_SIZE Specifies the maximum message size, in bytes, that

LAPI will store in its local buffers in order to more

quickly free up the user buffer containing message

data. This size indicates the size of the local buffers

LAPI will allocate to store such messages, and will

impact memory usage, while potentially improving

performance. LAPI will use the buffer to store the

user header and the user data. The default is

16384.

MP_UDP_PACKET_SIZE Controls the size of LAPI packets for UDP data

transfer.

 For optimum performance, this variable must be set

to the size of the maximum transfer unit (MTU) of

IP that is in use on the system. Setting

MP_UDP_PACKET_SIZE to a value that is larger

than the IP MTU size will result in potential

performance degradation due to packetization by

the IP layer for messages larger than

MP_UDP_PACKET_SIZE. Setting it to a value that

is smaller than the IP MTU size will result in

unnecessary packetization overhead in the LAPI

layer.

See “Variables for performance tuning” on page 270 for more information.

32-bit and 64-bit interoperability

The lapi_long_t datatype

The lapi_long_t datatype is used by various LAPI functions to ensure 32-bit/64-bit

interoperability.

The LAPI_Address_init64 subroutine

The LAPI_Address_init64 subroutine provides a mechanism for a 64-bit task to

share addresses with 32-bit tasks. See “LAPI_Address_init64” on page 134 for

more information.

The LAPI_Xfer interface

The LAPI_Xfer interface serves as a wrapper function for LAPI data transfer

functions. Its remote address fields are expanded to be of type lapi_long_t, which

is long enough for a 64-bit address. This allows a 32-bit task to send data to 64-bit

addresses, which may be important in client/server programs. See “LAPI_Xfer” on

page 219 for more information.

Chapter 11. Advanced programming 81

82 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 12. Lock sharing

Sharing locks with LAPI provides increased efficiency in protocol layering and user

programming. When you need to use a locking mechanism to protect your

programs’ data structures, you can use the same locking mechanism that is

employed by LAPI through its lock sharing interface. This way, your program is

more tightly coupled with LAPI in terms of locking. When compared to the use of a

separate lock, the use of a shared lock in your program may result in improved

latency and throughput.

This optional LAPI function is used mainly to improve performance, especially

latency. You can share one lock between LAPI and your program. If you decide not

to use a shared lock, your program will proceed as if this function does not exist. If

you want to use a shared lock, you need to understand what LAPI does and what

you need to do.

LAPI uses locks to protect its internal data structures. Typically, LAPI API calls

involve acquisition and release of the LAPI lock. Multi-threaded user programs also

often use locks to protect data structures of the user program. It is recommended

that such locks are released before making a LAPI API call, because any

(unrelated) LAPI message may be received or completed before the API call

completes. Such a reception or completion can result in the invocation of the

user-provided LAPI handler functions that can access user structures and therefore,

will need the user lock to be free for acquisition from within the user-provided

handlers.

Having separate locks to protect user structures and LAPI’s internal data structures

can result in significant inefficiencies due to locks needing to be released before

LAPI calls, LAPI locks being acquired and released within the API call, and locks

potentially being acquired and released within the body of user handler functions

that are executed as a result of the API invocation. Such overhead can be

significantly reduced by calling the LAPI_GET THREAD_FUNC utility, which returns

function pointers to various locking and signaling functions associated with LAPI’s

internal lock, and thereafter use LAPI’s internal lock with these functions to protect

data structures in your program. Thus, your program can share a lock with LAPI,

using the lock to protect your data structures, while LAPI uses the same lock to

protect its internal data structures. When you invoke LAPI API calls while holding

the shared lock, LAPI will check to determine whether the lock is already held by

the caller, and if so, continue with LAPI functions without acquiring the lock again.

Similarly, when user handler functions are called, if they use the locking functions

provided by LAPI_GET THREAD_FUNC, LAPI can ensure that the lock is already

held so the user doesn’t need to get the lock again. Such lock sharing can result in

significant performance gains.

For more information, see “LAPI_GET_THREAD_FUNC” on page 208.

Scenarios without lock sharing

To understand lock sharing better, let’s consider the case without lock sharing, in

which the user program uses its own lock to protect data structures. Figure 10 on

page 84 and Figure 11 on page 85 illustrate the typical calling sequences.

© Copyright IBM Corp. 2003, 2005 83

User program

LAPI

Acquire
user lock

User
preprocessing

Release
user lock

Acquire
LAPI lock

LAPI
processing

Release
LAPI lock

Release
user lock

User
post-processing

Acquire
user lock

Figure 10. A program initiates a call to LAPI, without lock sharing

84 IBM RSCT for AIX 5L: LAPI Programming Guide

In Figure 10 on page 84, the user program initiates a call to LAPI during some

processing. The user program releases its lock before calling LAPI and reacquires

the lock after LAPI returns. In Figure 11, LAPI initiates a callback (a header handler

callback, for example), into the user program, without releasing LAPI’s lock. To

embed the acquisition of one lock inside another will not cause any deadlock

problems as long as the locking hierarchy is strictly maintained. In these examples,

a hierarchy is forced, so the LAPI lock will never be acquired inside the user lock.

The user lock must always be released before LAPI is called.

This book refers to a user-initiated call sequence as a ″down-call″ and a

LAPI-initiated call sequence as an ″up-call″. Up-calls and down-calls can be

embedded inside each other, as illustrated by Figure 12 on page 86 and Figure 13

on page 87.

User program

LAPI

Acquire
user lock

LAPI callback
preprocessing

Acquire
LAPI lock

User callback
processing

Release
LAPI lock

Release
user lock

LAPI callback
post-processing

Figure 11. LAPI initiates a callback, without lock sharing

Chapter 12. Lock sharing 85

User program

LAPI

Acquire
user lock

Acquire
user lock

Release
user lock

User
preprocessing

Release
user lock

Acquire
LAPI lock

LAPI
preprocessing

LAPI
post-processing

Release
LAPI lock

Release
user lock

User
post-processing

Acquire
user lock

User callback
processing

Figure 12. A program initiates a call to LAPI, with embedded up- and down- calls

86 IBM RSCT for AIX 5L: LAPI Programming Guide

Without lock sharing, there are many lock acquisition and release pairs involved:

three pairs in Figure 10 on page 84, two pairs in Figure 11 on page 85, four pairs in

Figure 12 on page 86, and three pairs in Figure 13. When the cost of locking turns

out to be critical for latency-sensitive applications, it would be much more desirable

to reduce locking operations using the lock sharing function provided by LAPI.

Scenarios with lock sharing

Lock sharing makes the user program more tightly coupled with LAPI because one

shared lock is now protecting both the user data structures and LAPI data

structures. When the user program calls LAPI, it is optional to release the shared

lock and to reacquire the lock after LAPI returns, as depicted in the down-call in

Figure 14 on page 88. However, for optimal performance, it is better not to release

the shared lock if the user has already acquired it. Because LAPI does not make

any assumptions about the lock ownership, it will check the ownership upon entry

into any of its API calls. If a lock is not held, LAPI will acquire the lock and release

it after processing. Checking for lock ownership is much less expensive than getting

a lock, so the locking cost is essentially one pair of lock acquisition and release, as

shown in Figure 14 on page 88. For an up-call, LAPI guarantees that the shared

lock is held before the user callback is invoked so there is no need to check lock

ownership in the user callback. Similarly, the locking cost in Figure 15 on page 89 is

also only one lock acquisition and release pair.

User program

LAPI

Acquire
user lock

Acquire
user lock

Release
user lock

Acquire
LAPI lock

LAPI callback
preprocessing

Release
LAPI lock

User callback
preprocessing

User callback
preprocessing

Release
user lock

LAPI callback
post-processing

LAPI
processing

Figure 13. LAPI initiates a callback, with embedded up- and down- calls

Chapter 12. Lock sharing 87

User program

LAPI

Acquire
shared lock

User
preprocessing

Release
shared lock

Recursively
acquire

shared lock

LAPI
processing

Release
shared lock

User
post-processing

Acquire
shared lock

optional

Recursively
release

shared lock

Figure 14. A program initiates a call to LAPI, with one lock acquisition and release pair

88 IBM RSCT for AIX 5L: LAPI Programming Guide

When up-calls and down-calls are embedded inside each other, the saving from

lock sharing becomes more prominent. As shown in Figure 16 on page 90 and

Figure 17 on page 91, only one lock acquisition and release pair is involved in both

cases, compared to four pairs and three pairs without lock sharing, as shown in

Figure 12 on page 86 and Figure 13 on page 87, respectively.

User program

LAPI

LAPI callback
preprocessing

Acquire
shared lock

User callback
processing

Release
shared lock

LAPI callback
post-processing

Figure 15. LAPI initiates a callback, with one lock acquisition and release pair

Chapter 12. Lock sharing 89

User program

LAPI

Acquire
shared lock

User
preprocessing

LAPI
preprocessing

LAPI
post-processing

Release
shared lock

User
post-processing

User callback
processing

Release
shared lock

Acquire
shared lock

optional

Recursively
acquire

shared lock

Recursively
release

shared lock

Figure 16. A program initiates a call to LAPI, with embedded up- and down- calls and one lock acquisition and release

pair

90 IBM RSCT for AIX 5L: LAPI Programming Guide

Correctness of lock sharing

When a lock is shared between LAPI and a user program, but they do not share

any data structures, the correctness of sharing needs to be addressed. Before

proceeding, let’s clarify the concepts of atomic operation and critical section. An

atomic operation is an operation whose execution steps on data structures must be

carried out without interruption from other operations on the same data structures.

As an example, when a stack is shared by multiple threads, putting an element onto

the stack and updating the stack top must be performed atomically to maintain the

integrity of the stack. A critical section is a sequence of atomic and non-atomic

operations protected by a lock.

If a critical section consists of multiple atomic operations in a sequence, it is correct

to break the sequence into multiple critical sections so that each atomic operation

lies entirely in one of the smaller critical sections. For example, there are two

correct ways that a thread can push two logically-independent elements onto the

stack:

method 1: method 2:

lock(stack) lock(stack)

push(stack, element1) push(stack, element1)

push(stack, element2) unlock(stack)

unlock(stack) lock(stack)

 push(stack, element2)

 unlock(stack)

User program

LAPI

LAPI callback
preprocessing

Release
shared lock

User callback
preprocessing

User callback
preprocessing

LAPI callback
post-processing

LAPI
processing

Acquire
shared lock

Figure 17. LAPI initiates a callback, with embedded up- and down- calls and one lock acquisition and release pair

Chapter 12. Lock sharing 91

The first method is more efficient, but it doesn’t mean that the two push operations

must be done together in one critical section. It is correct for the second method to

release the lock after the first push operation and reacquire the lock before the

second push operation. The same analogy can be applied to the meaning of critical

section under lock sharing. Even if there is one big critical section protected by the

shared lock (analogous to method 1) from the user’s view, it is possible that LAPI

breaks up the big critical section into multiple smaller ones by releasing and

reacquiring the shared lock. Therefore, one requirement is placed upon the user to

guarantee the correctness of lock sharing: even if you create a big critical section

protected by the shared lock, you must still structure the program so that any of its

atomic operations complete before control is transferred to LAPI.

This requirement is useful because:

v LAPI can generate callbacks into your program. If there are any incomplete

atomic operations, you must be very careful not to break the atomicity of the

incomplete operations in the callbacks.

v It lets your program easily switch from using a shared lock to using a separate

lock because using a separate lock requires you to complete atomic operations

before the user lock is released and the control is transferred to LAPI.

v LAPI can safely release the shared lock to allow processing in a different thread

and callbacks into your program from that thread.

To meet this requirement, you would structure your program so that it functions

even if the shared lock is always released before calling LAPI and reacquired after

LAPI returns, as illustrated by Program B versus Program A in Figure 18 on page

93 below. Such a thinking process always assumes that LAPI would release the

shared lock and reacquire it, which is what LAPI could do to the shared lock.

92 IBM RSCT for AIX 5L: LAPI Programming Guide

Implications and restrictions

Initialization and termination

Your program must not hold a shared lock when calling LAPI_Init and LAPI_Term.

In the case of LAPI_Init, the lock is not available yet. In the case of LAPI_Term, it

is not on the performance path and it is better for LAPI to have the lock released

before the call.

a. b.

c.

Program A Program B

user_function() user_function()
{ {

lock(shared_lock) lock(shared_lock)
processing 1 processing 1
LAPI_Put unlock(shared_lock)
processing 2 LAPI_Put
unlock(shared_lock) lock(shared_lock)

} processing 2
send_completion_callback() unlock(shared_lock)
{ }

processing 3 send_completion_callback()
} {

processing 3
}

User LAPI

processing 1

LAPI_Put
send processing

send completion callback
processing 3

LAPI_Put returns

processing 2

Figure 18. Critical sections under lock sharing. (a) Program with a large critical section, (b) Program with multiple

smaller critical sections, (c) Execution flow of the two programs

Chapter 12. Lock sharing 93

Other LAPI calls

For all LAPI calls other than LAPI_Init and LAPI_Term, LAPI detects whether a

shared lock is already held by the running thread. If it is held, LAPI does not

acquire the lock again and keeps the lock upon return; otherwise, LAPI acquires the

lock and releases it upon return. You can decide whether your program will acquire

the shared lock before calling LAPI. For better performance, your program should

keep the already-acquired lock before calling LAPI.

Callbacks

The shared lock is guaranteed to be held by the running thread when the following

user callbacks are invoked. You should not try to acquire the shared lock and you

must not release the lock in these callbacks:

v Send completion handler: invoked when the user header and data buffers for

sending a message can be reused.

v Header handler: invoked when the first user header of a message arrives at the

receive side.

v Inline completion handler: invoked when a message is completely received, upon

the user’s request specified by the header handler.

All of the callbacks can be on the latency path, so avoiding extra locking improves

latency.

The out-of-line completion handler is invoked from LAPI’s completion handler

thread. It is not on the latency path and the thread will not be holding the shared

lock upon the entry of the handler. If your program has any critical sections to

process, the shared lock must be acquired first. Calls to LAPI can be made with the

lock held.

The error handler will always be invoked without the thread holding the shared lock.

Your program should terminate the job upon error, possibly without returning control

to LAPI at all.

Long critical sections

Use a shared lock to protect critical sections in communication. You should not use

it for long computation, because this could slow down progress in communication. If

you want to hold the lock for a long period, your program must poll LAPI by calling

LAPI_Probe or LAPI_Msgpoll in a timely manner so that the communication layer

can make progress. Such timely polling is required not only for communication but

also for the out-of-line completion handler, checkpoint handler, and error handler to

acquire the lock.

Lock preemption

In order to support out-of-line completion, checkpoint/restart, and gang scheduling,

in which the handlers must acquire the shared lock first, LAPI will release the lock

for the handlers even if it is acquired by your program. The release will only be

done when your program calls LAPI. It will never happen that one thread releases a

lock acquired by another thread. Because of this, any of your program’s long critical

sections must poll LAPI in a timely manner in order to give the handlers a chance

to run.

Receive/timer interrupts

Suppose your program initializes using the following sequence:

94 IBM RSCT for AIX 5L: LAPI Programming Guide

call LAPI_Init

call LAPI_Util to retrieve the shared lock

lock(shared lock)

initialize global data structure

unlock(shared lock)

A receive/timer interrupt could start before the global data structure is initialized.

Your program must not operate on uninitialized data. There are two ways to be sure

of this:

1. Check to see if the data structure has been initialized in callbacks from LAPI.

2. Use a different lock to protect the initialization of data and call LAPI_Init only

after the global data structure is initialized.

Performance of multi-threaded programs

Using one shared lock makes locking granularity coarse and there may be more

contentions on the lock between threads. In case there is performance degradation,

you can change your program’s locking structure to reduce situations in which one

thread is blocking another thread. There are two possible ways to do this:

1. A polling thread that is holding the shared lock yields the lock to other threads.

2. Other threads hand off their work to the polling thread.

Compatibility

Existing LAPI programs that don’t exploit lock sharing will run without any change.

To test for the presence of the lock sharing function, you can call LAPI_Util with

LAPI_GET_THREAD_FUNC and check for a return code. If any error is returned,

lock sharing must not be used.

A sample lock sharing program

A sample lock sharing program follows. This program measures LAPI latency with

and without lock sharing. It illustrates the following aspects of lock sharing:

v how to detect whether lock sharing is available

v how to retrieve functions for lock sharing

v how to use the basic lock and unlock functions on the shared lock

#include <assert.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <lapi.h>

#define RC(statement) \

{ \

 int rc = statement; \

 if (rc != 0) { \

 printf(#statement " rc = %d, line %d\n", rc, __LINE__); \

 exit(-1); \

 } \

}

lapi_handle_t hndl;

int my_ID;

/* Function to get current time in microseconds */

double

microseconds()

Chapter 12. Lock sharing 95

{

 struct timeval time_v;

 gettimeofday (&time_v, NULL);

 return ((double)time_v.tv_sec * uS_PER_SECOND + time_v.tv_usec);

}

/* A dummy header handler to consume the incoming message */

void *

am_hndlr(lapi_handle_t *hndl, int *u_hdr, uint *hdr_len,

 lapi_return_info_t * ret_info,

 compl_hndlr_t **chndlr, void **saved_info)

{

 *chndlr = NULL;

 *saved_info = NULL;

 ret_info->ctl_flags = LAPI_BURY_MSG;

 return NULL;

}

/* Function to measure LAPI latency */

double

lapi_latency(int num_pongs, int share_lock)

{

 int rc, i;

 lapi_xfer_t xfer;

 lapi_msg_info_t msg_info;

 double t1, t2;

 lapi_thread_func_t tf;

 /* Retrieve function for lock sharing */

 if (share_lock) {

 tf.Util_type = LAPI_GET_THREAD_FUNC;

 rc = LAPI_Util(hndl, (lapi_util_t *)&tf);

 if (rc != LAPI_SUCCESS) {

 printf("Lock sharing is not supported by this library.\n");

 share_lock = 0;

 }

 }

 /* Clear structures */

 bzero(&msg_info, sizeof(msg_info));

 bzero(&xfer, sizeof(xfer));

 /* Setup command structure for transfer */

 xfer.Xfer_type=LAPI_AM_XFER;

 xfer.Am.hdr_hdl=1;

 xfer.Am.tgt=1^my_ID;

 xfer.Am.uhdr=NULL;

 xfer.Am.uhdr_len=0;

 xfer.Am.udata=NULL;

 xfer.Am.udata_len=0;

 xfer.Am.shdlr=NULL;

 xfer.Am.sinfo=NULL;

 xfer.Am.tgt_cntr=NULL;

 xfer.Am.org_cntr=NULL;

 xfer.Am.cmpl_cntr=NULL;

 /* Acquire shared lock */

 if (share_lock)

 tf.mutex_lock(hndl);

 RC(LAPI_Gfence(hndl));

 t1 = microseconds();

 /*

 * Ping-pong test for latency. Count 1 is used in LAPI_Msgpoll

 * to magnify the effect of lock sharing.

96 IBM RSCT for AIX 5L: LAPI Programming Guide

*/

 if (my_ID == 0) {

 for (i=0; i<num_pongs; i++) {

 /* send then receive */

 RC(LAPI_Xfer(hndl, &xfer));

 msg_info.status = 0;

 while (!(msg_info.status & LAPI_RECV_COMPLETE)) {

 RC(LAPI_Msgpoll(hndl, 1, &msg_info));

 }

 }

 } else {

 for (i=0; i<num_pongs; i++) {

 /* Receive then send */

 msg_info.status = 0;

 while (!(msg_info.status & LAPI_RECV_COMPLETE)) {

 RC(LAPI_Msgpoll(hndl, 1, &msg_info));

 }

 RC(LAPI_Xfer(hndl, &xfer));

 }

 }

 t2 = microseconds();

 RC(LAPI_Gfence(hndl));

 /* Release shared lock */

 if (share_lock)

 tf.mutex_unlock(hndl);

 /* Calculate latency */

 return (t2 - t1)/num_pongs/2;

}

/*

 * This testcase is to be invoked with 2 optional arguments.

 * 1st arg: number of ping-pongs to measure latency

 * 2nd arg: number of times to measure latency repeatedly.

 */

main(int argc, char *argv[])

{

 int share_lock = 1;

 int num_pongs = 10000;

 int times = 10, i;

 lapi_info_t lapi_info;

 double l0, l1;

 /* Read arguments */

 if (argc > 1)

 num_pongs = atoi(argv[1]);

 if (argc > 2)

 times = atoi(argv[2]);

 /*

 * Improvement of lock sharing is more significant

 * when checkpoint is enabled

 */

 putenv("CHECKPOINT=yes");

 /* Initialize LAPI */

 bzero(&lapi_info, sizeof(lapi_info));

 lapi_info.lib_vers = LAST_LIB;

 RC(LAPI_Init(&hndl, &lapi_info));

 /* Query/set LAPI settings */

 RC(LAPI_Qenv(hndl, TASK_ID, &my_ID));

 RC(LAPI_Senv(hndl, INTERRUPT_SET, 0));

 RC(LAPI_Senv(hndl, ERROR_CHK, 0));

Chapter 12. Lock sharing 97

/* Set address index for header handler */

 RC(LAPI_Addr_set(hndl, (void*)&am_hndlr, 1));

 /* Performance latency tests */

 for (i=0; i<times; i++) {

 l0 = lapi_latency(num_pongs, 0);

 l1 = lapi_latency(num_pongs, 1);

 if (my_ID == 0)

 printf("Latency without lock sharing: %.2f us, with: %.2f us\n",

 l0, l1);

 }

 /* Terminate LAPI */

 RC(LAPI_Term(hndl));

}

Use the following command to compile your program:

mpcc_r program.c -o program

where program is the name of your lock sharing program.

The program should be run with two tasks. The output will look like this:

Latency without lock sharing: 13.75 us, with: 12.89 us

98 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 13. Bulk transfer of messages

For users of the HPS or the pSeries HPS, RSCT LAPI supports bulk message

transfer using the remote direct memory access (RDMA) protocol. Bulk transfer is

especially useful for applications that transfer relatively large amounts of data —

more than 150 kilobytes (KB) — in a single call, or that overlap computation and

communication, because the CPU is no longer required to copy data.

By default, bulk transfer is disabled in RSCT LAPI. To enable bulk transfer for

interactive POE jobs, set the environment variable MP_USE_BULK_XFER=yes.

This transparently causes portions of the user’s virtual address space to be pinned

and mapped to a communication adapter. LAPI then uses RDMA to move data from

the send buffer to the receive buffer. Note that not all communication adapters

support RDMA.

To change the minimum message size for which LAPI will attempt to make bulk

transfers, modify the setting of the MP_BULK_MIN_MSG_SIZE environment

variable.

For more information about MP_USE_BULK_XFER and

MP_BULK_MIN_MSG_SIZE, see “Variables for data transfer” on page 269.

These environment variables are hints that may or may not be honored by the

communication library. For the communication library to honor these variables, the

system administrator must:

1. Enable the RDMA protocol in the Switch Network Interface (SNI) device driver.

To do this, set the rdma_xlat_limit attribute of the SNI devices to an

appropriate value. For more information, see the appropriate SNI documentation

for the specific server type, for example: Switch Network Interface for eServer

pSeries High Performance Switch: Guide and Reference.

2. Follow the instructions in the ″Using bulk data transfer″ section of LoadLeveler

for AIX 5L and Linux: Using and Administering.

You can use the LAPI_Qenv subroutine to find out if bulk transfer is enabled and to

query the minimum message size for bulk transfer. See “LAPI_Qenv” on page 184

for more information.

The maximum message size for bulk transfer is 32 megabytes (MB). Transparently

to the user, LAPI delivers messages that are larger than 32MB in 32MB chunks.

The performance of bulk message transfer may be enhanced by using technical

large pages. RDMA operations are considerably more efficient when large (16 MB)

pages are used rather than small (4 KB) pages, especially for large transfers.

Normal LAPI message passing involves packetization of messages for transfer in

sizes that can be handled by the lower-level communication subsystem. LAPI also

allows for bulk transfer of messages using the adapter’s direct memory access

(DMA) capability. To illustrate the use of bulk transfer, let’s start with an examination

of the packet-mode approach to message transfer. Figure 19 on page 100 illustrates

the flow of LAPI packet-level message passing. Each vertical arrow represents a

data copy by LAPI through calls to the communication subsystem layer. There is

one send-side copy into a network FIFO from a user data buffer and one

receive-side copy out of a network FIFO into a user data buffer.

© Copyright IBM Corp. 2003, 2005 99

|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|

For larger messages, the AIX communication subsystem (CSS) supports a DMA

method on both sides of the communication, resulting on one less data copy on

each of the sending and receiving tasks. Figure 20 on page 101 illustrates the flow

of data for a LAPI bulk transfer. Using a rendezvous protocol, the origin and target

tasks establish DMA connections with the adapter firmware. The target task then

pulls the data across the switch. Using the DMA method, the switch adapter

transfers the data from the origin task’s address space directly into the target task’s

address space. If any step in the sequence fails, LAPI will use packet mode for

message delivery.

Network send
FIFO queue

Network receive
FIFO queue

buffer

Origin task

HPS
or

pSeries HPS

buffer

Target task

LAPI layer

Communication
subsystem
(CSS) layer

LAPI / CSS data transfer CSS / LAPI data transfer

Figure 19. LAPI packet data flow

100 IBM RSCT for AIX 5L: LAPI Programming Guide

buffer

Origin task

HPS
or

pSeries HPS

buffer

Target task

LAPI layer

Communication
subsystem
(CSS) layer

DMA to switch adapter DMA from switch adapter

Figure 20. LAPI bulk data flow

Chapter 13. Bulk transfer of messages 101

102 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 14. Striping, failover, and recovery

This chapter describes RSCT LAPI’s striping, failover, and recovery functions. On

systems with multiple HPS or pSeries HPS adapters per node, a job can request

the use of multiple LAPI instances for each of the job tasks in order to obtain higher

availability and performance in the presence of link/adapter failures. When these

multiple instances span multiple physical adapters, LAPI can improve availability of

communication when it is used in conjunction with the group services component of

RSCT. Using group services, LAPI can quickly determine when an adapter’s ability

to communicate has ceased, and can then ″fail over″ all communication to the

remaining instances where communication is still possible. Correspondingly, using

group services, LAPI is also able to determine when an adapter’s ability to

communicate has resumed, and can then resume communication using the

corresponding instances. During a job run, any failover and recovery operations are,

for the most part, transparent to the user.

In this book, adapters that have lost their ability to communicate (as detected by

group services), either due to an adapter failure or due to a failure in the network

path leading to the adapter, are referred to as ″down″ adapters. Adapters that still

have the ability to communicate are referred to as ″up″ adapters.

Using failover and recovery

LAPI’s failover and recovery function consists of two basic elements:

1. Monitoring and receiving notification about the communication status of HPS or

pSeries HPS adapters.

This element depends on the group services component of RSCT and a

component of LAPI called the Network Availability Matrix (NAM).

2. The use of multiple HPS or pSeries HPS adapters for redundancy, to enable

failover.

This element depends on LoadLeveler, with corresponding POE functions that

serve as a wrapper to convey requests to LoadLeveler.

Failover and recovery cannot be provided for a job if either of these elements is

absent.

Monitoring adapter status

Adapter status monitoring depends on NAM and group services.

Network Availability Matrix (NAM) overview

The Network Availability Matrix (NAM) is a pseudo-device component that is

packaged as a separate LAPI fileset (rsct.lapi.nam). To make use of LAPI’s failover

and recovery function, you must have the NAM pseudo-device ″Available″ on all of

the nodes that are running your job tasks. The pseudo-device nampd0 is

automatically created and configured in the boot process after the rsct.lapi.nam

fileset is installed. See Chapter 4, “Installing RSCT LAPI,” on page 25 for more

information.

On any particular node, the NAM pseudo-device serves as a repository for status

information about the HPS or pSeries HPS adapters that are within the same RSCT

peer domain as that node. The NAM serves as an interface through which the

communication status of adapters that are monitored by the group services

component can be easily conveyed to LAPI tasks. A change in the communication

status of an adapter may reflect that the adapter has gone ″down″ or has come

© Copyright IBM Corp. 2003, 2005 103

|

|
|

|

|

|
|

|

|

back ″up″. Every time the group services component detects a change in

communication status of any of the HPS or pSeries HPS adapters, it conveys the

new status of the changed adapters to the NAM pseudo-device on each of the

nodes within the corresponding RSCT peer domain. This, in turn, triggers a

notification to LAPI tasks running on those nodes that use multiple instances. On

receiving this notification, the LAPI protocol for these tasks can fail over

communication from ″down″ adapters to other ″up″ adapters. The LAPI protocol can

also recover the use of adapters that have again become ″up″ to resume sharing

the communication load.

RSCT peer domains and group services

As noted in “Network Availability Matrix (NAM) overview” on page 103, the group

services component only updates adapter status in the NAMs of the nodes within a

given peer domain. It follows that for LAPI failover and recovery to be possible for a

given job, job tasks must all run on nodes that belong to the same peer domain.

Preferably, all of the nodes in the system must be configured as part of a single

RSCT peer domain. For information about setting up an RSCT peer domain, see

RSCT: Administration Guide.

If, for some reason, multiple peer domains are required, you must make sure that

each peer domain forms a separate LoadLeveler resource pool so that jobs

requiring failover and recovery do not span multiple peer domains. The updating of

the NAM pseudo-device by group services is transparent to the user.

Requesting the use of multiple adapters

You can use POE environment variables or LoadLeveler job control file (JCF)

keywords to request the use of multiple adapters.

Using POE environment variables

In order for there to be sufficient redundancy to handle at least one adapter failure,

each task of the job needs to be allocated communication instances across at least

two different HPS or pSeries HPS adapters. An instance is an entity that is required

for communication over an adapter device. In the user space (US) communication

mode, which is specified by setting MP_EUILIB=us, an instance corresponds to an

adapter window. On the other hand, in the IP communication mode, which is

specified by setting MP_EUILIB=ip, an instance corresponds to the IP address of a

given adapter to be used for communication.

Depending on the number of networks in the system and the number of adapters

each node has on each of the networks, you can request the allocation of multiple

instances for your job tasks by using a combination of the POE environment

variables MP_EUIDEVICE and MP_INSTANCES. The distribution of these

requested instances among the various HPS or pSeries HPS adapters on the

nodes is done by LoadLeveler. Depending on whether the job is using user space

or IP, and on the resources available on each of the adapters, LoadLeveler will try

to allocate these instances on different adapters.

To request the use of multiple instances on a system where all nodes have

adapters on each of the n networks in the system, you can set MP_EUIDEVICE to

the value sn_all. This setting translates to a request for the default number of

instances (1) from adapters on each of the networks in the system, and a request

for a total of n instances for each of the job tasks. You do not have to set the

MP_INSTANCES environment variable. If MP_EUIDEVICE is set to sn_all and you

do set the MP_INSTANCES variable to a value m (where m is a number from 1

through the value of the case-insensitive string max), this translates to a request of

m instances from each of the networks in the system for each job task. For user

104 IBM RSCT for AIX 5L: LAPI Programming Guide

|

|

|

space, this corresponds to a request for (m * n) different windows for each job task.

For IP, this corresponds to a request for the same number of HPS or pSeries HPS

IP devices.

You must take the following considerations into account while defining the number

of instances to use and the value specified for MP_EUIDEVICE:

v If m is greater than the number of adapters a node has on one of the networks,

multiple windows will be allocated from some of the adapters. For IP, the same

adapter device will be allocated multiple times.

v LoadLeveler translates the value max as a request to allocate the number of

instances (as specified by the max_protocol_instances variable) that are defined

for this job class in the LoadLeveler LoadL_admin file. See LoadLeveler for AIX

5L and Linux: Using and Administering for more information. If you request more

instances than the value of max_protocol_instances, LoadLeveler allocates a

number of instances that is equal to the value of max_protocol_instances. To

have your job use all adapters on the system across all the networks, you can

have the administrator set max_protocol_instances for your job class to the

number of adapters each node has on each network (assuming that each node

has the same number of adapters on each network), and then run your job with

MP_EUIDEVICE=sn_all and MP_INSTANCES=max.

v On a system where every node is connected to more than one common network,

setting MP_EUIDEVICE=sn_all is sufficient to allocate instances from distinct

adapters for all job tasks. You do not need to set MP_INSTANCES. This is

because an adapter is connected to exactly one network, this is a request for

instances from each network, and if the request is satisfied, at least two distinct

adapters have been allocated for each of the job tasks. In the case of user

space, if all windows on the adapters of one or more networks are all used up,

the job will not be scheduled until windows are available on adapters of each

network.

To request the use of multiple instances on a system where all nodes are

connected to a single HPS or pSeries HPS network, or where nodes are connected

to multiple networks, but you want your tasks to use adapters that are connected to

only one of those networks, you can set MP_EUIDEVICE=sn_single and

MP_INSTANCES=m, where m is a number from 1 through the value of the

(case-insensitive) string max. This translates to a request for m instances on one

network only; not, as in the previous case, on each of the n networks in the system.

With such a request, if MP_EUILIB=us, it is not guaranteed that LoadLeveler will

allocate the multiple windows from distinct adapters if window resources on some of

the adapters are all used up by previously-scheduled jobs. In this scenario,

LoadLeveler may allocate the multiple windows all from a single adapter and one or

more of the job tasks will be without a redundant adapter to fail over to in the case

of a communication problem. Thus, the only guaranteed way to get multiple

adapters allocated to the job to satisfy the basic requirements for LAPI’s failover

and recovery function, is to have the nodes in the system connect to multiple HPS

or pSeries HPS networks and setting MP_EUIDEVICE=sn_all.

POE will post an attention message stating that failover and recovery operations

may not be possible for the job if multiple instances are requested, but one or more

job tasks are allocated instances that are all from the same adapter. The interaction

among the values of MP_INSTANCES, MP_EUIDEVICE, and MP_EUILIB, in terms

of the total instances that are allocated to every task of the job, and whether use of

the failover and recovery function is possible as a result are shown in Table 12 on

page 106:

Chapter 14. Striping, failover, and recovery 105

|

|

|
|

Table 12. Failover and recovery operations

MP_EUIDEVICE=

Instances allocated per task with

MP_EUILIB=us

Instances allocated per task with

MP_EUILIB=ip

MP_INSTANCES is

not set

MP_INSTANCES=m MP_INSTANCES is

not set

MP_INSTANCES=m

sn_single 1

no failover

m

failover may not be

possible

1

no failover

m

failover is possible if

num_adapters per

network > 1

sn_all num_networks

failover is possible if

num_networks > 1

m * num_networks

failover is possible if

num_networks > 1

num_networks

failover is possible if

num_networks > 1

m * num_networks

failover is possible if

num_networks > 1

Using LoadLeveler JCF keywords

The use of the LoadLeveler job class attribute max_protocol_instances is described

in “Using POE environment variables” on page 104. For more information about this

attribute, and for the syntax to specify the request for multiple instances on a single

network or on all networks in the system using a LoadLeveler job control file (JCF),

see LoadLeveler for AIX 5L and Linux: Using and Administering.

Note: Although more than eight instances are allowed using a combination of

LoadLeveler’s max_protocol_instances setting and the MP_INSTANCES

environment variable, LAPI ignores all window allocations beyond the first

eight, because LAPI supports a maximum of eight adapters per operating

system instance and the best performance can be obtained with one window

on each of them. Using multiple windows on a given adapter provides no

performance advantage.

Failover and recovery restrictions

v When a job with a failed adapter is preempted, LoadLeveler may not be able to

continue with the job if it (LoadLeveler) cannot reload the switch table on the

failed adapter. Any adapter failure that causes switch tables to be unloaded will

not be recovered during the job run.

v In single-network scenarios, LoadLeveler attempts to allocate adapter windows

on separate adapters, but does not always succeed. Correspondingly, failover

and recovery are not always possible in single-network scenarios. The user will

get POE attention messages at job startup time when LoadLeveler fails to get

windows on at least two separate adapters.

v Failover and recovery are not supported for non-snX adapters or for standalone

(non-POE) LAPI.

Data striping

When running parallel jobs on processors with High Performance Switches or

pSeries High Performance Switches, it is possible to stripe data through multiple

adapter windows. This is supported for both IP and US protocols.

If the system has more than one switch network, the resource manager allocates

adapter windows from multiple adapters. A switch network is the circuit of adapters

that connect to the same HPS or pSeries HPS. One window is assigned to an

adapter, with one adapter each selected from a different switch network.

106 IBM RSCT for AIX 5L: LAPI Programming Guide

|

|
|
|
|

|

|

|
|
|

|
|
|
|

If the system has only one switch network, the adapter windows are most likely

allocated from different adapters, provided that there are sufficient windows

available on each adapter. If there are not enough windows available on one of the

adapters, the adapter windows may all be allocated from a single adapter.

LAPI manages communication among multiple adapter windows. Using resources

that LoadLeveler allocates, LAPI opens multiple user space windows for

communication. Every task of the job opens the same number of user space

windows, and a particular window on a task can only communicate with the

corresponding window on other tasks. These windows form a set of ″virtual

networks″, in which each ″virtual network″ consists of a window from each task that

can communicate with the corresponding windows from the other tasks. The

distribution of data among the various windows on a task is referred to as striping,

which has the potential to improve communication bandwidth performance for LAPI

clients.

To enable striping in user space mode, use environment variable settings that result

in the allocation of multiple instances. For a multi-network system, this can be done

by setting MP_EUIDEVICE to sn_all. On a single-network system with multiple

adapters per operating system image, this can be done by setting MP_EUIDEVICE

to sn_single and MP_INSTANCES to a value that is greater than 1. See

“Requesting the use of multiple adapters” on page 104 for more information.

For example, on a node with two adapter links, in a configuration where each link is

part of a separate network, the result of setting MP_EUIDEVICE to sn_all is a

window on each of the two networks, which are independent paths from one node

to others. For IP communication and for messages that use the user space FIFO

mechanism (in which LAPI creates packets and copies them to the user space

FIFOs for transmission), striping provides no performance improvement. Therefore,

LAPI does not perform striping for short messages, non-contiguous messages, and

all communication in which bulk transfer is disabled through environment variable

settings.

For large contiguous messages that use bulk transfer, striping provides a vast

improvement in communication performance. Bandwidth scaling is nearly linear with

the number of adapters (up to a limit of 8) for sufficiently-large messages. This

improvement in communication bandwidth stems from: 1) the low overhead that is

needed to initiate the remote direct memory access (RDMA) operations used to

facilitate the bulk transfer, 2) the major proportion of RDMA work that is being done

by the adapters, and 3) high levels of concurrency in the RDMA operations for

various parts of the contiguous message that are being transferred by RDMA by

each of the adapters. For more information about RDMA, see Chapter 13, “Bulk

transfer of messages,” on page 99.

To activate striping or failover for an interactive parallel job, you must set the

MP_EUIDEVICE and MP_INSTANCES environment variables as follows:

v For instances from multiple networks:

MP_EUIDEVICE=sn_all — Guarantees that the adapters assigned will be from

different networks.

v For instances from a single network:

MP_EUIDEVICE=sn_single and MP_INSTANCES=n (where n is greater than 1

and less than max_protocol_instances) — Improved striping performance using

RDMA can only be seen if windows are allocated from multiple adapters on the

Chapter 14. Striping, failover, and recovery 107

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|
|

single network. Such an allocation may not be possible if there is only one

adapter on the network or if there are multiple adapters, but there are available

resources on only one of the adapters.

