<|lI!

IBM Parallel Environment for AIX 5L,

MPI Subroutine Reference

Version 4 Release 2

SA22-7946-02

<|lI!

IBM Parallel Environment for AIX 5L,

MPI Subroutine Reference

Version 4 Release 2

SA22-7946-02

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 593

Third Edition (April 2005)

This edition applies to Version 4, Release 2 of IBM Parallel Environment for AIX5L (product number 5765-F83) and
to all subsequent releases and modifications until otherwise indicated in new editions. This edition replaces
SA22-7946-01. Significant changes or additions to the text and illustrations are indicated by a vertical line (1) to the
left of the change.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has
been removed, address your comments to:

IBM Corporation, Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States and Canada): 1+845+432-9405
FAX (Other Countries) Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCES)
Internet: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.
Make sure to include the following in your comment or note:

* Title and order number of this book

¢ Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Tables

About this book .

Who should read this book . .

Conventions and terminology used in thls book
Abbreviated names. .

Prerequisite and related 1nformat10r1 . .
Using LookAt to look up message explanatlons .

How to send your comments .

National language support (NLS). .

Summary of changes for Parallel Environment 4. 2 .

Chapter 1. A sample MPI subroutine .
A_SAMPLE_MPI_SUBROUTINE, A_Sample_MPI__ subroutme .

Chapter 2. Nonblocking collective communication subroutines .

MPE_IALLGATHER, MPE_lallgather .
MPE_TALLGATHERYV, MPE _lallgatherv
MPE_TALLREDUCE, MPE_Iallreduce.
MPE_TALLTOALL, MPE_Ialltoall .
MPE_TALLTOALLV, MPE_Ialltoallv
MPE_IBARRIER, MPE_Ibarrier .
MPE_IBCAST, MPE_Ibcast
MPE_IGATHER, MPE_Igather .
MPE_IGATHERYV, MPE_Igatherv
MPE_IREDUCE, MPE_Ireduce .
MPE_IREDUCE_SCATTER, MPE_ Ireduce scatter
MPE_ISCAN, MPE_Iscan .
MPE_ISCATTER, MPE_Iscatter .
MPE_ISCATTERV, MPE_Iscatterv .

Chapter 3. MPI subroutines and functions
MPI_ABORT, MPI_Abort . .
MPI_ACCUMULATE, MPI Accumulate .
MPI_ADD_ERROR_CLASS, MPI_Add_error_class
MPI_ADD_ERROR_CODE, MPI_Add_error_code.
MPI_ADD_ERROR_STRING, MPI_Add_error strlng
MPI_ADDRESS, MPI_Address . o
MPI_ALLGATHER, MPI_Allgather
MPI_ALLGATHERYV, MPI_Allgatherv.
MPI_ALLOC_MEM, MPI_Alloc_mem
MPI_ALLREDUCE, MPI_Allreduce
MPI_ALLTOALL, MPI_Alltoall .
MPI_ALLTOALLV, MPI_Alltoallv .
MPI_ALLTOALLW, MPI_Alltoallw
MPI_ATTR_DELETE, MPI_Attr_delete
MPI_ATTR_GET, MPI_Attr_get.

MPI_ATTR_PUT, MPI_Attr_put.

MPI_BARRIER, MPI_Barrier.

MPI_BCAST, MPI_Bcast .

MPI_BSEND, MPI_Bsend .

MPI_BSEND_INIT, MPI_Bsend 1n1t .
MPI_BUFFER_ATTACH, MPI_Buffer_attach
MPI_BUFFER_DETACH, MPI_Buffer_detach

© Copyright IBM Corp. 1993, 2005

. Xi
. Xi
.xi
. xii
. Xii
. xiii
. xdii
. xdii
. Xiv

.12
. 15
. 18
.21
.23
. 26
. 29
.32
. 35
. 38
.41
. 44

. 47
. 48
. 49
. 52
. 54
. 56
. 58
. 59
. 61
. 63
. 65
. 68
.70
.73
. 76
.77
.79
. 81
. 83
. 85
. 87
. 89
.91

iii

MPI_CANCEL, MPI_Cancel . .
MPI_CART_COORDS, MPI_Cart_ coords.
MPI_CART_CREATE, MPI_Cart_create .
MPI_CART_GET, MPI_Cart_get
MPI_CART_MAP, MPI_Cart_map
MPI_CART_RANK, MPI_Cart_rank .
MPI_CART_SHIFT, MPI_Cart_shift .
MPI_CART_SUB, MPI_Cart_sub .
MPI_CARTDIM_GET, MPI_Cartdim get
MPI_Comm_c2f .

MPI_COMM_CALL_ ERRHANDLER MPI Comm call errhandler
MPI::Comm::Clone

MPI_COMM_COMPARE, MPI Comm compare
MPI_COMM_CREATE, MPI_Comm_create

MPI_COMM_CREATE_ERRHANDLER, MPI_Comm_ create errhandler .