To activate striping for a parallel job submitted to the LoadLeveler batch system, the

network statement of the LoadLeveler command file must be coded accordingly.

v Use this network statement for a LAPI US job that uses pSeries High

Performance Switches on multiple networks:

#@ network.lapi = sn_all,shared,us

v Use this network statement for an MPI and LAPI US job that uses pSeries High

Performance Switches on multiple networks and shares adapter windows:

#@ network.mpi_lapi = sn_all,shared,us

The value of MP_INSTANCES ranges from 1 to the maximum value specified by

max_protocol_instances, as defined in the LoadLeveler LoadL_admin file. The

default value of max_protocol_instances is 1. See LoadLeveler for AIX 5L and

Linux: Using and Administering for more information.

Communication and memory considerations

Depending on the mode of communication, when multiple HPS or pSeries HPS

adapters are used for data striping or for failover and recovery, additional memory

or address space resources are used for data structures that are associated with

each communication instance. In 32-bit applications, these additional requirements

have implications that you must consider before deciding whether to use striping or

failover and recovery and the extent to which you will use these functions.

IP communication

v When multiple HPS or pSeries HPS instances are used for IP communication,

LAPI allocates these data structures from the user heap. Some 32-bit

applications may therefore need to be recompiled to use additional data

segments for their heap by using the -bmaxdata compilation flag and requesting

a larger number of segments. The default amount of data that can be allocated

for 64-bit programs is practically unlimited, so no changes are needed.

Alternatively, you can modify the 32-bit executable using the ldedit command or

by setting the LDR_CNTRL environment variable to MAXDATA. Base the

increase to -bmaxdata on what is needed rather than setting it to the maximum

allowed (0x80000000). Using more segments than required may make certain

shared memory features unusable, which can result in poor performance. Also,

applications that require the eight allowed segments for their own user data (thus

leaving no space for LAPI to allocate structures) must use a single IP instance

only (MP_EUIDEVICE=sn_single).

For more information about ldedit, see AIX 5L Version 5.2 Commands Reference

or AIX 5L Version 5.3 Commands Reference. For more information about

LDR_CNTRL, see AIX 5L Version 5.2: Performance Management Guide or AIX

5L Version 5.3: Performance Management Guide.

v When multiple adapters from each of one or more networks are used for IP

communication, with multiple adapters in each IP subnet, failover can occur only

if the AIX IP routing table is updated appropriately to remove the failed adapters.

This is because: 1) AIX’s IP routing alternates communication to a given target IP

address among all the routes to that target in its routing table, 2) with multiple

adapters on each IP subnet, multiple routes may be detected and stored in the

IP routing table for each remote adapter that is on the same subnet and, 3) the

loss of an adapter does not automatically result in an update of the IP routing

table. Without such an update to the routing table, the underlying route used to

108 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|
|

|
|

|
|

|

|
|

|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

reach a given target IP address may still go through a failed adapter connection

internally, thus preventing proper communication even if LAPI has failed over to a

UDP socket that leads to a target adapter that is detected to be still functioning

well. This problem does not affect the case where the multiple adapters on each

node are organized one each on separate IP subnets. See AIX 5L Version 5.2:

System Management Guide, Communications and Networks or AIX 5L Version

5.3: System Management Guide, Communications and Networks for more

information.

US communication

When multiple HPS or pSeries HPS instances are used for US communication, you

need to consider the following segment usage information when deciding whether to

use striping or failover and recovery. The communication subsystem uses segment

registers for several different purposes. The AIX memory model for 32-bit

applications uses five segment registers. In a 32-bit executable, there are only 16

segment registers available. In a 64-bit executable, the number of segment

registers is essentially unbounded. Because segment registers are abundant in

64-bit job runs, this discussion is important only for 32-bit job runs.

By default, the amount of memory that is available for application data structures

(the heap) in a 32-bit job run is somewhat less than 256MB. You can use the

compilation flag -bmaxdata:0x80000000 to allocate 2GB of heap, but this requires

eight segment registers. Smaller -bmaxdata values use fewer segment registers,

but these values limit the size of application data structures. If you try to use every

available feature of the communication subsystem and allow 2GB for heap, there

will not be enough registers, and your application will lose some performance or

perhaps not be able to start. The communication subsystem uses segments as

follows:

v One US instance (window): 2

v Each additional instance: 1

v Switch clock: 1 (applies only to MPI when it is used in conjunction with LAPI on

the HPS or the pSeries HPS)

v Shared memory: 1

v Shared memory cross-memory attach: 1

Using MPI and LAPI together with separate windows consumes segments beyond

the minimum. Using striping also consumes extra windows. When MPI is used in

conjunction with LAPI, access to the switch clock by MPI for the

MPI_WTIME_IS_GLOBAL attribute requires a dedicated segment register on the

HPS or the pSeries HPS. Turning shared memory communication on requires one

segment register for basic functions and a second segment register to exploit

cross-memory attach, to accelerate large messages between tasks on the same

node. If your application requires a large heap, you may need to forgo some

communication subsystem options. For most MPI applications, if you are using the

HPS or the pSeries HPS, you can set MP_CLOCK_SOURCE=AIX and free one

register. If MPI and LAPI calls are used in the application, make sure

MP_MSG_API is set to MPI_LAPI rather than MPI,LAPI. Because shared memory

uses one pair of registers per protocol, using MPI_LAPI rather than MPI,LAPI is

especially important when combining shared memory and user space. If you do not

need to use the striping and failover functions, make sure that MP_EUIDEVICE is

set to sn_single and that MP_INSTANCES is not set (in which case, it defaults to

1) or is set to 1 explicitly.

Chapter 14. Striping, failover, and recovery 109

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

For 32-bit executables that are compiled to use small pages, the segment registers

that are reserved by AIX and by -bmaxdata are claimed first. The initialization of

user space comes second. If there are not enough registers left, your job will not

start. The initialization of shared memory comes last. If there are no registers left,

the job will still run, but without shared memory. If there is only one register left,

shared memory will be enabled, but the optimization to speed large messages with

cross-memory attach will not be used. If there are no registers left, shared memory

will be bypassed and on-node communication will go through the network.

For 32-bit executables that use large pages, dynamic segment allocation (DSA) is

turned on automatically, so any -bmaxdata segments requested are not reserved

first for the user heap, but are instead allocated in the order of usage. Thus, if the

program allocates memory corresponding to the total size of the requested

-bmaxdata segments before MPI_Init or LAPI_Init is called, the behavior would be

similar to the small page behavior that is described in the previous paragraph.

However, if MPI_Init or LAPI_Init is called before the memory allocation, segments

that were intended for use for the program heap may be first obtained and reserved

for windows and for communication library features such as shared memory. In this

case, the program will be left with fewer segments to grow the heap than

-bmaxdata had requested. The program is likely to start by claiming all the

segments required for the initialization of the communication subsystem, but will

terminate later in the job run on a malloc failure as its data structure allocations

grow to fill the space that the specified -bmaxdata value was expected to provide.

For information about how to use large pages, see AIX 5L Version 5.2:

Performance Management Guide or AIX 5L Version 5.3: Performance Management

Guide. For information about DSA, see AIX 5L Version 5.2: General Programming

Concepts, Writing and Debugging Programs or AIX 5L Version 5.3: General

Programming Concepts, Writing and Debugging Programs.

110 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Chapter 15. Threaded programming

General guidelines

LAPI has no concept of identifying individual threads within a task. No

communication can be directed to a specific thread.

In multi-threaded programming, synchronization among threads is the user’s

responsibility. All LAPI communication is based on the use of handles. If multiple

threads share the same handle, their calls to LAPI are serialized in the LAPI library,

which makes LAPI safe for multi-threaded programming.

It is recommended that you don’t write threaded message-passing programs until

you are very familiar with writing and debugging single-threaded multitask programs

and multithreaded single-task programs.

Using LAPI_Address_init

Here is an example of using LAPI_Address_init in multiple threads. Suppose there

are two tasks creating two threads to do the exchange of addresses as follows.

 Task 1 Task2

Thread 1 LAPI_Address_init(hndl, addr1, addr_tab1); LAPI_Address_init(hndl, addr1, addr_tab1);

Thread 2 LAPI_Address_init(hndl, addr2, addr_tab2); LAPI_Address_init(hndl, addr2, addr_tab2);

The user expects that all addr1 will be collected in addr_tab1 and all addr2 will be

collected in addr_tab2. However, if Thread 1 and Thread 2 are running completely

in parallel for this code section, the resulting serialization in LAPI can be any one of

the following sequences.

Sequence 1 Sequence 2

LAPI_Address_init(hndl, addr1, addr_tab1); LAPI_Address_init(hndl, addr2, addr_tab2);

LAPI_Address_init(hndl, addr2, addr_tab2); LAPI_Address_init(hndl, addr1, addr_tab1);

Suppose Task 1 is serialized into Sequence 1 and Task 2 into Sequence 2. The

result of address exchange in this scenario will be unexpected because addr1 of

Task 1 will be put into addr_tab2 of Task 2 and addr2 of Task 2 will be put into

addr_tab1 of Task 1. To achieve the desired results in addr_tab1 and addr_tab2,

you can either put the two LAPI_Address_init calls in one thread or use your own

thread synchronization mechanism to enforce ordering of the two

LAPI_Address_init calls. For example, the following code allows threads to

exchange counter addresses group by group.

volatile int turn = 0;

void *communication_thread(void *param)

{

 int group_id = (int)param;

 lapi_cntr_t tgt_cntr;

 void **tgt_cntr_tab;

 tgt_cntr_tab = malloc(num_tasks * sizeof(void *));

 while (turn != group_id) yield();

 LAPI_Address_init(hndl, &tgt_cntr, tgt_cntr_tab);

 turn++;

 ...

}

© Copyright IBM Corp. 2003, 2005 111

Making global fence calls

Synchronization of one set of threads across all tasks of the job concurrently with

synchronization of another set of threads across all the same tasks cannot be

achieved by making one LAPI_Gfence call in each thread. This is because, just as

with the example of LAPI_Address_init above, each task will locally serialize the

LAPI_Gfence call in undefined order, and it is unpredictable whether the

LAPI_Gfence call for thread A on task 0 will match the LAPI_Gfence call for thread

A or thread B on task 1. If you intend to make two global fence calls in two different

threads, you should enforce the ordering of the two calls similar to the example of

LAPI_Address_init ordering above.

Making ″wait on counter″ calls

Multiple LAPI_Waitcntr calls can be issued from different threads without one

blocking the others. Note, however, that two threads cannot wait on the same

counter. LAPI_Waitcntr will return to the user as soon as the counter reaches or

exceeds the value that is being waited on, which also implies that an earlier

LAPI_Waitcntr may return after a later LAPI_Waitcntr.

Synchronizing threads across tasks

To synchronize threads in different tasks, you may not want to call LAPI_Gfence

because it blocks other threads in the same task from any further communication

before the global fence operation is complete. A better way to implement such

synchronization uses other LAPI functions. The following steps show a possible

implementation:

1. Pick a root thread from the group of threads to synchronize.

2. All threads in the group send a barrier message to the root thread task

(LAPI_Amsend, LAPI_Put) with an associated target counter.

3. All threads wait for a response by waiting on a specific counter to be

incremented (LAPI_Waitcntr).

4. The root thread waits for its counter to reach a value that is equal to the number

of threads in this group (LAPI_Waitcntr).

5. The root thread then broadcasts a message to all of the threads in the group

specifying the counter they are waiting on as the target counter, to release them

from the barrier (LAPI_Amsend, LAPI_Put)

Using handlers

Typically, LAPI invokes the following user-provided handlers to indicate the

arrival/completion of a message:

v Header handler: when data first arrives at the receiving side in an active

message.

v Send completion handler: when data has been sent at the sending side and the

user can modify the data buffer.

v (Receive) Completion handler: when data has been completely received at the

receiving side.

LAPI does not guarantee which thread will invoke the above handlers, with the

exception of non-inline completion handlers, which are always invoked in the

completion handler thread created by LAPI. All other types of handlers can be

112 IBM RSCT for AIX 5L: LAPI Programming Guide

invoked in any thread where LAPI communication functions are called and also in

the interrupt thread. Refer to the next section for a description of the threads in an

executing LAPI program.

LAPI threads

A program running LAPI is inherently multi-threaded, even though the user program

may itself be single-threaded. The list of threads in a program running with LAPI is

as follows:

v User threads: created by the user.

v Interrupt thread: When interrupt is enabled and there are incoming packets from

the adapter, LAPI interrupt handler is called in this thread to process packets. All

user-provided handlers except non-inline completion handlers can be invoked in

this thread.

v Completion handler threads: LAPI creates these threads to run non-inline

completion handlers.

v Shared memory dispatcher thread. If shared memory is on, LAPI creates this

thread to handle interrupt in shared memory transport. All user-provided handlers

except non-inline completion handlers can be invoked in this thread.

A single-threaded LAPI user program has one user thread, but may have one

thread of each of the other types that are transparent to the user.

Chapter 15. Threaded programming 113

114 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 16. Using LAPI on a standalone system

This section includes information that applies only to the use of LAPI on a

standalone system. In this book, a standalone system refers to a system that is not

running IBM’s Parallel Environment for AIX 5L (PE) licensed program.

Standalone setup

On a standalone system, you need to assign task IDs and initialize jobs on each

node. To use LAPI on a standalone system, set the following environment variables:

MP_CHILD Sets the task ID of the current job. MP_CHILD needs to be set to a

unique value for each task in standalone mode.

MP_LAPI_INET_ADDR

Describes the network setup among LAPI tasks for IP

communication. The format is:

MP_LAPI_INET_ADDR=@num_instances:IP_addr_in_dotted_decimal,adapter_name[:IP_addr_in_dotted_decimal2,adapter_name2...]

where: num_instances is the number of network instances,

IP_addr_in_dotted_decimal is the IP address of the adapter being

used, and adapter_name is the logical name of the adapter device.

The number of IP_addr_in_dotted_decimal,adapter_name pairs is

equal to the value of num_instances. For example, if you want a

task to use two separate adapters, sn0 and sn1, for IP

communication, you would use something like this:

MP_LAPI_INET_ADDR=@2:192.161.0.1,sn0:192.161.1.1,sn1

MP_LAPI_NETWORK

Describes the network setup for user space communication among

LAPI tasks. The format is:

MP_LAPI_NETWORK=@num_instances:window_num,adapter_name[:window_num2,adapter_name2...]

where: num_instances is the number of network instances and

window_num and adapter_name refer to one or more adapter

windows that have been reserved for this task. The number of

window_num,adapter_name pairs is equal to the value of

num_instances. For example, if you loaded one adapter instance

for this task using window 164 on adapter sn0, you would use:

MP_LAPI_NETWORK=@1:164,sn0

See the README.LAPI.STANDALONE.US file in the

lapi/samples/standalone/us directory of the LAPI samples files for

more information. For more information on LAPI sample files, see

Chapter 20, “LAPI sample programs,” on page 245.

MP_PARTITION

A number that is the same for all tasks in the job. In standalone

mode, you need to set this variable to an identical value for each

task. In standalone mode for switched communication, the

MP_PARTITION value must be associated with the network table

description file.

MP_PROCS The value of num_tasks, which is the total number of program tasks

in the job. This number must be the same for all tasks.

© Copyright IBM Corp. 2003, 2005 115

See “Variables for standalone systems” on page 274 for more information.

To use LAPI shared memory on a standalone system, set the following environment

variables:

LAPI_USE_SHM Enables or disables the use of shared memory.

 no -- disables the use of shared memory (the

default).

 yes -- enables the use of shared memory where it

is possible. LAPI will communicate using shared

memory among all common tasks (tasks that are on

the same node) over the selected device (user

space over switch, IP over switch, or IP over

Ethernet). See MP_EUIDEVICE and MP_EUILIB

for tasks on different nodes. Shared memory

requires segment registers, which can affect

availability to user code in 32-bit applications.

 only -- communicates only using shared memory.

LAPI will fail to initialize if this option is chosen and

tasks are assigned to more than one node.

MP_COMMON_TASKS Is set for shared memory jobs. It is different for

each task, and is mapped to the setting of the

MP_CHILD environment variable. For each task,

MP_COMMON_TASKS contains a string that

indicates the number and task IDs of other tasks on

the same node (that is, those that can communicate

through shared memory).

For MP_COMMON_TASKS, the format of the string is:

MP_COMMON_TASKS=number-of-common-tasks:common-task:other-task-2:...

For example, for task 1 of a 4-task job running on the same node, the following

environment value is set for task 1: MP_COMMON_TASKS=3:0:2:3. Notice that

task 1 is not in the list. Task numbering starts at 0 to ntask - 1, where ntask is the

total number of tasks.

See “Variables for shared memory” on page 274 for more information.

Note

The descriptions and formats of MP_COMMON_TASKS,

MP_LAPI_INET_ADDR, MP_LAPI_NETWORK are provided in this book for

informational purposes only. These environment variables are not intended to

be used as external programming interfaces. IBM will not guarantee that the

formats or values of these variables can continue to be used without change

in future releases. Programmers and users who choose to develop

applications that depend on these variables do so with the understanding that

these variables may be subject to future change. IBM cannot guarantee that

such applications can migrate or coexist with future releases without additional

changes, nor will IBM ensure that there will be binary compatibility of these

variables.

116 IBM RSCT for AIX 5L: LAPI Programming Guide

Standalone initialization

See “LAPI_Init” on page 163 for examples of standalone initialization.

Using UDP/IP mode

For standalone UDP/IP initialization, LAPI must have at least one of these two

means of transferring UDP information: a user handler or a user list. If both a user

handler and a user list are passed in, the user handler is invoked and the user list

is ignored.

In UDP/IP mode, LAPI uses a pair of connectionless sockets for each task, one for

reading and one for writing. During initialization, the IP address and port information

for each task’s read socket must be distributed to all tasks. On a standalone

system, you need to distribute this read socket information to all of the tasks. LAPI

provides two mechanisms for distributing IP address and port information on

standalone systems: user handlers and user lists.

For the user handler mechanism, a user handler is passed to LAPI as a callback

pointer to be used during initialization. Before opening the UDP sockets during

initialization (in LAPI_Init), LAPI calls the handler and expects it to return (by way

of a reference parameter) a list of IP address and port information for each task in

the job.

For the user list mechanism, you need to pass a pointer to LAPI at initialization time

(by way of the lapi_info_t structure that is passed in to LAPI_Init) that points to

user memory that has the required port information.

Using US mode

For standalone initialization in user space (US), no changes are required to C

source code that makes LAPI calls, except that the code must be compiled with a

non-parallel compiler (cc_r, for example). When running a user space program

standalone, you need to handle a number of tasks that are normally handled by PE

and LoadLeveler. In particular, you need to:

v Determine available adapters and windows, and then load the network tables for

the desired network configuration on the chosen adapters and windows.

v Set the MP_LAPI_NETWORK environment variable in the following format:

MP_LAPI_NETWORK=@num_instances:window_num,snX

where num_instances is the number of network instances to use, window_num is

the window on the adapter that has been loaded for this task and snX is the

name of the adapter that has this window and on which the network table has

been loaded. For example, if you loaded one adapter instance for this task using

window 164 on adapter sn0, you would set MP_LAPI_NETWORK as follows:

MP_LAPI_NETWORK=@1:164,sn0

Note that for this release of LAPI, num_instances must be set to 1.

v Set other environment variables to control various aspects of the LAPI run time.

See “Environment variables” on page 269 for more information.

v Invoke each of the tasks separately on the desired set of nodes on which the job

is to be run.

For full details on standalone initialization in user space, see the

README.LAPI.STANDALONE.US file in the standalone/us directory of the LAPI

sample files.

Chapter 16. Using LAPI on a standalone system 117

Compiling LAPI programs on a standalone system

Table 13 shows what commands to enter to compile a LAPI program on a

standalone system.

 Table 13. Compiling LAPI programs on a standalone system

To compile a C program cc_r program.c -o program

To compile a C++ program CC_r program.C -o program

To compile a FORTRAN program xlf_r program.f -o program

118 IBM RSCT for AIX 5L: LAPI Programming Guide

Part 4. LAPI reference

Chapter 17. LAPI man pages 121

lapi_subroutines . 122

Chapter 18. Subroutines for all systems (PE and standalone) 125

LAPI_Addr_get . 126

LAPI_Addr_set . 128

LAPI_Address . 130

LAPI_Address_init . 132

LAPI_Address_init64 . 134

LAPI_Amsend . 136

LAPI_Amsendv . 143

LAPI_Fence . 149

LAPI_Get . 151

LAPI_Getcntr . 154

LAPI_Getv . 156

LAPI_Gfence . 161

LAPI_Init . 163

LAPI_Msg_string . 169

LAPI_Msgpoll . 171

LAPI_Probe . 174

LAPI_Put . 176

LAPI_Putv . 179

LAPI_Qenv . 184

LAPI_Rmw . 188

LAPI_Rmw64 . 192

LAPI_Senv . 196

LAPI_Setcntr . 198

LAPI_Term . 201

LAPI_Util . 203

LAPI_Waitcntr . 217

LAPI_Xfer . 219

Chapter 19. Subroutines for standalone systems 235

LAPI_Nopoll_wait . 236

LAPI_Purge_totask . 238

LAPI_Resume_totask . 240

LAPI_Setcntr_wstatus . 242

Chapter 20. LAPI sample programs 245

Sample program directory structure 245

Using the LAPI sample programs 250

Summary of constructs and techniques for LAPI programming 250

© Copyright IBM Corp. 2003, 2005 119

||
||

120 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 17. LAPI man pages

For each subroutine in Chapter 18, “Subroutines for all systems (PE and

standalone),” on page 125 and Chapter 19, “Subroutines for standalone systems,”

on page 235, information about some or all of the following topics is included, as

appropriate: purpose, library, C syntax, FORTRAN syntax, parameters, description,

restrictions, return values, location, C examples, FORTRAN examples, and related

information. Review “lapi_subroutines” on page 122 before proceeding to get a

better understanding of how the subroutine information in Chapter 18, “Subroutines

for all systems (PE and standalone),” on page 125 and Chapter 19, “Subroutines for

standalone systems,” on page 235 is structured.

© Copyright IBM Corp. 2003, 2005 121

|

lapi_subroutines

Purpose

Provides overview information about LAPI subroutines, including some sample

sections of the man pages for these subroutines.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int lapi_subroutines(parm1, parm2...)

type1 parm1;

type2 parm2; ...

FORTRAN syntax

include ’lapif.h’

LAPI_SUBROUTINES(parm1, parm2..., ierror)

TYPE1 :: parm1;

TYPE2 :: parm2; ...
INTEGER ierror

Parameters

Parameter definitions are listed as follows:

INPUT

parm1 Describes parm1.

INPUT/OUTPUT This section includes all LAPI counters.

parm2 Describes parm2.

OUTPUT Function calls are nonblocking, so counter behavior

is asynchronous with respect to the function call.

ierror Specifies a FORTRAN return code. This is always

the last parameter.

Description

This man page provides overview information about LAPI subroutines, including

some sample sections of the man pages for these subroutines.

Programming with C++

LAPI subroutines provide extern ″C″ declarations for C++ programming.

Profiling

See Chapter 9, “Using LAPI’s profiling interface,” on page 65 for more information.

Querying runtime values

lapi_subroutines

122 IBM RSCT for AIX 5L: LAPI Programming Guide

|

|
|

|

|

|
|

|

|

|

|

You can find out the size (or size range) of certain parameters by calling the

LAPI_Qenv subroutine with the appropriate query type. For example, call

LAPI_Qenv with the LOC_ADDRTBL_SZ query type to find out the size of the

address table used by the LAPI_Addr_set subroutine:

LAPI_Qenv(hndl, LOC_ADDRTBL_SZ, ret_val)

Now, suppose you want to register a function address using LAPI_Addr_set:

LAPI_Addr_set (hndl, addr, addr_hndl)

The value of index addr_hndl must be in the range:

1 <= addr_hndl < LOC_ADDRTBL_SZ

When used to show the size of a parameter, a comparison of values, or a range of

values, valid values for the query parameter of the LAPI_Qenv subroutine appear

in SMALL, BOLD capital letters. For example:

NUM_TASKS

is a shorthand notation for:

LAPI_Qenv(hndl, NUM_TASKS, ret_val)

See “LAPI_Qenv” on page 184 for a list of the query parameter’s valid values.

Restrictions

Any specific restrictions for the subroutine appear here.

Also, see Appendix G, “LAPI restrictions,” on page 285 for more information.

Return values

LAPI_SUCCESS

Indicates that the function call completed successfully.

 Any other return values for the subroutine appear here.

For a complete list, see “LAPI return values” on page 264.

For information about LAPI error messages, see RSCT: Messages.

Location

/usr/lib/liblapi_r.a

C examples

Any C examples of the subroutine appear here.

lapi_subroutines

Chapter 17. LAPI man pages 123

FORTRAN examples

Any FORTRAN examples of the subroutine appear here.

Related information

Any information that is related to the subroutine (including names of related

subroutines) appears here.

lapi_subroutines

124 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 18. Subroutines for all systems (PE and standalone)

Use the subroutines in this chapter on systems that are running Parallel

Environment (PE) and on standalone systems.

© Copyright IBM Corp. 2003, 2005 125

LAPI_Addr_get

Purpose

Retrieves a function address that was previously registered using LAPI_Addr_set.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Addr_get(hndl, addr, addr_hndl)

lapi_handle_t hndl;

void **addr;

int addr_hndl;

FORTRAN syntax

include ’lapif.h’

LAPI_ADDR_GET(hndl, addr, addr_hndl, ierror)

INTEGER hndl

INTEGER (KIND=LAPI_ADDR_TYPE) :: addr

INTEGER addr_hndl

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

addr_hndl Specifies the index of the function address to retrieve. You should

have previously registered the address at this index using

LAPI_Addr_set. The value of this parameter must be in the range

1 <= addr_hndl < LOC_ADDRTBL_SZ.

OUTPUT

addr Returns a function address that the user registered with LAPI.

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local address manipulation

Use this subroutine to get the pointer that was previously registered with LAPI and

is associated with the index addr_hndl. The value of addr_hndl must be in the

range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_ADDR_HNDL_RANGE

Indicates that the value of addr_hndl is not in the

LAPI_Addr_get

126 IBM RSCT for AIX 5L: LAPI Programming Guide

range

1 <= addr_hndl < LOC_ADDRTBL_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the addr pointer is NULL

(in C) or that the value of addr is

LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

To retrieve a header handler address that was previously registered using

LAPI_Addr_set:

lapi_handle_t hndl; /* the LAPI handle */

void **addr; /* the address to retrieve */

int addr_hndl; /* the index returned from LAPI_Addr_set */

 ...

addr_hndl = 1;

LAPI_Addr_get(hndl, &addr, addr_hndl);

/* addr now contains the address that was previously registered */

/* using LAPI_Addr_set */

Related information

Subroutines: LAPI_Addr_set, LAPI_Qenv

LAPI_Addr_get

Chapter 18. Subroutines for all systems (PE and standalone) 127

LAPI_Addr_set

Purpose

Registers the address of a function.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Addr_set(hndl, addr, addr_hndl)

lapi_handle_t hndl;

void *addr;

int addr_hndl;

FORTRAN syntax

include ’lapif.h’

LAPI_ADDR_SET(hndl, addr, addr_hndl, ierror)

INTEGER hndl

INTEGER (KIND=LAPI_ADDR_TYPE) :: addr

INTEGER addr_hndl

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

addr Specifies the address of the function handler that the user wants to

register with LAPI.

addr_hndl Specifies a user function address that can be passed to LAPI calls

in place of a header handler address. The value of this parameter

must be in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local address manipulation

Use this subroutine to register the address of a function (addr). LAPI maintains the

function address in an internal table. The function address is indexed at location

addr_hndl. In subsequent LAPI calls, addr_hndl can be used in place of addr. The

value of addr_hndl must be in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

For active message communication, you can use addr_hndl in place of the

corresponding header handler address. LAPI only supports this indexed substitution

for remote header handler addresses (but not other remote addresses, such as

target counters or base data addresses). For these other types of addresses, the

actual address value must be passed to the API call.

LAPI_Addr_set

128 IBM RSCT for AIX 5L: LAPI Programming Guide

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_ADDR_HNDL_RANGE

Indicates that the value of addr_hndl is not in the

range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

Location

/usr/lib/liblapi_r.a

C examples

To register a header handler address:

lapi_handle_t hndl; /* the LAPI handle */

void *addr; /* the remote header handler address */

int addr_hndl; /* the index to associate */

 ...

addr = my_func;

addr_hndl = 1;

LAPI_Addr_set(hndl, addr, addr_hndl);

/* addr_hndl can now be used in place of addr in LAPI_Amsend, */

/* LAPI_Amsendv, and LAPI_Xfer calls */

 ...

Related information

Subroutines: LAPI_Addr_get, LAPI_Amsend, LAPI_Amsendv, LAPI_Qenv,

LAPI_Xfer

LAPI_Addr_set

Chapter 18. Subroutines for all systems (PE and standalone) 129

LAPI_Address

Purpose

Returns an unsigned long value for a specified user address.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Address(my_addr, ret_addr)

void *my_addr;

ulong *ret_addr;

Note: This subroutine is meant to be used by FORTRAN programs. The C version

of LAPI_Address is provided for compatibility purposes only.

FORTRAN syntax

include ’lapif.h’

LAPI_ADDRESS(my_addr, ret_addr, ierror)

INTEGER (KIND=any_fortran_type) :: my_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: ret_addr

INTEGER ierror

where:

any_fortran_type

Is any FORTRAN datatype. This type declaration has the same

meaning as the type void * in C.

Parameters

INPUT

my_addr Specifies the address to convert. The value of this parameter

cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

ret_addr Returns the address that is stored in my_addr as an unsigned long

for use in LAPI calls. The value of this parameter cannot be NULL

(in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local address manipulation

Use this subroutine in FORTRAN programs when you need to store specified

addresses in an array. In FORTRAN, the concept of address (&) does not exist as it

does in C. LAPI_Address provides FORTRAN programmers with this function.

LAPI_Address

130 IBM RSCT for AIX 5L: LAPI Programming Guide

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_ORG_ADDR_NULL

Indicates that the value of my_addr is NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_ADDR_NULL

Indicates that the value of ret_addr is NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

FORTRAN examples

To retrieve the address of a variable:

! Contains the address of the target counter

INTEGER (KIND=LAPI_ADDR_TYPE) :: cntr_addr

! Target counter

TYPE (LAPI_CNTR_T) :: tgt_cntr

! Return code

INTEGER :: ierror

CALL LAPI_ADDRESS(tgt_cntr, cntr_addr, ierror)

! cntr_addr now contains the address of tgt_cntr

Related information

Subroutines: LAPI_Address_init, LAPI_Address_init64

LAPI_Address

Chapter 18. Subroutines for all systems (PE and standalone) 131

LAPI_Address_init

Purpose

Creates a remote address table.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Address_init(hndl, my_addr, add_tab)

lapi_handle_t hndl;

void *my_addr;

void *add_tab[];

FORTRAN syntax

include ’lapif.h’

LAPI_ADDRESS_INIT(hndl, my_addr, add_tab, ierror)

INTEGER hndl

INTEGER (KIND=LAPI_ADDR_TYPE) :: my_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: add_tab(*)

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

my_addr Specifies the entry supplied by each task. The value of this

parameter can be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

OUTPUT

add_tab Specifies the address table containing the addresses that are to be

supplied by all tasks. add_tab is an array of pointers, the size of

which is greater than or equal to NUM_TASKS. The value of this

parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: collective communication (blocking)

LAPI_Address_init exchanges virtual addresses among tasks of a parallel

application. Use this subroutine to create tables of such items as header handlers,

target counters, and data buffer addresses.

LAPI_Address_init is a collective call over the LAPI handle hndl, which fills the

table add_tab with the virtual address entries that each task supplies. Collective

calls must be made in the same order at all participating tasks.

LAPI_Address_init

132 IBM RSCT for AIX 5L: LAPI Programming Guide

The addresses that are stored in the table add_tab are passed in using the

my_addr parameter. Upon completion of this call, add_tab[i] contains the virtual

address entry that was provided by task i. The array is opaque to the user.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_COLLECTIVE_PSS

Indicates that a collective call was made while in

persistent subsystem (PSS) mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the add_tab pointer is

NULL (in C) or that the value of add_tab is

LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

To collectively transfer target counter addresses for use in a communication API

call, in which all nodes are either 32-bit or 64-bit:

lapi_handle_t hndl; /* the LAPI handle */

void *addr_tbl[NUM_TASKS]; /* the table for all tasks’ addresses */

lapi_cntr_t tgt_cntr; /* the target counter */

 ...

LAPI_Address_init(hndl, (void *)&tgt_cntr, addr_tbl);

/* for communication with task t, use addr_tbl[t] */

/* as the address of the target counter */

 ...

For a combination of 32-bit and 64-bit nodes, use LAPI_Address_init64.

Related information

Subroutines: LAPI_Address, LAPI_Address_init64

LAPI_Address_init

Chapter 18. Subroutines for all systems (PE and standalone) 133

LAPI_Address_init64

Purpose

Creates a 64-bit remote address table.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Address_init64(hndl, my_addr, add_tab)

lapi_handle_t hndl;

lapi_long_t my_addr;

lapi_long_t *add_tab;

FORTRAN syntax

include ’lapif.h’

LAPI_ADDRESS_INIT64(hndl, my_addr, add_tab, ierror)

INTEGER hndl

INTEGER (KIND=LAPI_ADDR_TYPE) :: my_addr

INTEGER (KIND=LAPI_LONG_LONG_TYPE) :: add_tab(*)

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

my_addr Specifies the address entry that is supplied by each task. The value

of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN). To ensure 32-bit/64-bit interoperability, it is passed as a

lapi_long_t type in C.

OUTPUT

add_tab Specifies the 64-bit address table that contains the 64-bit values

supplied by all tasks. add_tab is an array of type lapi_long_t (in C)

or LAPI_LONG_LONG_TYPE (in FORTRAN). The size of add_tab

is greater than or equal to NUM_TASKS. The value of this

parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: collective communication (blocking)

LAPI_Address_init64 exchanges virtual addresses among a mixture of 32-bit and

64-bit tasks of a parallel application. Use this subroutine to create 64-bit tables of

such items as header handlers, target counters, and data buffer addresses.

LAPI_Address_init64

134 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Address_init64 is a collective call over the LAPI handle hndl, which fills the

64-bit table add_tab with the virtual address entries that each task supplies.

Collective calls must be made in the same order at all participating tasks.

The addresses that are stored in the table add_tab are passed in using the

my_addr parameter. Upon completion of this call, add_tab[i] contains the virtual

address entry that was provided by task i. The array is opaque to the user.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_COLLECTIVE_PSS

Indicates that a collective call was made while in

persistent subsystem (PSS) mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the add_tab pointer is

NULL (in C) or that the value of add_tab is

LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

To collectively transfer target counter addresses for use in a communication API call

with a mixed task environment (any combination of 32-bit and 64-bit):

lapi_handle_t hndl; /* the LAPI handle */

lapi_long_t addr_tbl[NUM_TASKS]; /* the table for all tasks’ addresses */

lapi_long_t tgt_cntr; /* the target counter */

 ...

LAPI_Address_init64(hndl, (lapi_long_t)&tgt_cntr, addr_tbl);

/* For communication with task t, use addr_tbl[t] as the address */

/* of the target counter. For mixed (32-bit and 64-bit) jobs, */

/* use the LAPI_Xfer subroutine for communication. */

Related information

Subroutines: LAPI_Address, LAPI_Address_init, LAPI_Xfer

LAPI_Address_init64

Chapter 18. Subroutines for all systems (PE and standalone) 135

LAPI_Amsend

Purpose

Transfers a user message to a remote task, obtaining the target address on the

remote task from a user-specified header handler.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

typedef void (compl_hndlr_t) (hndl, user_info);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from LAPI_Amsend */

void *user_info; /* buffer (user_info) pointer passed in */

 /* from header handler (void *(hdr_hndlr_t)) */

typedef void *(hdr_hndlr_t)(hndl, uhdr, uhdr_len, msg_len, comp_h, user_info);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from LAPI_Amsend */

void *uhdr; /* uhdr passed in from LAPI_Amsend */

uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsend */

ulong *msg_len; /* udata_len passed in fom LAPI_Amsend */

compl_hndlr_t **comp_h; /* function address of completion handler */

 /* (void (compl_hndlr_t)) that needs to be filled */

 /* out by this header handler function. */

void **user_info; /* pointer to the parameter to be passed */

 /* in to the completion handler */

int LAPI_Amsend(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,

 tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;

uint tgt;

void *hdr_hdl;

void *uhdr;

uint uhdr_len;

void *udata;

ulong udata_len;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

lapi_cntr_t *cmpl_cntr;

FORTRAN syntax

include ’lapif.h’

INTEGER SUBROUTINE COMPL_H (hndl, user_info)

INTEGER hndl

INTEGER user_info

INTEGER FUNCTION HDR_HDL (hndl, uhdr, uhdr_len, msg_len, comp_h, user_info)

INTEGER hndl

INTEGER uhdr

INTEGER uhdr_len

INTEGER (KIND=LAPI_LONG_TYPE) :: msg_len

EXTERNAL INTEGER FUNCTION comp_h

TYPE (LAPI_ADDR_T) :: user_info

LAPI_Amsend

136 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_AMSEND(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,

 tgt_cntr, org_cntr, cmpl_cntr, ierror)

INTEGER hndl

INTEGER tgt

EXTERNAL INTEGER FUNCTION hdr_hdl

INTEGER uhdr

INTEGER uhdr_len

TYPE (LAPI_ADDR_T) :: udata

INTEGER (KIND=LAPI_LONG_TYPE) :: udata_len

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

TYPE (LAPI_CNTR_T) :: cmpl_cntr

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter

must be in the range 0 <= tgt < NUM_TASKS.

hdr_hdl Specifies the pointer to the remote header handler function to be

invoked at the target. The value of this parameter can take an

address handle that has already been registered using

LAPI_Addr_set. The value of this parameter cannot be NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

uhdr Specifies the pointer to the user header data. This data will be

passed to the user header handler on the target. If uhdr_len is 0,

The value of this parameter can be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

uhdr_len Specifies the length of the user’s header. The value of this

parameter must be a multiple of the processor’s word size in the

range 0 <= uhdr_len <= MAX_UHDR_SZ.

udata Specifies the pointer to the user data. If udata_len is 0, The value

of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

udata_len Specifies the length of the user data in bytes. The value of this

parameter must be in the range

0 <= udata_len <= the value of LAPI constant

LAPI_MAX_MSG_SZ.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is

incremented after the completion handler (if specified) completes or

after the completion of data transfer. If the value of this parameter

is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the target

counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in

FORTRAN). The origin counter is incremented after data is copied

out of the origin address (in C) or the origin (in FORTRAN). If the

value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the counter at the origin that signifies completion of the

completion handler. It is updated once the completion handler

completes. If no completion handler is specified, the counter is

LAPI_Amsend

Chapter 18. Subroutines for all systems (PE and standalone) 137

|

incremented at the completion of message delivery. If the value of

this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the completion counter is not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data to a target task, where it is desirable to run a

handler on the target task before message delivery begins or after delivery

completes. LAPI_Amsend allows the user to provide a header handler and optional

completion handler. The header handler is used to specify the target buffer address

for writing the data, eliminating the need to know the address on the origin task

when the subroutine is called.

User data (uhdr and udata) are sent to the target task. Once these buffers are no

longer needed on the origin task, the origin counter is incremented, which indicates

the availability of origin buffers for modification. Using the LAPI_Xfer call with the

LAPI_AM_XFER type provides the same type of transfer, with the option of using a

send completion handler instead of the origin counter to specify buffer availability.

Upon arrival of the first data packet at the target, the user’s header handler is

invoked. Note that a header handler must be supplied by the user because it

returns the base address of the buffer in which LAPI will write the data sent from

the origin task (udata). See “Receive-side optimization for single-packet messages”

on page 79 for more information.

The header handler also provides additional information to LAPI about the message

delivery, such as the completion handler. LAPI_Amsend and similar calls (such as

LAPI_Amsendv and corresponding LAPI_Xfer transfers) also allow the user to

specify their own message header information, which is available to the header

handler. The user may also specify a completion handler parameter from within the

header handler. LAPI will pass the information to the completion handler at

execution.

Note that the header handler is run inline by the thread running the LAPI dispatcher.

For this reason, the header handler must be non-blocking because no other

progress on messages will be made until it returns. It is also suggested that

execution of the header handler be simple and quick. The completion handler, on

the other hand, is normally enqueued for execution by a separate thread. It is

possible to request that the completion handler be run inline. See “Inline completion

handlers” on page 77 for more information.

If a completion handler was not specified (that is, set to LAPI_ADDR_NULL in

FORTRAN or its pointer set to NULL in C), the arrival of the final packet causes

LAPI to increment the target counter on the remote task and send an internal

message back to the origin task. The message causes the completion counter (if it

is not NULL in C or LAPI_ADDR_NULL in FORTRAN) to increment on the origin

task.

If a completion handler was specified, the above steps take place after the

completion handler returns. To guarantee that the completion handler has executed

LAPI_Amsend

138 IBM RSCT for AIX 5L: LAPI Programming Guide

on the target, you must wait on the completion counter. See “Flow of active

message operations” on page 55 for more information.

User details

As mentioned above, the user must supply the address of a header handler to be

executed on the target upon arrival of the first data packet. The signature of the

header handler is as follows:

void *hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len, ulong *msg_len,

 compl_hndlr_t **cmpl_hndlr, void **user_info);

The value returned by the header handler is interpreted by LAPI as an address for

writing the user data (udata) that was passed to the LAPI_Amsend call. The uhdr

and uhdr_len parameters are passed by LAPI into the header handler and contain

the information passed by the user to the corresponding parameters of the

LAPI_Amsend call.

Use of LAPI_Addr_set

Remote addresses are commonly exchanged by issuing a collective

LAPI_Address_init call within a few steps of initializing LAPI. LAPI also provides

the LAPI_Addr_set mechanism, whereby users can register one or more header

handler addresses in a table, associating an index value with each address. This

index can then be passed to LAPI_Amsend instead of an actual address. On the

target side, LAPI will use the index to get the header handler address. Note that, if

all tasks use the same index for their header handler, the initial collective

communication can be avoided. Each task simply registers its own header handler

address using the well-known index. Then, on any LAPI_Amsend calls, the

reserved index can be passed to the header handler address parameter.

Role of the header handler

The user optionally returns the address of a completion handler function through the

cmpl_hndlr parameter and a completion handler parameter through the user_info

parameter. The address passed through the user_info parameter can refer to

memory containing a datatype defined by the user and then cast to the appropriate

type from within the completion handler if desired.

The signature for a user completion handler is as follows:

typedef void (compl_hndlr_t)(lapi_handle_t *hndl, void *completion_param);

The argument returned by reference through the user_info member of the user’s

header handler will be passed to the completion_param argument of the user’s

completion handler. See the C Examples for an example of setting the completion

handler and parameter in the header handler.

As mentioned above, the value returned by the header handler must be an address

for writing the user data sent from the origin task. There is one exception to this

rule. In the case of a single-packet message, LAPI passes the address of the

packet in the receive FIFO, allowing the entire message to be consumed within the

header handler. In this case, the header handler should return NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) so that LAPI does not copy the message to a

target buffer. See “Receive-side optimization for single-packet messages” on page

79 for more information.

LAPI_Amsend

Chapter 18. Subroutines for all systems (PE and standalone) 139

Passing additional information through lapi_return_info_t

LAPI allows additional information to be passed to and returned from the header

handler by passing a pointer to lapi_return_info_t through the msg_len argument.

On return from a header handler that is invoked by a call to LAPI_Amsend, the

ret_flags member of lapi_return_info_t can contain one of these values:

LAPI_NORMAL (the default), LAPI_SEND_REPLY (to run the completion handler

inline), or LAPI_LOCAL_STATE (no reply is sent). The dgsp_handle member of

lapi_return_info_t should not be used in conjunction with LAPI_Amsend.

For a complete description of the lapi_return_info_t type, see “The enhanced

header handler interface” on page 75.

Inline execution of completion handlers

Under normal operation, LAPI uses a separate thread for executing user completion

handlers. After the final packet arrives, completion handler pointers are placed in a

queue to be handled by this thread. For performance reasons, the user may

request that a given completion handler be run inline instead of being placed on this

queue behind other completion handlers. This mechanism gives users a greater

degree of control in prioritizing completion handler execution for performance-critical

messages.

LAPI places no restrictions on completion handlers that are run ″normally″ (that is,

by the completion handler thread). Inline completion handlers should be short and

should not block, because no progress can be made while the main thread is

executing the handler. The user must use caution with inline completion handlers so

that LAPI’s internal queues do not fill up while waiting for the handler to complete.

I/O operations must not be performed with an inline completion handler.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len is greater than

the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_HDR_HNDLR_NULL

Indicates that the value of the hdr_hdl passed in is

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_ORG_ADDR_NULL

Indicates that the value of the udata parameter

passed in is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but the value of udata_len is greater

than 0.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is

greater than MAX_UHDR_SZ or is not a multiple of

the processor’s doubleword size.

LAPI_Amsend

140 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but uhdr_len is

not 0.

Location

/usr/lib/liblapi_r.a

C examples

To send an active message and then wait on the completion counter:

/* header handler routine to execute on target task */

void *hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 ulong *msg_len, compl_hndlr_t **cmpl_hndlr,

 void **user_info)

{

/* set completion handler pointer and other information */

/* return base address for LAPI to begin its data copy */

}

{

 lapi_handle_t hndl; /* the LAPI handle */

 int task_id; /* the LAPI task ID */

 int num_tasks; /* the total number of tasks */

 void *hdr_hndlr_list[NUM_TASKS]; /* the table of remote header handlers */

 int buddy; /* the communication partner */

 lapi_cntr_t cmpl_cntr; /* the completion counter */

 int data_buffer[DATA_LEN]; /* the data to transfer */

 .

 .

 .

 /* retrieve header handler addresses */

 LAPI_Address_init(hndl, (void *)&hdr_hndlr, hdr_hndlr_list);

 /*

 ** up to this point, all instructions have executed on all

 ** tasks. we now begin differentiating tasks.

 */

 if (sender) { /* origin task */

 /* initialize data buffer, cmpl_cntr, etc. */

 .

 .

 .

 /* synchronize before starting data transfer */

 LAPI_Gfence(hndl);

 LAPI_Amsend(hndl, buddy, (void *)hdr_hndlr_list[buddy], NULL,

 0,&(data_buffer[0]),DATA_LEN*(sizeof(int)),

 NULL, NULL, cmpl_cntr);

 /* Wait on completion counter before continuing. Completion */

 /* counter will update when message completes at target. */

 } else { /* receiver */

 .

 .

 .

 /* to match the origin’s synchronization before data transfer */

 LAPI_Gfence(hndl);

 }

LAPI_Amsend

Chapter 18. Subroutines for all systems (PE and standalone) 141

.

 .

 .

}

For a complete program listing, see “Using LAPI_Amsend: a complete LAPI

program” on page 56. Sample code illustrating the LAPI_Amsend call can be found

in the LAPI sample files. See Chapter 20, “LAPI sample programs,” on page 245 for

more information.

Related information

Subroutines: LAPI_Addr_get, LAPI_Addr_set, LAPI_Getcntr, LAPI_Msgpoll,

LAPI_Qenv, LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Amsend

142 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Amsendv

Purpose

Transfers a user vector to a remote task, obtaining the target address on the

remote task from a user-specified header handler.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

typedef void (compl_hndlr_t) (hndl, user_info);

lapi_handle_t *hndl; /* the LAPI handle passed in from LAPI_Amsendv */

void *user_info; /* the buffer (user_info) pointer passed in */

 /* from vhdr_hndlr (void *(vhdr_hndlr_t)) */

typedef lapi_vec_t *(vhdr_hndlr_t) (hndl, uhdr, uhdr_len, len_vec, comp_h, uinfo);

lapi_handle_t *hndl; /* pointer to the LAPI handle passed in from LAPI_Amsendv */

void *uhdr; /* uhdr passed in from LAPI_Amsendv */

uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsendv */

ulong *len_vec[]; /* vector of lengths passed in LAPI_Amsendv */

compl_hndlr_t **comp_h; /* function address of completion handler */

 /* (void (compl_hndlr_t)) that needs to be */

 /* filled out by this header handler function */

void **user_info; /* pointer to the parameter to be passed */

 /* in to the completion handler */

int LAPI_Amsendv(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,

 tgt_cntr, org_cntr, cmpl_cntr);

lapi_handle_t hndl;

uint tgt;

void *hdr_hdl;

void *uhdr;

uint uhdr_len;

lapi_vec_t *org_vec;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

lapi_cntr_t *cmpl_cntr;

FORTRAN syntax

include ’lapif.h’

INTEGER SUBROUTINE COMPL_H (hndl, user_info)

INTEGER hndl

INTEGER user_info(*)

INTEGER FUNCTION VHDR_HDL (hndl, uhdr, uhdr_len, len_vec, comp_h, user_info)

INTEGER hndl

INTEGER uhdr

INTEGER uhdr_len

INTEGER (KIND=LAPI_LONG_TYPE) :: len_vec

EXTERNAL INTEGER FUNCTION comp_h

TYPE (LAPI_ADDR_T) :: user_info

LAPI_AMSENDV(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,

 tgt_cntr, org_cntr, cmpl_cntr, ierror)

INTEGER hndl

INTEGER tgt

LAPI_Amsendv

Chapter 18. Subroutines for all systems (PE and standalone) 143

EXTERNAL INTEGER FUNCTION hdr_hdl

INTEGER uhdr

INTEGER uhdr_len

TYPE (LAPI_VEC_T) :: org_vec

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

TYPE (LAPI_CNTR_T) :: cmpl_cntr

INTEGER ierror

Parameters

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter

must be in the range 0 <= tgt < NUM_TASKS.

hdr_hdl Points to the remote header handler function to be invoked at the

target. The value of this parameter can take an address handle that

had been previously registered using the

LAPI_Addr_set/LAPI_Addr_get mechanism. The value of this

parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

uhdr Specifies the pointer to the local header (parameter list) that is

passed to the handler function. If uhdr_len is 0, The value of this

parameter can be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

uhdr_len Specifies the length of the user’s header. The value of this

parameter must be a multiple of the processor’s doubleword size in

the range 0 <= uhdr_len <= MAX_UHDR_SZ.

org_vec Points to the origin vector.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is

incremented after the completion handler (if specified) completes or

after the completion of data transfer. If the value of this parameter

is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the target

counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in

FORTRAN). The origin counter is incremented after data is copied

out of the origin address (in C) or the origin (in FORTRAN). If the

value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the counter at the origin that signifies completion of the

completion handler. It is updated once the completion handler

completes. If no completion handler is specified, the counter is

incremented at the completion of message delivery. If the value of

this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the completion counter is not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

LAPI_Amsendv

144 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Amsendv is the vector-based version of the LAPI_Amsend call. You can use

it to specify multi-dimensional and non-contiguous descriptions of the data to

transfer. Whereas regular LAPI calls allow the specification of a single data buffer

address and length, the vector versions allow the specification of a vector of

address and length combinations. Additional information is allowed in the data

description on the origin task and the target task.

Use this subroutine to transfer a vector of data to a target task, when you want a

handler to run on the target task before message delivery begins or after message

delivery completes.

To use LAPI_Amsendv, you must provide a header handler, which returns the

address of the target vector description that LAPI uses to write the data that is

described by the origin vector. The header handler is used to specify the address of

the vector description for writing the data, which eliminates the need to know the

description on the origin task when the subroutine is called. The header handler is

called upon arrival of the first data packet at the target.

Optionally, you can also provide a completion handler. The header handler provides

additional information to LAPI about the message delivery, such as the completion

handler. You can also specify a completion handler parameter from within the

header handler. LAPI passes the information to the completion handler at execution.

With the exception of the address that is returned by the completion handler, the

use of counters, header handlers, and completion handlers in LAPI_Amsendv is

identical to that of LAPI_Amsend. In both cases, the user header handler returns

information that LAPI uses for writing at the target. See LAPI_Amsend for more

information.

This is a non-blocking call. The calling task cannot change the uhdr (origin header)

and org_vec data until completion at the origin is signaled by the org_cntr being

incremented. The calling task cannot assume that the org_vec structure can be

changed before the origin counter is incremented. The structure (of type

lapi_vec_t) that is returned by the header handler cannot be modified before the

target counter has been incremented. Also, if a completion handler is specified, it

may execute asynchronously, and can only be assumed to have completed after

the target counter increments (on the target) or the completion counter increments

(at the origin).

The length of the user-specified header (uhdr_len) is constrained by the

implementation-specified maximum value MAX_UHDR_SZ. uhdr_len must be a

multiple of the processor’s doubleword size. To get the best bandwidth, uhdr_len

should be as small as possible.

If the following requirement is not met, an error condition occurs:

v If a strided vector is being transferred, the size of each block must not be greater

than the stride size in bytes.

LAPI does not check for any overlapping regions among vectors either at the origin

or the target. If the overlapping regions exist on the target side, the contents of the

target buffer are undefined after the operation.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_Amsendv

Chapter 18. Subroutines for all systems (PE and standalone) 145

LAPI_ERR_HDR_HNDLR_NULL

Indicates that the hdr_hdl passed in is NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride *

num_vecs) is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR

Indicates that the org_vec->info[i] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but its length

(org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater

than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL Indicates that org_vec is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL

Indicates that the strided vector address

org_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is

greater than MAX_UHDR_SZ or is not a multiple of

the processor’s doubleword size.

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but uhdr_len is

not 0.

Location

/usr/lib/liblapi_r.a

C examples

1. To send a LAPI_GEN_IOVECTOR using active messages:

/* header handler routine to execute on target task */

lapi_vec_t *hdr_hndlr(lapi_handle_t *handle, void *uhdr, uint *uhdr_len,

 ulong *len_vec[], compl_hndlr_t **completion_handler,

 void **user_info)

{

 /* set completion handler pointer and other info */

 /* set up the vector to return to LAPI */

 /* for a LAPI_GEN_IOVECTOR: num_vecs, vec_type, and len must all have */

 /* the same values as the origin vector. The info array should */

LAPI_Amsendv

146 IBM RSCT for AIX 5L: LAPI Programming Guide

/* contain the buffer addresses for LAPI to write the data */

 vec->num_vecs = NUM_VECS;

 vec->vec_type = LAPI_GEN_IOVECTOR;

 vec->len = (unsigned long *)malloc(NUM_VECS*sizeof(unsigned long));

 vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 for(i=0; i < NUM_VECS; i++) {

 vec->info[i] = (void *) &data_buffer[i];

 vec->len[i] = (unsigned long)(sizeof(int));

 }

 return vec;

}

{

 .

 .

 .

 void *hdr_hndlr_list[NUM_TASKS]; /* table of remote header handlers */

 lapi_vec_t *vec; /* data for data transfer */

 vec->num_vecs = NUM_VECS;

 vec->vec_type = LAPI_GEN_IOVECTOR;

 vec->len = (unsigned long *) malloc(NUM_VECS*sizeof(unsigned long));

 vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each vec->info[i] gets a base address */

 /* each vec->len[i] gets the number of bytes to transfer from vec->info[i] */

 LAPI_Amsendv(hndl, tgt, (void *) hdr_hdl_list[buddy], NULL, 0, vec,

 tgt_cntr, org_cntr, cmpl_cntr);

 /* data will be copied as follows: */

 /* len[0] bytes of data starting from address info[0] */

 /* len[1] bytes of data starting from address info[1] */

 .

 .

 .

 /* len[NUM_VECS-1] bytes of data starting from address info[NUM_VECS-1] */

}

The above example could also illustrate the LAPI_GEN_GENERIC type, with

the following modifications:

v Both vectors would need LAPI_GEN_GENERIC as the vec_type.

v There are no restrictions on symmetry of number of vectors and lengths

between the origin and target sides.

2. To send a LAPI_STRIDED_VECTOR using active messages:

/* header handler routine to execute on target task */

lapi_vec_t *hdr_hndlr(lapi_handle_t *handle, void *uhdr, uint *uhdr_len,

 ulong *len_vec[], compl_hndlr_t **completion_handler,

 void **user_info)

{

 int block_size; /* block size */

 int data_size; /* stride */

 .

 .

 .

 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */

 /* must match that of the origin vector */

LAPI_Amsendv

Chapter 18. Subroutines for all systems (PE and standalone) 147

vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as origin vector */

 /* see comments in origin vector setup for a description of how data */

 /* will be copied based on these settings. */

 vec->info[0] = buffer_address; /* starting address for data copy */

 vec->info[1] = block_size; /* bytes of data to copy */

 vec->info[2] = stride; /* distance from copy block to copy block */

 .

 .

 .

 return vec;

}

{

 .

 .

 .

 lapi_vec_t *vec; /* data for data transfer */

 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */

 /* must match that of the target vector */

 vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as target vector */

 vec->info[0] = buffer_address; /* starting address for data copy */

 vec->info[1] = block_size; /* bytes of data to copy */

 vec->info[2] = stride; /* distance from copy block to copy block */

 /* data will be copied as follows: */

 /* block_size bytes will be copied from buffer_address */

 /* block_size bytes will be copied from buffer_address+stride */

 /* block_size bytes will be copied from buffer_address+(2*stride) */

 /* block_size bytes will be copied from buffer_address+(3*stride) */

 .

 .

 .

 /* block_size bytes will be copied from buffer_address+((NUM_VECS-1)*stride) */

 .

 .

 .

 /* if uhdr isn’t used, uhdr should be NULL and uhdr_len should be 0 */

 /* tgt_cntr, org_cntr and cmpl_cntr can all be NULL */

 LAPI_Amsendv(hndl, tgt, (void *) hdr_hdl_list[buddy], uhdr, uhdr_len,

 vec, tgt_cntr, org_cntr, cmpl_cntr);

 .

 .

 .

}

For complete examples, see the sample programs shipped with LAPI.

Related information

“Using vectors” on page 37, for information about vector data transfer

Subroutines: LAPI_Addr_get, LAPI_Addr_set, LAPI_Address_init,

LAPI_Amsend, LAPI_Getcntr, LAPI_Getv, LAPI_Putv, LAPI_Qenv,

LAPI_Waitcntr, LAPI_Xfer

LAPI_Amsendv

148 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Fence

Purpose

Enforces order on LAPI calls.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Fence(hndl)

lapi_handle_t hndl;

FORTRAN syntax

include ’lapif.h’

LAPI_FENCE(hndl, ierror)

INTEGER hndl

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: Local data synchronization (blocking) (may require progress on the

remote task)

Use this subroutine to enforce order on LAPI calls. If a task calls LAPI_Fence, all

the LAPI operations that were initiated by that task, before the fence using the LAPI

context hndl, are guaranteed to complete at the target tasks. This occurs before any

of its communication operations using hndl, initiated after the LAPI_Fence, start

transmission of data. This is a data fence which means that the data movement is

complete. This is not an operation fence which would need to include active

message completion handlers completing on the target.

LAPI_Fence may require internal protocol processing on the remote side to

complete the fence request.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_Fence

Chapter 18. Subroutines for all systems (PE and standalone) 149

Location

/usr/lib/liblapi_r.a

C examples

To establish a data barrier in a single task:

lapi_handle_t hndl; /* the LAPI handle */

 ...

/* API communication call 1 */

/* API communication call 2 */

 ...

/* API communication call n */

LAPI_Fence(hndl);

/* all data movement from above communication calls has completed by this point */

/* any completion handlers from active message calls could still be running. */

Related information

Subroutines: LAPI_Amsend, LAPI_Gfence

LAPI_Fence

150 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Get

Purpose

Copies data from a remote task to a local task.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Get(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr)

lapi_handle_t hndl;

uint tgt;

ulong len;

void *tgt_addr;

void *org_addr;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

FORTRAN syntax

include ’lapif.h’

LAPI_GET(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)

INTEGER hndl

INTEGER tgt

INTEGER (KIND=LAPI_LONG_TYPE) :: len

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: org_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task that is the source of the

data. The value of this parameter must be in the range 0 <= tgt <

NUM_TASKS.

len Specifies the number of bytes of data to be copied. This parameter

must be in the range 0 <= len <= the value of LAPI constant

LAPI_MAX_MSG_SZ.

tgt_addr Specifies the target buffer address of the data source. If len is 0,

The value of this parameter can be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is

incremented once the data buffer on the target can be modified. If

the value of this parameter is NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN), the target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in

FORTRAN). The origin counter is incremented after data arrives at

LAPI_Get

Chapter 18. Subroutines for all systems (PE and standalone) 151

the origin. If the value of this parameter is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), the origin counter is not

updated.

OUTPUT

org_addr Specifies the local buffer address into which the received data is

copied. If len is 0, The value of this parameter can be NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data from a remote (target) task to a local (origin)

task. Note that in this case the origin task is actually the receiver of the data. This

difference in transfer type makes the counter behavior slightly different than in the

normal case of origin sending to target.

The origin buffer will still increment on the origin task upon availability of the origin

buffer. But in this case, the origin buffer becomes available once the transfer of data

is complete. Similarly, the target counter will increment once the target buffer is

available. Target buffer availability in this case refers to LAPI no longer needing to

access the data in the buffer.

This is a non-blocking call. The caller cannot assume that data transfer has

completed upon the return of the function. Instead, counters should be used to

ensure correct buffer addresses as defined above.

Note that a zero-byte message does not transfer data, but it does have the same

semantic with respect to counters as that of any other message.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len is greater than

the value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_ORG_ADDR_NULL

Indicates that the org_addr passed in is NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN), but len is

greater than 0.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_ERR_TGT_ADDR_NULL

Indicates that the tgt_addr passed in is NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN), but len is

greater than 0.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

LAPI_Get

152 IBM RSCT for AIX 5L: LAPI Programming Guide

Location

/usr/lib/liblapi_r.a

C examples

{

 /* initialize the table buffer for the data addresses */

 /* get remote data buffer addresses */

 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);

 .

 .

 .

 LAPI_Get(hndl, tgt, (ulong) data_len, (void *) (data_buffer_list[tgt]),

 (void *) data_buffer, tgt_cntr, org_cntr);

 /* retrieve data_len bytes from address data_buffer_list[tgt] on task tgt. */

 /* write the data starting at address data_buffer. tgt_cntr and org_cntr */

 /* can be NULL. */

}

Related information

Subroutines: LAPI_Address_init, LAPI_Getcntr, LAPI_Put, LAPI_Qenv,

LAPI_Waitcntr, LAPI_Xfer

LAPI_Get

Chapter 18. Subroutines for all systems (PE and standalone) 153

LAPI_Getcntr

Purpose

Gets the integer value of a specified LAPI counter.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Getcntr(hndl, cntr, val)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int *val;

FORTRAN syntax

include ’lapif.h’

LAPI_GETCNTR(hndl, cntr, val, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER val

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

cntr Specifies the address of the counter. The value of this parameter

cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

val Returns the integer value of the counter cntr. The value of this

parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: Local counter manipulation

This subroutine gets the integer value of cntr. It is used to check progress on hndl.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr pointer is NULL (in C) or that

the value of cntr is LAPI_ADDR_NULL (in

FORTRAN).

LAPI_Getcntr

154 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the val pointer is NULL

(in C) or that the value of val is LAPI_ADDR_NULL

(in FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

{

 lapi_cntr_t cntr;

 int val;

 /* cntr is initialized */

 /* processing/communication takes place */

 LAPI_Getcntr(hndl, &cntr, &val)

 /* val now contains the current value of cntr */

}

Related information

Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getv, LAPI_Put,

LAPI_Putv, LAPI_Rmw, LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Getcntr

Chapter 18. Subroutines for all systems (PE and standalone) 155

LAPI_Getv

Purpose

Copies vectors of data from a remote task to a local task.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr)

lapi_handle_t hndl;

uint tgt;

lapi_vec_t *tgt_vec;

lapi_vec_t *org_vec;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

typedef struct {

 lapi_vectype_t vec_type; /* operation code */

 uint num_vecs; /* number of vectors */

 void **info; /* vector of information */

 ulong *len; /* vector of lengths */

} lapi_vec_t;

FORTRAN syntax

include ’lapif.h’

LAPI_GETV(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, ierror)

INTEGER hndl

INTEGER tgt

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_vec

TYPE (LAPI_VEC_T) :: org_vec

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

INTEGER ierror

The 32-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T

 SEQUENCE

 INTEGER(KIND = 4) :: vec_type

 INTEGER(KIND = 4) :: num_vecs

 INTEGER(KIND = 4) :: info

 INTEGER(KIND = 4) :: len

END TYPE LAPI_VEC_T

The 64-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T

 SEQUENCE

 INTEGER(KIND = 4) :: vec_type

 INTEGER(KIND = 4) :: num_vecs

 INTEGER(KIND = 8) :: info

 INTEGER(KIND = 8) :: len

END TYPE LAPI_VEC_T

LAPI_Getv

156 IBM RSCT for AIX 5L: LAPI Programming Guide

Parameters

INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter

must be in the range 0 <= tgt < NUM_TASKS.

tgt_vec Points to the target vector description.

org_vec Points to the origin vector description.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is

incremented once the data buffer on the target can be modified. If

the value of this parameter is NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN), the target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in

FORTRAN). The origin counter is incremented after data arrives at

the origin. If the value of this parameter is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), the origin counter is not

updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

This subroutine is the vector version of the LAPI_Get call. Use LAPI_Getv to

transfer vectors of data from the target task to the origin task. Both the origin and

target vector descriptions are located in the address space of the origin task. But,

the values specified in the info array of the target vector must be addresses in the

address space of the target task.

The calling program cannot assume that the origin buffer can be changed or that

the contents of the origin buffers on the origin task are ready for use upon function

return. After the origin counter (org_cntr) is incremented, the origin buffers can be

modified by the origin task. After the target counter (tgt_cntr) is incremented, the

target buffers can be modified by the target task. If you provide a completion

counter (cmpl_cntr), it is incremented at the origin after the target counter (tgt_cntr)

has been incremented at the target. If the values of any of the counters or counter

addresses are NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the data transfer

occurs, but the corresponding counter increments do not occur.

If any of the following requirements are not met, an error condition occurs:

v The vector types org_vec−>vec_type and tgt_vec->vec_type must be the same.

v If a strided vector is being transferred, the size of each block must not be greater

than the stride size in bytes.

v The length of any vector that is pointed to by tgt_vec must be equal to the length

of the corresponding vector that is pointed to by org_vec.

LAPI_Getv

Chapter 18. Subroutines for all systems (PE and standalone) 157

LAPI does not check for any overlapping regions among vectors either at the origin

or the target. If the overlapping regions exist on the origin side, the contents of the

origin buffer are undefined after the operation.

See LAPI_Amsendv for details about commuication using different LAPI vector

types. (LAPI_Getv does not support the LAPI_GEN_GENERIC type.)

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent

(stride * num_vecs) is greater than the value of

LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block

size.

LAPI_ERR_ORG_VEC_ADDR

Indicates that some org_vec->info[i] is NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN). but the

corresponding length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the total sum of all org_vec->len[i]

(where [i] is in the range

0 <= i <= org_vec->num_vecs) is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL

Indicates that the strided vector base address

org_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL

Indicates that the strided vector address

tgt_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs)

is greater than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec’s stride is less than its

block size.

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but its length

(tgt_vec->len[i]) is not 0.

LAPI_Getv

158 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater

than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different

lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different

num_vecs.

LAPI_ERR_VEC_TYPE_DIFF

Indicates that org_vec and tgt_vec have different

vector types (vec_type).

Location

/usr/lib/liblapi_r.a

C examples

To get a LAPI_GEN_IOVECTOR:

{

 /* retrieve a remote data buffer address for data to transfer, */

 /* such as through LAPI_Address_init */

 /* task that calls LAPI_Getv sets up both org_vec and tgt_vec */

 org_vec->num_vecs = NUM_VECS;

 org_vec->vec_type = LAPI_GEN_IOVECTOR;

 org_vec->len = (unsigned long *)

 malloc(NUM_VECS*sizeof(unsigned long));

 org_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each org_vec->info[i] gets a base address on the origin task */

 /* each org_vec->len[i] gets the number of bytes to write to */

 /* org_vec->info[i] */

 tgt_vec->num_vecs = NUM_VECS;

 tgt_vec->vec_type = LAPI_GEN_IOVECTOR;

 tgt_vec->len = (unsigned long *)

 malloc(NUM_VECS*sizeof(unsigned long));

 tgt_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each tgt_vec->info[i] gets a base address on the target task */

 /* each tgt_vec->len[i] gets the number of bytes to transfer */

 /* from vec->info[i] */

 /* For LAPI_GEN_IOVECTOR, num_vecs, vec_type, and len must be */

 /* the same */

 LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr);

 /* tgt_cntr and org_cntr can both be NULL */

 /* data will be retrieved as follows: */

 /* org_vec->len[0] bytes will be retrieved from */

 /* tgt_vec->info[0] and written to org_vec->info[0] */

 /* org_vec->len[1] bytes will be retrieved from */

 /* tgt_vec->info[1] and written to org_vec->info[1] */

 .

 .

LAPI_Getv

Chapter 18. Subroutines for all systems (PE and standalone) 159

.

 /* org_vec->len[NUM_VECS-1] bytes will be retrieved */

 /* from tgt_vec->info[NUM_VECS-1] and written to */

 /* org_vec->info[NUM_VECS-1] */

}

For examples of other vector types, see LAPI_Amsendv.

Related information

Subroutines: LAPI_Amsendv, LAPI_Getcntr, LAPI_Putv, LAPI_Qenv,

LAPI_Waitcntr

LAPI_Getv

160 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Gfence

Purpose

Enforces order on LAPI calls across all tasks and provides barrier synchronization

among them.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Gfence(hndl)

lapi_handle_t hndl;

FORTRAN syntax

include ’lapif.h’

LAPI_GFENCE(hndl, ierror)

INTEGER hndl

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: collective data synchronization (blocking)

Use this subroutine to enforce global order on LAPI calls. This is a collective call.

Collective calls must be made in the same order at all participating tasks.

On completion of this call, it is assumed that all LAPI communication associated

with hndl from all tasks has quiesced. Although hndl is local, it represents a set of

tasks that were associated with it at LAPI_Init, all of which must participate in this

operation for it to complete. This is a data fence, which means that the data

movement is complete. This is not an operation fence, which would need to include

active message completion handlers completing on the target.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_Gfence

Chapter 18. Subroutines for all systems (PE and standalone) 161

Location

/usr/lib/liblapi_r.a

Related information

Subroutines: LAPI_Fence

LAPI_Gfence

162 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Init

Purpose

Initializes a LAPI context.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Init(hndl,lapi_info)

lapi_handle_t *hndl;

lapi_info_t *lapi_info;

FORTRAN syntax

include ’lapif.h’

LAPI_INIT(hndl,lapi_info,ierror)

INTEGER hndl

TYPE (LAPI_INFO_T) :: lapi_info

INTEGER ierror

Parameters

INPUT/OUTPUT

lapi_info Specifies a structure that provides the parallel job information with

which this LAPI context is associated. The value of this parameter

cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

hndl Specifies a pointer to the LAPI handle to initialize.

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: Local initialization

Use this subroutine to instantiate and initialize a new LAPI context. A handle to the

newly-created LAPI context is returned in hndl. All subsequent LAPI calls can use

hndl to specify the context of the LAPI operation. Except for LAPI_Address() and

LAPI_Msg_string(), the user cannot make any LAPI calls before calling

LAPI_Init().

The lapi_info structure (lapi_info_t) must be ″zeroed out″ before any fields are

filled in. To do this in C, use this statement: bzero (lapi_info, size of (lapi_info_t)).

In FORTRAN, you need to ″zero out″ each field manually in the LAPI_INFO_T type.

Fields with a description of Future support should not be used because the names

of those fields might change.

LAPI_Init

Chapter 18. Subroutines for all systems (PE and standalone) 163

The lapi_info_t structure is defined as follows:

typedef struct {

 lapi_dev_t protocol; /* Protocol device returned */

 lapi_lib_t lib_vers; /* LAPI library version -- user-supplied */

 uint epoch_num; /* No longer used */

 int num_compl_hndlr_thr; /* Number of completion handler threads */

 uint instance_no; /* Instance of LAPI to initialize [1-16] */

 int info6; /* Future support */

 LAPI_err_hndlr *err_hndlr; /* User-registered error handler */

 com_thread_info_t *lapi_thread_attr; /* Support thread att and init function */

 void *adapter_name; /* What adapter to initialize, i.e. css0, ml0 */

 lapi_extend_t *add_info; /* Additional structure extension */

} lapi_info_t;

The fields are used as follows:

protocol LAPI sets this field to the protocol that has been initialized.

lib_vers Is used to indicate a library version to LAPI for compatibility

purposes. Valid values for this field are:

L1_LIB Provides basic functionality (this is the default).

L2_LIB Provides the ability to use counters as structures.

LAST_LIB Provides the most current level of functionality. For

new users of LAPI, lib_vers should be set to

LAST_LIB.

This field must be set to L2_LIB or LAST_LIB to use

LAPI_Nopoll_wait and LAPI_Setcntr_wstatus.

epoch_num This field is no longer used.

num_compl_hndlr_thr

Indicates to LAPI the number of completion handler threads to

initialize.

instance_no Specifies the instance of LAPI to initialize (1 to 16).

info6 This field is for future use.

err_hndlr Use this field to optionally pass a callback pointer to an

error-handler routine.

lapi_thread_attr

Supports thread attributes and initialization function.

adapter_name Is used in persistent subsystem (PSS) mode to pass an adapter

name.

add_info Is used for additional information in standalone UDP mode.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_ALL_HNDL_IN_USE

All available LAPI instances are in use.

LAPI_ERR_BOTH_NETSTR_SET

Both the MP_LAPI_NETWORK and

MP_LAPI_INET statements are set (only one

should be set).

LAPI_Init

164 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_ERR_CSS_LOAD_FAILED

LAPI is unable to load the communication utility

library.

LAPI_ERR_HNDL_INVALID The lapi_handle_t * passed to LAPI for initialization

is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_INFO_NONZERO_INFO

The future support fields in the lapi_info_t structure

that was passed to LAPI are not set to zero (and

should be).

LAPI_ERR_INFO_NULL The lapi_info_t pointer passed to LAPI is NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_MEMORY_EXHAUSTED

LAPI is unable to obtain memory from the system.

LAPI_ERR_MSG_API Indicates that the MP_MSG_API environment

variable is not set correctly.

LAPI_ERR_NO_NETSTR_SET

No network statement is set. Note that if running

with POE, this will be returned if MP_MSG_API is

not set correctly.

LAPI_ERR_NO_UDP_HNDLR You passed a value of NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) for both the

UDP handler and the UDP list. One of these (the

UDP handler or the UDP list) must be initialized for

standalone UDP initialization. This error is returned

in standalone UDP mode only.

LAPI_ERR_PSS_NON_ROOT You tried to initialize the persistent subsystem

(PSS) protocol as a non-root user.

LAPI_ERR_SHM_KE_NOT_LOADED

LAPI’s shared memory kernel extension is not

loaded.

LAPI_ERR_SHM_SETUP LAPI is unable to set up shared memory. This error

will be returned if LAPI_USE_SHM=only and tasks

are assigned to more than one node.

LAPI_ERR_UDP_PKT_SZ The UDP packet size you indicated is not valid.

LAPI_ERR_UNKNOWN An internal error has occurred.

LAPI_ERR_USER_UDP_HNDLR_FAIL

The UDP handler you passed has returned a

non-zero error code. This error is returned in

standalone UDP mode only.

Location

/usr/lib/liblapi_r.a

C examples

The following environment variable must be set before LAPI is initialized:

MP_MSG_API=[lapi | [lapi,mpi | mpi,lapi] | mpi_lapi]

LAPI_Init

Chapter 18. Subroutines for all systems (PE and standalone) 165

The following environment variables are also commonly used:

MP_EUILIB=[ip | us] (ip is the default)

MP_PROCS=number_of_tasks_in_job

LAPI_USE_SHM=[yes | no | only] (no is the default)

To initialize LAPI, follow these steps:

1. Set environment variables (as described in “Setting environment variables” on

page 29) before the user application is invoked. The remaining steps are done

in the user application.

2. Clear lapi_info_t, then set any fields.

3. Call LAPI_Init.

For systems running PE

Both US and UDP/IP are supported for shared handles as long as they are the

same for both handles. Mixed transport protocols such as LAPI IP and shared user

space (US) are not supported.

To initialize a LAPI handle:

{

 lapi_handle_t hndl;

 lapi_info_t info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 LAPI_Init(&hndl, &info);

}

To initialize a LAPI handle and register an error handler:

void my_err_hndlr(lapi_handle_t *hndl, int *error_code, lapi_err_t *err_type,

 int *task_id, int *src)

{

 /* examine passed parameters and delete desired information */

 if (user wants to terminate) {

 LAPI_Term(*hndl); /* will terminate LAPI */

 exit(some_return_code);

 }

 /* any additional processing */

 return; /* signals to LAPI that error is non-fatal; execution should continue */

}

{

 lapi_handle_t hndl;

 lapi_info_t info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 /* set error handler pointer */

 info.err_hndlr = (LAPI_err_hndlr) my_err_hndlr;

 LAPI_Init(&hndl, &info);

}

LAPI_Init

166 IBM RSCT for AIX 5L: LAPI Programming Guide

For standalone systems (not running PE)

To initialize a LAPI handle for UDP/IP communication using a user handler:

int my_udp_hndlr(lapi_handle_t *hndl, lapi_udp_t *local_addr, lapi_udp_t *addr_list,

 lapi_udpinfo_t *info)

{

 /* LAPI will allocate and free addr_list pointer when using */

 /* a user handler */

 /* use the AIX inet_addr call to convert an IP address */

 /* from a dotted quad to a long */

 task_0_ip_as_long = inet_addr(task_0_ip_as_string);

 addr_list[0].ip_addr = task_0_ip_as_long;

 addr_list[0].port_no = task_0_port_as_unsigned;

 task_1_ip_as_long = inet_addr(task_1_ip_as_string);

 addr_list[1].ip_addr = task_1_ip_as_long;

 addr_list[1].port_no = task_1_port_as_unsigned;

 .

 .