MPI_COMM_CREATE_KEYVAL, MPI_Comm_create_keyval
MPI_COMM_DELETE_ATTR, MPI_Comm_delete_attr.
MPI_COMM_DUP, MPI_Comm_dup

MPI_Comm_f2c

MPI_COMM_FREE, MPI_ Comm free .
MPI_COMM_FREE_KEYVAL, MPI_Comm_free keyval
MPI_COMM_GET_ATTR, MPI_Comm_get_attr .
MPI_COMM_GET_ERRHANDLER, MPI_Comm_get_ errhandler
MPI_COMM_GET_NAME, MPI_Comm_get_name . .o
MPI_COMM_GROUP, MPI_Comm_group .
MPI_COMM_RANK, MPI_Comm_rank .
MPI_COMM_REMOTE_GROUP, MPI_Comm_ remote group
MPI_COMM_REMOTE_SIZE, MPI_Comm_remote_size
MPI_COMM_SET_ATTR, MPI_Comm_set_attr .
MPI_COMM_SET_ERRHANDLER, MPI_Comm_set_ errhandler
MPI_COMM_SET_NAME, MPI_Comm_set_name .
MPI_COMM_SIZE, MPI_Comm_size

MPI_COMM_SPLIT, MPI_Comm_split .
MPI_COMM_TEST_INTER, MPI_Comm_test mter
MPI_DIMS_CREATE, MPI_Dims_create

MPI_Errhandler_c2f . -

MPI_ERRHANDLER_CREATE, MPI Errhandler Create
MPI_Errhandler_f2¢ . .
MPI_ERRHANDLER_FREE, MPI Errhandler free .
MPI_ERRHANDLER_GET, MPI_Errhandler_get .
MPI_ERRHANDLER_SET, MPI_Errhandler_set .
MPI_ERROR_CLASS, MPI_Error_class .

MPI_ERROR_STRING, MPI_Error strmg .

MPI_EXSCAN, MPI_Exscan .

MPI_File_c2f .

MPI_FILE_CALL_ ERRHANDLER MPI Fﬂe Call errhandler
MPI_FILE_CLOSE, MPI_File_close . .
MPI_FILE_CREATE_ERRHANDLER, MPI_ Flle Create errhandler .
MPI_FILE_DELETE, MPI_File_delete

MPI_File_f2c . .
MPI_FILE_GET AMODE MPI Flle get amode . .
MPI_FILE_GET_ATOMICITY, MPI_File_get_atomicity .
MPI_FILE_GET_BYTE_OFFSET, MPI_File_get_byte_offset
MPI_FILE_GET_ERRHANDLER, MPI_File_get_errhandler
MPI_FILE_GET_GROUP, MPI_File_get_group
MPI_FILE_GET_INFO, MPI_File_get_info . .
MPI_FILE_GET_POSITION, MPI_File_get_| posrtron
MPI_FILE_GET_POSITION_SHARED, MPI Flle_get_posmon shared
MPI_FILE_GET_SIZE, MPI_File_get_size . .
MPI_FILE_GET_TYPE_EXTENT, MPI_File_get_ type extent .
MPI_FILE_GET_VIEW, MPI_File_get_view .

iV IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

.93
. 95
. 97
099
. 101
. 103
. 105
. 107
. 109
. 110
111
. 113
. 114
. 116
. 118
. 120
. 122
. 123
. 125
. 126
. 127
. 128
. 130
. 131
. 133
. 134
. 135
. 136
. 137
. 139
. 140
. 142
. 144
. 146
. 147
. 149
. 150
. 152
. 153
. 154
. 155
. 157
. 160
. 161
. 163
. 164
. 166
. 168
. 170
. 172
. 173
. 174
. 175
. 176
. 178
. 179
. 181
. 182
. 183
. 185
. 187

MPI_FILE_IREAD, MPI_File_iread .
MPI_FILE_IREAD_AT, MPI_File_iread_at . -
MPI_FILE_IREAD_SHARED, MPI_File_iread_shared .
MPI_FILE_IWRITE, MPI_File_iwrite.

MPI_FILE_IWRITE_AT, MPI_File_iwrite_at
MPI_FILE_IWRITE_SHARED, MPI_File_iwrite shared
MPI_FILE_OPEN, MPI_File_open .
MPI_FILE_PREALLOCATE, MPI_File preallocate
MPI_FILE_READ, MPI_File_read . . .
MPI_FILE_READ_ALL, MPI_File_read_. all
MPI_FILE_READ_ALL_BEGIN, MPI_File_read_all begm
MPI_FILE_READ_ALL_END, MPI_File_read_all_end .
MPI_FILE_READ_AT, MPI_File_read_at .
MPI_FILE_READ_AT_ALL, MPI_File_read_at_all .
MPI_FILE_READ_AT_ALL_BEGIN, MPI_File_read_at_all begm
MPI_FILE_READ_AT_ALL_END, MPI_File_read_at_all_end.
MPI_FILE_READ_ORDERED, MPI_File_read_ordered .
MPI_FILE_READ_ORDERED_BEGIN, MPI_File_read_ordered begm
MPI_FILE_READ_ORDERED_END, MPI_File_read_ordered_end .
MPI_FILE_READ_SHARED, MPI_File_read_shared.
MPI_FILE_SEEK, MPI_File_seek .

MPI_FILE_SEEK_SHARED, MPI_File_: seek shared
MPI_FILE_SET_ATOMICITY, MPI_File_set_atomicity .
MPI_FILE_SET_ERRHANDLER, MPI_File_set_errhandler
MPI_FILE_SET_INFO, MPI_File_set_info .
MPI_FILE_SET_SIZE, MPI_File_set_size

MPI_FILE_SET_VIEW, MPI_File_set_view .

MPI_FILE_SYNC, MPI_File_sync .

MPI_FILE_WRITE, MPI_File_write . -
MPI_FILE_WRITE_ALL, MPI_File_write_all . - .
MPI_FILE_WRITE_ALL_BEGIN, MPI_File_write_all begm .
MPI_FILE_WRITE_ALL_END, MPI_File_write_all_end
MPI_FILE_WRITE_AT, MPI_File_write_at .
MPI_FILE_WRITE_AT_ALL, MPI_File_write_at_: all .
MPI_FILE_WRITE_AT_ALL_BEGIN, MPI_File_write_at_all begm
MPI_FILE_WRITE_AT_ALL_END, MPI_File_write_at_all_end .
MPI_FILE_WRITE_ORDERED, MPI_File_write_ordered .