 .

 task_num_tasks-1_ip_as_long = inet_addr(task_num_tasks-1_ip_as_string);

 addr_list[num_tasks-1].ip_addr = task_num_tasks-1_ip_as_long;

 addr_list[num_tasks-1].port_no = task_num_tasks-1_port_as_unsigned;

}

{

 lapi_handle_t hndl;

 lapi_info_t info;

 lapi_extend_t extend_info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 bzero(&extend_info, sizeof(lapi_extend_t)); /* clear lapi_extend_info */

 extend_info.udp_hndlr = (udp_init_hndlr *) my_udp_hndlr;

 info.add_info = &extend_info;

 LAPI_Init(&hndl, &info);

}

To initialize a LAPI handle for UDP/IP communication using a user list:

{

 lapi_handle_t hndl;

 lapi_info_t info;

 lapi_extend_t extend_info;

 lapi_udp_t *addr_list;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 bzero(&extend_info, sizeof(lapi_extend_t)); /* clear lapi_extend_info */

 /* when using a user list, the user is responsible for allocating */

 /* and freeing the list pointer */

 addr_list = malloc(num_tasks);

 /* Note, since we need to know the number of tasks before LAPI is */

 /* initialized, we can’t use LAPI_Qenv. getenv("MP_PROCS") will */

 /* do the trick. */

 /* populate addr_list */

LAPI_Init

Chapter 18. Subroutines for all systems (PE and standalone) 167

/* use the AIX inet_addr call to convert an IP address */

 /* from a dotted quad to a long */

 task_0_ip_as_long = inet_addr(task_0_ip_as_string);

 addr_list[0].ip_addr = task_0_ip_as_long;

 addr_list[0].port_no = task_0_port_as_unsigned;

 task_1_ip_as_long = inet_addr(task_1_ip_as_string);

 addr_list[1].ip_addr = task_1_ip_as_long;

 addr_list[1].port_no = task_1_port_as_unsigned;

 .

 .

 .

 task_num_tasks-1_ip_as_long = inet_addr(task_num_tasks-1_ip_as_string);

 addr_list[num_tasks-1].ip_addr = task_num_tasks-1_ip_as_long;

 addr_list[num_tasks-1].port_no = task_num_tasks-1_port_as_unsigned;

 /* then assign to extend pointer */

 extend_info.add_udp_addrs = addr_list;

 info.add_info = &extend_info;

 LAPI_Init(&hndl, &info);

 .

 .

 .

 /* user’s responsibility only in the case of user list */

 free(addr_list);

}

See the LAPI sample programs for complete examples of initialization in standalone

mode.

To initialize a LAPI handle for user space (US) communication in standalone mode:

export MP_MSG_API=lapi

export MP_EUILIB=us

export MP_PROCS= /* number of tasks in job */

export MP_PARTITION= /* unique job key */

export MP_CHILD= /* unique task ID */

export MP_LAPI_NETWORK=@1:164,sn0 /* LAPI network information */

run LAPI jobs as normal

See the README.LAPI.STANDALONE.US file in the standalone/us directory of

the LAPI sample files for complete details.

Related information

v “Initializing LAPI” on page 31

v “Standalone initialization” on page 117

v Chapter 13, “Bulk transfer of messages,” on page 99

Subroutines: LAPI_Msg_string, LAPI_Term

LAPI_Init

168 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Msg_string

Purpose

Retrieves the message that is associated with a subroutine return code.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

LAPI_Msg_string(error_code, buf)

int error_code;

void *buf;

FORTRAN syntax

include ’lapif.h’

LAPI_MSG_STRING(error_code, buf, ierror)

INTEGER error_code

CHARACTER buf(LAPI_MAX_ERR_STRING)

INTEGER ierror

Parameters

INPUT

error_code Specifies the return value of a previous LAPI call.

OUTPUT

buf Specifies the buffer to store the message string.

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local queries

Use this subroutine to retrieve the message string that is associated with a LAPI

return code. LAPI tries to find the messages of any return codes that come from the

AIX operating system or its communication subsystem.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_CATALOG_FAIL Indicates that the message catalog cannot be

opened. An English-only string is copied into the

user’s message buffer (buf).

LAPI_ERR_CODE_UNKNOWN

Indicates that error_code is outside of the range

known to LAPI.

LAPI_Msg_string

Chapter 18. Subroutines for all systems (PE and standalone) 169

LAPI_ERR_RET_PTR_NULL Indicates that the value of the buf pointer is NULL

(in C) or that the value of buf is LAPI_ADDR_NULL

(in FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

To get the message string associated with a LAPI return code:

{

 char msg_buf[LAPI_MAX_ERR_STRING]; /* constant defined in lapi.h */

 int rc, errc;

 rc = some_LAPI_call();

 errc = LAPI_Msg_string(rc, msg_buf);

 /* msg_buf now contains the message string for the return code */

}

LAPI_Msg_string

170 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Msgpoll

Purpose

Allows the calling thread to check communication progress.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Msgpoll(hndl, cnt, info)

lapi_handle_t hndl;

uint cnt;

lapi_msg_info_t *info;

typedef struct {

 lapi_msg_state_t status; /* Message status returned from LAPI_Msgpoll */

 ulong reserve[10]; /* Reserved */

} lapi_msg_info_t;

FORTRAN syntax

include ’lapif.h’

LAPI_MSGPOLL(hndl, cnt, info, ierror)

INTEGER hndl

INTEGER cnt

TYPE (LAPI_MSG_STATE_T) :: info

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

cnt Specifies the maximum number of times the dispatcher should loop

with no progress before returning.

info Specifies a status structure that contains the result of the

LAPI_Msgpoll() call. LAPI will set flags depending on the status of

any send or receive completions.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local progress monitor (blocking)

The LAPI_Msgpoll subroutine allows the calling thread to check communication

progress. With this subroutine, LAPI provides a means of running the dispatcher

several times until either progress is made or a specified maximum number of

dispatcher loops have executed. Here, progress is defined as the completion of

either a message send operation or a message receive operation.

LAPI_Msgpoll

Chapter 18. Subroutines for all systems (PE and standalone) 171

LAPI_Msgpoll is intended to be used when interrupts are turned off. If the user has

not explicitly turned interrupts off, LAPI temporarily disables interrupt mode while in

this subroutine because the dispatcher is called, which will process any pending

receive operations. If the LAPI dispatcher loops for the specified maximum number

of times, the call returns. If progress is made before the maximum count, the call

will return immediately. In either case, LAPI will report status through a data

structure that is passed by reference.

The lapi_msg_info_t structure contains a flags field (status), which is of type

lapi_msg_state_t. Flags in the status field are set as follows:

LAPI_DISP_CNTR If the dispatcher has looped cnt times without

making progress

LAPI_SEND_COMPLETE If a message send operation has completed

LAPI_RECV_COMPLETE If a message receive operation has completed

LAPI_BOTH_COMPLETE If both a message send operation and a message

receive operation have completed

LAPI_POLLING_NET If another thread is already polling the network or

shared memory completion

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_MSG_INFO_NULL

Indicates that the info pointer is NULL (in C) or that

the value of info is LAPI_ADDR_NULL (in

FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

To loop through the dispatcher no more than 1000 times, then check what progress

has been made:

{

 lapi_msg_info_t msg_info;

 int cnt = 1000;

 .

 .

 .

 LAPI_Msgpoll(hndl, cnt, &msg_info);

 if (msg_info.status & LAPI_BOTH_COMPLETE) {

 /* both a message receive and a message send have been completed */

 } else if (msg_info.status & LAPI_RECV_COMPLETE) {

 /* just a message receive has been completed */

 } else if (msg_info.status & LAPI_SEND_COMPLETE) {

 /* just a message send has been completed */

 } else {

 /* cnt loops and no progress */

LAPI_Msgpoll

172 IBM RSCT for AIX 5L: LAPI Programming Guide

}

}

Related information

Subroutines: LAPI_Getcntr, LAPI_Probe, LAPI_Setcntr, LAPI_Waitcntr

LAPI_Msgpoll

Chapter 18. Subroutines for all systems (PE and standalone) 173

LAPI_Probe

Purpose

Transfers control to the communication subsystem to check for arriving messages

and to make progress in polling mode.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Probe(hndl)

lapi_handle_t hndl;

FORTRAN syntax

include ’lapif.h’

int LAPI_PROBE(hndl, ierror)

INTEGER hndl

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local progress monitor (non-blocking)

This subroutine transfers control to the communication subsystem in order to make

progress on messages associated with the context hndl. A LAPI_Probe operation

lasts for one round of the communication dispatcher.

Note: There is no guarantee about receipt of messages on the return from this

function.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

Location

/usr/lib/liblapi_r.a

LAPI_Probe

174 IBM RSCT for AIX 5L: LAPI Programming Guide

Related information

Subroutines: LAPI_Getcntr, LAPI_Msgpoll, LAPI_Nopoll_wait, LAPI_Waitcntr

LAPI_Probe

Chapter 18. Subroutines for all systems (PE and standalone) 175

LAPI_Put

Purpose

Transfers data from a local task to a remote task.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Put(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;

uint tgt;

ulong len;

void *tgt_addr;

void *org_addr;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

lapi_cntr_t *cmpl_cntr;

FORTRAN syntax

include ’lapif.h’

int LAPI_PUT(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)

INTEGER hndl

INTEGER tgt

INTEGER (KIND=LAPI_LONG_TYPE) :: len

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_addr

INTEGER org_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

TYPE (LAPI_CNTR_T) :: cmpl_cntr

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter

must be in the range 0 <= tgt < NUM_TASKS.

len Specifies the number of bytes to be transferred. This parameter

must be in the range 0 <= len <= the value of LAPI constant

LAPI_MAX_MSG_SZ.

tgt_addr Specifies the address on the target task where data is to be copied

into. If len is 0, The value of this parameter can be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

org_addr Specifies the address on the origin task from which data is to be

copied. If len is 0, The value of this parameter can be NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is

LAPI_Put

176 IBM RSCT for AIX 5L: LAPI Programming Guide

incremented upon message completion. If this parameter is NULL

(in C) or LAPI_ADDR_NULL (in FORTRAN), the target counter is

not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in

FORTRAN). The origin counter is incremented at buffer availability.

If this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the completion counter address (in C) or the completion

counter (in FORTRAN) that is a reflection of tgt_cntr. The

completion counter is incremented at the origin after tgt_cntr is

incremented. If this parameter is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), the completion counter is not

updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data from a local (origin) task to a remote (target)

task. The origin counter will increment on the origin task upon origin buffer

availability. The target counter will increment on the target and the completion

counter will increment at the origin task upon message completion. Because there

is no completion handler, message completion and target buffer availability are the

same in this case.

This is a non-blocking call. The caller cannot assume that the data transfer has

completed upon the return of the function. Instead, counters should be used to

ensure correct buffer accesses as defined above.

Note that a zero-byte message does not transfer data, but it does have the same

semantic with respect to counters as that of any other message.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_DATA_LEN Indicates that the value of len is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_ORG_ADDR_NULL

Indicates that the org_addr parameter passed in is

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN),

but len is greater than 0.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_Put

Chapter 18. Subroutines for all systems (PE and standalone) 177

LAPI_ERR_TGT_ADDR_NULL

Indicates that the tgt_addr parameter passed in is

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN),

but len is greater than 0.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

Location

/usr/lib/liblapi_r.a

C examples

{

 /* initialize the table buffer for the data addresses */

 /* get remote data buffer addresses */

 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);

 .

 .

 .

 LAPI_Put(hndl, tgt, (ulong) data_len, (void *)(data_buffer_list[tgt]),

 (void *) data_buffer, tgt_cntr, org_cntr, compl_cntr);

 /* transfer data_len bytes from local address data_buffer. */

 /* write the data starting at address data_buffer_list[tgt] on */

 /* task tgt. tgt_cntr, org_cntr, and compl_cntr can be NULL. */

}

Related information

Subroutines: LAPI_Get, LAPI_Getcntr, LAPI_Qenv, LAPI_Setcntr,

LAPI_Waitcntr, LAPI_Xfer

LAPI_Put

178 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Putv

Purpose

Transfers vectors of data from a local task to a remote task.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;

uint tgt;

lapi_vec_t *tgt_vec;

lapi_vec_t *org_vec;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

lapi_cntr_t *cmpl_cntr;

typedef struct {

 lapi_vectype_t vec_type; /* operation code */

 uint num_vecs; /* number of vectors */

 void **info; /* vector of information */

 ulong *len; /* vector of lengths */

} lapi_vec_t;

FORTRAN syntax

include ’lapif.h’

LAPI_PUTV(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr , cmpl_cntr, ierror)

INTEGER hndl

INTEGER tgt

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_vec

TYPE (LAPI_VEC_T) :: org_vec

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

TYPE (LAPI_CNTR_T) :: cmpl_cntr

INTEGER ierror

The 32-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T

 SEQUENCE

 INTEGER(KIND = 4) :: vec_type

 INTEGER(KIND = 4) :: num_vecs

 INTEGER(KIND = 4) :: info

 INTEGER(KIND = 4) :: len

END TYPE LAPI_VEC_T

The 64-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T

 SEQUENCE

 INTEGER(KIND = 4) :: vec_type

 INTEGER(KIND = 4) :: num_vecs

 INTEGER(KIND = 8) :: info

 INTEGER(KIND = 8) :: len

END TYPE LAPI_VEC_T

LAPI_Putv

Chapter 18. Subroutines for all systems (PE and standalone) 179

Parameters

INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter

must be in the range 0 <= tgt < NUM_TASKS.

tgt_vec Points to the target vector description.

org_vec Points to the origin vector description.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is

incremented upon message completion. If this parameter is NULL

(in C) or LAPI_ADDR_NULL (in FORTRAN), the target counter is

not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in

FORTRAN). The origin counter is incremented at buffer availability.

If this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the completion counter address (in C) or the completion

counter (in FORTRAN) that is a reflection of tgt_cntr. The

completion counter is incremented at the origin after tgt_cntr is

incremented. If this parameter is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), the completion counter is not

updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

LAPI_Putv is the vector version of the LAPI_Put call. Use this subroutine to

transfer vectors of data from the origin task to the target task. The origin vector

descriptions and the target vector descriptions are located in the address space of

the origin task. However, the values specified in the info array of the target vector

must be addresses in the address space of the target task.

The calling program cannot assume that the origin buffer can be changed or that

the contents of the target buffers on the target task are ready for use upon function

return. After the origin counter (org_cntr) is incremented, the origin buffers can be

modified by the origin task. After the target counter (tgt_cntr) is incremented, the

target buffers can be modified by the target task. If you provide a completion

counter (cmpl_cntr), it is incremented at the origin after the target counter (tgt_cntr)

has been incremented at the target. If the values of any of the counters or counter

addresses are NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the data transfer

occurs, but the corresponding counter increments do not occur.

If a strided vector is being transferred, the size of each block must not be greater

than the stride size in bytes.

The length of any vector pointed to by org_vec must be equal to the length of the

corresponding vector pointed to by tgt_vec.

LAPI_Putv

180 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI does not check for any overlapping regions among vectors either at the origin

or the target. If the overlapping regions exist on the target side, the contents of the

target buffer are undefined after the operation.

See LAPI_Amsendv for more information about using the various vector types.

(LAPI_Putv does not support the LAPI_GEN_GENERIC type.)

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride *

num_vecs) is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR

Indicates that the org_vec->info[i] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but its length

(org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater

than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL

Indicates that the strided vector address

org_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL

Indicates that the strided vector address

tgt_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs)

is greater than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec stride is less than block.

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but its length

(tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater

than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_Putv

Chapter 18. Subroutines for all systems (PE and standalone) 181

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different

lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different

num_vecs.

LAPI_ERR_VEC_TYPE_DIFF

Indicates that org_vec and tgt_vec have different

vector types (vec_type).

Location

/usr/lib/liblapi_r.a

C examples

To put a LAPI_GEN_IOVECTOR:

{

 /* retrieve a remote data buffer address for data to transfer, */

 /* such as through LAPI_Address_init */

 /* task that calls LAPI_Putv sets up both org_vec and tgt_vec */

 org_vec->num_vecs = NUM_VECS;

 org_vec->vec_type = LAPI_GEN_IOVECTOR;

 org_vec->len = (unsigned long *)

 malloc(NUM_VECS*sizeof(unsigned long));

 org_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each org_vec->info[i] gets a base address on the origin task */

 /* each org_vec->len[i] gets the number of bytes to transfer */

 /* from org_vec->info[i] */

 tgt_vec->num_vecs = NUM_VECS;

 tgt_vec->vec_type = LAPI_GEN_IOVECTOR;

 tgt_vec->len = (unsigned long *)

 malloc(NUM_VECS*sizeof(unsigned long));

 tgt_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each tgt_vec->info[i] gets a base address on the target task */

 /* each tgt_vec->len[i] gets the number of bytes to write to vec->info[i] */

 /* For LAPI_GEN_IOVECTOR, num_vecs, vec_type, and len must be the same */

 LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, compl_cntr);

 /* tgt_cntr, org_cntr and compl_cntr can all be NULL */

 /* data will be transferred as follows: */

 /* org_vec->len[0] bytes will be retrieved from */

 /* org_vec->info[0] and written to tgt_vec->info[0] */

 /* org_vec->len[1] bytes will be retrieved from */

 /* org_vec->info[1] and written to tgt_vec->info[1] */

 .

 .

 .

 /* org_vec->len[NUM_VECS-1] bytes will be retrieved */

 /* from org_vec->info[NUM_VECS-1] and written to */

 /* tgt_vec->info[NUM_VECS-1] */

}

LAPI_Putv

182 IBM RSCT for AIX 5L: LAPI Programming Guide

See the example in LAPI_Amsendv for information on other vector types.

Related information

Subroutines: LAPI_Amsendv, LAPI_Getcntr, LAPI_Getv, LAPI_Qenv,

LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Putv

Chapter 18. Subroutines for all systems (PE and standalone) 183

LAPI_Qenv

Purpose

Used to query LAPI for runtime task information.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapif.h>

int LAPI_Qenv(hndl, query, ret_val)

lapi_handle_t hndl;

lapi_query_t query;

int *ret_val; /* ret_val’s type varies (see Additional query types) */

FORTRAN syntax

include ’lapif.h’

LAPI_QENV(hndl, query, ret_val, ierror)

INTEGER hndl

INTEGER query

INTEGER ret_val /* ret_val’s type varies (see Additional query types) */

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

query Specifies the type of query you want to request. In C, the values for

query are defined by the lapi_query_t enumeration in lapi.h. In

FORTRAN, these values are defined explicitly in the 32-bit version

and the 64-bit version of lapif.h.

OUTPUT

ret_val Specifies the reference parameter for LAPI to store as the result of

the query. The value of this parameter cannot be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local queries

Use this subroutine to query runtime settings and statistics from LAPI. LAPI defines

a set of query types as an enumeration in lapi.h for C and explicitly in the 32-bit

and 64-bit versions of lapif.h for FORTRAN.

For example, you can query the size of the table that LAPI uses for the

LAPI_Addr_set subroutine using a query value of LOC_ADDRTBL_SZ:

LAPI_Qenv(hndl, LOC_ADDRTBL_SZ, &ret_val);

LAPI_Qenv

184 IBM RSCT for AIX 5L: LAPI Programming Guide

ret_val will contain the upper bound on the table index. A subsequent call to

LAPI_Addr_set (hndl, addr, addr_hndl); could then ensure that the value of

addr_hndl is between 0 and ret_val.

When used to show the size of a parameter, a comparison of values, or a range of

values, valid values for the query parameter of the LAPI_Qenv subroutine appear

in SMALL, BOLD capital letters. For example:

NUM_TASKS

is a shorthand notation for:

LAPI_Qenv(hndl, NUM_TASKS, ret_val)

In C, lapi_query_t defines the valid types of LAPI queries:

typedef enum {

 TASK_ID=0, /* Query the task ID of the current task in the job */

 NUM_TASKS, /* Query the number of tasks in the job */

 MAX_UHDR_SZ, /* Query the maximum user header size for active messaging */

 MAX_DATA_SZ, /* Query the maximum data length that can be sent */

 ERROR_CHK, /* Query and set parameter checking on (1) or off (0) */

 TIMEOUT, /* Query and set the current communication timeout setting */

 /* in seconds */

 MIN_TIMEOUT, /* Query the minimum communication timeout setting in seconds */

 MAX_TIMEOUT, /* Query the maximum communication timeout setting in seconds */

 INTERRUPT_SET, /* Query and set interrupt mode on (1) or off (0) */

 MAX_PORTS, /* Query the maximum number of available communication ports */

 MAX_PKT_SZ, /* This is the payload size of 1 packet */

 NUM_REX_BUFS, /* Number of retransmission buffers */

 REX_BUF_SZ, /* Size of each retransmission buffer in bytes */

 LOC_ADDRTBL_SZ, /* Size of address store table used by LAPI_Addr_set */

 EPOCH_NUM, /* No longer used by LAPI (supports legacy code) */

 USE_THRESH, /* No longer used by LAPI (supports legacy code) */

 RCV_FIFO_SIZE, /* No longer used by LAPI (supports legacy code) */

 MAX_ATOM_SIZE,/* Query the maximum atom size for a DGSP accumulate transfer*/

 BUF_CP_SIZE, /* Query the size of the message buffer to save (default 128b)*/

 MAX_PKTS_OUT, /* Query the maximum number of messages outstanding / */

 /* destination */

 ACK_THRESHOLD, /* Query and set the threshold of acknowledgments going */

 /* back to the source */

 QUERY_SHM_ENABLED, /* Query to see if shared memory is enabled */

 QUERY_SHM_NUM_TASKS, /* Query to get the number of tasks that use shared */

 /* memory */

 QUERY_SHM_TASKS, /* Query to get the list of task IDs that make up shared */

 /* memory; pass in an array of size QUERY_SHM_NUM_TASKS */

 QUERY_STATISTICS, /* Query to get packet statistics from LAPI, as */

 /* defined by the lapi_statistics_t structure. For */

 /* this query, pass in ’lapi_statistics_t *’ rather */

 /* than ’int *ret_val’; otherwise, the data will */

 /* overflow the buffer. */

 PRINT_STATISTICS, /* Query debug print function to print out statistics */

 QUERY_SHM_STATISTICS,/* Similar query as QUERY_STATISTICS for shared */

 /* memory path. */

 QUERY_LOCAL_SEND_STATISTICS ,/* Similar query as QUERY_STATISTICS */

 /* for local copy path. */

 BULK_XFER, /* Query to see if bulk transfer is enabled (1) or disabled (0) */

 BULK_MIN_MSG_SIZE, /* Query the current bulk transfer minimum message size */

 LAST_QUERY

LAPI_Qenv

Chapter 18. Subroutines for all systems (PE and standalone) 185

|
|
|
|
|
|

} lapi_query_t;

typedef struct {

 lapi_long_t Tot_dup_pkt_cnt; /* Total duplicate packet count */

 lapi_long_t Tot_retrans_pkt_cnt; /* Total retransmit packet count */

 lapi_long_t Tot_gho_pkt_cnt; /* Total Ghost packet count */

 lapi_long_t Tot_pkt_sent_cnt; /* Total packet sent count */

 lapi_long_t Tot_pkt_recv_cnt; /* Total packet receive count */

 lapi_long_t Tot_data_sent; /* Total data sent */

 lapi_long_t Tot_data_recv; /* Total data receive */

 } lapi_statistics_t;

In FORTRAN, the valid types of LAPI queries are defined in lapif.h as follows:

 integer TASK_ID,NUM_TASKS,MAX_UHDR_SZ,MAX_DATA_SZ,ERROR_CHK

 integer TIMEOUT,MIN_TIMEOUT,MAX_TIMEOUT

 integer INTERRUPT_SET,MAX_PORTS,MAX_PKT_SZ,NUM_REX_BUFS

 integer REX_BUF_SZ,LOC_ADDRTBL_SZ,EPOCH_NUM,USE_THRESH

 integer RCV_FIFO_SIZE,MAX_ATOM_SIZE,BUF_CP_SIZE

 integer MAX_PKTS_OUT,ACK_THRESHOLD,QUERY_SHM_ENABLED

 integer QUERY_SHM_NUM_TASKS,QUERY_SHM_TASKS

 integer QUERY_STATISTICS,PRINT_STATISTICS

 integer QUERY_SHM_STATISTICS,QUERY_LOCAL_SEND_STATISTICS

 integer BULK_XFER,BULK_MIN_MSG_SIZE,

 integer LAST_QUERY

 parameter (TASK_ID=0,NUM_TASKS=1,MAX_UHDR_SZ=2,MAX_DATA_SZ=3)

 parameter (ERROR_CHK=4,TIMEOUT=5,MIN_TIMEOUT=6)

 parameter (MAX_TIMEOUT=7,INTERRUPT_SET=8,MAX_PORTS=9)

 parameter (MAX_PKT_SZ=10,NUM_REX_BUFS=11,REX_BUF_SZ=12)

 parameter (LOC_ADDRTBL_SZ=13,EPOCH_NUM=14,USE_THRESH=15)

 parameter (RCV_FIFO_SIZE=16,MAX_ATOM_SIZE=17,BUF_CP_SIZE=18)

 parameter (MAX_PKTS_OUT=19,ACK_THRESHOLD=20)

 parameter (QUERY_SHM_ENABLED=21,QUERY_SHM_NUM_TASKS=22)

 parameter (QUERY_SHM_TASKS=23,QUERY_STATISTICS=24)

 parameter (PRINT_STATISTICS=25)

 parameter (QUERY_SHM_STATISTICS=26,QUERY_LOCAL_SEND_STATISTICS=27)

 parameter (BULK_XFER=28,BULK_MIN_MSG_SIZE=29)

 parameter (LAST_QUERY=30)

Additional query types

LAPI provides additional query types for which the behavior of LAPI_Qenv is

slightly different:

PRINT_STATISTICS When passed this query type, LAPI sends data

transfer statistics to standard output. In this case,

ret_val is unaffected. However, LAPI’s error

checking requires that the value of ret_val is not

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN)

for all LAPI_Qenv types (including

PRINT_STATISTICS).

QUERY_LOCAL_SEND_STATISTICS

When passed this query type, LAPI_Qenv

interprets ret_val as a pointer to type

lapi_statistics_t. Upon function return, the fields of

the structure contain LAPI’s data transfer statistics

for data transferred through intra-task local copy.

The packet count will be 0.

QUERY_SHM_STATISTICS When passed this query type, LAPI_Qenv

interprets ret_val as a pointer to type

lapi_statistics_t. Upon function return, the fields of

LAPI_Qenv

186 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

|
|
|

|
|
|
|
|
|
|

||
|
|

the structure contain LAPI’s data transfer statistics

for data transferred through shared memory.

QUERY_SHM_TASKS When passed this query type, LAPI_Qenv returns a

list of task IDs with which this task can

communicate using shared memory. ret_val must

be an int * with enough space to hold NUM_TASKS

integers. For each task i, if it is possible to use

shared memory, ret_val[i] will contain the shared

memory task ID. If it is not possible to use shared

memory, ret_val[i] will contain -1.

QUERY_STATISTICS When passed this query type, LAPI_Qenv

interprets ret_val as a pointer to type

lapi_statistics_t. Upon function return, the fields of

the structure contain LAPI’s data transfer statistics

for data transferred using the user space (US)

protocol or UDP/IP.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_QUERY_TYPE Indicates that the query passed in is not valid.

LAPI_ERR_RET_PTR_NULL Indicates that the value of the ret_val pointer is

NULL (in C) or that the value of ret_val is

LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

To query runtime values from LAPI:

{

 int task_id;

 lapi_statistics_t stats;

 .

 .

 .

 LAPI_Qenv(hndl, TASK_ID, &task_id);

 /* task_id now contains the task ID */

 .

 .

 .

 LAPI_Qenv(hndl, QUERY_STATISTICS, (int *)&stats);

 /* the fields of the stats structure are now

 filled in with runtime values */

 .

 .

 .

}

Related information

Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Put, LAPI_Senv, LAPI_Xfer

LAPI_Qenv

Chapter 18. Subroutines for all systems (PE and standalone) 187

|
|

|

LAPI_Rmw

Purpose

Provides data synchronization primitives.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Rmw(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;

RMW_ops_t op;

uint tgt;

int *tgt_var;

int *in_val;

int *prev_tgt_val;

lapi_cntr_t *org_cntr;

FORTRAN syntax

include ’lapif.h’

LAPI_RMW(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr, ierror)

INTEGER hndl

INTEGER op

INTEGER tgt

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_var

INTEGER in_val

INTEGER prev_tgt_val

TYPE (LAPI_CNTR_T) :: org_cntr

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

op Specifies the operation to be performed. The valid operations are:

v COMPARE_AND_SWAP

v FETCH_AND_ADD

v FETCH_AND_OR

v SWAP

tgt Specifies the task ID of the target task where the read-modify-write

(Rmw) variable resides. The value of this parameter must be in the

range 0 <= tgt < NUM_TASKS.

tgt_var Specifies the target read-modify-write (Rmw) variable (in

FORTRAN) or its address (in C). The value of this parameter

cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

in_val Specifies the value that is passed in to the operation (op). This

value cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

LAPI_Rmw

188 IBM RSCT for AIX 5L: LAPI Programming Guide

prev_tgt_val Specifies the location at the origin in which the previous tgt_var on

the target task is stored before the operation (op) is executed. The

value of this parameter can be NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN).

org_cntr Specifies the origin counter address (in C) or the origin counter (in

FORTRAN). If prev_tgt_val is set, the origin counter (org_cntr) is

incremented when prev_tgt_val is returned to the origin side. If

prev_tgt_val is not set, the origin counter (org_cntr) is updated after

the operation (op) is completed at the target side.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to synchronize two independent pieces of data, such as two

tasks sharing a common data structure. The operation is performed at the target

task (tgt) and is atomic. The operation takes an input value (in_val) from the origin

and performs one of four operations (op) on a variable (tgt_var) at the target (tgt),

and then replaces the target variable (tgt_var) with the results of the operation (op).

The original value (prev_tgt_val) of the target variable (tgt_var) is returned to the

origin.

The operations (op) are performed over the context referred to by hndl. The

outcome of the execution of these calls is as if the following code was executed

atomically:

*prev_tgt_val = *tgt_var;

*tgt_var = f(*tgt_var, *in_val);

where:

f(a,b) = a + b for FETCH_AND_ADD

f(a,b) = a | b for FETCH_AND_OR (bitwise or)

f(a,b) = b for SWAP

For COMPARE_AND_SWAP, in_val is treated as a pointer to an array of two

integers, and the op is the following atomic operation:

 if(*tgt_var == in_val[0]) {

 *prev_tgt_val = TRUE;

 *tgt_var = in_val[1];

} else {

 *prev_tgt_val = FALSE;

}

All LAPI_Rmw calls are non-blocking. To test for completion, use the LAPI_Getcntr

and LAPI_Waitcntr subroutines. LAPI_Rmw does not include a target counter

(tgt_cntr), so LAPI_Rmw calls do not provide any indication of completion on the

target task (tgt).

LAPI_Rmw

Chapter 18. Subroutines for all systems (PE and standalone) 189

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or

that the value of in_val is LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_RMW_OP Indicates that op is not valid.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or

that the value of tgt_var is LAPI_ADDR_NULL (in

FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

1. To synchronize a data value between two tasks (with FETCH_AND_ADD):

{

 int local_var;

 int *addr_list;

 /* both tasks initialize local_var to a value */

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt */

 .

 .

 .

 /* add value to local_var on some task */

 /* use LAPI to add value to local_var on remote task */

 LAPI_Rmw(hndl, FETCH_AND_ADD, tgt, addr_list[tgt],

 value, prev_tgt_val, &org_cntr);

 /* local_var on the remote task has been increased */

 /* by value. prev_tgt_val now contains the value */

 /* of local_var on remote task before the addition */

}

2. To synchronize a data value between two tasks (with SWAP):

{

 int local_var;

 int *addr_list;

 /* local_var addresses are exchanged and stored */

LAPI_Rmw

190 IBM RSCT for AIX 5L: LAPI Programming Guide

/* in addr_list (using LAPI_Address_init). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt. */

 .

 .

 .

 /* local_var is assigned some value */

 /* assign local_var to local_var on remote task */

 LAPI_Rmw(hndl, SWAP, tgt, addr_list[tgt],

 local_var, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now equal to */

 /* local_var on the local task. prev_tgt_val now */

 /* contains the value of local_var on the remote */

 /* task before the swap. */

}

3. To conditionally swap a data value (with COMPARE_AND_SWAP):

{

 int local_var;

 int *addr_list;

 int in_val[2];

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt. */

 .

 .

 .

 /* if local_var on remote_task is equal to comparator, */

 /* assign value to local_var on remote task */

 in_val[0] = comparator;

 in_val[1] = value;

 LAPI_Rmw(hndl, COMPARE_AND_SWAP, tgt, addr_list[tgt],

 in_val, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now in_val[1] if it */

 /* had previously been equal to in_val[0]. If the swap */

 /* was performed, prev_tgt_val now contains TRUE; */

 /* otherwise, it contains FALSE. */

}

Related information

Subroutines: LAPI_Address_init, LAPI_Getcntr, LAPI_Qenv, LAPI_Rmw64,

LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Rmw

Chapter 18. Subroutines for all systems (PE and standalone) 191

LAPI_Rmw64

Purpose

Provides data synchronization primitives for 64-bit applications.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Rmw64(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;

Rmw_ops_t op;

uint tgt;

long long *tgt_var;

long long *in_val;

long long *prev_tgt_val;

lapi_cntr_t *org_cntr;

FORTRAN syntax

include ’lapif.h’

LAPI_RMW64(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr, ierror)

INTEGER hndl

INTEGER op

INTEGER tgt

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_var

INTEGER (KIND=LAPI_LONG_LONG_TYPE) :: in_val, prev_tgt_val

TYPE (LAPI_CNTR_T) :: org_cntr

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

op Specifies the operation to be performed. The valid operations are:

v COMPARE_AND_SWAP

v FETCH_AND_ADD

v FETCH_AND_OR

v SWAP

tgt Specifies the task ID of the target task where the read-modify-write

(Rmw64) variable resides. The value of this parameter must be in

the range 0 <= tgt < NUM_TASKS.

tgt_var Specifies the target read-modify-write (Rmw64) variable (in

FORTRAN) or its address (in C). The value of this parameter

cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

in_val Specifies the value that is passed in to the operation (op). This

value cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

LAPI_Rmw64

192 IBM RSCT for AIX 5L: LAPI Programming Guide

prev_tgt_val Specifies the location at the origin in which the previous tgt_var on

the target task is stored before the operation (op) is executed. The

value of this parameter can be NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN).

org_cntr Specifies the origin counter address (in C) or the origin counter (in

FORTRAN). If prev_tgt_val is set, the origin counter (org_cntr) is

incremented when prev_tgt_val is returned to the origin side. If

prev_tgt_val is not set, the origin counter (org_cntr) is updated after

the operation (op) is completed at the target side.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

This subroutine is the 64-bit version of LAPI_Rmw. It is used to synchronize two

independent pieces of 64-bit data, such as two tasks sharing a common data

structure. The operation is performed at the target task (tgt) and is atomic. The

operation takes an input value (in_val) from the origin and performs one of four

operations (op) on a variable (tgt_var) at the target (tgt), and then replaces the

target variable (tgt_var) with the results of the operation (op). The original value

(prev_tgt_val) of the target variable (tgt_var) is returned to the origin.

The operations (op) are performed over the context referred to by hndl. The

outcome of the execution of these calls is as if the following code was executed

atomically:

*prev_tgt_val = *tgt_var;

*tgt_var = f(*tgt_var, *in_val);

where:

f(a,b) = a + b for FETCH_AND_ADD

f(a,b) = a | b for FETCH_AND_OR (bitwise or)

f(a,b) = b for SWAP

For COMPARE_AND_SWAP, in_val is treated as a pointer to an array of two

integers, and the op is the following atomic operation:

if(*tgt_var == in_val[0]) {

 *prev_tgt_val = TRUE;

 *tgt_var = in_val[1];

} else {

 *prev_tgt_val = FALSE;

}

This subroutine can also be used on a 32-bit processor.

All LAPI_Rmw64 calls are non-blocking. To test for completion, use the

LAPI_Getcntr and LAPI_Waitcntr subroutines. LAPI_Rmw64 does not include a

target counter (tgt_cntr), so LAPI_Rmw64 calls do not provide any indication of

completion on the target task (tgt).

LAPI_Rmw64

Chapter 18. Subroutines for all systems (PE and standalone) 193

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or

that the value of in_val is LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_RMW_OP Indicates that op is not valid.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or

that the value of tgt_var is LAPI_ADDR_NULL (in

FORTRAN).

Location

/usr/lib/liblapi_r.a

C examples

1. To synchronize a data value between two tasks (with FETCH_AND_ADD):

{

 long long local_var;

 long long *addr_list;

 /* both tasks initialize local_var to a value */

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init64) */

 /* addr_list[tgt] now contains address of */

 /* local_var on tgt */

 .

 .

 .

 /* add value to local_var on some task */

 /* use LAPI to add value to local_var on remote task */

 LAPI_Rmw64(hndl, FETCH_AND_ADD, tgt, addr_list[tgt],

 value, prev_tgt_val, &org_cntr);

 /* local_var on remote task has been increased */

 /* by value. prev_tgt_val now contains value of */

 /* local_var on remote task before the addition */

}

2. To synchronize a data value between two tasks (with SWAP):

{

 long long local_var;

 long long *addr_list;

 /* local_var addresses are exchanged and stored */

LAPI_Rmw64

194 IBM RSCT for AIX 5L: LAPI Programming Guide

/* in addr_list (using LAPI_Address_init64). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt. */

 .

 .

 .

 /* local_var is assigned some value */

 /* assign local_var to local_var on the remote task */

 LAPI_Rmw64(hndl, SWAP, tgt, addr_list[tgt],

 local_var, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now equal to local_var */

 /* on the local task. prev_tgt_val now contains the value */

 /* of local_var on the remote task before the swap. */

}

3. To conditionally swap a data value (with COMPARE_AND_SWAP):

{

 long long local_var;

 long long *addr_list;

 long long in_val[2];

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init64). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt. */

 .

 .

 .

 /* if local_var on remote_task is equal to comparator, */

 /* assign value to local_var on the remote task */

 in_val[0] = comparator;

 in_val[1] = value;

 LAPI_Rmw64(hndl, COMPARE_AND_SWAP, tgt, addr_list[tgt],

 in_val, prev_tgt_val, &org_cntr);

 /* local_var on remote task is now in_val[1] if it */

 /* had previously been equal to in_val[0]. If the */

 /* swap was performed, prev_tgt_val now contains */

 /* TRUE; otherwise, it contains FALSE. */

}

Related information

Subroutines: LAPI_Address_init64, LAPI_Getcntr, LAPI_Qenv, LAPI_Rmw,

LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Rmw64

Chapter 18. Subroutines for all systems (PE and standalone) 195

LAPI_Senv

Purpose

Used to set a runtime variable.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapif.h>

int LAPI_Senv(hndl, query, set_val)

lapi_handle_t hndl;

lapi_query_t query;

int set_val;

FORTRAN syntax

include ’lapif.h’

LAPI_SENV(hndl, query, set_val, ierror)

INTEGER hndl

INTEGER query

INTEGER set_val

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

query Specifies the type of query that you want to set. In C, the values for

query are defined by the lapi_query_t enumeration in lapi.h. In

FORTRAN, these values are defined explicitly in the 32-bit version

and the 64-bit version of lapif.h.

set_val Specifies the integer value of the query that you want to set.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local queries

Use this subroutine to set runtime attributes for a specific LAPI instance. In C, the

lapi_query_t enumeration defines the attributes that can be set at runtime. These

attributes are defined explicitly in FORTRAN. See LAPI_Qenv for more information.