MPI_FILE_WRITE_ORDERED_BEGIN, MPI_File_write_ordered begm .

MPI_FILE_WRITE_ORDERED_END, MPI_File_write_ordered_end
MPI_FILE_WRITE_SHARED, MPI_File_write_shared .
MPI_FINALIZE, MPI_Finalize .

MPI_FINALIZED, MPI_Finalized.

MPI_FREE_MEM, MPI_Free_mem

MPI_GATHER, MPI_Gather

MPI_GATHERYV, MPI_Gatherv.

MPI_GET, MPI_Get

MPI_GET_ADDRESS, MPI_¢ Get address

MPI_GET_COUNT, MPI_Get_count . .
MPI_GET_ELEMENTS, MPI_Get_elements . .
MPI_GET_PROCESSOR_NAME, MPI Get_processor name .
MPI_GET_VERSION, MPI_Get_version. Lo
MPI_GRAPH_CREATE, MPI_Graph_create

MPI_GRAPH_GET, MPI_Graph_get .

MPI_GRAPH_MAP, MPI_Graph_map .
MPI_GRAPH_NEIGHBORS, MPI_Graph_ nelghbors . .
MPI_GRAPH_NEIGHBORS_COUNT, MPI_Graph_ nelghbors count .
MPI_GRAPHDIMS_GET, MPI_Graphdims_get .. R
MPI_GREQUEST_COMPLETE, MPI_Grequest_complete .
MPI_GREQUEST_START, MPI_Grequest_start

MPI_Group_c2f. .

MPI_GROUP_COMPARE, MPI Group compare

. 189
. 192
. 195
. 198
. 201
. 204
. 207
. 213
. 215
. 217
. 219
. 221
. 223
. 226
. 229
. 231
. 233
. 235
. 237
. 239
. 241
. 243
. 245
. 247
. 249
. 251
. 253
. 256
. 257
. 259
. 262
. 264
. 266
. 269
. 272
. 274
. 276
. 278
. 280
. 282
. 285
. 287
. 288
. 289
. 292
. 295
. 298
. 300
. 302
. 304
. 305
. 306
. 308
. 310
. 312
. 314
. 315
. 316
. 317
. 321
. 322

Contents

A\

MPI_GROUP_DIFFERENCE, MPI_Group_difference
MPI_GROUP_EXCL, MPI_Group_excl . .
MPI_Group_f2c. .
MPI_GROUP_FREE, MPI Group free .
MPI_GROUP_INCL, MPI_Group_incl .
MPI_GROUP_INTERSECTION, MPI_Group_ mtersechon
MPI_GROUP_RANGE_EXCL, MPI_Group_range_excl.
MPI_GROUP_RANGE_INCL, MPI_Group_range_incl .
MPI_GROUP_RANK, MPI_Group_rank .
MPI_GROUP_SIZE, MPI_Group_size

MPI_GROUP_TRANSLATE_RANKS, MPI Group translate ranks.

MPI_GROUP_UNION, MPI_Group_union.
MPI_IBSEND, MPI_Ibsend . ..
MPI_Info_c2f . .
MPI_INFO_CREATE, MPI Info create .
MPI_INFO_DELETE, MPI_Info_delete .
MPI_INFO_DUP, MPI_Info_dup .

MPI_Info_f2c

MPI_INFO_FREE, MPI_ Info free

MPI_INFO_GET, MPI_Info_get .
MPI_INFO_GET_NKEYS, MPI Info_get nkeys .
MPI_INFO_GET_NTHKEY, MPI_Info_get_nthkey
MPI_INFO_GET_VALUELEN, MPI_Info_get_valuelen.
MPI_INFO_SET, MPI_Info_set. R
MPI_INIT, MPI_Init . .

MPI_INIT_THREAD, MPI_ Imt thread
MPI_INITIALIZED, MPI_Initialized .
MPI_INTERCOMM_CREATE, MPI_ Intercomm create
MPI_INTERCOMM_MERGE, MPI_Intercomm_merge .
MPI_IPROBE, MPI_Iprobe . Lo
MPI_IRECV, MPI_Irecv .

MPI_IRSEND, MPI_Irsend . . .
MPI_IS_ THREAD_MAIN, MPI_Is_ thread main .
MPI_ISEND, MPI_Isend .

MPI_ISSEND, MPI_Issend . .
MPI_KEYVAL_CREATE, MPI Keyval Create .
MPI_KEYVAL_FREE, MPI_Keyval_free.

MPI_Op_c2f. . .
MPI_OP_CREATE, MPI Op create .

MPI_Op_f2c. . .o

MPI_OP_FREE, MPI Op free .

MPI_PACK, MPI_Pack .
MPI_PACK_EXTERNAL, MPI_ Pack external

MPI_PACK_EXTERNAL_SIZE, MPI_Pack_external_size .

MPI_PACK_SIZE, MPI_Pack_size.
MPI_PCONTROL, MPI_Pcontrol .

MPI_PROBE, MPI_Probe

MPI_PUT, MPI_Put

MPI_QUERY_THREAD, MPI Query_thread
MPI_RECV, MPI_Recv .
MPI_RECV_INIT, MPI_Recv_: 1r11t
MPI_REDUCE, MPI_Reduce . .
MPI_REDUCE_SCATTER, MPI_ Reduce scatter .
MPI_REGISTER_DATAREP, MPI Reglster datarep .
MPI_Request_c2f . .o e
MPI_Request_f2c . . .
MPI_REQUEST_FREE, MPI Request free .

MPI_REQUEST_GET_STATUS, MPI Request_get status .

MPI_RSEND, MPI_Rsend
MPI_RSEND_INIT, MPI_Rsend_: 1mt
MPI_SCAN, MPI_Scan

Vi IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

. 323
. 324
. 326
. 327
. 328
. 330
. 331
. 333
. 335
. 336
. 337
. 339
. 340
. 342
. 343
. 344
. 346
. 347
. 348
. 349
. 351
. 352
. 354
. 356
. 358
. 360
. 362
. 363
. 365
. 367
. 369
. 371
. 373
. 374
. 376
. 378
. 380
. 381
. 382
. 384
. 385
. 386
. 388
. 390
. 392
. 394
. 395
. 397
. 400
. 402
. 404
. 406
. 409
. 412
. 415
. 416
. 417
. 418
. 420
. 422
. 424

MPI_SCATTER, MPI_Scatter

MPI_SCATTERYV, MPI_Scatterv

MPI_SEND, MPI_Send .

MPI_SEND_INIT, MPI_Send 1n1t

MPI_SENDRECYV, MPI_Sendrecv . .
MPI_SENDRECV_REPLACE, MPIL__ Sendrecv replace .
MPI_SIZEOF .o o .
MPI_SSEND, MPI_ Ssend .

MPI_SSEND_INIT, MPI_Ssend_ 1n1t .

MPI_START, MPI_Start .

MPI_STARTALL, MPI_Startall .

MPI_Status_c2f .

MPI_Status_f2c. .

MPI_STATUS_SET _ CANCELLED MPI Status set cancelled
MPI_STATUS_SET_ELEMENTS, MPI_Status_set_elements
MPI_TEST, MPI_Test .

MPI_TEST_CANCELLED, MPI Test cancelled

MPI_TESTALL, MPI_Testall

MPI_TESTANY, MPI_Testany .

MPI_TESTSOME, MPI_Testsome .

MPI_TOPO_TEST, MPI_Topo_test

MPI_Type_c2f . .o

MPI_TYPE_COMMIT, MPI Type commlt .
MPI_TYPE_CONTIGUOUS, MPI_Type_contiguous .
MPI_TYPE_CREATE_DARRAY, MPI_Type_create_darray . .
MPI_TYPE_CREATE_F90_COMPLEX, MPI_Type_create_f90 complex
MPI_TYPE_CREATE_F90_INTEGER, MPI_Type_create_f90_integer
MPI_TYPE_CREATE_F90_REAL, MPI_Type_create_f90_real .
MPI_TYPE_CREATE_HINDEXED, MPI_Type_create_hindexed .
MPI_TYPE_CREATE_HVECTOR, MPI_Type_create_hvector .

MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_Type_create_indexed block.

MPI_TYPE_CREATE_KEYVAL, MPI_Type_create_keyval .
MPI_TYPE_CREATE_RESIZED, MPI_Type_create_resized
MPI_TYPE_CREATE_STRUCT, MPI_Type_create_struct .
MPI_TYPE_CREATE_SUBARRAY, MPI_Type_create_subarray .
MPI_TYPE_DELETE_ATTR, MPI_Type_delete_attr . .
MPI_TYPE_DUP, MPI_Type_dup .

MPI_TYPE_EXTENT, MPI_Type_extent.

MPI_Type_f2¢c . . .

MPI_TYPE_FREE, MPI Type free
MPI_TYPE_FREE_KEYVAL, MPI_Type_ free keyval
MPI_TYPE_GET_ATTR, MPI_Type_get_attr
MPI_TYPE_GET_CONTENTS, MPI_Type_get_ contents
MPI_TYPE_GET_ENVELOPE, MPI_Type_get_envelope
MPI_TYPE_GET_EXTENT, MPI_Type_get_extent
MPI_TYPE_GET_NAME, MPI_Type_get_name .
MPI_TYPE_GET_TRUE_EXTENT, MPI_Type_get_true_ extent
MPI_TYPE_HINDEXED, MPI_Type_hindexed S
MPI_TYPE_HVECTOR, MPI_Type_hvector
MPI_TYPE_INDEXED, MPI_Type_indexed

MPI_TYPE_LB, MPI_Type_lb . . .
MPI_TYPE_MATCH_SIZE, MPI_Type_: match size .
MPI_TYPE_SET_ATTR, MPI_Type_set_attr
MPI_TYPE_SET_NAME, MPI_Type_set_name
MPI_TYPE_SIZE, MPI_Type_size . .o
MPI_TYPE_STRUCT, MPI_Type_struct .

MPI_TYPE_UB, MPI_Type_ub .

MPI_TYPE_VECTOR, MPI_Type_ Vector

MPI_UNPACK, MPI_Unpack .

MPI_UNPACK_EXTERNAL, MPI Unpack external
MPI_WAIT, MPI_Wait e

Contents

. 426
. 429
. 432
. 434
. 436
. 438
. 440
. 441
. 443
. 445
. 447
. 448
. 449
. 450
. 451
. 452
. 454
. 455
. 457
. 460
. 462
. 463
. 464
. 466
. 468
. 471
. 473
. 474
. 476
. 478
. 480
. 482
. 484
. 486
. 488
. 490
. 491
. 493
. 494
. 495
. 497
. 498
. 500
. 504
. 506
. 508
. 510
. 512
. 514
. 516
. 518
. 519
. 521
. 523
. 525
. 526
. 528
. 530
. 532
. 534
. 536

vii

MPI_WAITALL, MPI_Waitall .