You can use LAPI_Senv to set these runtime attributes: ACK_THRESHOLD,

ERROR_CHK, INTERRUPT_SET, and TIMEOUT.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_Senv

196 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_QUERY_TYPE Indicates the query passed in is not valid.

LAPI_ERR_SET_VAL Indicates the set_val pointer is not in valid range.

Location

/usr/lib/liblapi_r.a

C examples

The following values can be set using LAPI_Senv:

ACK_THRESHOLD:

int value;

LAPI_Senv(hndl, ACK_THRESHOLD, value);

/* LAPI sends packet acknowledgements (acks) in groups, waiting until */

/* ACK_THRESHOLD packets have arrived before returning a group of acks */

/* The valid range for ACK_THRESHOLD is (1 <= value <= 30) */

/* The default is 30. */

ERROR_CHK:

boolean toggle;

LAPI_Senv(hndl, ERROR_CHK, toggle);

/* Indicates whether LAPI should perform error checking. If set, LAPI */

/* calls will perform bounds-checking on parameters. Error checking */

/* is disabled by default. */

INTERRUPT_SET:

boolean toggle;

LAPI_Senv(hndl, INTERRUPT_SET, toggle);

/* Determines whether LAPI will respond to interrupts. If interrupts */

/* are disabled, LAPI will poll for message completion. */

/* toggle==True will enable interrupts, False will disable. */

/* Interrupts are enabled by default. */

TIMEOUT:

int value;

LAPI_Senv(hndl, TIMEOUT, value);

/* LAPI will time out on a communication if no response is received */

/* within timeout seconds. Valid range is (10 <= timeout <= 86400). */

/* 86400 seconds = 24 hours. Default value is 900 (15 minutes). */

Related information

Subroutines: LAPI_Qenv

LAPI_Senv

Chapter 18. Subroutines for all systems (PE and standalone) 197

LAPI_Setcntr

Purpose

Used to set a counter to a specified value.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Setcntr(hndl, cntr, val)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int val;

FORTRAN syntax

include ’lapif.h’

LAPI_SETCNTR(hndl, cntr, val, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER val

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

val Specifies the value to which the counter needs to be set.

INPUT/OUTPUT

cntr Specifies the address of the counter to be set (in C) or the counter

structure (in FORTRAN). The value of this parameter cannot be

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: Local counter manipulation

This subroutine sets cntr to the value specified by val. Because the

LAPI_Getcntr/LAPI_Setcntr sequence cannot be made atomic, you should only

use LAPI_Setcntr when you know there will not be any competing operations.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr value passed in is NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_Setcntr

198 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

Location

/usr/lib/liblapi_r.a

C examples

To initialize a counter for use in a communication API call:

{

 lapi_cntr_t my_tgt_cntr, *tgt_cntr_array;

 int initial_value, expected_value, current_value;

 lapi_handle_t hndl;

 .

 .

 .

 /*

 * Note: the code below is executed on all tasks

 */

 /* initialize, allocate and create structures */

 initial_value = 0;

 expected_value = 1;

 /* set the cntr to zero */

 LAPI_Setcntr(hndl, &my_tgt_cntr, initial_value);

 /* set other counters */

 .

 .

 .

 /* exchange counter addresses, LAPI_Address_init synchronizes */

 LAPI_Address_init(hndl, &my_tgt_cntr, tgt_cntr_array);

 /* more address exchanges */

 .

 .

 .

 /* Communication calls using my_tgt_cntr */

 LAPI_Put(....., tgt_cntr_array[tgt], );

 .

 .

 .

 /* Wait for counter to reach value */

 for (;;) {

 LAPI_Getcntr(hndl, &my_tgt_cntr, ¤t_value);

 if (current_value >= expected_value) {

 break; /* out of infinite loop */

 } else {

 LAPI_Probe(hndl);

 }

 }

 .

 .

 .

 /* Quiesce/synchronize to ensure communication using our counter is done */

 LAPI_Gfence(hndl);

 /* Reset the counter */

 LAPI_Setcntr(hndl, &my_tgt_cntr, initial_value);

 /*

 * Synchronize again so that no other communication using the counter can

 * begin from any other task until we’re all finished resetting the counter.

 */

 LAPI_Gfence(hndl);

 /* More communication calls */

LAPI_Setcntr

Chapter 18. Subroutines for all systems (PE and standalone) 199

.

 .

 .

}

Related information

Subroutines: LAPI_Getcntr, LAPI_Waitcntr

LAPI_Setcntr

200 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Term

Purpose

Terminates and cleans up a LAPI context.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Term(hndl)

lapi_handle_t hndl;

FORTRAN syntax

include ’lapif.h’

LAPI_TERM(hndl, ierror)

INTEGER hndl

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local termination

Use this subroutine to terminate the LAPI context that is specified by hndl. Any

LAPI notification threads that are associated with this context are terminated. An

error occurs when any LAPI calls are made using hndl after LAPI_Term is called.

A DGSP that is registered under that LAPI handle remains valid even after

LAPI_Term is called on hndl.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

Location

/usr/lib/liblapi_r.a

LAPI_Term

Chapter 18. Subroutines for all systems (PE and standalone) 201

C examples

To terminate a LAPI context (represented by hndl):

LAPI_Term(hndl);

Related information

Subroutines: LAPI_Init, LAPI_Purge_totask, LAPI_Resume_totask

LAPI_Term

202 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Util

Purpose

Serves as a wrapper function for such data gather/scatter operations as registration

and reservation, for updating UDP port information, and for obtaining pointers to

locking and signaling functions that are associated with a shared LAPI lock.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Util(hndl, util_cmd)

lapi_handle_t hndl;

lapi_util_t *util_cmd;

FORTRAN syntax

include ’lapif.h’

LAPI_UTIL(hndl, util_cmd, ierror)

INTEGER hndl

TYPE (LAPI_UTIL_T) :: util_cmd

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

INPUT/OUTPUT

util_cmd Specifies the command type of the utility function.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: Data gather/scatter program (DGSP), UDP port information, and lock

sharing utilities

This subroutine is used for several different operations, which are indicated by the

command type value in the beginning of the command structure. The lapi_util_t

structure is defined as:

typedef union {

 lapi_util_type_t Util_type;

 lapi_reg_dgsp_t RegDgsp;

 lapi_dref_dgsp_t DrefDgsp;

 lapi_resv_dgsp_t ResvDgsp;

 lapi_reg_ddm_t DdmFunc;

 lapi_add_udp_port_t Udp;

 lapi_pack_dgsp_t PackDgsp;

 lapi_unpack_dgsp_t UnpackDgsp;

 lapi_thread_func_t ThreadFunc;

} lapi_util_t;

LAPI_Util

Chapter 18. Subroutines for all systems (PE and standalone) 203

The enumerated type lapi_util_type_t has these values:

 Table 14. lapi_util_type_t types

Value of Util_type Union member as interpreted by LAPI_Util

LAPI_REGISTER_DGSP lapi_reg_dgsp_t

LAPI_UNRESERVE_DGSP lapi_dref_dgsp_t

LAPI_RESERVE_DGSP lapi_resv_dgsp_t

LAPI_REG_DDM_FUNC lapi_reg_ddm_t

LAPI_ADD_UDP_DEST_PORT lapi_add_udp_port_t

LAPI_DGSP_PACK lapi_pack_dgsp_t

LAPI_DGSP_UNPACK lapi_unpack_dgsp_t

LAPI_GET_THREAD_FUNC lapi_thread_func_t

hndl is not checked for command type LAPI_REGISTER_DGSP,

LAPI_RESERVE_DGSP, or LAPI_UNRESERVE_DGSP.

LAPI_REGISTER_DGSP

You can use this operation to register a LAPI DGSP that you have created. To

register a LAPI DGSP, lapi_dgsp_descr_t idgsp must be passed in. LAPI returns a

handle (lapi_dg_handle_t dgsp_handle) to use for all future LAPI calls. The

dgsp_handle that is returned by a register operation is identified as a

lapi_dg_handle_t type, which is the appropriate type for LAPI_Xfer and LAPI_Util

calls that take a DGSP. This returned dgsp_handle is also defined to be castable to

a pointer to a lapi_dgsp_descr_t for those situations where the LAPI user requires

read-only access to information that is contained in the cached DGSP. The register

operation delivers a DGSP to LAPI for use in future message send, receive, pack,

and unpack operations. LAPI creates its own copy of the DGSP and protects it by

reference count. All internal LAPI operations that depend on a DGSP cached in

LAPI ensure the preservation of the DGSP by incrementing the reference count

when they begin a dependency on the DGSP and decrementing the count when

that dependency ends. A DGSP, once registered, can be used from any LAPI

instance. LAPI_Term does not discard any DGSPs.

You can register a DGSP, start one or more LAPI operations using the DGSP, and

then unreserve it with no concern about when the LAPI operations that depend on

the DGSP will be done using it. See LAPI_RESERVE_DGSP and

LAPI_UNRESERVE_DGSP for more information.

In general, the DGSP you create and pass in to the LAPI_REGISTER_DGSP call

using the dgsp parameter is discarded after LAPI makes and caches its own copy.

Because DGSP creation is complex, user errors may occur, but extensive error

checking at data transfer time would hurt performance. When developing code that

creates DGSPs, you can invoke extra validation at the point of registration by

setting the LAPI_VERIFY_DGSP environment variable. LAPI_Util will return any

detected errors. Any errors that exist and are not detected at registration time will

cause problems during data transfer. Any errors detected during data transfer will

be reported by an asynchronous error handler. A segmentation fault is one common

symptom of a faulty DGSP. If multiple DGSPs are in use, the asynchronous error

handler will not be able to identify which DGSP caused the error. For more

information about asynchronous error handling, see LAPI_Init.

LAPI_Util

204 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_REGISTER_DGSP uses the lapi_reg_dgsp_t command structure.

 Table 15. The lapi_reg_dgsp_t fields

lapi_reg_dgsp_t field

lapi_reg_dgsp_t field

type lapi_reg_dgsp_t usage

Util_type lapi_util_type_t LAPI_REGISTER_DGSP

idgsp lapi_dgsp_descr_t IN - pointer to DGSP program

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP

program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_RESERVE_DGSP

You can use this operation to reserve a DGSP. This operation is provided because

a LAPI client might cache a LAPI DGSP handle for later use. The client needs to

ensure the DGSP will not be discarded before the cached handle is used. A DGSP

handle, which is defined to be a pointer to a DGSP description that is already

cached inside LAPI, is passed to this operation. The DGSP handle is also defined

to be a structure pointer, so that client programs can get direct access to

information in the DGSP. Unless the client can be certain that the DGSP will not be

″unreserved″ by another thread while it is being accessed, the client should bracket

the access window with its own reserve/unreserve operation. The client is not to

modify the cached DGSP, but LAPI has no way to enforce this. The reserve

operation increments the user reference count, thus protecting the DGSP until an

unreserve operation occurs. This is needed because the thread that placed the

reservation will expect to be able to use or examine the cached DGSP until it

makes an unreserve call (which decrements the user reference count), even if the

unreserve operation that matches the original register operation occurs within this

window on some other thread.

LAPI_RESERVE_DGSP uses the lapi_resv_dgsp_t command structure.

 Table 16. The lapi_resv_dgsp_t fields

lapi_resv_dgsp_t field

lapi_resv_dgsp_t field

type lapi_resv_dgsp_t usage

Util_type lapi_util_type_t LAPI_RESERVE_DGSP

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP

program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_UNRESERVE_DGSP

You can use this operation to unregister or unreserve a DGSP. This operation

decrements the user reference count. If external and internal reference counts are

zero, this operation lets LAPI free the DGSP. All operations that decrement a

reference count cause LAPI to check to see if the counts have both become 0 and

if they have, dispose of the DGSP. Several internal LAPI activities increment and

decrement a second reference count. The cached DGSP is disposable only when

all activities (internal and external) that depend on it and use reference counting to

preserve it have discharged their reference. The DGSP handle is passed to LAPI as

a value parameter and LAPI does not nullify the caller’s handle. It is your

LAPI_Util

Chapter 18. Subroutines for all systems (PE and standalone) 205

responsibility to not use this handle again because in doing an unreserve operation,

you have indicated that you no longer count on the handle remaining valid.

LAPI_UNRESERVE_DGSP uses the lapi_dref_dgsp_t command structure.

 Table 17. The lapi_dref_dgsp_t fields

lapi_dref_dgsp_t field

lapi_dref_dgsp_t field

type lapi_dref_dgsp_t usage

Util_type lapi_util_type_t LAPI_UNRESERVE_DGSP

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP

program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_REG_DDM_FUNC

You can use this operation to register data distribution manager (DDM) functions. It

works in conjunction with the DGSM CONTROL instruction. Primarily, it is used for

MPI_Accumulate, but LAPI clients can provide any DDM function. It is also used to

establish a callback function for processing data that is being scattered into a user

buffer on the destination side.

The native LAPI user can install a callback without affecting the one MPI has

registered for MPI_Accumulate. The function prototype for the callback function is:

typedef long ddm_func_t (/* return number of bytes processed */

 void *in, /* pointer to inbound data */

 void *inout, /* pointer to destination space */

 long bytes, /* number of bytes inbound */

 int operand, /* CONTROL operand value */

 int operation /* CONTROL operation value */

);

A DDM function acts between the arrival of message data and the target buffer. The

most common usage is to combine inbound data with data already in the target

buffer. For example, if the target buffer is an array of integers and the incoming

message consists of integers, the DDM function can be written to add each

incoming integer to the value that is already in the buffer. The operand and

operation fields of the DDM function allow one DDM function to support a range of

operations with the CONTROL instruction by providing the appropriate values for

these fields.

See “Using data gather/scatter programs (DGSPs)” on page 43 for more

information.

LAPI_REG_DDM_FUNC uses the lapi_reg_ddm_t command structure. Each call

replaces the previous function pointer, if there was one.

 Table 18. The lapi_reg_ddm_t fields

lapi_reg_ddm_t field

lapi_reg_ddm_t field

type lapi_reg_ddm_t usage

Util_type lapi_util_type_t LAPI_REG_DDM_FUNC

ddm_func ddm_func_t * IN - DDM function pointer

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_Util

206 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_DGSP_PACK

You can use this operation to gather data to a pack buffer from a user buffer under

control of a DGSP. A single buffer may be packed by a series of calls. The caller

provides a position value that is initialized to the starting offset within the buffer.

Each pack operation adjusts position, so the next pack operation can begin where

the previous pack operation ended. In general, a series of pack operations begins

with position initialized to 0, but any offset is valid. There is no state carried from

one pack operation to the next. Each pack operation starts at the beginning of the

DGSP it is passed.

LAPI_DGSP_PACK uses the lapi_pack_dgsp_t command structure.

 Table 19. The lapi_pack_dgsp_t fields

lapi_pack_dgsp_t field

lapi_pack_dgsp_t field

type lapi_pack_dgsp_t usage

Util_type lapi_util_type_t LAPI_DGSP_PACK

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP

program

in_buf void * IN - source buffer to pack

bytes ulong IN - number of bytes to pack

out_buf void * OUT - output buffer for pack

out_size ulong IN - output buffer size in bytes

position ulong IN/OUT - current buffer offset

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_DGSP_UNPACK

You can use this operation to scatter data from a packed buffer to a user buffer

under control of a DGSP. A single buffer may be unpacked by a series of calls. The

caller provides a position value that is initialized to the starting offset within the

packed buffer. Each unpack operation adjusts position, so the next unpack

operation can begin where the previous unpack operation ended. In general, a

series of unpack operations begins with position initialized to 0, but any offset is

valid. There is no state carried from one unpack operation to the next. Each unpack

operation starts at the beginning of the DGSP it is passed.

LAPI_DGSP_UNPACK uses the lapi_unpack_dgsp_t command structure.

 Table 20. The lapi_unpack_dgsp_t fields

lapi_unpack_dgsp_t

field

lapi_unpack_dgsp_t

field type lapi_unpack_dgsp_t usage

Util_type lapi_util_type_t LAPI_DGSP_UNPACK

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP

program

buf void * IN - source buffer for unpack

in_size ulong IN - source buffer size in bytes

out_buf void * OUT - output buffer for unpack

bytes ulong IN - number of bytes to unpack

out_size ulong IN - output buffer size in bytes

LAPI_Util

Chapter 18. Subroutines for all systems (PE and standalone) 207

Table 20. The lapi_unpack_dgsp_t fields (continued)

lapi_unpack_dgsp_t

field

lapi_unpack_dgsp_t

field type lapi_unpack_dgsp_t usage

position ulong IN/OUT - current buffer offset

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_ADD_UDP_DEST_PORT

You can use this operation to update UDP port information about the destination

task. This operation can be used when you have written your own UDP handler

(udp_hndlr) and you need to support recovery of failed tasks. You cannot use this

operation under the POE runtime environment.

LAPI_ADD_UDP_DEST_PORT uses the lapi_add_udp_port_t command structure.

 Table 21. The lapi_add_udp_port_t fields

lapi_add_udp_port_t

field

lapi_add_udp_port_t

field type lapi_add_udp_port_t usage

Util_type lapi_util_type_t LAPI_ADD_UDP_DEST_PORT

tgt uint IN - destination task ID

udp_port lapi_udp_t * IN - UDP port information for the

target

instance_no uint IN - Instance number of UDP

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_GET_THREAD_FUNC

You can use this operation to retrieve various shared locking and signalling

functions. Retrieval of these functions is valid only after LAPI is initialized and

before LAPI is terminated. You should not call any of these functions after LAPI is

terminated.

LAPI_GET_THREAD_FUNC uses the lapi_thread_func_t command structure.

 Table 22. The lapi_thread_func_t fields

lapi_thread_func_t field

lapi_thread_func_t field

type lapi_thread_func_t usage

Util_type lapi_util_type_t LAPI_GET_THREAD_FUNC

mutex_lock lapi_mutex_lock_t OUT - mutex lock function pointer

mutex_unlock lapi_mutex_unlock_t OUT - mutex unlock function pointer

mutex_trylock lapi_mutex_trylock_t OUT - mutex try lock function pointer

mutex_getowner lapi_mutex_getowner_t OUT - mutex get owner function

pointer

cond_wait lapi_cond_wait_t OUT - condition wait function pointer

cond_timedwait lapi_cond_timedwait_t OUT - condition timed wait function

pointer

cond_signal lapi_cond_signal_t OUT - condition signal function

pointer

LAPI_Util

208 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 22. The lapi_thread_func_t fields (continued)

lapi_thread_func_t field

lapi_thread_func_t field

type lapi_thread_func_t usage

cond_init lapi_cond_init_t OUT - initialize condition function

pointer

cond_destroy lapi_cond_destroy_t OUT - destroy condition function

pointer

LAPI uses the pthread library for thread ID management. You can therefore use

pthread_self() to get the running thread ID and lapi_mutex_getowner_t to get the

thread ID that owns the shared lock. Then, you can use pthread_equal() to see if

the two are the same.

Mutex thread functions: LAPI_GET_THREAD_FUNC includes the following

mutex thread functions: mutex lock, mutex unlock, mutex try lock, and mutex get

owner.

Mutex lock function pointer

int (*lapi_mutex_lock_t)(lapi_handle_t hndl);

This function acquires the lock that is associated with the specified LAPI handle.

The call blocks if the lock is already held by another thread. Deadlock can occur if

the calling thread is already holding the lock. You are responsible for preventing and

detecting deadlocks.

Parameters

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was acquired successfully.

EINVAL Is returned if the lock is not valid because of an

incorrect hndl value.

Mutex unlock function pointer

int (*lapi_mutex_unlock_t)(lapi_handle_t hndl);

This function releases the lock that is associated with the specified LAPI handle. A

thread should only unlock its own locks.

Parameters

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was released successfully.

EINVAL Is returned if the lock is not valid because of an

incorrect hndl value.

Mutex try lock function pointer

LAPI_Util

Chapter 18. Subroutines for all systems (PE and standalone) 209

int (*lapi_mutex_trylock_t)(lapi_handle_t hndl);

This function tries to acquire the lock that is associated with the specified LAPI

handle, but returns immediately if the lock is already held.

Parameters

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was acquired successfully.

EBUSY Indicates that the lock is being held.

EINVAL Is returned if the lock is not valid because of an

incorrect hndl value.

Mutex get owner function pointer

int (*lapi_mutex_getowner_t)(lapi_handle_t hndl, pthread_t *tid);

This function gets the pthread ID of the thread that is currently holding the lock

associated with the specified LAPI handle. LAPI_NULL_THREAD_ID indicates that

the lock is not held at the time the function is called.

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

tid Is a pointer to hold the pthread ID to be retrieved.

Return values

0 Indicates that the lock owner was retrieved

successfully.

EINVAL Is returned if the lock is not valid because of an

incorrect hndl value.

Condition functions: LAPI_GET_THREAD_FUNC includes the following

condition functions: condition wait, condition timed wait, condition signal, initialize

condition, and destroy condition.

Condition wait function pointer

int (*lapi_cond_wait_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function waits on a condition variable (cond). The user must hold the lock

associated with the LAPI handle (hndl) before making the call. Upon the return of

the call, LAPI guarantees that the lock is still being held. The same LAPI handle

must be supplied to concurrent lapi_cond_wait_t operations on the same condition

variable.

Parameters

INPUT

LAPI_Util

210 IBM RSCT for AIX 5L: LAPI Programming Guide

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be waited on.

Return values

0 Indicates that the condition variable has been

signaled.

EINVAL Indicates that the value specified by hndl or cond is

not valid.

Condition timed wait function pointer

int (*lapi_cond_timedwait_t)(lapi_handle_t hndl,

 lapi_cond_t *cond,

 struct timespec *timeout);

This function waits on a condition variable (cond). The user must hold the lock

associated with the LAPI handle (hndl) before making the call. Upon the return of

the call, LAPI guarantees that the lock is still being held. The same LAPI handle

must be supplied to concurrent lapi_cond_timedwait_t operations on the same

condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be waited on.

timeout Is a pointer to the absolute time structure specifying the timeout.

Return values

0 Indicates that the condition variable has been

signaled.

ETIMEDOUT Indicates that time specified by timeout has passed.

EINVAL Indicates that the value specified by hndl, cond, or

timeout is not valid.

Condition signal function pointer

int (*lapi_cond_wait_t)(lapi_handle_t hndl, lapi_cond_t *cond);

typedef int (*lapi_cond_signal_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function signals a condition variable (cond) to wake up a thread that is blocked

on the condition. If there are multiple threads waiting on the condition variable,

which thread to wake up is decided randomly.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be signaled.

Return values

0 Indicates that the condition variable has been

signaled.

LAPI_Util

Chapter 18. Subroutines for all systems (PE and standalone) 211

EINVAL Indicates that the value specified by hndl or cond is

not valid.

Initialize condition function pointer

int (*lapi_cond_init_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function initializes a condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be initialized.

Return values

0 Indicates that the condition variable was initialized

successfully.

EAGAIN Indicates that the system lacked the necessary

resources (other than memory) to initialize another

condition variable.

ENOMEM Indicates that there is not enough memory to

initialize the condition variable.

EINVAL Is returned if the hndl value is not valid.

Destroy condition function pointer

int (*lapi_cond_destroy_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function destroys a condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be destroyed.

Return values

0 Indicates that the condition variable was destroyed

successfully.

EBUSY Indicates that the implementation has detected an

attempt to destroy the object referenced by cond

while it is referenced (while being used in a

lapi_cond_wait_t or lapi_cond_timedwait_t by

another thread, for example).

EINVAL Indicates that the value specified by hndl or cond is

not valid.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_DGSP Indicates that the DGSP that was passed in is

LAPI_Util

212 IBM RSCT for AIX 5L: LAPI Programming Guide

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN)

or is not a registered DGSP.

LAPI_ERR_DGSP_ATOM Indicates that the DGSP has an atom_size that is

less than 0 or greater than MAX_ATOM_SIZE.

LAPI_ERR_DGSP_BRANCH Indicates that the DGSP attempted a branch that

fell outside of the code array. This is returned only

in validation mode.

LAPI_ERR_DGSP_COPY_SZ Is returned with DGSP validation turned on when

MCOPY block < 0 or COPY instruction with bytes <

0. This is returned only in validation mode.

LAPI_ERR_DGSP_FREE Indicates that LAPI tried to free a DGSP that is not

valid or is no longer registered. There should be

one LAPI_UNRESERVE_DGSP operation to close

the LAPI_REGISTER_DGSP operation and one

LAPI_UNRESERVE_DGSP operation for each

LAPI_RESERVE_DGSP operation.

LAPI_ERR_DGSP_OPC Indicates that the DGSP opcode is not valid. This is

returned only in validation mode.

LAPI_ERR_DGSP_STACK Indicates that the DGSP has a greater GOSUB

depth than the allocated stack supports. Stack

allocation is specified by the dgsp->depth member.

This is returned only in validation mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_MEMORY_EXHAUSTED

Indicates that LAPI is unable to obtain memory from

the system.

LAPI_ERR_UDP_PORT_INFO

Indicates that the udp_port information pointer is

NULL (in C) or that the value of udp_port is

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_UTIL_CMD Indicates that the command type is not valid.

Location

/usr/lib/liblapi_r.a

C examples

1. To create and register a DGSP:

{

 /*

 ** DGSP code array. DGSP instructions are stored

 ** as ints (with constants defined in lapi.h for

 ** the number of integers needed to store each

 ** instruction). We will have one COPY and one ITERATE

 ** instruction in our DGSP. We use LAPI’s constants

 ** to allocate the appropriate storage.

 */

 int code[LAPI_DGSM_COPY_SIZE+LAPI_DGSM_ITERATE_SIZE];

 /* DGSP description */

 lapi_dgsp_descr_t dgsp_d;

LAPI_Util

Chapter 18. Subroutines for all systems (PE and standalone) 213

/*

 ** Data structure for the xfer call.

 */

 lapi_xfer_t xfer_struct;

 /* DGSP data structures */

 lapi_dgsm_copy_t *copy_p; /* copy instruction */

 lapi_dgsm_iterate_t *iter_p; /* iterate instruction */

 int *code_ptr; /* code pointer */

 /* constant for holding code array info */

 int code_less_iterate_size;

 /* used for DGSP registration */

 lapi_reg_dgsp_t reg_util;

 /*

 ** Set up dgsp description

 */

 /* set pointer to code array */

 dgsp_d.code = &code[0];

 /* set size of code array */

 dgsp_d.code_size = LAPI_DGSM_COPY_SIZE + LAPI_DGSM_ITERATE_SIZE;

 /* not using DGSP gosub instruction */

 dgsp_d.depth = 1;

 /*

 ** set density to show internal gaps in the

 ** DGSP data layout

 */

 dgsp_d.density = LAPI_DGSM_SPARSE;

 /* transfer 4 bytes at a time */

 dgsp_d.size = 4;

 /* advance the template by 8 for each iteration */

 dgsp_d.extent = 8;

 /*

 ** ext specifies the memory ’footprint’ of

 ** data to be transferred. The lext specifies

 ** the offset from the base address to begin

 ** viewing the data. The rext specifies the

 ** length from the base address to use.

 */

 dgsp_d.lext = 0;

 dgsp_d.rext = 4;

 /* atom size of 0 lets LAPI choose the packet size */

 dgsp_d.atom_size = 0;

 /*

 ** set up the copy instruction

 */

 copy_p = (lapi_dgsm_copy_t *)(dgsp_d.code);

 copy_p->opcode = LAPI_DGSM_COPY;

 /* copy 4 bytes at a time */

 copy_p->bytes = (long) 4;

 /* start at offset 0 */

 copy_p->offset = (long) 0;

LAPI_Util

214 IBM RSCT for AIX 5L: LAPI Programming Guide

/* set code pointer to address of iterate instruction */

 code_less_iterate_size = dgsp_d.code_size - LAPI_DGSM_ITERATE_SIZE;

 code_ptr = ((int *)(code))+code_less_iterate_size;

 /*

 ** Set up iterate instruction

 */

 iter_p = (lapi_dgsm_iterate_t *) code_ptr;

 iter_p->opcode = LAPI_DGSM_ITERATE;

 iter_p->iter_loc = (-code_less_iterate_size);

 /* Set up and do DGSP registration */

 reg_util.Util_type = LAPI_REGISTER_DGSP;

 reg_util.idgsp = &dgsp_d;

 LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*

 ** LAPI returns a usable DGSP handle in

 ** reg_util.dgsp_handle

 ** Use this handle for subsequent reserve/unreserve

 ** and Xfer calls. On the receive side, this

 ** handle can be returned by the header handler using the

 ** return_info_t mechanism. The DGSP will then be used for

 ** scattering data.

 */

}

2. To reserve a DGSP handle:

{

 reg_util.dgsp_handle = dgsp_handle;

 /*

 ** dgsp_handle has already been created and

 ** registered as in the above example

 */

 reg_util.Util_type = LAPI_RESERVE_DGSP;

 LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*

 ** LAPI’s internal reference count to dgsp_handle

 ** will be incremented. DGSP will

 ** remain available until an unreserve is

 ** done for each reserve, plus one more for

 ** the original registration.

 */

}

3. To unreserve a DGSP handle:

{

 reg_util.dgsp_handle = dgsp_handle;

 /*

 ** dgsp_handle has already created and

 ** registered as in the above example, and

 ** this thread no longer needs it.

 */

 reg_util.Util_type = LAPI_UNRESERVE_DGSP;

LAPI_Util

Chapter 18. Subroutines for all systems (PE and standalone) 215

LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*

 ** An unreserve is required for each reserve,

 ** plus one more for the original registration.

 */

}

Related information

Subroutines: LAPI_Init, LAPI_Xfer

LAPI_Util

216 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Waitcntr

Purpose

Waits until a specified counter reaches the value specified.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Waitcntr(hndl, cntr, val, cur_cntr_val)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int val;

int *cur_cntr_val;

FORTRAN syntax

include ’lapif.h’

LAPI_WAITCNTR(hndl, cntr, val, cur_cntr_val, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER val

INTEGER cur_cntr_val

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

val Specifies the value the counter needs to reach.

INPUT/OUTPUT

cntr Specifies the counter structure (in FORTRAN) to be waited on or its

address (in C). The value of this parameter cannot be NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

cur_cntr_val Specifies the integer value of the current counter. This value can be

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: local progress monitor (blocking)

This subroutine waits until cntr reaches or exceeds the specified val. Once cntr

reaches val, cntr is decremented by the value of val. In this case, ″decremented″ is

used (as opposed to ″set to zero″) because cntr could have contained a value that

was greater than the specified val when the call was made. This call may or may

not check for message arrivals over the LAPI context hndl. The cur_cntr_val

variable is set to the current counter value.

LAPI_Waitcntr

Chapter 18. Subroutines for all systems (PE and standalone) 217

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr pointer is NULL (in C) or that

the value of cntr is LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

Location

/usr/lib/liblapi_r.a

C examples

To wait on a counter to reach a specified value:

{

 int val;

 int cur_cntr_val;

 lapi_cntr_t some_cntr;

 .

 .

 .

 LAPI_Waitcntr(hndl, &some_cntr, val, &cur_cntr_val);

 /* Upon return, some_cntr has reached val */

}

Related information

Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getcntr,

LAPI_Getv, LAPI_Put, LAPI_Putv, LAPI_Rmw, LAPI_Rmw64, LAPI_Setcntr,

LAPI_Xfer

LAPI_Waitcntr

218 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Xfer

Purpose

Serves as a wrapper function for LAPI data transfer functions.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Xfer(hndl, xfer_cmd)

lapi_handle_t hndl;

lapi_xfer_t *xfer_cmd;

typedef struct {

 uint src; /* Target task ID */

 uint reason; /* LAPI return codes */

 ulong reserve[6]; /* Reserved */

} lapi_sh_info_t;

typedef void (scompl_hndlr_t)(lapi_handle_t *hndl, void *completion_param,

 lapi_sh_info_t *info);

FORTRAN syntax

include ’lapif.h’

LAPI_XFER(hndl, xfer_cmd, ierror)

INTEGER hndl

TYPE (fortran_xfer_type) :: xfer_cmd

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

xfer_cmd Specifies the name and parameters of the data transfer function.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: point-to-point communication (non-blocking)

The LAPI_Xfer subroutine provides a superset of the functionality of these

subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Put, LAPI_Putv, LAPI_Get,

LAPI_Getv, and LAPI_Rmw. In addition, LAPI_Xfer provides data gather/scatter

program (DGSP) messages transfer.

In C, the LAPI_Xfer command is passed a pointer to a union. It examines the first

member of the union, Xfer_type, to determine the transfer type, and to determine

which union member was passed. LAPI_Xfer expects every field of the identified

LAPI_Xfer

Chapter 18. Subroutines for all systems (PE and standalone) 219

union member to be set. It does not examine or modify any memory outside of the

identified union member. LAPI_Xfer treats all union members (except status) as

read-only data.

This subroutine provides the following functions:

v The remote address fields are expanded to be of type lapi_long_t, which is long

enough for a 64-bit address. This allows a 32-bit task to send data to 64-bit

addresses, which may be important in client/server programs.

v LAPI_Xfer allows the origin counter to be replaced with a send completion

callback.

v LAPI_Xfer is used to transfer data using LAPI’s data gather/scatter program

(DGSP) interface.

The lapi_xfer_t structure is defined as:

typedef union {

 lapi_xfer_type_t Xfer_type;

 lapi_get_t Get;

 lapi_am_t Am;

 lapi_rmw_t Rmw;

 lapi_put_t Put;

 lapi_getv_t Getv;

 lapi_putv_t Putv;

 lapi_amv_t Amv;

 lapi_amdgsp_t Dgsp;

} lapi_xfer_t;

Though the lapi_xfer_t structure applies only to the C version of LAPI_Xfer, the

following tables include the FORTRAN equivalents of the C datatypes.

Table 23 list the values of the lapi_xfer_type_t structure for C and the explicit

Xfer_type values for FORTRAN.

 Table 23. LAPI_Xfer structure types

Value of Xfer_type (C or

FORTRAN)

Union member as

interpreted by LAPI_Xfer

(C)

Value of fortran_xfer_type

(FORTRAN)

LAPI_AM_XFER lapi_am_t LAPI_AM_T

LAPI_AMV_XFER lapi_amv_t LAPI_AMV_T

LAPI_DGSP_XFER lapi_amdgsp_t LAPI_AMDGSP_T

LAPI_GET_XFER lapi_get_t LAPI_GET_T

LAPI_GETV_XFER lapi_getv_t LAPI_GETV_T

LAPI_PUT_XFER lapi_put_t LAPI_PUT_T

LAPI_PUTV_XFER lapi_putv_t LAPI_PUTV_T

LAPI_RMW_XFER lapi_rmw_t LAPI_RMW_T

lapi_am_t details

Table 24 on page 221 shows the correspondence among the parameters of the

LAPI_Amsend subroutine, the fields of the C lapi_am_t structure and their

datatypes, and the equivalent FORTRAN datatypes. The lapi_am_t fields are listed

in Table 24 on page 221 in the order that they occur in the lapi_xfer_t structure.

LAPI_Xfer

220 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 24. LAPI_Amsend and lapi_am_t equivalents

lapi_am_t field name

(C)

lapi_am_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Amsend

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_AM_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN: pad

hdr_hdl lapi_long_t INTEGER(KIND = 8) hdr_hdl

uhdr_len uint INTEGER(KIND = 4) uhdr_len

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (64-bit): pad2

uhdr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

uhdr

udata void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

udata

udata_len ulong INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

udata_len

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: sinfo

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

cmpl_cntr

When the origin data buffer is free to be used, the pointer to the send completion

handler (shdlr) is called with the send completion data (sinfo) if shdlr is not a NULL

pointer (in C) or LAPI_ADDR_NULL (in FORTRAN). Otherwise, the behavior is

identical to that of LAPI_Amsend.

lapi_amv_t details

Table 25 on page 222 shows the correspondence among the parameters of the

LAPI_Amsendv subroutine, the fields of the C lapi_amv_t structure and their

datatypes, and the equivalent FORTRAN datatypes. The lapi_amv_t fields are

listed in Table 25 on page 222 in the order that they occur in the lapi_xfer_t

structure.

LAPI_Xfer

Chapter 18. Subroutines for all systems (PE and standalone) 221

Table 25. LAPI_Amsendv and lapi_amv_t equivalents

lapi_amv_t field

name (C)

lapi_amv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Amsendv

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_AMV_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN: pad

hdr_hdl lapi_long_t INTEGER(KIND = 8) hdr_hdl

uhdr_len uint INTEGER(KIND = 4) uhdr_len

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (64-bit): pad2

uhdr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

uhdr

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: sinfo

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad2

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

cmpl_cntr

lapi_amdgsp_t details

Table 26 on page 223 shows the correspondence among the fields of the C

lapi_amdgsp_t structure and their datatypes, how they are used in LAPI_Xfer, and

the equivalent FORTRAN datatypes. The lapi_amdgsp_t fields are listed in

Table 26 on page 223 in the order that they occur in the lapi_xfer_t structure.

LAPI_Xfer

222 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 26. The lapi_amdgsp_t fields

lapi_amdgsp_t field

name (C)

lapi_amdgsp_t field

type (C) Equivalent FORTRAN datatype LAPI_Xfer usage

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) LAPI_DGSP_XFER

flags int INTEGER(KIND = 4) This field allows users to specify

directives or hints to LAPI. If you

do not want to use any directives

or hints, you must set this field to

0. See “The lapi_amdgsp_t flags

field” for more information.

tgt uint INTEGER(KIND = 4) target task

none none INTEGER(KIND = 4) pad (padding alignment for

FORTRAN only)

hdr_hdl lapi_long_t INTEGER(KIND = 8) header handler to invoke at target

uhdr_len uint INTEGER(KIND = 4) user header length (multiple of

processor’s doubleword size)

none none INTEGER(KIND = 4) pad2 (padding alignment for

64-bit FORTRAN only)

uhdr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

pointer to user header

udata void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

pointer to user data

udata_len ulong INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

user data length

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

send completion handler

(optional)

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

data pointer to pass to send

completion handler (optional)

tgt_cntr lapi_long_t INTEGER(KIND = 8) target counter (optional)

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

origin counter (optional)

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

completion counter (optional)

dgsp lapi_dg_handle_t INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

Handle of a registered DGSP

status lapi_status_t INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

Status to return (future use)

none none INTEGER(KIND = 4) pad3 (padding alignment for

64-bit FORTRAN only)

When the origin data buffer is free to be modified, the send completion handler

(shdlr) is called with the send completion data (sinfo), if shdlr is not a NULL pointer

(in C) or LAPI_ADDR_NULL (in FORTRAN).

See “Using lapi_am_dgsp_t for scatter-side DGSP processing” on page 224 for

more information.

The lapi_amdgsp_t flags field: One or more flags can be set using the | (bitwise

or) operator. User directives are always followed and could result in incorrect results

LAPI_Xfer

Chapter 18. Subroutines for all systems (PE and standalone) 223

if used improperly. Appropriate hints might improve performance, but they may be

ignored by LAPI. Inappropriate hints might degrade performance, but they will not

cause incorrect results.

The following directive flags are defined:

USE_TGT_VEC_TYPE Instructs LAPI to use the vector type of the target

vector (tgt_vec). In other words, tgt_vec is to be

interpreted as type lapi_vec_t; otherwise, it is

interpreted as type lapi_lvec_t. The lapi_lvec_t

type uses lapi_long_t. The lapi_vec_t type uses

void * or long. Incorrect results will occur if one

type is used in place of the other.

BUFFER_BOTH_CONTIGUOUS

Instructs LAPI to treat all data to be transferred as

contiguous, which can improve performance. If this

flag is set when non-contiguous data is sent, data

will likely be corrupted.

The following hint flags are defined:

LAPI_NOT_USE_BULK_XFER

Instructs LAPI not to use bulk transfer, independent

of the current setting for the task.

LAPI_USE_BULK_XFER Instructs LAPI to use bulk transfer, independent of

the current setting for the task.

If neither of these hint flags is set, LAPI will use the behavior defined for the task. If

both of these hint flags are set, LAPI_NOT_USE_BULK_XFER will take

precedence.

These hints may or may not be honored by the communication library.

Using lapi_am_dgsp_t for scatter-side DGSP processing: Beginning with AIX

5.2, LAPI allows additional information to be returned from the header handler

through the use of the lapi_return_info_t datatype. See “The enhanced header

handler interface” on page 75 for full details. In the case of transfer type

lapi_am_dgsp_t, this mechanism can be used to instruct LAPI to run a user DGSP

to scatter data on the receive side.

To use this mechanism, pass a lapi_return_info_t * pointer back to LAPI through

the msg_len member of the user header handler. The dgsp_handle member of the

passed structure must point to a DGSP description that has been registered on the

receive side. See LAPI_Util and “Using data gather/scatter programs (DGSPs)” on

page 43 for details on building and registering DGSPs.

lapi_get_t details

Table 27 on page 225 shows the correspondence among the parameters of the

LAPI_Get subroutine, the fields of the C lapi_get_t structure and their datatypes,

and the equivalent FORTRAN datatypes. The lapi_get_t fields are listed in Table 27

on page 225 in the order that they occur in the lapi_xfer_t structure.

LAPI_Xfer

224 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 27. LAPI_Get and lapi_get_t equivalents

lapi_get_t field name

(C)

lapi_get_t field type

(C) Equivalent FORTRAN datatype Equivalent LAPI_Get parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_GET_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN: pad

tgt_addr lapi_long_t INTEGER(KIND = 8) tgt_addr

org_addr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_addr

len ulong INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

len

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

chndlr compl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: chndlr

cinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: cinfo

When the origin data buffer has completely arrived, the pointer to the completion

handler (chndlr) is called with the completion data (cinfo), if chndlr is not a NULL

pointer (in C) or LAPI_ADDR_NULL (in FORTRAN). Otherwise, the behavior is

identical to that of LAPI_Get.

lapi_getv_t details

Table 28 shows the correspondence among the parameters of the LAPI_Getv

subroutine, the fields of the C lapi_getv_t structure and their datatypes, and the

equivalent FORTRAN datatypes. The lapi_getv_t fields are listed in Table 27 in the

order that they occur in the lapi_xfer_t structure.

 Table 28. LAPI_Getv and lapi_getv_t equivalents

lapi_getv_t field

name (C)

lapi_getv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Getv

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_GETV_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

LAPI_Xfer

Chapter 18. Subroutines for all systems (PE and standalone) 225

Table 28. LAPI_Getv and lapi_getv_t equivalents (continued)

lapi_getv_t field

name (C)

lapi_getv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Getv

parameter

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (64-bit): pad

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_vec

tgt_vec void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

tgt_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

chndlr compl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: chndlr

cinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: cinfo

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad2

For this release, the flags field accepts USE_TGT_VEC_TYPE (see “The

lapi_amdgsp_t flags field” on page 223) to indicate that tgt_vec is to be interpreted

as type lapi_vec_t; otherwise, it is interpreted as type lapi_lvec_t. Note the

corresponding field is lapi_vec_t in the LAPI_Getv call.

When the origin data buffer has completely arrived, the pointer to the completion

handler (chndlr) is called with the completion data (cinfo) if chndlr is not a NULL

pointer (in C) or LAPI_ADDR_NULL (in FORTRAN). Otherwise, the behavior is

identical to that of LAPI_Getv.

lapi_put_t details

Table 29 shows the correspondence among the parameters of the LAPI_Put

subroutine, the fields of the C lapi_put_t structure and their datatypes, and the

equivalent FORTRAN datatypes. The lapi_put_t fields are listed in Table 29 in the

order that they occur in the lapi_xfer_t structure.

 Table 29. LAPI_Put and lapi_put_t equivalents

lapi_put_t field name

(C)

lapi_put_t field type

(C) Equivalent FORTRAN datatype Equivalent LAPI_Put parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_PUT_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

LAPI_Xfer

226 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 29. LAPI_Put and lapi_put_t equivalents (continued)

lapi_put_t field name

(C)

lapi_put_t field type

(C) Equivalent FORTRAN datatype Equivalent LAPI_Put parameter

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN: pad

tgt_addr lapi_long_t INTEGER(KIND = 8) tgt_addr

org_addr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_addr

len ulong INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

len

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: sinfo

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

cmpl_cntr

When the origin data buffer is free to be used, the pointer to the send completion

handler (shdlr) is called with the send completion data (sinfo), if shdlr is not a NULL

pointer (in C) or LAPI_ADDR_NULL (in FORTRAN). Otherwise, the behavior is

identical to that of LAPI_Put.

lapi_putv_t details

Table 30 shows the correspondence among the parameters of the LAPI_Putv

subroutine, the fields of the C lapi_putv_t structure and their datatypes, and the

equivalent FORTRAN datatypes. The lapi_putv_t fields are listed in Table 29 on

page 226 in the order that they occur in the lapi_xfer_t structure.

 Table 30. LAPI_Putv and lapi_putv_t equivalents

lapi_putv_t field

name (C)

lapi_putv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Putv

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_PUT_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (64-bit): pad

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

LAPI_Xfer

Chapter 18. Subroutines for all systems (PE and standalone) 227

Table 30. LAPI_Putv and lapi_putv_t equivalents (continued)

lapi_putv_t field

name (C)

lapi_putv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Putv

parameter

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: sinfo

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_vec

tgt_vec void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

tgt_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

cmpl_cntr

For this release, the flags field accepts USE_TGT_VEC_TYPE (see “The

lapi_amdgsp_t flags field” on page 223) to indicate that tgt_vec is to be interpreted

as lapi_vec_t; otherwise, it is interpreted as a lapi_lvec_t. Note that the

corresponding field is lapi_vec_t in the LAPI_Putv call.

When the origin data buffer is free to be modified, the pointer to the send

completion handler (shdlr) is called with the send completion data (sinfo), if shdlr

is not a NULL pointer (in C) or LAPI_ADDR_NULL (in FORTRAN). Otherwise, the

behavior is identical to that of LAPI_Putv.

lapi_rmw_t details

Table 31 shows the correspondence among the parameters of the LAPI_Rmw

subroutine, the fields of the C lapi_rmw_t structure and their datatypes, and the

equivalent FORTRAN datatypes. The lapi_rmw_t fields are listed in Table 29 on

page 226 in the order that they occur in the lapi_xfer_t structure.

 Table 31. LAPI_Rmw and lapi_rmw_t equivalents

lapi_rmw_t field

name (C)

lapi_rmw_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Rmw

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_RMW_XFER

op Rmw_ops_t INTEGER(KIND = 4) op

tgt uint INTEGER(KIND = 4) tgt

size uint INTEGER(KIND = 4) implicit in C

LAPI_Xfer parameter in

FORTRAN: size (must be 32 or

64)

tgt_var lapi_long_t INTEGER(KIND = 8) tgt_var

in_val void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

in_val

LAPI_Xfer

228 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 31. LAPI_Rmw and lapi_rmw_t equivalents (continued)

lapi_rmw_t field

name (C)

lapi_rmw_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Rmw

parameter

prev_tgt_val void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

prev_tgt_val

org_cntr lapi_cntr t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad

When the origin data buffer is free to be used, the pointer to the send completion

handler (shdlr) is called with the send completion data (sinfo), if shdlr is not a NULL

pointer (in C) or LAPI_ADDR_NULL (in FORTRAN). The size value must be either

32 or 64, indicating whether you want the in_val and prev_tgt_val fields to point to a

32-bit or 64-bit quantity, respectively. Otherwise, the behavior is identical to that of

LAPI_Rmw.

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len or len is

greater than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_DGSP Indicates that the DGSP that was passed in is

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN)

or is not a registered DGSP.

LAPI_ERR_DGSP_ATOM Indicates that the DGSP has an atom_size that is

less than 0 or greater than MAX_ATOM_SIZE.

LAPI_ERR_DGSP_BRANCH Indicates that the DGSP attempted a branch that

fell outside the code array.

LAPI_ERR_DGSP_CTL Indicates that a DGSP control instruction was

encountered in a non-valid context (such as a

gather-side control or scatter-side control with an

atom size of 0 at gather, for example).

LAPI_ERR_DGSP_OPC Indicates that the DGSP op-code is not valid.

LAPI_ERR_DGSP_STACK Indicates that the DGSP has greater GOSUB depth

than the allocated stack supports. Stack allocation

is specified by the dgsp->depth member.

LAPI_ERR_HDR_HNDLR_NULL

Indicates that the hdr_hdl passed in is NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

LAPI_Xfer

Chapter 18. Subroutines for all systems (PE and standalone) 229

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_MEMORY_EXHAUSTED

LAPI is unable to obtain memory from the system.

LAPI_ERR_OP_SZ Indicates that the lapi_rmw_t size field is not set to

32 or 64.

LAPI_ERR_ORG_ADDR_NULL

Indicates either that the udata parameter passed in

is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN) and udata_len is greater than 0, or that

the org_addr passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) and len is

greater than 0.

 Note: if Xfer_type = LAPI_DGSP_XFER, the case

in which udata is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) and udata_len

is greater than 0 is valid, so an error is not

returned.

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride *

num_vecs) is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR

Indicates that the org_vec->info[i] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but its length

(org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater

than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec value is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_RMW_OP Indicates the op is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL

Indicates that the strided vector address

org_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL

Indicates that the strided vector address

tgt_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

LAPI_ERR_TGT_ADDR_NULL

Indicates that ret_addr is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_Xfer

230 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs)

is greater than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec stride is less than block.

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or

that the value of tgt_var is LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but its length

(tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater

than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is

greater than MAX_UHDR_SZ or is not a multiple of

the processor’s doubleword size.

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but uhdr_len is

not 0.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different

lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different

num_vecs.

LAPI_ERR_VEC_TYPE_DIFF

Indicates that org_vec and tgt_vec have different

vector types (vec_type).

LAPI_ERR_XFER_CMD Indicates that the Xfer_cmd is not valid.

Location

/usr/lib/liblapi_r.a

C examples

1. To run the sample code shown in LAPI_Get using the LAPI_Xfer interface:

{

 lapi_xfer_t xfer_struct;

 /* initialize the table buffer for the data addrsesses */

 /* get remote data buffer addresses */

 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);

 .

 .

 .

 /* retrieve data_len bytes from address data_buffer_list[tgt] on */

LAPI_Xfer

Chapter 18. Subroutines for all systems (PE and standalone) 231

/* task tgt. write the data starting at address data_buffer. */

 /* tgt_cntr and org_cntr can be NULL. */

 xfer_struct.Get.Xfer_type = LAPI_GET_XFER;

 xfer_struct.Get.flags = 0;

 xfer_struct.Get.tgt = tgt;

 xfer_struct.Get.tgt_addr = data_buffer_list[tgt];

 xfer_struct.Get.org_addr = data_buffer;

 xfer_struct.Get.len = data_len;

 xfer_struct.Get.tgt_cntr = tgt_cntr;

 xfer_struct.Get.org_cntr = org_cntr;

 LAPI_Xfer(hndl, &xfer_struct);

}

2. To implement the LAPI_STRIDED_VECTOR example from LAPI_Amsendv

using the LAPI_Xfer interface:

{

 lapi_xfer_t xfer_struct; /* info for LAPI_Xfer call */

 lapi_vec_t vec; /* data for data transfer */

 .

 .

 .

 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */

 /* must match that of the target vector */

 vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as target vector */

 vec->info[0] = buffer_address; /* starting address for data copy */

 vec->info[1] = block_size; /* bytes of data to copy */

 vec->info[2] = stride; /* distance from copy block to copy block */

 /* data will be copied as follows: */

 /* block_size bytes will be copied from buffer_address */

 /* block_size bytes will be copied from buffer_address+stride */

 /* block_size bytes will be copied from buffer_address+(2*stride) */

 /* block_size bytes will be copied from buffer_address+(3*stride) */

 .

 .

 .

 /* block_size bytes will be copied from buffer_address+((NUM_VECS-1)*stride) */

 .

 .

 .

 xfer_struct.Amv.Xfer_type = LAPI_AMV_XFER;

 xfer_struct.Amv.flags = 0;

 xfer_struct.Amv.tgt = tgt;

 xfer_struct.Amv.hdr_hdl = hdr_hdl_list[tgt];

 xfer_struct.Amv.uhdr_len = uhdr_len; /* user header length */

 xfer_struct.Amv.uhdr = uhdr;

 /* LAPI_AMV_XFER allows the use of a send completion handler */

 /* If non-null, the shdlr function is invoked at the point */

 /* the origin counter would increment. Note that both the */

 /* org_cntr and shdlr can be used. */

 /* The user’s shdlr must be of type scompl_hndlr_t *. */

 /* scompl_hndlr_t is defined in /usr/include/lapi.h */

 xfer_struct.shdlr = shdlr;

 /* Use sinfo to pass user-defined data into the send */

 /* completion handler, if desired. */

 xfer_struct.sinfo = sinfo; /* send completion data */

 xfer_struct.org_vec = vec;

 xfer_struct.tgt_cntr = tgt_cntr;

LAPI_Xfer

232 IBM RSCT for AIX 5L: LAPI Programming Guide

xfer_struct.org_cntr = org_cntr;

 xfer_struct.cmpl_cntr = cmpl_cntr;

 LAPI_Xfer(hndl, &xfer_struct);

 .

 .

 .

}

See LAPI_Amsendv for more information about the header handler definition.

Related information

Chapter 13, “Bulk transfer of messages,” on page 99

Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getv, LAPI_Put,

LAPI_Putv, LAPI_Rmw

LAPI_Xfer

Chapter 18. Subroutines for all systems (PE and standalone) 233

LAPI_Xfer

234 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 19. Subroutines for standalone systems

Use the subroutines in this chapter on standalone systems.

© Copyright IBM Corp. 2003, 2005 235

LAPI_Nopoll_wait

Purpose

Waits for a counter update without polling.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

void LAPI_Nopoll_wait(hndl, cntr_ptr, val, cur_cntr_val)

lapi_handle_t hndl;

lapi_cntr_t *cntr_ptr;

int val;

int *cur_cntr_val;

FORTRAN syntax

include ’lapif.h’

int LAPI_NOPOLL_WAIT(hndl, cntr, val, cur_cntr_val, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER val

INTEGER cur_cntr_val

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

val Specifies the relative counter value (starting from 1) that the

counter needs to reach before returning.

cur_cntr_val Specifies the integer value of the current counter. The value of The

value of this parameter can be NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN).

INPUT/OUTPUT

cntr_ptr Points to the lapi_cntr_t structure in C.

cntr Is the lapi_cntr_t structure in FORTRAN.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: recovery (blocking)

This subroutine waits for a counter update without polling (that is, without explicitly

invoking LAPI’s internal communication dispatcher). This call may or may not check

for message arrivals over the LAPI context hndl. The cur_cntr_val variable is set to

the current counter value. Although it has higher latency than LAPI_Waitcntr,

LAPI_Nopoll_wait frees up the processor for other uses.

LAPI_Nopoll_wait

236 IBM RSCT for AIX 5L: LAPI Programming Guide

Note: To use this subroutine, the lib_vers field in the lapi_info_t structure must be

set to L2_LIB or LAST_LIB.

Restrictions

Use of this subroutine is not recommended on a system that is running Parallel

Environment (PE).

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr_ptr pointer is NULL (in C) or

that the value of cntr is LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_CNTR_VAL Indicates that the val passed in is less than or

equal to 0.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_MULTIPLE_WAITERS

Indicates that more than one thread is waiting for

the counter.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because

LAPI_Purge_totask() was called.

Location

/usr/lib/liblapi_r.a

Related information

Subroutines: LAPI_Init, LAPI_Purge_totask, LAPI_Resume_totask,

LAPI_Setcntr_wstatus

LAPI_Nopoll_wait

Chapter 19. Subroutines for standalone systems 237

LAPI_Purge_totask

Purpose

Allows a task to cancel messages to a given destination.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Purge_totask(hndl, dest)

lapi_handle_t hndl;

uint dest;

FORTRAN syntax

include ’lapif.h’

int LAPI_PURGE_TOTASK(hndl, dest, ierror)

INTEGER hndl

INTEGER dest

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

dest Specifies the destination instance ID to which pending messages

need to be cancelled.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: recovery

This subroutine cancels messages and resets the state corresponding to messages

in flight or submitted to be sent to a particular target task. This is an entirely local

operation. For correct behavior a similar invocation is expected on the destination (if

it exists). This function cleans up all the state associated with pending messages to

the indicated target task. It is assumed that before the indicated task starts

communicating with this task again, it also purges this instance (or that it was

terminated and initialized again). It will also wake up all threads that are in

LAPI_Nopoll_wait depending on how the arguments are passed to the

LAPI_Nopoll_wait function. The behavior of LAPI_Purge_totask is undefined if

LAPI collective functions are used.

Note: This subroutine should not be used when the parallel application is running in

a PE/LoadLeveler environment.

LAPI_Purge_totask

238 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_Purge_totask is normally used after connectivity has been lost between two

tasks. If connectivity is restored, the tasks can restored for LAPI communication by

calling LAPI_Resume_totask.

Restrictions

Use of this subroutine is not recommended on a system that is running Parallel

Environment (PE).

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_TGT Indicates that dest is outside the range of tasks

defined in the job.

Location

/usr/lib/liblapi_r.a

Related information

Subroutines: LAPI_Init, LAPI_Nopoll_wait, LAPI_Resume_totask, LAPI_Term

LAPI_Purge_totask

Chapter 19. Subroutines for standalone systems 239

LAPI_Resume_totask

Purpose

Re-enables the sending of messages to the task.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Resume_totask(hndl, dest)

lapi_handle_t hndl;

uint dest;

FORTRAN syntax

include ’lapif.h’

int LAPI_RESUME_TOTASK(hndl, dest, ierror)

INTEGER hndl

INTEGER dest

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

dest Specifies the destination instance ID with which to resume

communication.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: recovery

This subroutine is used in conjunction with LAPI_Purge_totask. It enables LAPI

communication to be reestablished for a task that had previously been purged. The

purged task must either restart LAPI or execute a

LAPI_Purge_totask/LAPI_Resume_totask sequence for this task.

Restrictions

Use of this subroutine is not recommended on a system that is running Parallel

Environment (PE).

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_Resume_totask

240 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range

of tasks defined in the job.

Location

/usr/lib/liblapi_r.a

Related information

Subroutines: LAPI_Init, LAPI_Nopoll_wait, LAPI_Purge_totask, LAPI_Term

LAPI_Resume_totask

Chapter 19. Subroutines for standalone systems 241

LAPI_Setcntr_wstatus

Purpose

Used to set a counter to a specified value and to set the associated destination list

array and destination status array to the counter.

Library

Availability Library (liblapi_r.a)

C syntax

#include <lapi.h>

int LAPI_Setcntr_wstatus(hndl, cntr, num_dest, dest_list, dest_status)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int num_dest;

uint *dest_list;

int *dest_status;

FORTRAN syntax

include ’lapif.h’

LAPI_SETCNTR_WSTATUS(hndl, cntr, num_dest, dest_list, dest_status, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER num_dest

INTEGER dest_list(*)

INTEGER dest_status

INTEGER ierror

Parameters

INPUT

hndl Specifies the LAPI handle.

num_dest Specifies the number of tasks in the destination list.

dest_list Specifies an array of destinations waiting for this counter update. If

the value of this parameter is NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN), no status is returned to the user.

INPUT/OUTPUT

cntr Specifies the address of the counter to be set (in C) or the counter

structure (in FORTRAN). The value of this parameter cannot be

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

dest_status Specifies an array of status that corresponds to dest_list. The value

of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last

parameter.

Description

Type of call: recovery

LAPI_Setcntr_wstatus

242 IBM RSCT for AIX 5L: LAPI Programming Guide

This subroutine sets cntr to 0. Use LAPI_Setcntr_wstatus to set the associated

destination list array (dest_list) and destination status array (dest_status) to the

counter. Use a corresponding LAPI_Nopoll_wait call to access these arrays. These

arrays record the status of a task from where the thread calling LAPI_Nopoll_wait()

is waiting for a response.

The return values for dest_status are:

LAPI_MSG_INITIAL The task is purged or is not received.

LAPI_MSG_RECVD The task is received.

LAPI_MSG_PURGED The task is purged, but not received.

LAPI_MSG_PURGED_RCVD The task is received and then purged.

LAPI_MSG_INVALID Not valid; the task is already purged.

Note: To use this subroutine, the lib_vers field in the lapi_info_t structure must be

set to L2_LIB or LAST_LIB.

Restrictions

Use of this subroutine is not recommended on a system that is running Parallel

Environment (PE).

Return values

LAPI_SUCCESS Indicates that the function call completed

successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr value passed in is NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not

initialized or in terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of dest_status is NULL in C

(or LAPI_ADDR_NULL in FORTRAN), but the

value of dest_list is not NULL in C (or

LAPI_ADDR_NULL in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related information

Subroutines: LAPI_Getcntr, LAPI_Nopoll_wait, LAPI_Purge_totask,

LAPI_Setcntr

LAPI_Setcntr_wstatus

Chapter 19. Subroutines for standalone systems 243

LAPI_Setcntr_wstatus

244 IBM RSCT for AIX 5L: LAPI Programming Guide

Chapter 20. LAPI sample programs

This chapter describes LAPI’s sample files. The files are structured to provide an

exhaustive look at basic LAPI operations. The intention is to show users the basic

building blocks of the LAPI API, facilitating their use for solving more complex

problems.

The sample source code resides in several subdirectories. Each subdirectory

illustrates some aspect of the LAPI API, forming an “example group”. Each example

group is a self-contained unit, with a separate README file and Makefile. Since the

samples install into a common system directory, users should copy the sample tree

into personal file space for use. That way, the source files can be changed as

needed and then built.

There are two types of example groups:

v Normal LAPI operations

Showing Initialization and setup (init group), LAPI API communication calls

(lapi_api), an example of two-way LAPI communication (basic), illustration of

LAPI’s DGSP interface (dgsp), illustration of LAPI’s vector interface (vector) and

illustration of LAPI’s xfer interface (xfer)

v Special cases

Showing operation of LAPI without IBM’s Parallel Environment for AIX (PE) and

LoadLeveler licensed programs (standalone) and LAPI support for mixed 32/64

bit jobs (interop).

The structure of each normal example group is the same. Each directory contains a

README, Makefile, and one or more source files. Complete directions for building

and executing the examples can be found in the README file in each directory. In

each case, building simply requires execution of the make command. Several

source files are created.

Sample program directory structure

The sample files install into system directory /opt/rsct/lapi/samples. It is

assumed that a non-root user wishing to work with the samples has copied them

into their own file space. Throughout the remainder of this discussion, references to

samples directories are assumed to be relative to the top directory (the directory

from which the user is working). So for example, if the user has copied the contents

of /opt/rsct/lapi/samples into directory /u/fred/samples, the use of “init/init.c” in

the discussion will refer to init.c that resides in the init subdirectory of

/u/fred/samples.

Details of the subdirectories are given here.

init

Contains examples of initialization, setup and termination functions for LAPI.

v The Init.c sample illustrates basic initialization and termination. It also

demonstrates support for multiple initialization and termination of LAPI

handles. At the first initialization, a user error handler is registered.

v Addr.c demonstrates LAPI’s address manipulation functions, including

LAPI_Address_Init, LAPI_Address_init64, LAPI_Addr_set and

LAPI_Addr_get. Each task declares two local variables then does a collective

exchange of their addresses as a void * (using LAPI_Address_init) and as a

lapi_long_t(using LAPI_Address_init64).

© Copyright IBM Corp. 2003, 2005 245

Each task then does a LAPI_Addr_set followed by a LAPI_Addr_get to

demonstrate the use of indexed address tables.

v Qenv_senv.c illustrates the use of LAPI’s runtime query facility. All

parameters that can be queried from a LAPI instance are shown in the

source code, as well as those that can be set. For each parameter, the

default value is printed. For settable parameters, the value is changed and

the new value printed to verify the change.

lapi_api

Contains an example demonstrating each LAPI communication API call. Both a

C file and a FORTRAN file are included for each API call.

 In each example, a buddy system is used for pairing tasks. Each buddy pair

has one task that drives communication with the other task in the pair (his

buddy). A single communication is made between the driving task and his

buddy.

 In all cases, a basic setup is done, followed by the API call. Finally, normal

LAPI cleanup operations are done. Synchronization fences are used throughout

the code.

 Each source code file in the lapi_api directory is named for the demonstrated

API call. The following source files are provided:

v Am.c, Amf.F - LAPI_Amsend

v Amv.c, Amvf.F - LAPI_Amsendv

v Get.c, Getf.F - LAPI_Get

v Getv.c, Getvf.F - LAPI_Getv

v Put.c, Putf.F - LAPI_Put

v Putv.c, Putvf.F - LAPI_Putv

v Rmw.c, Rmwf.F - LAPI_Rmw

v Rmw64.c, Rmw64f.F - LAPI_Rmw64

For purposes of deeper illustration, the source code of the Am.c is included

below with line numbers and complete annotation. The Am samples

demonstrate user-defined header and completion handlers. See the description

of the basic/accumulate_and_return.Am sample as well as the complete

annotated description below for more details on execution sequence of header

and completion handlers.

basic

Shows examples of different approaches to the same communication using

different LAPI API calls. The examples illustrate two-way communication. The

driver sends an array of ints to its buddy. Its buddy accumulates the data with

some local data, then sends the data back to the original sender. Different

approaches to synchronization are illustrated, depending on the nature of the

API call being used. Each source file is named accumulate_and_return.API.c,

where API is one of Am, Put or Xfer.

 There are three examples of this communication, one using each of the API

calls implied by the name:

accumulate_and_return.Am.c

accumulate_and_return.Am.c does a LAPI_Amsend call for the original data

transfer. This example also shows how to use user header data as part of

the transfer, as well as the use of a completion handler parameter to pass

data between the header and completion handlers. Note that user header

data will be available in the first packet, and is thus available to the header

handler. Using the combined facility of a user header and a completion

246 IBM RSCT for AIX 5L: LAPI Programming Guide

handler parameter ensures the delivery of data from the message sender

all the way through to the completion handler on the receiver.

 This example defines a data type to use for the completion handler

parameter. The parameter is passed as a void *. Then it is cast to the newly

defined type for use in the completion handler.

 Execution is as follows:

1. Task 0 initializes a data buffer and sends it to Task 1 with a

LAPI_Amsend, then waits on its own flag (not a counter managed by

LAPI).

2. The arrival of the first packet on Task 1 causes LAPI to invoke Task 1’s

header handler (defined in the sample source code). The header

handler sets up the data structure to pass to the completion handler,

sets the completion handler pointer and completion handler parameter

pointer, then returns an address in Task 1’s address space.

LAPI uses this address as the base address for writing the transferred

data. Note that a header handler definition is required, since it is the

means by which LAPI gets the base address for writing. If a completion

handler is to be used, the header handler is also where the completion

handler pointer is set. Note that a completion handler is optional. If one

is not used, the completion handler pointer should be set to NULL to

ensure that LAPI does not interpret an uninitialized pointer as the

address of a function.

3. Once all data has been transferred, LAPI invokes the completion

handler (also defined in the sample source code). The completion

handler in this case performs the data computation, using the values

passed through the completion handler parameter, and then completes

a LAPI_Amsend call back to the original sender. This call invokes the

same sequence of steps as above, but on the opposite task.

4. Task 0’s header handler is invoked upon the arrival of the first data

packet. The completion handler pointer and parameter pointer are set

and a buffer address in Task 0’s address space is returned.

5. Upon completion of the data transfer, Task 0’s completion handler is

run. The final step of the completion handler is to increment the flag on

which Task 0’s main execution path has been waiting since immediately

after the original LAPI_Amsend call. This frees Task 0 to drop into the

final fence and then cleanup and terminate.

Figure 21 on page 248 illustrates the sequence of execution in program

sample accumulate_and_return.Am.

Chapter 20. LAPI sample programs 247

accumulate_and_return.Put.c

accumulate_and_return.Put.c uses LAPI_Put to do both transfers. Target

counters are used for synchronization on both sides. The execution

sequence is represented in Figure 21. Task 0 (or any driver task) begins by

issuing a LAPI_Put to its buddy (Task 1 in the diagram) then immediately

goes into a wait on Target Counter 0. Task 1, meanwhile has initiated a wait

on Target Counter 1. Once the LAPI_Put from Task 0 completes on Task 1,

Target Counter 1 will increment, freeing Task 1 from its wait.

 Task 1 then does the accumulate and returns the data to Task 0 with

another LAPI_Put. The completion of this LAPI_Put causes Target Counter

0 to increment, releasing Task 0 from its wait. Both tasks then sync in a

final fence before implementing cleanup operations and terminating.

 Figure 22 illustrates the sequence of execution in program sample

accumulate_and_return.Put.

accumulate_and_return.Xfer.c

accumulate_and_return.Xfer.c executes the same sequence as

Task 0

LAPI_Amsend (src -> tgt)

Wait on user flag
Header handler invoked
on arrival of packetfirst

- sets completion handler pointer
- sets completion handler parameter
- returns data buffer address

Completion handler invoked
on arrival of packetfinal

- accumulates data
- returns data with LAPI_Amsend

LAPI_Amsend (tgt -> src)

Header handler invoked
on arrival of packetfirst

Completion handler invoked
on arrival of packetfinal

- sets user flag

Task 1

Figure 21. Execution sequence of the accumulate_and_return.Am sample

Task 0

LAPI_Put

Wait on target counter 0

Wait on target counter 1(Completion increments
target counter 1)

(Completion increments
target counter 0)

LAPI_Put

Task 1

Figure 22. Execution sequence of the accumulate_and_return.Put sample

248 IBM RSCT for AIX 5L: LAPI Programming Guide

accumulate_and_return.Put except that the LAPI_Xfer interface is used for

the first put call. For additional examples of using the LAPI_Xfer interface,

see the sample programs in the xfer directory.

vector

Contains illustrations of LAPI’s vector interface. accumulate_and_return.Amv.c

uses LAPI_Amsendv to perform the same set of tasks as the samples in the

basic directory. matrix.c demonstrates a two-dimensional data transfer using

LAPI vectors, and strided.c illustrates a strided vector transfer.

dgsp

Provides samples illustrating LAPI’s new DGSP interface. Dgsp_simple.c builds

a DGSP then executes a data transfer based on it. The data is unpacked

sequentially on the receive side.

xfer

Illustrates LAPI’s Xfer interface. Am_xfer.c illustrates the use of LAPI_Xfer to do

an equivalent communication to a LAPI_Amsend call. Put_Xfer.c illustrates the

equivalent of a LAPI_Put call.

 The remaining directories focus on special cases of LAPI operation:

interop

Demonstrates the use of the LAPI_Xfer interface for interoperability between

32-bit and 64-bit LAPI applications. Using LAPI_Address_init64 and LAPI_Xfer

calls allows remote addresses to be exchanged as 64-bit values in either case.

The build instructions are more complicated in this example. A 32-bit and 64-bit

executable must be built and run together to truly demonstrate this

interoperability. Scripts are provided for convenience in building. See the

interop/README.LAPI.INTEROP file for details.

standalone

Illustrates methods for running LAPI in standalone mode, that is, without the

use of IBM’s Parallel Environment for AIX (PE) or LoadLeveler (LL) products.

Setup for standalone mode is slightly different for User Space (US) mode than it

is for UDP mode. So a separate example “subgroup” is created for each case.

v Standalone UDP initialization involves providing a means for distributing task

address and port information that would normally be distributed by PE. LAPI

supports two methods for distributing this information, the use of a user

handler, and the use of a user list. Building and execution of files is different

than in the usual LAPI environment. Binaries must be created using a

non-parallel compiler. Also, certain environment variables that are normally

set by PE must be set by hand for each task before executing. Finally, each

task must be executed by hand. See the

standalone/udp/README.LAPI.STANDALONE.UDP file for details on building and

execution for standalone UDP operation.

v Standalone US initialization involves the setting of certain environment

variables as well as the execution of each task by hand. The user must also

reserve an adapter window for each task and load the network tables on

each node. The user must then use the adapter and window information to

set the MP_LAPI_NETWORK environment variable before execution of each

task. A set of helper applications for loading network tables and grabbing

network information are provided in the standalone/us/ntbl directory. Note

that these applications require a system administrator for building and

installation. Full details on building and executing for standalone user space

applications can be found in the standalone/us/README.LAPI.STANDALONE.US

file.

Chapter 20. LAPI sample programs 249

Using the LAPI sample programs

The LAPI sample programs are arranged to provide a threaded tutorial for new

users, as well as a reference for both experienced and new LAPI users. Users

already familiar with LAPI can dive right into the samples anywhere they wish,

exploring directories such as dgsp, vector or xfer to learn about specific LAPI

constructs or techniques. The sample programs in the init subdirectory may be a

useful reference for experienced users, especially the Qenv_senv sample, which

illustrates all runtime parameters that can be queried using LAPI_Qenv and set using

LAPI_Senv. The sample also prints the default values of each of the parameters.

The lapi_api directory is also a handy reference tool, because it provides a sample

for each LAPI communication API call.

IBM suggests that new users:

1. Start with the init subdirectory to get a feel for the basics of writing, building

and executing LAPI applications, as well as the parameters and API calls that

come into play during setup. The execution model is single task for these

examples, making them easier to understand for starters.

2. Go through some of the samples in the lapi_api directory to understand LAPI’s

communication APIs.

3. View the remaining directories in any order to demonstrate specific aspects of

the LAPI API.

The interop and standalone directories are special cases for users who have 32-bit

and 64-bit LAPI applications that need to communicate (see the interop directory) or

for users that are running without IBM’s Parallel Environment for AIX (PE) or

LoadLeveler (LL) products (see the standalone directory).

Summary of constructs and techniques for LAPI programming

Table 32 provides a quick reference of what LAPI constructs and techniques that

you can learn from the sample programs.

 Table 32. Constructs and techniques for LAPI programming

For examples of this LAPI

programming construct or

technique:

See this sample:

Origin counter Vector: strided.c

Target counter Lapi_api: Put.c, Putf.F, Putv.c, Putvf.F

Basic: accumulate_and_return.Put.c, accumulate_and_return.Xfer.c

Xfer: Put_xfer.c Put_xferf.F

Completion counter Lapi_api: Am.c, Amv.c, Putv.c, Putvf.F

Dgsp: Dgsp_simple.c

Vector: accumulate_and_return.Amv.c, matrix.c, strided.c

Xfer: Am_xfer.c, Put_xfer.c

Default values of LAPI runtime

parameters

Init: Qenv_senv.c

Setting of LAPI runtime

parameters

Init: Qenv_senv.c

User Error handler Init: Init.c

Initialization of a LAPI handle after

termination

Init: Init.c

Address Manipulation in LAPI Init: Addr.c

250 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 32. Constructs and techniques for LAPI programming (continued)

For examples of this LAPI

programming construct or

technique:

See this sample:

User header data Basic: accumulate_and_return.Am.c

vector: accumulate_and_return.Amv.c

Completion handle Lapi_api: Am.c, Amf.F, Amv.c

Basic: accumulate_and_return.Am.c

Dgsp: Dgsp_simple.c

Vector: accumulate_and_return.Amv.c, matrix.c, strided.c

Xfer: Am_xfer.c

Completion Handler parameter Basic: accumulate_and_return.Am.c

Vector: accumulate_and_return.Amv.c

LAPI communication API calls from

within a completion handler

Basic: accumulate_and_return.Am.c

Vector: accumulate_and_return.Amv.c

Chapter 20. LAPI sample programs 251

252 IBM RSCT for AIX 5L: LAPI Programming Guide

Appendix A. Product-related information

The low-level application programming interface (LAPI) is a part of:

v the Reliable Scalable Cluster Technology (RSCT) component of AIX 5L Versions

5.2 and 5.3.

For more information about RSCT, see the RSCT: Administration Guide.

v the IBM Parallel System Support Programs for AIX (PSSP) licensed program.

For more information about PSSP LAPI, see the PSSP Read This First

document.

For AIX Versions 5.2 and 5.3, the current version of LAPI is shipped with the

Reliable Scalable Cluster Technology (RSCT) component of the AIX operating

system and with PSSP 3.5. For more information about AIX, go to:

http://www.ibm.com/servers/aix/library.

You can use LAPI ″standalone″ or with the IBM Parallel Environment for AIX (PE)

licensed program. Specifically, you can use the parallel operating environment

(POE) component of PE to compile and run LAPI parallel programs. POE also

provides support for parallel programs to use the Message Passing Interface (MPI)

component of PE with or without LAPI. Though the use of PE is optional and

requires additional steps, it is recommended that you use PE with LAPI. Unless

otherwise noted, this book discusses the use of LAPI in conjunction with PE. For

information about using LAPI without PE, see Chapter 16, “Using LAPI on a

standalone system,” on page 115.

See Parallel Environment for AIX 5L: Installation for information about installing PE

and POE, Parallel Environment for AIX 5L: Operation and Use, Volume 1 for

information about using POE, and Parallel Environment for AIX 5L: MPI

Programming Guide for information about using MPI.

RSCT version

This edition applies to:

v For AIX 5.3 —

– RSCT version 2.4.1.0 (or later) for LAPI (rsct.lapi.rte fileset) and NAM

(rsct.lapi.nam fileset)

– RSCT version 2.4.0.0 (or later) for group services (part of the rsct.basic.rte

fileset)

v For AIX 5.2 —

– RSCT version 2.3.3.0 (or later) for LAPI (rsct.lapi.rte fileset) and NAM

(rsct.lapi.nam fileset)

– RSCT version 2.3.3.2 (or later) for group services (part of the rsct.basic.rte

fileset)

As an example, to find out which version of RSCT is running on a particular AIX

node, enter:

lslpp -L rsct.basic.rte

ISO 9000

ISO 9000 registered quality systems were used in the development and

manufacturing of this product.

© Copyright IBM Corp. 2003, 2005 253

|

|

Product-related feedback

To contact the IBM cluster development organization, send your comments by

e-mail to:

cluster@us.ibm.com

254 IBM RSCT for AIX 5L: LAPI Programming Guide

Appendix B. LAPI execution models

LAPI provides two different execution models:

1. the Internet Protocol / user space (IP/US) execution model

2. the shared memory execution model

The IP/US execution model

LAPI provides a thread-safe environment and supports an execution model that

allows for execution concurrency between LAPI instances and LAPI client

applications.

Using the setup function (LAPI_Init), a user process establishes a LAPI context.

Within a LAPI context, the LAPI library is thread-safe and multiple threads can

make LAPI calls within the same context. The different calls can run concurrently

with each other and with the user threads. In reality, however, execution

concurrence among these calls is limited by the locking that is required with LAPI to

maintain integrity of its internal data structures and the need to share a single

underlying communication channel.

As with any multi-threaded application, coherence of user data is the responsibility

of the user. Specifically, if two or more LAPI calls from different threads can run

concurrently and if they specify overlapping user buffer areas, the result is

undefined. It is the responsibility of the user to coordinate the required

synchronization between threads that operate on overlapping buffers.