MPI_WAITANY, MPI_Waitany.

MPI_WAITSOME, MPI_Waitsome

MPI_Win_c2f .

MPI_WIN_CALL_ ERRHANDLER MPI Wm call errhandler
MPI_WIN_COMPLETE, MPI_Win_complete .
MPI_WIN_CREATE, MPI_Win_create

MPI_WIN_CREATE_ERRHANDLER, MPI Wm Create errhandler.

MPI_WIN_CREATE_KEYVAL, MPI_Win_create_keyval
MPI_WIN_DELETE_ATTR, MPI_Win_delete_attr
MPI_Win_f2c .

MPI_WIN_FENCE, MPI Wm fence .

MPI_WIN_FREE, MPI_Win_free . . .
MPI_WIN_FREE_KEYVAL, MPI_Win free keyval .
MPI_WIN_GET_ATTR, MPI_Win_get_attr . .
MPI_WIN_GET_ERRHANDLER, MPI_Win_get_ errhandler .
MPI_WIN_GET_GROUP, MPI_Win_get_group
MPI_WIN_GET_NAME, MPI_Win_get_name.
MPI_WIN_LOCK, MPI_Win_lock.

MPI_WIN_POST, MPI_Win_post . .o
MPI_WIN_SET_ATTR, MPI_Win_set_attr .
MPI_WIN_SET_ERRHANDLER, MPI_Win_set_ errhandler
MPI_WIN_SET _NAME, MPI_Win_set_name .
MPI_WIN_START, MPI_Win_start

MPI_WIN_TEST, MPI_Win_test .
MPI_WIN_UNLOCK, MPI_Win_unlock

MPI_WIN_WAIT, MPI_Win_wait .

MPI_WTICK, MPI_Wtick

MPI_WTIME, MPI_Wtime .

Appendix A. Parallel utility subroutines .

Appendix B. Parallel task identification APl subroutines .

Appendix C. Accessmlllty
Accessibility information
Using assistive technologies

Notices .
Trademarks . .
Acknowledgments.

Glossary

Index .

viili IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

. 538
. 540
. 542
. 545
. 546
. 548
. 549
. 552
. 554
. 556
. 557
. 558
. 560
. 561
. 562
. 564
. 565
. 566
. 568
. 570
. 572
. 574
. 575
. 577
. 579
. 581
. 582
. 584
. 585

. 587

. 589

. 591
. 591
. 591

. 593
. 595
. 596
. 597

. 605

Tables

MPI error classes
Supported file hints

L e

Combiners and calls

© Copyright IBM Corp. 1993, 2005

Combiners and constructor arguments .

. 157
. 208
. 501
. 505

ix

X IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

About this book

This book describes the subroutines provided by IBM®’s implementation of the
Message Passing Interface (MPI) standard for Parallel Environment for AIX® (PE).
Programmers can use these subroutines when writing parallel applications. All
implemented function in the PE MPI product is designed to comply with the
requirements of the Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard. The standard is documented in two volumes, Version 1.1,
University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions to
the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee, July 18,
1997. The second volume includes a section identified as MPI 1.2 with clarifications
and limited enhancements to MPI 1.1. It also contains the extensions identified as
MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken together constitute
the current standard for MPL. PE MPI provides support for all of MPI 1.1 and MPI
1.2. PE MPI also provides support for all of the MPI 2.0 Enhancements, except the
contents of the chapter titled Process Creation and Management. If you believe that
PE MPI does not comply with the MPI standard for the portions that are
implemented, please contact IBM Service.

References to RS/6000® SP™ or SP include currently supported IBM @server
Cluster 1600 hardware.

Who should read this book

This book is intended for experienced programmers who want to write parallel
applications using the C, C++, or FORTRAN programming language. Readers of
this book should know C , C++, and FORTRAN and should be familiar with AIX
and UNIX® commands, file formats, and special files. They should also be familiar
with the Message Passing Interface (MPI) concepts. In addition, readers should be
familiar with distributed-memory machines.

Conventions and terminology used in this book

This book uses the following typographic conventions:

Convention

Usage

bold

Bold words or characters represent system elements that you must use literally, such
as: command names, file names, flag names, path names, PE component names
(pedb, for example), and subroutines.

constant width

Examples and information that the system displays appear in constant-width

typeface.

italic Italicized words or characters represent variable values that you must supply.
Italics are also used for book titles, for the first use of a glossary term, and for general
emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

In addition to the highlighting conventions, this manual uses the following
conventions when describing how to perform tasks.

© Copyright IBM Corp. 1993, 2005 xi

User actions appear in uppercase boldface type. For example, if the action is to
enter the tool command, this manual presents the instruction as:

ENTER
tool

Abbreviated names

Some of the abbreviated names used in this book follow.