The user application thread, as well as the completion handlers, cannot hold mutual

exclusion resources before making LAPI calls; if they do, it is possible to run into

deadlock situations.

Because user-defined handlers can be called concurrently from multiple threads, it

is the user’s responsibility to make them thread-safe.

Figure 23 on page 256 shows the interaction among an application thread, an

interrupt/timer thread, and a completion thread.

© Copyright IBM Corp. 2003, 2005 255

Whenever possible, thread 0 (the application thread) and thread 1 (the

interrupt/timer thread) try to call the LAPI dispatcher. This way, progress on

incoming and outgoing messages can be made while minimizing additional

overhead. Most LAPI calls that are made by the application thread also result in the

LAPI dispatcher being run automatically. The interrupt/timer thread waits in the

kernel for the occurrence of a notification event. When an event occurs, the kernel

″wakes up″ the waiting thread. As shown in Figure 23, after the interrupt/timer

thread returns from waiting in the kernel, it calls the LAPI dispatcher.

The LAPI dispatcher is the central control point that orchestrates the invocation of

the functions and threads needed to process outstanding incoming and outgoing

LAPI messages. The LAPI dispatcher can run from the application thread, the

interrupt/timer thread, or the completion thread. To maintain integrity, locking is used

to ensure that only one instance of the dispatcher runs at a time. On incoming

messages, the LAPI dispatcher manages the reassembly of data from different

packets — which might arrive out-of-order — into the specified buffer, and then

calls the completion handler if necessary.

LAPI_Init creates thread 2 to run completion handlers that are associated with

active messages. User-written completion handlers can make LAPI function calls

that in turn call the LAPI dispatcher. The completion handler thread processes work

from the completion handler queue. When the queue is empty, the thread waits

using a pthread_cond_wait(). If an active message (LAPI_Amsend) includes a

completion handler, the dispatcher queues a request on the completion queue after

the whole message has arrived and has been reassembled in the specified buffer.

The dispatcher then sends a pthread_cond_signal to the completion handler

thread. If this thread was in a wait state, it will begin processing the completion

handler queue; otherwise, if it was not waiting, the thread signal is ignored.

Thread 0
User application thread

Thread 1
Interrupt/timer thread

Thread 2
Completion handler thread

cond_signal
(completion
handler)

cond_signal
(completion
handler)

Header
handler

Header
handler

Completion
handler

LAPI_Init()

LAPI_Function()

wait() cond_wait()

Dispatcher
Dispatcher Process queue

Figure 23. A LAPI thread model

256 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI handlers are not guaranteed to run one at a time. LAPI calls can run

concurrently within the origin, the target, or both. The restriction about not holding

on to mutual exclusion resources when making LAPI calls still applies.

This discussion of a thread-safe environment and execution concurrence within the

LAPI library applies to both polling mode and interrupt mode. In polling mode, any

calls to the communication library try to make progress on the context specified in

the call. LAPI includes the LAPI_Probe subroutine, which lets applications explicitly

check for and handle incoming messages.

The execution model of the handlers consists of the following events:

Event Action

Message arrival Copies the message from the network into the

appropriate data access memory space.

Interrupt or poll Causes an interrupt if required, based on the mode.

Dispatcher start Calls LAPI’s internal communication dispatcher.

New message packet Checks the LAPI header and determines (by

checking the receive state message reassembly

table) whether the packet is part of a pending

message or whether it is a new message. For the

first packet of a new message, calls the header

handler function.

Return from header handler If the message is contained in more than one

packet, the LAPI dispatcher logs that there is a

pending message, saves the completion handler

address, and saves the user’s buffer address to be

used during the message reassembly of pending

message packets.

Pending message packet Copies the message to the appropriate portion of

the user buffer specified through the header

handler. If the packet completes the message, the

dispatcher queues the completion handler;

otherwise, the dispatcher returns to check for

message arrivals.

Return from completion handler

When the completion handler is run, it updates the

appropriate target counter before continuing.

The shared memory execution model

When tasks are on the same node, it is more efficient for communication protocol

clients to use a shared memory protocol, as opposed to using the switch adapter or

″double copy″ mode (communication through a shared segment). Using a shared

memory protocol reduces switch congestion and optimizes performance. This is

where LAPI’s shared memory execution model comes in handy.

Figure 24 on page 258 and Figure 25 on page 258 show the different approaches

for running LAPI_Put when task 0 and task 1 are on the same node. The user

interface is identical in the LAPI communication paths for shared memory and for

nonshared memory.

Appendix B. LAPI execution models 257

Cross memory kernel extension

During AIX initialization, a kernel extension that supports LAPI’s shared memory

execution model is loaded. This kernel extension allows one task to export a portion

of its address space to another task of the parallel application. The exported portion

of the address space is attached to the address space of the companion task and

the data transfer is done by a simple copy. A separate shared-memory region is

required for exchanging metadata that describes the exported regions and allows

for handshaking between the communicating tasks of the parallel application. This

shared-memory region can also be used for transferring small messages or certain

types of noncontiguous messages.

As part of rsct.lapi installation, the configuration method for the kernel extension is

added to the Config_Rules object data manager (ODM) database, to be run in

phase 3 of the system initialization. This ensures that the kernel extension is

available for any rsct.lapi installation, whether a switch adapter is present or not.

See Chapter 4, “Installing RSCT LAPI,” on page 25 for more information.

Packets
might be received
out of order.

Send
FIFO queue

Receive
FIFO queue

Origin buffer

Task 0

H

S

PS
or

p eries HPS

Target buffer

Task 1

Figure 24. LAPI_Put without shared memory

- Register send buffer
- Store send-buffer metadata
- Copy send buffer into shared memory

- Read send-buffer metadata
- Attach send buffer to address space,

as receive buffer

Task 0 Task 1

Send buffer Receive bufferShared memory segment

Figure 25. LAPI_Put with shared memory

258 IBM RSCT for AIX 5L: LAPI Programming Guide

LAPI shared memory: functional flow

Each task that communicates with other tasks using shared memory has a

message queue of command structures, called slots. Shared memory task n

processes commands off of the head of the task n message queue. Tasks other

than task n update the tail of the task n message queue. Each slot contains a

fixed-size data area.

There are two ways to transfer data using shared memory:

1. For small messages, the message is copied by the message origin into one or

more slots at the tail of the target task’s message queue. The message is

subsequently copied out of these slots by the target task and copied into the

user buffers at the target task. This message transfer mode is called slot mode

and this flow is referred to as the slot flow.

2. For large messages, the virtual memory region that contains the message data

at the source task is exported using a kernel extension. The kernel extension

returns identifiers to the source task. These identifiers can be used to attach to

the source task’s virtual memory region. The source task transfers these

identifiers to the target task using a slot at the tail of the target task’s message

queue. When this slot is processed on the message target, the identifiers are

used to attach the source message region to the target task’s address space,

and to thereafter copy the data directly from the source task message buffers

into user buffers at the target task. This message transfer mode is called attach

mode and this flow is referred to as the attach flow.

LAPI shared memory: requirements and restrictions

Requirements and restrictions for using LAPI shared memory follow:

v To use shared memory, the LAPI_USE_SHM environment variable must be set

to yes or only. It is not case-sensitive.

If LAPI_USE_SHM is set to only, LAPI only uses the shared memory

mechanism. If all tasks are not on the same node or if shared memory setup is

not successful, LAPI returns an error message.

If LAPI_USE_SHM is set to yes, the shared memory path is used on tasks within

a node, unless initialization of shared memory fails. In that case, the switch path

is used. For tasks on different nodes, the network path is used.

v The kernel extension must be loaded.

v The maximum number of shared memory tasks per operating system image is

128.

Appendix B. LAPI execution models 259

|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

260 IBM RSCT for AIX 5L: LAPI Programming Guide

Appendix C. LAPI messages, return codes, and return values

This appendix lists LAPI’s attention messages, error codes, return codes, and return

values. For LAPI error messages, see RSCT: Messages.

LAPI attention messages

 Table 33. LAPI attention messages

Attention

message Description

485 Failover setup failed because an internal error occurred.

486 Failover setup failed because NAM is not installed.

487 Failover setup failed because group services is not installed.

488 Failover setup failed because an old version of POE is installed.

489 Failover setup failed because POE is not installed.

490 Failover setup failed because a non-snX device is being used by the

current job.

491 Failover function halted due to an internal LAPI error.

499 Bulk transfer is enabled.

500 Timeout between multiple tasks.

501 LAPI version string.

502 Shared memory initialization failed.

503 Shared memory initialization failed at checkpoint restart.

504 Shared memory was not used because only one task is running.

505 The task was not able to create shared memory.

506 The task was not able to get shared memory.

507 The task was not able to attach shared memory.

508 The task was not able to reserve a segment.

509 Initial communication over port.

LAPI return codes

 Table 34. LAPI return codes

Return code Return value Description

0 LAPI_SUCCESS The function call completed successfully.

LAPI error codes

Table 35 lists all of the LAPI error codes and their associated return values in

numerical order (by error code).

 Table 35. LAPI error codes

Error code Return value Description

400 LAPI_ERR_UNKNOWN An asynchronous, internal communication error

occurred.

© Copyright IBM Corp. 2003, 2005 261

||

||

||

||

||

||

||

||

||

||

||

Table 35. LAPI error codes (continued)

Error code Return value Description

401 LAPI_ERR_ALL_HNDL_IN_USE All available LAPI instances are in use.

402 LAPI_ERR_BOTH_NETSTR_SET Both network statements are set for a single

LAPI instance.

404 LAPI_ERR_CSS_LOAD_FAILED Unable to load the communication utility library.

405 LAPI_ERR_INFO_NULL The lapi_info pointer is NULL.

406 LAPI_ERR_MSG_API The MP_MSG_API environment setting has an

error in it.

407 LAPI_ERR_NO_NETSTR_SET No network statement is set or MP_MSG_API is

not set correctly.

408 LAPI_ERR_NO_UDP_HNDLR Told LAPI to use a user-defined udp_hndlr, but

udp_hndlr is set to NULL.

409 LAPI_ERR_HDR_HNDLR_NULL The header handler is NULL. This error is

returned in an asynchronous error handler.

410 LAPI_ERR_PSS_NON_ROOT Tried to initialize the persistent subsystem (PSS)

as non-root.

412 LAPI_ERR_SHM_KE_NOT_LOADED The shared memory kernel extension is not

loaded.

413 LAPI_ERR_TIMEOUT A communication timeout has occurred. This

error is returned in an asynchronous error

handler.

414 LAPI_ERR_REG_TIMER An error occurred while re-registering the timer.

415 LAPI_ERR_UDP_PKT_SZ The UDP packet size is not valid.

416 LAPI_ERR_USER_UDP_HNDLR_FAIL The user-defined udp_hndlr failed.

417 LAPI_ERR_HNDL_INVALID A non-valid handle was passed in to LAPI.

418 LAPI_ERR_RET_PTR_NULL The output data pointer is NULL.

419 LAPI_ERR_ADDR_HNDL_RANGE The address handle range is not valid.

420 LAPI_ERR_ADDR_TBL_NULL The output address table is NULL.

421 LAPI_ERR_TGT_PURGED The destination task is purged.

422 LAPI_ERR_MULTIPLE_WAITERS Multiple threads are waiting for the same

counter.

423 LAPI_ERR_MEMORY_EXHAUSTED LAPI is unable to allocate storage.

424 LAPI_ERR_INFO_NONZERO Unused fields in the lapi_info_t structure need

to be zeroed out.

425 LAPI_ERR_ORG_ADDR_NULL The source address pointer is NULL.

426 LAPI_ERR_TGT_ADDR_NULL The target address pointer is NULL.

427 LAPI_ERR_DATA_LEN The length passed in is too big.

428 LAPI_ERR_TGT The target is not valid.

429 LAPI_ERR_UHDR_NULL uhdr is NULL, but uhdr_len is greater than 0.

430 LAPI_ERR_UHDR_LEN uhdr_len is too big.

431 LAPI_ERR_HDR_LEN uhdr_len is not doubleword-aligned.

432 LAPI_ERR_ORG_EXTENT The source vector’s extent is too big.

433 LAPI_ERR_ORG_STRIDE The source vector’s stride is less than its block.

434 LAPI_ERR_NO_CONNECTIVITY No connectivity to task.

262 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 35. LAPI error codes (continued)

Error code Return value Description

435 LAPI_ERR_ADAPTERS_DOWN All adapters are down.

436 LAPI_ERR_RECV_INCOMP The ″message receive″ operation did not

complete.

437 LAPI_ERR_SEND_INCOMP The ″message send″ operation did not complete.

438 LAPI_ERR_SEND_TIMEOUT The ″message send″ operation timed out.

439 LAPI_ERR_SHM_SETUP The shared memory setup failed.

440 LAPI_ERR_ORG_VEC_ADDR The source vector address is NULL, but its len

is greater than 0.

441 LAPI_ERR_ORG_VEC_LEN The source vector’s length is too big.

442 LAPI_ERR_ORG_VEC_NULL The source vector pointer is NULL.

443 LAPI_ERR_ORG_VEC_TYPE The source vector type is not valid.

444 LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL The source stride vector address is NULL.

445 LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL The target stride vector address is NULL.

446 LAPI_ERR_TGT_EXTENT The target vector’s extent is too big.

447 LAPI_ERR_TGT_STRIDE The target vector’s stride is less than its block.

448 LAPI_ERR_TGT_VEC_ADDR The target vector address is NULL, but its len is

greater than 0.

449 LAPI_ERR_TGT_VEC_LEN The target vector’s length is too big.

451 LAPI_ERR_TGT_VEC_NULL The target vector pointer is NULL.

452 LAPI_ERR_TGT_VEC_TYPE The target vector type is not valid.

453 LAPI_ERR_VEC_NUM_DIFF The source and target vectors have different

num_vecs values.

454 LAPI_ERR_VEC_TYPE_DIFF The source and target vectors have different

vec_type values.

455 LAPI_ERR_VEC_LEN_DIFF The source and target vectors have different

len[] values.

456 LAPI_ERR_MSG_INFO_NULL LAPI_Msgpoll’s info pointer is NULL.

458 LAPI_ERR_CNTR_NULL The counter pointer is NULL.

459 LAPI_ERR_CNTR_VAL The counter value passed in is less than 0 for

the LAPI_Nopoll_wait call.

460 LAPI_ERR_QUERY_TYPE The query is not a valid query type.

461 LAPI_ERR_IN_VAL_NULL LAPI_Rmw’s in_val pointer is NULL.

462 LAPI_ERR_RMW_OP The RMW operator is not valid.

463 LAPI_ERR_TGT_VAR_NULL LAPI_Rmw’s tgt_var address is NULL.

464 LAPI_ERR_SET_VAL LAPI_Senv’s set_val value is not valid.

465 LAPI_ERR_DGSP The DGSP is NULL or is not registered.

466 LAPI_ERR_DGSP_ATOM The DGSP atom_size is not valid.

467 LAPI_ERR_DGSP_BRANCH The DGSP processed an incorrect branch.

468 LAPI_ERR_DGSP_CTL The DGSP CONTROL instruction has errors.

469 LAPI_ERR_DGSP_COPY_SZ The DGSP has a non-valid copy length.

470 LAPI_ERR_DGSP_FREE A non-valid attempt was made to free a DGSP.

471 LAPI_ERR_DGSP_OPC The DGSP opcode is not valid.

Appendix C. LAPI messages, return codes, and return values 263

Table 35. LAPI error codes (continued)

Error code Return value Description

472 LAPI_ERR_DGSP_REPS The DGSP has a non-valid reps field (its value is

less than 0).

473 LAPI_ERR_DGSP_STACK An insufficient stack depth was allocated for the

DGSP stack.

474 LAPI_ERR_OP_SZ The lapi_rmw_t size is not set to 32 or 64.

475 LAPI_ERR_UDP_PORT_INFO The udp_port information pointer is NULL.

476 LAPI_ERR_XFER_CMD The LAPI_Xfer command type is not valid.

477 LAPI_ERR_UTIL_CMD The LAPI_Util command type is not valid.

478 LAPI_ERR_CATALOG_FAIL LAPI cannot open the message catalog.

479 LAPI_ERR_PACK_SZ The pack buffer is too small.

480 LAPI_ERR_DGSP_OTHER A DGSP error occurred (code_size is equal to 0,

for example).

481 LAPI_ERR_UDP_SOCKET An error occurred during a UDP socket

operation.

482 LAPI_ERR_COLLECTIVE_PSS The persistent subsystem (PSS) attempted a

collective call.

492 LAPI_ERR_TGT_CONTEXT Non-valid target context.

493 LAPI_ERR_SRC_CONTEXT Non-valid source context.

494 LAPI_ERR_TGT_BUFHNDL Non-valid target buffer handle.

495 LAPI_ERR_SRC_BUFHNDL Non-valid source buffer handle.

496 LAPI_ERR_TGT_OFFSET Non-valid target offset.

497 LAPI_ERR_SRC_OFFSET Non-valid source offset.

498 LAPI_ERR_NO_RDMA_RESOURCE No RDMA resources.

499 LAPI_ERR_NO_RDMA_RESOURCE No RDMA resources.

510 LAPI_ERR_NO_ENV_VAR A required environment variable is not set.

511 LAPI_ERR_CODE_UNKNOWN The error code is unknown to LAPI.

LAPI return values

Table 36 lists all of the LAPI return values and their associated return codes in

alphabetical order (by return value).

 Table 36. LAPI return values

Return value Return code Description

LAPI_ERR_ADAPTERS_DOWN 435 All adapters are down.

LAPI_ERR_ADDR_HNDL_RANGE 419 The address handle range is not valid.

LAPI_ERR_ADDR_TBL_NULL 420 The output address table is NULL.

LAPI_ERR_ALL_HNDL_IN_USE 401 All available LAPI instances are in use.

LAPI_ERR_BOTH_NETSTR_SET 402 Both network statements are set for a single

LAPI instance.

LAPI_ERR_CATALOG_FAIL 478 LAPI cannot open the message catalog.

LAPI_ERR_CNTR_NULL 458 The counter pointer is NULL.

264 IBM RSCT for AIX 5L: LAPI Programming Guide

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

Table 36. LAPI return values (continued)

Return value Return code Description

LAPI_ERR_CNTR_VAL 459 The counter value passed in is less than 0 for

the LAPI_Nopoll_wait call.

LAPI_ERR_CODE_UNKNOWN 485 The error code is unknown to LAPI.

LAPI_ERR_COLLECTIVE_PSS 482 The persistent subsystem (PSS) attempted a

collective call.

LAPI_ERR_CSS_LOAD_FAILED 404 Unable to load the communication utility library.

LAPI_ERR_DATA_LEN 427 The length passed in is too big.

LAPI_ERR_DGSP 465 The DGSP is NULL or is not registered.

LAPI_ERR_DGSP_ATOM 466 The DGSP atom_size is not valid.

LAPI_ERR_DGSP_BRANCH 467 The DGSP processed an incorrect branch.

LAPI_ERR_DGSP_COPY_SZ 469 The DGSP has a non-valid copy length.

LAPI_ERR_DGSP_CTL 468 The DGSP CONTROL instruction has errors.

LAPI_ERR_DGSP_FREE 470 A non-valid attempt was made to free a DGSP.

LAPI_ERR_DGSP_OPC 471 The DGSP opcode is not valid.

LAPI_ERR_DGSP_OTHER 480 A DGSP error occurred (code_size is equal to 0,

for example).

LAPI_ERR_DGSP_REPS 472 The DGSP has a non-valid reps field (its value is

less than 0).

LAPI_ERR_DGSP_STACK 473 An insufficient stack depth was allocated for the

DGSP stack.

LAPI_ERR_HDR_HNDLR_NULL 409 The header handler is NULL. This error is

returned in an asynchronous error handler.

LAPI_ERR_HDR_LEN 431 uhdr_len is not doubleword-aligned.

LAPI_ERR_HNDL_INVALID 417 A non-valid handle was passed in to LAPI.

LAPI_ERR_INFO_NONZERO 424 Unused fields in the lapi_info_t structure need

to be zeroed out.

LAPI_ERR_INFO_NULL 405 The lapi_info pointer is NULL.

LAPI_ERR_IN_VAL_NULL 461 LAPI_Rmw’s in_val pointer is NULL.

LAPI_ERR_MEMORY_EXHAUSTED 423 LAPI is unable to allocate storage.

LAPI_ERR_MSG_API 406 The MP_MSG_API environment setting has an

error in it.

LAPI_ERR_MSG_INFO_NULL 456 LAPI_Msgpoll’s info pointer is NULL.

LAPI_ERR_MULTIPLE_WAITERS 422 Multiple threads are waiting for the same

counter.

LAPI_ERR_NO_CONNECTIVITY 434 No connectivity to task.

LAPI_ERR_NO_ENV_VAR 510 A required environment variable is not set.

LAPI_ERR_NO_NETSTR_SET 407 No network statement is set or MP_MSG_API is

not set correctly.

LAPI_ERR_NO_UDP_HNDLR 408 Told LAPI to use a user-defined udp_hndlr, but

udp_hndlr is set to NULL.

LAPI_ERR_OP_SZ 474 The lapi_rmw_t size is not set to 32 or 64.

LAPI_ERR_ORG_ADDR_NULL 425 The source address pointer is NULL.

LAPI_ERR_ORG_EXTENT 432 The source vector’s extent is too big.

Appendix C. LAPI messages, return codes, and return values 265

|||

Table 36. LAPI return values (continued)

Return value Return code Description

LAPI_ERR_ORG_STRIDE 433 The source vector’s stride is less than its block.

LAPI_ERR_ORG_VEC_ADDR 440 The source vector address is NULL, but its len

is greater than 0.

LAPI_ERR_ORG_VEC_LEN 441 The source vector’s length is too big.

LAPI_ERR_ORG_VEC_NULL 442 The source vector pointer is NULL.

LAPI_ERR_ORG_VEC_TYPE 443 The source vector type is not valid.

LAPI_ERR_PACK_SZ 479 The pack buffer is too small.

LAPI_ERR_PSS_NON_ROOT 410 Tried to initialize the persistent subsystem (PSS)

as non-root.

LAPI_ERR_QUERY_TYPE 460 The query is not a valid query type.

LAPI_ERR_RECV_INCOMP 436 The ″message receive″ operation did not

complete.

LAPI_ERR_REG_TIMER 414 An error occurred while re-registering the timer.

LAPI_ERR_RET_PTR_NULL 418 The output data pointer is NULL.

LAPI_ERR_RMW_OP 462 The RMW operator is not valid.

LAPI_ERR_SEND_INCOMP 437 The ″message send″ operation did not complete.

LAPI_ERR_SEND_TIMEOUT 438 The ″message send″ operation timed out.

LAPI_ERR_SET_VAL 464 LAPI_Senv’s set_val value is not valid.

LAPI_ERR_SHM_KE_NOT_LOADED 412 The shared memory kernel extension is not

loaded.

LAPI_ERR_SHM_SETUP 439 The shared memory setup failed.

LAPI_ERR_SRC_BUFHNDL 495 Non-valid source buffer handle.

LAPI_ERR_SRC_CONTEXT 493 Non-valid source context.

LAPI_ERR_SRC_OFFSET 497 Non-valid source offset.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL 444 The source stride vector address is NULL.

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL 445 The target stride vector address is NULL.

LAPI_ERR_TGT 428 The target is not valid.

LAPI_ERR_TGT_ADDR_NULL 426 The target address pointer is NULL.

LAPI_ERR_TGT_BUFHNDL 494 Non-valid target buffer handle.

LAPI_ERR_TGT_CONTEXT 492 Non-valid target context.

LAPI_ERR_TGT_EXTENT 446 The target vector’s extent is too big.

LAPI_ERR_TGT_OFFSET 496 Non-valid target offset.

LAPI_ERR_TGT_PURGED 421 The destination task is purged.

LAPI_ERR_TGT_STRIDE 447 The target vector’s stride is less than its block.

LAPI_ERR_TGT_VAR_NULL 463 LAPI_Rmw’s tgt_var address is NULL.

LAPI_ERR_TGT_VEC_ADDR 448 The target vector address is NULL, but its len is

greater than 0.

LAPI_ERR_TGT_VEC_LEN 449 The target vector’s length is too big.

LAPI_ERR_TGT_VEC_NULL 451 The target vector pointer is NULL.

LAPI_ERR_TGT_VEC_TYPE 452 The target vector type is not valid.

266 IBM RSCT for AIX 5L: LAPI Programming Guide

|||

|||

|||

|||

|||

|||

Table 36. LAPI return values (continued)

Return value Return code Description

LAPI_ERR_TIMEOUT 413 A communication timeout has occurred. This

error is returned in an asynchronous error

handler.

LAPI_ERR_UDP_PKT_SZ 415 The UDP packet size is not valid.

LAPI_ERR_UDP_PORT_INFO 475 The udp_port information pointer is NULL.

LAPI_ERR_UDP_SOCKET 481 An error occurred during a UDP socket

operation.

LAPI_ERR_UHDR_LEN 430 uhdr_len is too big.

LAPI_ERR_UHDR_NULL 429 uhdr is NULL, but uhdr_len is greater than 0.

LAPI_ERR_UNKNOWN 400 An asynchronous, internal communication error

occurred.

LAPI_ERR_USER_UDP_HNDLR_FAIL 416 The user-defined udp_hndlr failed.

LAPI_ERR_UTIL_CMD 477 The LAPI_Util command type is not valid.

LAPI_ERR_VEC_LEN_DIFF 455 The source and target vectors have different

len[] values.

LAPI_ERR_VEC_NUM_DIFF 453 The source and target vectors have different

num_vecs values.

LAPI_ERR_VEC_TYPE_DIFF 454 The source and target vectors have different

vec_type values.

LAPI_ERR_XFER_CMD 476 The LAPI_Xfer command type is not valid.

LAPI_SUCCESS 0 The function call completed successfully.

Appendix C. LAPI messages, return codes, and return values 267

268 IBM RSCT for AIX 5L: LAPI Programming Guide

Appendix D. LAPI environment variables and runtime

attributes

This appendix summarizes the LAPI environment variables and runtime attributes.

For information about MPI and POE environment variables, see the Parallel Environment for AIX 5L: MPI

Programming Guide or Parallel Environment for AIX 5L: Operation and Use, Volume 1.

Environment variables

Variables for communication

Table 37 includes LAPI environment variables for communication:

 Table 37. Environment variables for communication

Environment variable Set: Possible values Default value

MP_MSG_API To determine how adapter windows

will be allocated for communication.

LAPI will not initialize if this variable

is not set. See “Setting environment

variables” on page 29 for more

information.

lapi

lapi,mpi

mpi,lapi

mpi_lapi

mpi

mpi (for users

running PE)

Variables for data transfer

Table 38 includes LAPI environment variables for data transfer:

 Table 38. Environment variables for data transfer

Environment variable Set: Possible values Default value

LAPI_VERIFY_DGSP To verify every DGSP at registration

time. By default, this variable is set to

no because it degrades performance.

If it is set to yes, LAPI performs

limited correctness checking of users’

DGSPs at registration. It is

recommended that applications in

which users build DGSPs be tested

with this variable set to yes, then run

with it set to no during

performance-critical operation. Note

that many DGSP errors are only

detectable during data transfer.

yes

no

no

MP_BULK_MIN_MSG_SIZE To change the minimum message

size (in bytes) for which LAPI will

attempt to make bulk transfers. If you

specify a value that is less than 4K,

MP_BULK_MIN_MSG_SIZE is set to

4K. This environment variable is a

hint that may or may not be honored

by the communication library. See

Chapter 13, “Bulk transfer of

messages,” on page 99 for more

information.

Any value greater

than 4K

150K

© Copyright IBM Corp. 2003, 2005 269

Table 38. Environment variables for data transfer (continued)

Environment variable Set: Possible values Default value

MP_USE_BULK_XFER To enable or disable bulk message

transfer using the remote direct

memory access (RDMA) protocol.

This environment variable is a hint

that may or may not be honored by

the communication library. See

Chapter 13, “Bulk transfer of

messages,” on page 99 for more

information.

yes

no

no

Variables for diagnostics

Table 39 includes LAPI environment variables for diagnostics.

 Table 39. Environment variables for diagnostics

Environment variable Set: Possible values Default value

MP_DEBUG_NOTIMEOUT To attach to one or more tasks

without the concern that some other

task may reach the LAPI timeout.

Such a timeout would normally occur

if one of the job tasks was continuing

to run and tried to communicate with

a task to which the programmer has

attached using a debugger. With this

variable set, LAPI never times out

and continues retransmitting

message packets forever. The default

setting (no) lets LAPI time out.

Any non-null string no

MP_LAPI_TRACE_LEVEL The level of tracing to use for

debugging (if AIX tracing is enabled).

This environment variable is enabled

for the libtrace library only.

0 (no LAPI trace

output)

1, 2, 3, 4, 5

(increasing levels

of LAPI trace

output)

0

Variables for performance tuning

Table 40 includes LAPI environment variables that are considered user-tunable for performance. See

“Tunable environment variables” on page 80 for more information.

 Table 40. Environment variables for performance tuning

Environment variable Set: Possible values Default value

MP_ACK_THRESH The number of packets that are

received before LAPI returns a batch

of acknowledgments to the sending

task.

A positive integer

from 1 to 31

Depends on which

communication

adapter is used

MP_POLLING_INTERVAL To control the interval for LAPI timer

pops (in microseconds).

Any value greater

than 10000

400000 (400

milliseconds)

270 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

||
|
|
|
|
|
|
|
|
|
|
|

||

Table 40. Environment variables for performance tuning (continued)

Environment variable Set: Possible values Default value

MP_RETRANSMIT_INTERVAL To control how often the

communication subsystem library

checks to see if it should retransmit

packets that have not been

acknowledged. The value specified is

the number of polling loops between

checks.

1000 to INT_MAX 1000000

MP_REXMIT_BUF_CNT Specifies the number of buffers that

LAPI must allocate. The size of each

buffer is defined by

MP_REXMIT_BUF_SIZE. This count

indicates the number of in-flight

messages smaller than

MP_REXMIT_BUF_SIZE that LAPI

can store in its local buffers in order

to free up the user’s message buffers

more quickly.

Any integer

greater than 0

128

MP_REXMIT_BUF_SIZE The maximum message size, in

bytes, that LAPI will store in its local

buffers in order to more quickly free

up the user buffer containing

message data. This size indicates the

size of the local buffers LAPI will

allocate to store such messages, and

will impact memory usage, while

potentially improving performance.

LAPI will use the buffer to store the

user header and the user data.

Any integer

greater than 0

16384

MP_UDP_PACKET_SIZE To control the size of LAPI packets

for UDP data transfer. LAPI

initialization will fail if this variable is

set to a value outside the valid

range.

1024 to 65536 8192 for

non-switch

devices

65536 for switch

devices

Variables for POE

Table 41 on page 272 includes LAPI environment variables for POE. The variables described in this

section are set by the user and interpreted by POE. Although LAPI ignores these variables (except

MP_INFOLEVEL), they are included in this document because they have an impact on LAPI jobs.

Appendix D. LAPI environment variables and runtime attributes 271

Table 41. Environment variables for POE

Environment

variable

Set: Possible values Default value

MP_EUIDEVICE The adapter set to use for message passing:

Ethernet, Fiber Distributed Data Interface

(FDDI), IP multi-link device, HPS, pSeries

HPS, SP Switch2, or token ring.

csss SP Switch2

(multi-plane,

for PSSP

LAPI)

en0 Ethernet

fi0 FDDI

ml0 IP multi-link

device

sn_all HPS or

pSeries HPS

(for RSCT

LAPI)

sn_single

HPS or

pSeries HPS

(for RSCT

LAPI)

tr0 token ring

The adapter set that

is used as the

external network

address.

 IP: en0

US: csss (for

 PSSP LAPI)

 sn_single

 (for RSCT LAPI)

MP_EUILIB The communication subsystem library

implementation to use for communication:

either the Internet Protocol (IP)

communication subsystem or the user space

(US) communication subsystem.

These values are

case-sensitive:

 ip

us

ip

272 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

|
|

|
|

|

Table 41. Environment variables for POE (continued)

Environment

variable

Set: Possible values Default value

MP_INFOLEVEL The level of message reporting.

Any value that is greater or equal to 2

causes LAPI to print out such library

information as the LAPI version number and

the build timestamp.

One of the following

integers:

0 Error.

1 Warning and error.

2 Informational,

warning, and error.

3 Informational,

warning, and error.

Also reports

high-level

diagnostic

messages for use

by the IBM

Support Center.

4 Informational,

warning, and error.

Also reports high-

and low-level

diagnostic

messages for use

by the IBM

Support Center.

5 Informational,

warning, and error.

Also reports high-

and low-level

diagnostic

messages for use

by the IBM

Support Center.

6 Informational,

warning, and error.

Also reports high-

and low-level

diagnostic

messages for use

by the IBM

Support Center.

0

MP_INSTANCES To control the number of instances

requested for jobs, without requiring direct

use of a LoadLeveler job control file (JCF).

POE uses the value specified by this

environment variable to add an

instances=value field to the network

statements of the JCF it creates. When

multiple protocols (for example: mpi, lapi)

are specified using MP_MSG_API, the same

number of instances is used for both

protocols. (Setting instances for each

protocol to different values requires the use

of a JCF.) The value in this field is ignored if

you supply a JCF to POE.

1 to max, where max

(a case-insensitive

string), is the

maximum number of

windows that are

usable by a job of the

specified job class, as

configured by the

administrator. POE

does not perform error

checking. LoadLeveler

interprets values that

are greater than max

as max.

none

If POE creates a JCF

without the instances

field, LoadLeveler

interprets this as a

request for one

window when

MP_EUIDEVICE is

set to sn_single or

for one window on

every network when

MP_EUIDEVICE is

set to sn_all.

Appendix D. LAPI environment variables and runtime attributes 273

Variables for shared memory

Table 42 includes LAPI environment variables for shared memory jobs. Set these variables if you are using

LAPI on a standalone system.

 Table 42. Environment variables for shared memory

Environment variable Set: Possible

values

Default value

LAPI_USE_SHM To enable or disable the use of shared memory.

no -- disables the use of shared memory (the

default).

yes -- enables the use of shared memory where

it is possible. LAPI will communicate using

shared memory among all common tasks (tasks

that are on the same node) over the selected

device (user space over switch, IP over switch,

or IP over Ethernet). See MP_EUIDEVICE and

MP_EUILIB for tasks on different nodes. Shared

memory requires segment registers, which can

affect availability to user code in 32-bit

applications.

only -- communicates only using shared

memory. LAPI will fail to initialize if this option is

chosen and tasks are assigned to more than

one node.

yes

no

only

no

Variables for standalone systems

When LAPI is running in a PE environment, POE sets the variables that are described in Table 43. When

LAPI is running in standalone mode, you need to set these variables explicitly. See “Standalone setup” on

page 115 for more information.

 Table 43. Environment variables for standalone systems

Environment variable Set: Possible

values

Default value

MP_CHILD The task ID of the current job. MP_CHILD

needs to be set to a unique value for each task

in standalone mode.

Any value that

is greater than

or equal to 0

and less than

the value of

MP_PROCS

you need to set

MP_COMMON_TASKS For shared memory jobs. See

“Standalone

setup” on page

115.

you need to set

MP_LAPI_INET_ADDR The network setup among LAPI tasks for IP

communication.

See

“Standalone

setup” on page

115.

you need to set

MP_LAPI_NETWORK LAPI network information. See

“Standalone

setup” on page

115.

you need to set

274 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 43. Environment variables for standalone systems (continued)

Environment variable Set: Possible

values

Default value

MP_PARTITION A number that is the same for all tasks in the

job. In standalone mode, you need to set this

variable to an identical value for each task. In

standalone mode for switched communication,

the MP_PARTITION value must be associated

with the network table description file.

any value you need to set

MP_PROCS The value of num_tasks, which is the total

number of program tasks in the job. This

number must be the same for all tasks.

A positive

integer from 1

to the maximum

number of tasks

that is

supported by

the

configuration.

you need to set

The descriptions and formats of MP_COMMON_TASKS, MP_LAPI_INET_ADDR, MP_LAPI_NETWORK

are provided in this book for informational purposes only. These environment variables are not intended to

be used as external programming interfaces. IBM will not guarantee that the formats or values of these

variables can continue to be used without change in future releases. Programmers and users who choose

to develop applications that depend on these variables do so with the understanding that these variables

may be subject to future change. IBM cannot guarantee that such applications can migrate or coexist with

future releases without additional changes, nor will IBM ensure that there will be binary compatibility of

these variables.

Runtime attributes

This section includes attributes that you can query during runtime using the LAPI_Qenv interface. See

“LAPI_Qenv” on page 184 for more information about using LAPI_Qenv.

You can set some of these attributes using LAPI_Senv. See “Attributes you can query or set.” For more

information about using LAPI_Senv, see “LAPI_Senv” on page 196.

Attributes you can query or set

Table 44 includes runtime attributes you can set using LAPI_Senv or query using LAPI_Qenv.

 Table 44. Runtime attributes you can query or set

Runtime attribute Description

ACK_THRESHOLD This value represents the number of packets received before LAPI sends

acknowledgements. It can also be set using LAPI_Senv or with the

MP_ACK_THRESH environment variable (see “Variables for performance

tuning” on page 270).

ERROR_CHK This attribute is a user-settable toggle that indicates whether LAPI should

perform error checking. If set, LAPI calls will perform bounds- checking on

parameters. Due to the potential performance degradation, error checking is

disabled by default.

INTERRUPT_SET This a user-settable toggle value that controls whether LAPI runs with

interrupts turned on or off. With interrupts on, a timer-driven interrupt will

drive packet acknowledgements and retransmits.

Appendix D. LAPI environment variables and runtime attributes 275

Table 44. Runtime attributes you can query or set (continued)

Runtime attribute Description

TIMEOUT This value corresponds to number of seconds that LAPI should wait on

receiving packet acknowledgements before considering a remote task as

unreachable. It can be set to a value in the range MIN_TIMEOUT <

TIMEOUT < MAX_TIMEOUT. The default is 900 seconds (15 minutes).

Attributes you can query

This section includes attribute values that you can query during runtime using the LAPI_Qenv interface.

LAPI_Qenv returns values through a reference parameter.

Attributes that return integers

Table 45 includes attributes that return integers. The actual parameter is expected to be of type &int.

 Table 45. Attributes that return integers

Runtime attribute Description

BUF_CP_SIZE This represents the value of LAPI’s send-side copy buffer. It can be

set at job startup using the MP_REXMIT_BUF_SIZE environment

variable (see “Variables for performance tuning” on page 270).

BULK_MIN_MSG_SIZE This represents the current minimum message size that will be used

for bulk transfer.

BULK_XFER This value indicates whether bulk transfer is enabled (1) or disabled

(0).

LOC_ADDRTBL_SZ This value represents the upper bound on LAPI’s internal table size.

For example, the size of the address table used in LAPI_Addr_set is

bounded by this value.

MAX_ATOM_SIZE This represents the maximum atom size for user DGSPs. See “Using

data gather/scatter programs (DGSPs)” on page 43 for more

information.

MAX_DATA_SZ This query is deprecated. For 32-bit applications, it will return the

value of the macro LAPI_MAX_MSG_SZ defined in lapi.h. For 64-bit

applications, it will return the largest unsigned integer. Rather than

use this query, it is recommended that users use the macro

LAPI_MAX_MSG_SZ directly, which is valid for both 32-bit and 64-bit

applications.

MAX_PKT_SZ This value represents the maximum storage for user data (header +

data) in each LAPI packet.

MAX_PKTS_OUT This value represents the maximum number of packets that can be

″in flight″ between any two tasks.

MAX_PORTS This value represents the maximum number of LAPI instances that

are available for use.

MAX_TIMEOUT This is the maximum number of seconds that a user can set for

TIMEOUT. If an attempt is made to set TIMEOUT to a value outside

the valid range, LAPI_Senv will return an error and TIMEOUT will be

unchanged.

MAX_UHDR_SZ The maximum size in bytes that can be used for user header data.

See “LAPI_Amsend” on page 136 for more information on using a

user header.

MIN_TIMEOUT This is the minimum number of seconds that a user can set for

TIMEOUT. If an attempt is made to set TIMEOUT to a value outside

the valid range, LAPI_Senv will return an error and TIMEOUT will be

unchanged.

276 IBM RSCT for AIX 5L: LAPI Programming Guide

||
|

||
|

Table 45. Attributes that return integers (continued)

Runtime attribute Description

NUM_REX_BUFS This value represents the number of retransmission buffers that LAPI

uses.

NUM_TASKS The total number of tasks in the job. This corresponds to the value

set in MP_PROCS.

QUERY_SHM_ENABLED This is a boolean value that indicates whether LAPI is communicating

using shared memory.

QUERY_SHM_NUM_TASKS This value represents the number of tasks with which the current

task can communicate using shared memory.

REX_BUF_SZ This value represents the size of LAPI’s retransmission buffers.

TASK_ID The ID that LAPI has for the given task. For standalone jobs, it

corresponds to the value set in MP_CHILD.

Attributes that return multiple values

Table 46 includes runtime attributes that return multiple values. These attributes expect a pointer to a

different datatype and require that the actual parameter represents sufficient space for the query type.

LAPI casts the passed pointer to this type.

 Table 46. Attributes that return multiple values

Runtime attribute Description

PRINT_STATISTICS Calling LAPI_Qenv with this query value will cause LAPI to dump the values

that would be returned in a lapi_statistics_t structure to standard output.

QUERY_LOCAL_SEND_STATISTICS Returns a number of statistics about the running environment, for the local

copy path. Expects a pointer to type lapi_statistics_t. For example:

{

lapi_statistics_t stats;

LAPI_Qenv(handle, QUERY_LOCAL_SEND_STATISTICS, (int *)&stats)));

}

Note that the address of stats is cast to int *. This is required to match the

signature of LAPI_Qenv.

QUERY_SHM_STATISTICS Returns a number of statistics about the running environment, for the shared

memory path. Expects a pointer to type lapi_statistics_t. For example:

{

lapi_statistics_t stats;

LAPI_Qenv(handle, QUERY_SHM_STATISTICS, (int *)&stats)));

}

Note that the address of stats is cast to int *. This is required to match the

signature of LAPI_Qenv.

Appendix D. LAPI environment variables and runtime attributes 277

||
|

|
|
|
|
|
|

|
|

||
|

|
|
|
|
|
|

|
|

Table 46. Attributes that return multiple values (continued)

Runtime attribute Description

QUERY_SHM_TASKS This query returns a list of shared memory task IDs for each task with which

this task can communicate using shared memory. LAPI expects an array

large enough to hold an integer index for each task in the job. For example:

{

 int *shm_task_list;

 int i;

 LAPI_Qenv(hndl, NUM_TASKS, &num_tasks);

 shm_task_list = (int *) (malloc(sizeof(int)*num_tasks));

 LAPI_Qenv(hndl, QUERY_SHM_TASKS, shm_task_list);

 for(i = 0; i < num_tasks; i++) {

 printf("task[%d] has shm_task_id %d, (num_tasks:%d)\n",

 i, shm_task_list[i], num_tasks);

 }

 free(shm_task_list);

}

QUERY_STATISTICS Returns a number of statistics about the running environment. Expects a

pointer to type lapi_statistics_t. For example:

{

lapi_statistics_t stats;

LAPI_Qenv(handle, QUERY_STATISTICS, (int *)&stats)));

}

Note that the address of stats is cast to int *. This is required to match the

signature of LAPI_Qenv.

Attributes for legacy code

LAPI no longer uses the following runtime attributes. They are included for support of legacy code.

v EPOCH_NUM

v RCV_FIFO_SIZE

v USE_THRESH

278 IBM RSCT for AIX 5L: LAPI Programming Guide

Appendix E. LAPI datatypes

This appendix lists datatypes that you can use in your LAPI programs.

 Table 47. LAPI datatypes

C datatype FORTRAN datatype Description

com_thread_info_t COM_THREAD_INFO_T For thread attribute and initialization functions.

compl_hndlr_t COMPL_HNDLR_T The receive completion handler.

ddm_func_t DDM_FUNC_T For data distribution manager (DDM) functions.

hdr_hndlr_t HDR_HNDLR_T The header handler for a contiguous DGSP

message.

in_addr_t IN_ADDR_T For local IP addresses.

in_port_t IN_PORT_T For local port addresses.

lapi_add_udp_port_t LAPI_ADD_UDP_PORT_T The LAPI_Util command structure (in C) or the

datatype (in FORTRAN) for updating the UDP

port information of the destination task.

(C equivalent: void *) LAPI_ADDR_TYPE For address functions.

lapi_am_t LAPI_AM_T The LAPI_Xfer command structure (in C) or the

datatype (in FORTRAN) for one contiguous

active message.

lapi_amdgsp_t LAPI_AMDGSP_T The LAPI_Xfer command structure (in C) or the

datatype (in FORTRAN) for one DGSP active

message.

lapi_amv_t LAPI_AMV_T The LAPI_Xfer command structure (in C) or the

datatype (in FORTRAN) for one vector active

message.

lapi_cntr_t LAPI_CNTR_T Defines a LAPI counter.

lapi_ctl_flags_t Part of the lapi_return_info_t structure.

Instructs LAPI on what it should do with a

message after the header handler is called.

lapi_dev_t LAPI_DEV_T For protocol devices.

lapi_dg_handle_t LAPI_DG_HANDLE_T Defines a DGSP handle.

lapi_dgsm_block_t LAPI_DGSM_BLOCK_T Defines a DGSP BLOCK instruction.

lapi_dgsm_control_t LAPI_DGSM_CONTROL_T Defines a DGSP CONTROL instruction.

lapi_dgsm_copy_t LAPI_DGSM_COPY_T Defines a DGSP COPY instruction.

lapi_dgsm_gosub_t LAPI_DGSM_GOSUB_T Defines a DGSP GOSUB instruction.

lapi_dgsm_iterate_t LAPI_DGSM_ITERATE_T Defines a DGSP ITERATE instruction.

lapi_dgsm_mcopy_t LAPI_DGSM_MCOPY_T Defines a DGSP multiple copy (MCOPY)

instruction.

lapi_dgsp_density_t LAPI_DGSM_SPARSE

LAPI_DGSM_CONTIG

LAPI_DGSM_UNIT

In C: an enumeration for values in a LAPI DGSP

descriptor.

In FORTRAN: one of three DGSP data layout

types.

lapi_dgsp_descr_t LAPI_DGSP_DESCR_T A DGSP descriptor structure.

lapi_dgsp_handle_t LAPI_DGSP_HANDLE_T A handle for a registered DGSP.

© Copyright IBM Corp. 2003, 2005 279

Table 47. LAPI datatypes (continued)

C datatype FORTRAN datatype Description

lapi_dref_dgsp_t LAPI_DREF_DGSP_T The LAPI_Util command structure (in C) or the

datatype (in FORTRAN) for a DGSP un-reserve

operation.

lapi_err_t LAPI_ERR_T Error type.

lapi_extend_t LAPI_EXTEND_T Additional structure extension.

lapi_get_t LAPI_GET_T The LAPI_Xfer command structure (in C) or the

datatype (in FORTRAN) for one ″get″ message.

lapi_getv_t LAPI_GETV_T The LAPI_Xfer command structure (in C) or the

datatype (in FORTRAN) for one vector ″get″

message.

lapi_handle_t LAPI_HANDLE_T An opaque handle for identifying the LAPI

context.

lapi_info_t LAPI_INFO_T Command structure for LAPI_Init.

lapi_lib_t LAPI_LIB_T For the LAPI library version.

lapi_long_t LAPI_LONG_TYPE LAPI long type.

long long LAPI_LONG_LONG_TYPE LAPI long long type.

lapi_lvec_t LAPI_LVEC_T LAPI long vector type.

lapi_msg_info_t LAPI_MSG_INFO_T Information about a LAPI_Msgpoll call.

lapi_msg_state_t LAPI_MSG_STATE_T In lapi_msg_info_t, indicates whether there is

any completion of send/receive after

LAPI_Msgpoll returns.

lapi_msglen_t LAPI_MSGLEN_T LAPI message length.

lapi_pack_dgsp_t LAPI_PACK_DGSP_T The LAPI_Util command structure (in C) or the

datatype (in FORTRAN) for packing data from a

memory layout defined by a DGSP to a

contiguous buffer.

lapi_put_t LAPI_PUT_T The LAPI_Xfer command structure (in C) or the

datatype (in FORTRAN) for one ″put″ message.

lapi_putv_t LAPI_PUTV_T The LAPI_Xfer command structure (in C) or the

datatype (in FORTRAN) for one vector ″put″

message.

lapi_query_t No equivalent type (query types

are defined explicitly in the

32-bit and 64-bit versions of

lapif.h).

In C: an enumeration that defines all queries

supported by LAPI_Qenv and LAPI_Senv.

lapi_reg_ddm_t LAPI_REG_DDM_T The LAPI_Util command structure (in C) or the

datatype (in FORTRAN) for data distribution

manager (DDM) functions.

lapi_reg_dgsp_t LAPI_REG_DGSP_T The LAPI_Util command structure (in C) or the

datatype (in FORTRAN) for registering a DGSP.

lapi_resv_dgsp_t LAPI_RESV_DGSP_T The LAPI_Util command structure (in C) or the

datatype (in FORTRAN) for reserving a DGSP.

lapi_ret_flags_t Part of the lapi_return_info_t structure.

Indicates to LAPI whether to run the completion

handler inline.

lapi_return_info_t A structure that extends the header handler

interface to pass information between LAPI and

a user program.

280 IBM RSCT for AIX 5L: LAPI Programming Guide

Table 47. LAPI datatypes (continued)

C datatype FORTRAN datatype Description

lapi_rmw_t LAPI_RMW_T The LAPI_Xfer command structure (in C) or the

datatype (in FORTRAN) for one

read-modify-write operation.

lapi_sh_info_t LAPI_SH_INFO_T Send completion handler information.

lapi_statistics_t LAPI_STATISTICS_T LAPI statistics.

lapi_udpinfo_t LAPI_UDPINFO_T UDP information

lapi_unpack_dgsp_t LAPI_UNPACK_DGSP_T The LAPI_Utill command structure (in C) or the

datatype (in FORTRAN) for unpacking data from

a contiguous buffer to a memory layout that is

defined by a DGSP.

lapi_usr_fcall_t LAPI_USR_FCALL_T For debugging only.

lapi_util_t LAPI_ADD_UDP_DEST_PORT

LAPI_DGSP_PACK

LAPI_DGSP_UNPACK

LAPI_REG_DDM_FUNC

LAPI_REGISTER_DGSP

LAPI_RESERVE_DGSP

LAPI_UNRESERVE_DGSP

In C: the union of all possible command

structures for LAPI_Util.

In FORTRAN: one of seven types for LAPI_Util.

lapi_util_type_t LAPI_UTIL_TYPE_T Specifies the type of utility in the command

structures for LAPI_Util.

lapi_vec_t LAPI_VEC_T Defines LAPI vector data layout.

lapi_vectype_t LAPI_VECTYPE_T The type of a vector.

lapi_xfer_t LAPI_AM_XFER

LAPI_AMV_XFER

LAPI_DGSP_XFER

LAPI_GET_XFER

LAPI_GETV_XFER

LAPI_PUT_XFER

LAPI_PUTV_XFER

LAPI_RMW_XFER

In C: the union of all possible command

structures for LAPI_Xfer.

In FORTRAN: one of eight transfer types for

LAPI_Xfer.

lapi_xfer_type_t LAPI_XFER_TYPE_T In C, the type of a LAPI_Xfer command

structure.

RMW_ops_t RMW_OPS_T The type of read-modify-write operation.

scompl_hndlr_t SCOMPL_HNDLR_T The send completion handler.

vhdr_hndlr_t VHDR_HNDLR_T The header handler for a vector message.

Appendix E. LAPI datatypes 281

282 IBM RSCT for AIX 5L: LAPI Programming Guide

Appendix F. LAPI constants and size limits

This appendix includes information about LAPI constants and size limits.

The upper bound on the message size that a user can transfer

(LAPI_MAX_MSG_SZ):

v For 32-bit applications: 0x7fffffff

v For 64-bit applications: 0x7fffffffffffffffLL

The maximum error string length (LAPI_MAX_ERR_STRING): 160 characters

The maximum number of nodes (MAX_NODES): 2048

The maximum number of tasks allowed within a task (MAX_TASKS): 16384

The maximum number of shared memory tasks (MAX_SHM_TASKS): 128

The maximum number of slots per task (MAX_SLOTS_PER_TASK): 128

© Copyright IBM Corp. 2003, 2005 283

|

|

|

|
|

|

|

|

|

|

|

|

284 IBM RSCT for AIX 5L: LAPI Programming Guide

Appendix G. LAPI restrictions

General restrictions

Nodes within the same LAPI job must be at the same version of LAPI.

Interoperability with previous versions of LAPI is not supported.

You cannot make LAPI calls from within the header handler. For contiguous data,

you can copy the data to the buffer you specified. For non-contiguous data, you

must pass the DGSP handle and a buffer address to LAPI. LAPI will unpack the

data to the specified buffer address.

I/O operations and blocking calls, including blocking LAPI calls, should not be

performed within an inline completion handler. Inline completion handlers should be

short, because no progress can be made while the main thread is executing the

handler. You must use caution with inline completion handlers so that LAPI’s

internal queues do not fill up while waiting for the handler to complete. Note that

LAPI places no restrictions on completion handlers that are run ″normally″ (that is,

by the completion handler thread).

User application threads and completion handler threads cannot hold mutual

exclusion resources before making LAPI calls. If they do, it is possible to run into

deadlock situations.

Static linking is not supported.

For systems running PE, both US and IP are supported for shared handles as long

as they are the same for both handles. Mixed transport protocols such as LAPI IP

and LAPI user space (US) are not supported.

Use of segment registers (32-bit applications only)

The user space (US) LAPI library uses two segment registers of the 10 that are

unassigned in the user’s AIX process space. Thus, the user can allocate a

maximum of 8 segments (-bmaxdata=0x80000000) to extended heap for large data

structures. However, programs compiled with 8 segments may experience reduced

shared memory performance in a 32-bit environment because there is no extra

segment for LAPI to do address space attach, which avoids one extra copy for

large messages. See “The shared memory execution model” on page 257 for more

information.

Other restrictions

For restrictions related to:

v Lock sharing, see “Implications and restrictions” on page 93

v Striping, failover, and recovery, see “Failover and recovery restrictions” on page

106 and “Communication and memory considerations” on page 108

v Shared memory, see “LAPI shared memory: requirements and restrictions” on

page 259

© Copyright IBM Corp. 2003, 2005 285

|
|

286 IBM RSCT for AIX 5L: LAPI Programming Guide

Glossary

access control. The process of limiting access to

system objects and resources to authorized principals.

access control list. A list of principals and the type of

access allowed to each.

ACL. See access control list.

action. The part of the event response resource that

contains a command and other information about the

command.

attribute. Attributes are either persistent or dynamic. A

resource class is defined by a set of persistent and

dynamic attributes. A resource is also defined by a set

of persistent and dynamic attributes. Persistent

attributes define the configuration of the resource class

and resource. Dynamic attributes define a state or a

performance-related aspect of the resource class and

resource. In the same resource class or resource, a

given attribute name can be specified as either

persistent or dynamic, but not both.

AIX. Advanced Interactive Executive. See AIX

operating system.

AIX operating system. IBM’s implementation of the

UNIX operating system.

authentication. The process of validating the identity

of an entity, generally based on user name and

password. However, it does not address the access

rights of that entity. Thus, it simply makes sure a user is

who he or she claims to be.

authorization. The process of granting or denying

access to an entity to system objects or resources,

based on the entity’s identity.

checksum. A count of the number of bits in a

transmission unit that is included with the unit so that

the receiver can check to see whether the same

number of bits arrived. If the counts match, it’s assumed

that the complete transmission was received. TCP and

UDP communication layers provide a checksum count

and verification as one of their services.

client. Client applications are the ordinary user

interface programs that are invoked by users or routines

provided by trusted services for other components to

use. The client has no network identity of its own: it

assumes the identity of the invoking user or of the

process where it is called, who must have previously

obtained network credentials.

cluster. A group of servers and other resources that

act like a single system and enable high availability and,

in some cases, load balancing and parallel processing.

clustering. The use of multiple computers (such as

UNIX workstations, for example), multiple storage

devices, and redundant interconnections to form what

appears to users as a single highly-available system.

Clustering can be used for load balancing, for high

availability, and as a relatively low-cost form of parallel

processing for scientific and other applications that lend

themselves to parallel operations.

cluster security services. A component of RSCT that

is used by RSCT applications and other RSCT

components to perform authentication within both

management domains and peer domains.

condition. A state of a resource as defined by the

event response resource manager (ERRM) that is of

interest to a client. It is defined by means of a logical

expression called an event expression. Conditions apply

to resource classes unless a specific resource is

designated.

condition/response association. A link between a

condition and a response.

CSM. Clusters Systems Management.

datagram. Synonymous with UDP packet.

domain. (1) A set of network resources (such as

applications and printers, for example) for a group of

users. A user logs in to the domain to gain access to

the resources, which could be located on a number of

different servers in the network. (2) A group of server

and client machines that exist in the same security

structure. (3) A group of computers and devices on a

network that are administered as a unit with common

rules and procedures. Within the Internet, a domain is

defined by its Internet Protocol (IP) address. All devices

that share a common part of the IP address are said to

be in the same domain.

event. Occurs when the event expression of a

condition evaluates to True. An evaluation occurs each

time an instance of a dynamic attribute is observed.

event expression. A definition of the specific state

when an event is true.

event response. One or more actions as defined by

the event response resource manager (ERRM) that take

place in response to an event or a rearm event.

failover. A backup operation that automatically

switches to another adapter if one adapter fails. Failover

is an important fault-tolerance function of mission-critical

systems that rely on constant accessibility. Automatically

and transparently to the user, failover redirects requests

from the failed adapter to another adapter that mimics

the operations of the failed adapter.

© Copyright IBM Corp. 2003, 2005 287

FFDC. See first failure data capture.

first failure data capture. Provides a way to track

problems back to their origin even though the source

problem may have occurred in other layers or

subsystems than the layer or subsystem with which the

end user is interacting. FFDC provides a correlator

called an ffdc_id for any error that it writes to the AIX

error log. This correlator can be used to link related

events together to form a chain.

FIFO. First in first out, usually referring to buffers.

High Performance Switch. The switch that works in

conjunction with IBM Eserver p5 servers (575, 595).

HPS. See High Performance Switch.

Internet Protocol. The method by which data is sent

from one computer to another on the Internet.

IP. See Internet Protocol.

IP address. A 32-bit (in IP Version 4) or 128-bit (in IP

Version 6) number identifying each sender or receiver of

information that is sent in packets across the Internet.

LAPI. See low-level application programming interface.

Linux. A freeware clone of UNIX for 386-based

personal computers (PCs). Linux consists of the linux

kernel (core operating system), originally written by

Linus Torvalds, along with utility programs developed by

the Free Software Foundation and by others.

LoadLeveler. The IBM LoadLeveler licensed program

is a job management system that works with POE to let

users run jobs and match processing needs with system

resources, in order to make better use of the system.

low-level application programming interface. A

low-overhead message-passing protocol that uses a

one-sided communication model and active message

paradigm to transfer data among tasks. See also RSCT

LAPI. Contrast with PSSP LAPI.

logical unit number. A unique identifier used on a

SCSI bus that enables it to differentiate between up to

eight separate devices (each of which is a logical unit).

Each LUN is a unique number that identifies a specific

logical unit, which may be an end user, a file, or an

application program.

LUN. See logical unit number.

management domain. A set of nodes configured for

manageability by the Clusters Systems Management

(CSM) licensed program. Such a domain has a

management server that is used to administer a number

of managed nodes. Only management servers have

knowledge of the whole domain. Managed nodes only

know about the servers managing them; they know

nothing of each other. Contrast with peer domain.

Message Passing Interface. A standardized API for

implementing the message-passing model.

MPI. See Message Passing Interface.

mutex. See mutual exclusion object.

mutual exclusion object. A program object that

allows multiple program threads to share the same

resource, such as file access, but not simultaneously.

When a program is started, a mutual exclusion object is

created with a unique name. After this stage, any thread

that needs the resource must lock the mutual exclusion

object from other threads while it is using the resource.

The mutual exclusion object is set to unlock when the

data is no longer needed or the routine is finished.

network credentials. These represent the data

specific to each underlying security mechanism.

OSI. Operating system image.

PAC. See privileged attribute certificate.

packet. The unit of data that is routed between an

origin and a destination on the Internet or any other

packet-switched network.

Parallel Environment. The IBM Parallel Environment

for AIX 5L licensed program is an execution and

development environment for parallel C, C++, and

FORTRAN programs. It also includes tools for

debugging, profiling, and tuning parallel programs.

parallel operating environment. An execution

environment that smooths the differences between

serial and parallel execution. It lets you submit and

manage parallel jobs.

Parallel System Support Programs. The IBM Parallel

System Support Programs for AIX 5L licensed program

is system administration software for the IBM RS/6000®

SP system.

PE. See Parallel Environment.

peer domain. A set of nodes configured for high

availability by the configuration resource manager. Such

a domain has no distinguished or master node. All

nodes are aware of all other nodes, and administrative

commands can be issued from any node in the domain.

All nodes also have a consistent view of the domain

membership. Contrast with management domain.

POE. See parallel operating environment.

port. A ″logical connection place″. Using TCP/IP, the

way a client program specifies a particular server

program on a computer in a network.

principal. A user, an instance of the server, or an

instance of a trusted client whose identity is to be

authenticated.

288 IBM RSCT for AIX 5L: LAPI Programming Guide

|
|

|

privileged attribute certificate. Contains such

information as the client’s name and the groups to

which it belongs. Its format is dependent on the

underlying security mechanism.

protocol. The set of rules that endpoints in a

telecommunication connection use when they

communicate.

pSeries High Performance Switch. The switch that

works in conjunction with IBM Eserver pSeries servers

(655, 690).

pSeries HPS. See pSeries High Performance Switch.

PSSP. See Parallel System Support Programs.

PSSP LAPI. The version of LAPI that supports the SP

Switch2.

rearm event. Occurs when the rearm expression for a

condition evaluates to True.

rearm expression. An expression that generates an

event which alternates with an original event in the

following way: the event expression is used until it is

true; then, the rearm expression is used until it is true;

then, the event expression is used. The rearm

expression is commonly the inverse of the event

expression. It can also be used with the event

expression to define an upper and lower boundary for a

condition of interest.

Reliable Scalable Cluster Technology. A set of

software components that together provide a

comprehensive clustering environment for AIX and

Linux. RSCT is the infrastructure used by a variety of

IBM products to provide clusters with improved system

availability, scalability, and ease of use.

resource. An entity in the system that provides a set

of services. Examples of hardware entities are

processors, disk drives, memory, and adapters.

Examples of software entities are database applications,

processes, and file systems. Each resource in the

system has one or more attributes that define the state

of the resource.

resource class. A broad category of system resource,

for example: node, file system, adapter. Each resource

class has a container that holds the functions,

information, dynamic attributes, and conditions that

apply to that resource class. For example, the /tmp

space used condition applies to a file system resource

class.

resource manager. A process that maps resource and

resource-class abstractions into calls and commands for

one or more specific types of resources. A resource

manager can be a standalone daemon, or it can be

integrated into an application or a subsystem directly.

RSCT. See Reliable Scalable Cluster Technology.

RSCT LAPI. The version of LAPI that supports the

IBM Eserver pSeries High Performance Switch

(pSeries HPS) or an IBM Eserver High Performance

Switch (HPS) for p5 servers. See also low-level

application programming interface.

RSCT peer domain. See peer domain.

SCSI. See Small System Computer Interface.

Small System Computer Interface. A parallel

interface that can have up to eight devices all attached

through a single cable; the cable and the host

(computer) adapter make up the SCSI bus. The bus

allows the interchange of information between devices

independently of the host. In the SCSI program, each

device is assigned a unique number, which is either a

number between 0 and 7 for an 8-bit (narrow) bus, or

between 8 and 16 for a 16-bit (wide) bus. The devices

that request input/output (I/O) operations are initiators

and the devices that perform these operations are

targets. Each target has the capacity to connect up to

eight additional devices through its own controller; these

devices are the logical units, each of which is assigned

a unique number for identification to the SCSI controller

for command processing.

SD. Structured data.

security context token. A pointer to an opaque data

structure called the context token descriptor. The

context token is associated with a connection between

a client and the server.

security services token. A pointer to an opaque

descriptor called the security token descriptor. It keeps

track of the mechanism-independent information and

state.

servers. Server programs are usually daemons or

other applications running in the background without a

user’s inherited credentials. A server must acquire its

own network identity to get to access other trusted

services.

SP Switch2. The switch that works in conjunction with

IBM RS/6000 SP systems.

standalone system. A system on which you are using

LAPI that is not running IBM’s Parallel Environment for

AIX licensed program.

striping. The distribution of message data across

multiple communication adapters in order to increase

bandwidth.

TCP. See Transmission Control Protocol.

Transmission Control Protocol. One of the core

Internet protocols. TCP ports are 16-bit entities, so a

maximum of 65535 different endpoints are possible

within a single IP address.

Glossary 289

|

 |
 |

 |
 |
 |

UDP. See User Datagram Protocol.

User Datagram Protocol. One of the core Internet

protocols. UDP is a layer 4 protocol (Transport layer of

the OSI model) within the Internet protocol suite. It

provides a mechanism to identify different endpoints on

a single host by using ports. UDP deals with

single-packet delivery that is provided by the underlying

IP. As a stateless protocol, it is often used in

applications where data must arrive quickly. This smaller

feature set provides quicker data transmittal and lower

total overhead. UDP packets (or datagrams) contain, in

addition to the lower-level headers, a UDP header,

which consists of the packet length, source and

destination ports, and a checksum. UDP ports are 16-bit

entities, so a maximum of 65535 different endpoints are

possible within a single IP address.

290 IBM RSCT for AIX 5L: LAPI Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2005 291

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

For AIX:

IBM Corporation

Department LRAS, Building 003

11400 Burnet Road

Austin, Texas 78758-3498

U.S.A.

For Linux:

IBM Corporation

Department LJEB, MS P905

2455 South Road

Poughkeepsie, New York 12601-5400

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements, or other publicly-available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility, or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs. You may copy, modify, and distribute

these sample programs in any form without payment to IBM for the purposes of

developing, using, marketing, or distributing application programs conforming to

IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business Machines Corporation

in the United States, other countries, or both:

292 IBM RSCT for AIX 5L: LAPI Programming Guide

AIX

AIX 5L

Eserver

eServer

IBM

IBM(logo)

IBMLink

LoadLeveler

POWER

pSeries

RS/6000

SP

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be the trademarks or service marks

of others.

Notices 293

294 IBM RSCT for AIX 5L: LAPI Programming Guide

Index

A
active message 55

active messages 12

address-related functions 10

advantages of LAPI 7

atomicity 5

audience of this book xiii

B
bibliography xiv

blocking calls 4

books
RSCT xiv

buffer
data 3

C
C bindings 66

calls
blocking 4

non-blocking 4

coexistence 28

communication behaviors
of LAPI 4

communication operation
completion of 4

completion
of communication operation 4

completion detection 15

constants 283

context, LAPI 3

conventions
terminology xiv

typographic xiii

counters 4

D
data buffer 3

data transfer 12, 14, 35

non-contiguous 37

strided 41

vector 37

datatypes 279

LAPI_GEN_GENERIC 39

LAPI_GEN_IOVECTOR 40

definitions 287

destination 3

E
environment

querying 10

setting up 10

error handling 5

event notification 15

examples
subroutine 121

execution model
IP/US 255

F
failover 6, 103

feedback
product-related 254

FORTRAN bindings 66

functional overview 9

functions
address-related 10

get 11

pull 11

push 11

put 11

functions of LAPI 9

G
get functions 11

glossary 287

H
handle, LAPI 3

handlers 4

I
initialization 10

instance, LAPI 3

interrupt mode 6

introduction 3

IP/US
execution model 255

ISO 9000 253

L
LAPI

characteristics 3

communication behaviors 4

segment registers 285

LAPI constants 283

LAPI context 3

LAPI datatypes 279

LAPI handle 3

LAPI instance 3

LAPI size limits 283

LAPI_Addr_get subroutine 126

LAPI_Addr_set subroutine 128

LAPI_Address subroutine 130

© Copyright IBM Corp. 2003, 2005 295

LAPI_Address_init subroutine 132

LAPI_Address_init64 134

LAPI_Amsend subroutine 136

LAPI_Amsendv subroutine 143

LAPI_Fence subroutine 149

LAPI_GEN_GENERIC 39

LAPI_GEN_IOVECTOR 40

LAPI_Get subroutine 151

LAPI_Getcntr subroutine 154

LAPI_Getv subroutine 156

LAPI_Gfence subroutine 161

LAPI_Init subroutine 163

LAPI_Msg_string subroutine 169

LAPI_Msgpoll subroutine 171

LAPI_Nopoll_wait subroutine 236

LAPI_Probe subroutine 174

LAPI_Purge_totask subroutine 238

LAPI_Put
with shared memory 257

without shared memory 258

LAPI_Put subroutine 176

LAPI_Putv subroutine 179

LAPI_Qenv subroutine 184

LAPI_Resume_totask subroutine 240

LAPI_Rmw subroutine 188

LAPI_Rmw64 subroutine 192

LAPI_Senv subroutine 196

LAPI_Setcntr subroutine 198

LAPI_Setcntr_wstatus subroutine 242

LAPI_Term subroutine 201

LAPI_Util subroutine 203

LAPI_Waitcntr subroutine 217

LAPI_Xfer structure types 220

LAPI_Xfer subroutine 219

lapi_xfer_type_t 220

lock sharing 6, 83

LookAt xv

M
message ordering 5

messages 5

migration 28

mpxlf_r 67

N
non-blocking calls 4

non-contiguous data transfer 37

O
operations

get 11

pull 4, 11

push 4, 11

put 11

remote read-modify-write 13

origin 3

overview of LAPI 9

P
polling mode 6

prerequisite information xiv

prerequisite knowledge for this book xiii

product-related feedback 254

profiling 6

export file 67

LAPI name-shift 66

library 67

shared library 67

profiling library 66

programs
compiling 71

running 71

progress 5, 15

publications
RSCT xiv

pull operations 4, 11

push operations 4, 11

put functions 11

R
recovery 6, 103

related information xiv

remote read-modify-write operations 13

RSCT
books xiv

feedback 254

publications xiv

version 253

runtime environment
querying 10

setting up 10

S
sample subroutine 121

sharing locks 6, 83

size limits 283

source 3

standalone operation 6

statistics 6

strided data transfer 41

striping 6, 103

subroutine sample 121

subroutines 125, 235

LAPI_Addr_get 126

LAPI_Addr_set 128

LAPI_Address 130

LAPI_Address_init 132

LAPI_Address_init64 134

LAPI_Amsend 136

LAPI_Amsendv 143

LAPI_Fence 149

LAPI_Get 151

LAPI_Getcntr 154

LAPI_Getv 156

LAPI_Gfence 161

LAPI_Init 163

296 IBM RSCT for AIX 5L: LAPI Programming Guide

subroutines (continued)
LAPI_Msg_string 169

LAPI_Msgpoll 171

LAPI_Nopoll_wait 236

LAPI_Probe 174

LAPI_Purge_totask 238

LAPI_Put 176

LAPI_Putv 179

LAPI_Qenv 184

LAPI_Resume_totask 240

LAPI_Rmw 188

LAPI_Rmw64 192

LAPI_Senv 196

LAPI_Setcntr 198

LAPI_Setcntr_wstatus 242

LAPI_Term 201

LAPI_Util 203

LAPI_Waitcntr 217

LAPI_Xfer 219

T
target 3

termination 10

terminology 287

terminology conventions xiv

trademarks 292

types
LAPI_GEN_GENERIC 39

LAPI_GEN_IOVECTOR 40

typographic conventions xiii

V
vector data transfer 37

strided 41

version
of RSCT 253

Index 297

298 IBM RSCT for AIX 5L: LAPI Programming Guide

Readers’ comments – We’d like to hear from you

IBM Reliable Scalable Cluster Technology for AIX 5L

LAPI Programming Guide

 Publication No. SA22-7936-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA22-7936-02

SA22-7936-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie NY 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-E62, 5765-G03

SA22-7936-02

	Contents
	Figures
	Tables
	About this book
	Who should use this book
	Conventions and terminology used in this book
	Conventions
	Terminology

	Prerequisite and related information
	Using LookAt to find message explanations

	How to send your comments

	Part 1. LAPI concepts
	Chapter 1. What is the low-level application programming interface (LAPI)?
	Why use LAPI?

	Chapter 2. An overview of LAPI
	Initialization and termination
	Querying and setting up the runtime environment
	Address-related functions
	Put and get functions
	Active messages
	Non-contiguous data transfer
	Remote read-modify-write functions
	Generic data transfer functions
	Progress-monitoring functions
	Message ordering functions
	Utility functions
	Error message functions
	Recovery-related functions

	Chapter 3. What's new in LAPI?
	Tips for LAPI users

	Part 2. Basic LAPI tasks
	Chapter 4. Installing RSCT LAPI
	Requirements
	Hardware
	Software

	How is RSCT LAPI packaged?
	RSCT LAPI filesets

	Installation steps
	Uninstallation steps
	Migration and coexistence

	Chapter 5. Setting up, initializing, and terminating LAPI
	Setting and querying the LAPI environment
	Setting environment variables
	LAPI communication modes

	Initializing LAPI
	Passing information to LAPI using lapi_info_t

	Terminating LAPI

	Chapter 6. Transferring data
	Data transfer operations
	Flow of "put" operations
	Flow of "get" operations
	Flow of read-modify-write operations

	Non-contiguous data transfer
	Using vectors
	LAPI_GEN_GENERIC
	LAPI_GEN_IOVECTOR
	LAPI_GEN_STRIDED_XFER
	Vector data transfer summary

	Using data gather/scatter programs (DGSPs)

	Detecting completion
	LAPI handlers
	The header handler
	The completion handler
	The send completion handler
	LAPI handler summary

	LAPI counters
	Specifying target-side addresses
	Additional progress functions

	Chapter 7. Active messaging
	Flow of active message operations
	Using LAPI_Amsend: a complete LAPI program

	Chapter 8. Collecting statistics
	Printing data transfer statistics
	Querying US and UDP/IP statistics
	Querying local send statistics
	Querying shared memory statistics

	Chapter 9. Using LAPI's profiling interface
	Performing name-shift profiling
	A sample profiling program

	Chapter 10. Compiling and running LAPI programs
	Part 3. Advanced LAPI tasks
	Chapter 11. Advanced programming
	The enhanced header handler interface
	Inline completion handlers
	LAPI performance considerations
	Use of handlers
	Running in interrupt mode
	Running in UDP/IP mode
	User header data
	Send-side copy of small messages
	Receive-side optimization for single-packet messages
	Tunable environment variables

	32-bit and 64-bit interoperability
	The lapi_long_t datatype
	The LAPI_Address_init64 subroutine
	The LAPI_Xfer interface

	Chapter 12. Lock sharing
	Scenarios without lock sharing
	Scenarios with lock sharing
	Correctness of lock sharing
	Implications and restrictions
	Initialization and termination
	Other LAPI calls
	Callbacks
	Long critical sections
	Lock preemption
	Receive/timer interrupts
	Performance of multi-threaded programs
	Compatibility

	A sample lock sharing program

	Chapter 13. Bulk transfer of messages
	Chapter 14. Striping, failover, and recovery
	Using failover and recovery
	Monitoring adapter status
	Network Availability Matrix (NAM) overview
	RSCT peer domains and group services

	Requesting the use of multiple adapters
	Using POE environment variables
	Using LoadLeveler JCF keywords

	Failover and recovery restrictions

	Data striping
	Communication and memory considerations
	IP communication
	US communication

	Chapter 15. Threaded programming
	General guidelines
	Using LAPI_Address_init
	Making global fence calls
	Making "wait on counter" calls
	Synchronizing threads across tasks
	Using handlers
	LAPI threads

	Chapter 16. Using LAPI on a standalone system
	Standalone setup
	Standalone initialization
	Using UDP/IP mode
	Using US mode

	Compiling LAPI programs on a standalone system

	Part 4. LAPI reference
	Chapter 17. LAPI man pages
	lapi_subroutines

	Chapter 18. Subroutines for all systems (PE and standalone)
	LAPI_Addr_get
	LAPI_Addr_set
	LAPI_Address
	LAPI_Address_init
	LAPI_Address_init64
	LAPI_Amsend
	LAPI_Amsendv
	LAPI_Fence
	LAPI_Get
	LAPI_Getcntr
	LAPI_Getv
	LAPI_Gfence
	LAPI_Init
	LAPI_Msg_string
	LAPI_Msgpoll
	LAPI_Probe
	LAPI_Put
	LAPI_Putv
	LAPI_Qenv
	LAPI_Rmw
	LAPI_Rmw64
	LAPI_Senv
	LAPI_Setcntr
	LAPI_Term
	LAPI_Util
	LAPI_Waitcntr
	LAPI_Xfer

	Chapter 19. Subroutines for standalone systems
	LAPI_Nopoll_wait
	LAPI_Purge_totask
	LAPI_Resume_totask
	LAPI_Setcntr_wstatus

	Chapter 20. LAPI sample programs
	Sample program directory structure
	Using the LAPI sample programs
	Summary of constructs and techniques for LAPI programming

	Appendix A. Product-related information
	RSCT version
	ISO 9000
	Product-related feedback

	Appendix B. LAPI execution models
	The IP/US execution model
	The shared memory execution model
	Cross memory kernel extension
	LAPI shared memory: functional flow
	LAPI shared memory: requirements and restrictions

	Appendix C. LAPI messages, return codes, and return values
	LAPI attention messages
	LAPI return codes
	LAPI error codes
	LAPI return values

	Appendix D. LAPI environment variables and runtime attributes
	Environment variables
	Variables for communication
	Variables for data transfer
	Variables for diagnostics
	Variables for performance tuning
	Variables for POE
	Variables for shared memory
	Variables for standalone systems

	Runtime attributes
	Attributes you can query or set
	Attributes you can query
	Attributes that return integers
	Attributes that return multiple values
	Attributes for legacy code

	Appendix E. LAPI datatypes
	Appendix F. LAPI constants and size limits
	Appendix G. LAPI restrictions
	General restrictions
	Use of segment registers (32-bit applications only)
	Other restrictions

	Glossary
	Notices
	Trademarks

	Index
	Readers' comments – We'd like to hear from you