Short Name Full Name

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

P Internet Protocol

LAPI Low-level Application Programming Interface
MPI Message Passing Interface

PE IBM Parallel Environment for AIX

PE MPI IBM’s implementation of the MPI standard for PE
PE MPI-IO IBM’s implementation of MPI I/O for PE
POE parallel operating environment

pSeries® IBM @server pSeries

PSSP IBM Parallel System Support Programs for AIX
RISC reduced instruction set computer

RSCT Reliable Scalable Cluster Technology

rsh remote shell

RS/6000 IBM RS/6000

SP IBM RS/6000 SP

STDERR standard error

STDIN standard input

STDOUT standard output

Prerequisite and related information

xii

The Parallel Environment library consists of:

* IBM Parallel Environment for AIX: Introduction, SA22-7947

* IBM Parallel Environment for AIX: Installation, GA22-7943

* IBM Parallel Environment for AIX: Messages, GA22-7944

* IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7945

e IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7946

* IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7948

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

* IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7949

To access the most recent Parallel Environment documentation in PDF and HTML
format, refer to the IBM @server Cluster Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

Both the current Parallel Environment books and earlier versions of the library are
also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the
book’s publication number. The publication number for each of the Parallel
Environment books is listed after the book title in the preceding list.

A glossary of terms see the Glossary at the back of this book.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. You can
use LookAt from the following locations to find IBM message explanations for
Clusters for AIX and Linux®:

¢ The Internet. You can access IBM message explanations directly from the LookAt
Web site:

http:/ /www.ibm.com/eserver/zseries/zos/bkserv/lookat/

* Your wireless handheld device. You can use the LookAt Mobile Edition with a
handheld device that has wireless access and an Internet browser (for example,
Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for
Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt
Web site.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
PE documentation:

* Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of PE, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

* Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display
messages that are located in externalized message catalogs. English versions of the
message catalogs are shipped with the PE licensed program, but your site may be
using its own translated message catalogs. The PE components use the AIX
environment variable NLSPATH to find the appropriate message catalog.
NLSPATH specifies a list of directories to search for message catalogs. The
directories are searched, in the order listed, to locate the message catalog. In
resolving the path to the message catalog, NLSPATH is affected by the values of

About this book xiii

the environment variables LC_MESSAGES and LANG. If you get an error saying
that a message catalog is not found and you want the default message catalog;:

ENTER
export NLSPATH=/usr/lib/nls/msg/%L/%N

export LANG=C

The PE message catalogs are in English, and are located in the following
directories:

/usr/lib/nls/msg/C
usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For more
information on NLS and message catalogs, see AIX: General Programming Concepts:
Writing and Debugging Programs.

Summary of changes for Parallel Environment 4.2

xiv

This release of IBM Parallel Environment for AIX contains a number of functional
enhancements, including:

* Support for POWER3", POWER4", and POWER5" servers running AIX 5L™
V5.2 or AIX 5L V5.3

e Support for IBM @server p5 servers and the High Performance Switch (HPS)
with AIX 5L V5.2 only, and coexistence in a cluster managed by Cluster Systems
Management (CSM)

* Remote Direct Memory Access (RDMA) for bulk data copy and transfer, and
large contiguous messages, only on the HPS

* Support for striping of messages over multiple adapters attached to the pSeries
HPS

* MPI support for 128 tasks per node using shared memory
* Support for LoadLeveler® performance improvements

 Support for up to 8192 tasks in a single job, with improved memory utilization
for large jobs

* MPI collectives algorithm and optimization improvements

* MPI shared memory collectives use AIX 5L V5.3 cross-memory attachment
enhancements

* Point-to-point messages in shared memory use AIX 5L V5.3 cross-memory
attachment enhancements

* MPI/LAPI performance statistics
e The SP Switch is no longer supported

* PE 4.2 is the last release of PE that will support Parallel Systems Support
Programs for AIX (PSSP), the SP Switch2, and POWERS3 servers

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Chapter 1. A sample MPI subroutine

This book includes descriptions of the PE MPI subroutines and functions that are
available for parallel programming. For each subroutine or function, this book
includes some or all of the following sections as appropriate: Purpose, C synopsis,
C++ synopsis, FORTRAN synopsis, Parameters, Description, Notes, Errors, and
Related information. Review the following sample before proceeding to better
understand how the subroutine and function descriptions are structured.

© Copyright IBM Corp. 1993, 2005

A_SAMPLE_MPI_SUBROUTINE

A_SAMPLE_MPI_SUBROUTINE, A_Sample_MPI_subroutine

Purpose

Provides a brief description of the subroutine or function.

C synopsis
Header file mpi.h supplies ANSI-C prototypes for every subroutine and function
described in [Chapter 3, “MPI subroutines and functions,” on page 47

#include <mpi.h>
int A_Sample MPI_subroutine (one or more parameters);

In the C prototype, a declaration of void * indicates that a pointer to any datatype
is allowable.

C++ synopsis

#include mpi.h
type MPI::A Sample MPI subroutine(one or more parameters);

In the C++ prototype, a declaration of void* indicates that a pointer to any
datatype is allowable.

For information about predefined constants for C++, see IBM Parallel Environment
for AIX: MPI Programming Guide.

FORTRAN synopsis

include 'mpif.h' or use mpi
A_SAMPLE_MPI_SUBROUTINE (ONE OR MORE PARAMETERS);

In the FORTRAN subroutines, formal parameters are described using a subroutine
prototype format, even though FORTRAN does not support prototyping. The term
CHOICE indicates that any FORTRAN datatype is valid.

Description

This section contains a detailed description of the subroutine or function.

Parameters

Argument or parameter definitions are listed as follows:

parameter_1
description of parameter_1 (type)

parameter_n
description of parameter_n (type)

IERROR
is the FORTRAN return code. It is always the last argument.

Parameter types:

IN A call uses this parameter, but does not update an argument.

2 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

A_SAMPLE_MPI_SUBROUTINE

INOUT
A call uses this parameter and updates an argument.

OUT A call returns information by way of an argument, but does not use its
input value.

If applicable, this section contains notes about PE MP], as it relates to the
requirements of the MPI standard. PE MPI intends to comply fully with the
requirements of the MPI standard. There are some issues, however, that the MPI
standard leaves open to the implementation’s choice.

For non-file-handle errors, a single list appears here.

For errors on a file handle, up to three lists appear:
* Fatal errors:

Non-recoverable errors are listed here.
* Returning errors (MPI error class):

Errors that by default return an error code to the caller appear here. These are
normally recoverable errors and the error class is specified so you can identify
the cause of failure.

e Errors returned by completion routine (MPI error class):

Errors that by default return an error code to the caller at one of the WAIT or
TEST calls appear here. These are normally recoverable errors and the error class
is specified so you can identify the cause of failure.

In almost every subroutine, the C version is invoked as a function returning
integer. In the FORTRAN version, the routine is called as a subroutine; that is, it
has no return value.

For more information about errors, see IBM Parallel Environment for AIX: Messages,
which provides a listing of all the error messages issued as well as the error class
to which the message belongs.

Related information

This section contains a list of the related subroutines or functions in this book.

For C and FORTRAN, MPI uses the same spelling for subroutine names. The only
distinction is the capitalization. For the purpose of clarity, when referring to a
subroutine without specifying whether it is the FORTRAN version or the C
version, all uppercase letters are used.

FORTRAN refers to FORTRAN 77 (F77) bindings, which are officially supported
for MPL. However, F77 bindings for MPI can be used by FORTRAN 90. FORTRAN
90 and High Performance FORTRAN (HPF) offer array section and assumed shape
arrays as parameters on calls. These are not safe with MPL

Chapter 1. A sample MPI subroutine 3

A_SAMPLE_MPI_SUBROUTINE

4 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Chapter 2. Nonblocking collective communication subroutines

This chapter includes descriptions of the nonblocking collective communication
subroutines that are available for parallel programming. These subroutines, which
have a prefix of MPE_I, are extensions of the MPI standard. They are part of IBM’s
implementation of the MPI standard for PE. Review [Chapter 1, “A sample MP]]
lsubroutine,” on page 1| before proceeding to better understand how the subroutine
descriptions are structured.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives. With this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For more information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

For more information about matching blocking and non-blocking collectives in the
same application, see the chapter Programming considerations for user application in
POE in IBM Parallel Environment for AIX: MPI Programming Guide.

The MPI-2 extensions related to collective communication are now available for all
MPI blocking collectives. The MPE_I non-blocking collectives have not been
enhanced with MPI-2 functionality. The MPE_I non-blocking collectives are
semantically equivalent to MPI-1.

© Copyright IBM Corp. 1993, 2005 5

MPE_IALLGATHER

MPE_IALLGATHER, MPE_lallgather

6

Purpose

Performs a nonblocking allgather operation.

C synopsis

#include <mpi.h>

int MPE_Iallgather(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,
MPI_Request +*request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IALLGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ ALLGATHER. It performs the
same function as MPI_ALLGATHER except that it returns a request handle that
must be explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcount
The number of elements received from any task (integer) (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of your applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLGATHER

participating tasks like blocking collective communication routines generally do,
tasks running at different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid counts
count < 0

Invalid datatypes
Type not committed

Unequal message length

Chapter 2. Nonblocking collective communication subroutines 7

MPE_IALLGATHER

MPI_IN_PLACE not valid
MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent message length

Match of blocking and non-blocking collectives

Related information
MPI_ALLGATHER

8 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLGATHERV

MPE_IALLGATHERV, MPE_lallgatherv

Purpose

Performs a nonblocking allgatherv operation.

C synopsis

#include <mpi.h>

int MPE_lallgatherv(void* sendbuf,int sendcount,
MPI_Datatype sendtype,void* recvbuf,int recvcounts,
int *displs,MPI_Datatype recvtype,
MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IALLGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DISPLS(*),
INTEGER RECVTYPE,INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLGATHERV. It performs the
same function as MPI_ALLGATHERV except that it returns a request handle that
must be explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcounts
An integer array (of length group size) that contains the number of
elements received from each task (IN)

displs An integer array (of length group size). Entry i specifies the displacement
(relative to recvbuf) at which to place the incoming data from task i (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided

Chapter 2. Nonblocking collective communication subroutines 9

MPE_IALLGATHERV

10

Errors

to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in [BM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid counts
count < 0

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLGATHERV

Invalid datatypes

Type not committed
Unequal message length
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Match of blocking and non-blocking collectives

Related information
MPI_ALLGATHERV

Chapter 2. Nonblocking collective communication subroutines 11

MPE_IALLREDUCE

MPE_IALLREDUCE, MPE_lallreduce

Purpose

Performs a nonblocking allreduce operation.

C synopsis

#include <mpi.h>

int MPE_Iallreduce(void* sendbuf,void* recvbuf,int count,
MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,
MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IALLREDUCE (CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,
INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER REQUEST,
INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLREDUCE. It performs the
same function as MPI_ALLREDUCE except that it returns a request handle that
must be explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

recvbuf
The starting address of the receive buffer (choice) (OUT)

count The number of elements in the send buffer (integer) (IN)

datatype
The datatype of elements in the send buffer (handle) (IN)

op The reduction operation (handle) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

12 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLREDUCE

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid count
count < 0

Invalid datatype

Type not committed
Invalid op

Invalid communicator

Invalid communicator type
must be intra-communicator

Unequal message length

MPI_IN_PLACE not valid

Chapter 2. Nonblocking collective communication subroutines 13

MPE_IALLREDUCE

MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent datatype

Inconsistent message length

Inconsistent op

Match of blocking and non-blocking collectives

Related information
MPI_ALLREDUCE

14 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLTOALL

MPE_IALLTOALL, MPE_lalltoall

Purpose

Performs a nonblocking alltoall operation.

C synopsis

#include <mpi.h>

int MPE_Ialltoall(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,
MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ ALLTOALL. It performs the same
function as MPI_ALLTOALL except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements sent to each task (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcount
The number of elements received from any task (integer) (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the

Chapter 2. Nonblocking collective communication subroutines 15

MPE_IALLTOALL

participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Errors

Invalid counts
count < 0

Invalid datatypes
Type not committed
Invalid communicator

Invalid communicator type
must be intra-communicator

Unequal message lengths

16 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLTOALL

MPI_IN_PLACE not valid
MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent message length

Match of blocking and non-blocking collectives

Related information
MPI_ALLTOALL

Chapter 2. Nonblocking collective communication subroutines 17

MPE_IALLTOALLV

MPE_IALLTOALLYV, MPE_lalltoallv

Purpose

Performs a nonblocking alltoallv operation.

C synopsis

#include <mpi.h>

int MPE_Ialltoallv(void* sendbuf,int *sendcounts,int xsdispls,
MPI_Datatype sendtype,void* recvbuf,int *recvcounts,int *rdispls,
MPI_Datatype recvtype,MPI_Comm comm,MPI_Request xrequest);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_ALLTOALLV(CHOICE SENDBUF,INTEGER SENDCOUNTS (%),
INTEGER SDISPLS(*),INTEGER SENDTYPE,CHOICE RECVBUF,
INTEGER RECVCOUNTS(*),INTEGER RDISPLS(*),INTEGER RECVTYPE,
INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLTOALLV. It performs the
same function as MPI_ALLTOALLYV, except that it returns a request handle that
must be explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcounts
An integer array (of length group size) specifying the number of elements
to send to each task (IN)

sdispls
An integer array (of length group size). Entry j specifies the displacement
relative to sendbuf from which to take the outgoing data destined for task
j. (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcounts
An integer array (of length group size) specifying the number of elements
that can be received from each task (IN)

rdispls
An integer array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from task i. (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

18 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPE_IALLTOALLV

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting

environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid counts
count < 0

Chapter 2. Nonblocking collective communication subroutines 19

MPE_IALLTOALLV

Invalid datatypes
Type not committed
Invalid communicator

Invalid communicator type
must be intra-communicator

A send and receive have unequal message lengths
MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Match of blocking and non-blocking collectives

Related information

MPI_ALLTOALLV

20 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IBARRIER

MPE_IBARRIER, MPE_lbarrier

Purpose

Performs a nonblocking barrier operation.

C synopsis

#include <mpi.h>
int MPE_Ibarrier(MPI_Comm comm,MPI_Request xrequest);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPE_IBARRIER(INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_BARRIER. It returns immediately,
without blocking, but will not complete (using MPI_WAIT or MPI_TEST) until all
group members have called it.

Parameters

Notes

comm A communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

A typical use of MPE_IBARRIER is to make a call to it, and then periodically test
for completion with MPI_TEST. Completion indicates that all tasks in comm have
arrived at the barrier. Until then, computation can continue.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

Chapter 2. Nonblocking collective communication subroutines 21

MPE_IBARRIER

message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Errors

Invalid communicator

Invalid communicator type
must be intra-communicator

MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Match of blocking and non-blocking collectives

Related information
MPI_BARRIER

22 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IBCAST

MPE_IBCAST, MPE_Ibcast

Purpose

Performs a nonblocking broadcast operation.

C synopsis

#include <mpi.h>
int MPE_Ibcast(void* buffer,int count,MPI Datatype datatype,
int root,MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPE_IBCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER DATATYPE,INTEGER ROOT,
INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_BCAST. It performs the same
function as MPI_BCAST except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

buffer The starting address of the buffer (choice) (INOUT)
count The number of elements in the buffer (integer) (IN)

datatype
The datatype of the buffer elements (handle) (IN)

root The rank of the root task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads

Chapter 2. Nonblocking collective communication subroutines 23

MPE_IBCAST

library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Errors

Error Conditions:
Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid count
count < 0

Invalid datatype
Type not committed

Invalid root
root < 0 or root >= groupsize

Unequal message length
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

24 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IBCAST

Develop mode error (returned in the WAIT) if:
Inconsistent message length
Inconsistent root

Match of blocking and non-blocking collectives

Related information
MPI_BCAST

Chapter 2. Nonblocking collective communication subroutines 25

MPE_IGATHER

MPE_IGATHER, MPE_lgather

Purpose

Performs a nonblocking gather operation.

C synopsis

#include <mpi.h>

int MPE_Igather(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,
MPI_Comm comm,MPI_Request xrequest);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,
INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ GATHER. It performs the same
function as MPI_GATHER, except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (integer) (IN)

recvbuf
The address of the receive buffer (choice, significant only at root) (OUT)

recvcount
The number of elements for any single receive (integer, significant only at
root) (IN)

recvtype
The datatype of the receive buffer elements (handle, significant at root)
(IN)

root The rank of the receiving task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided

26 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IGATHER

to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid counts
count < 0

Chapter 2. Nonblocking collective communication subroutines 27

MPE_IGATHER

Invalid datatypes
Type not committed

Invalid root
root < 0 or root >= groupsize

Unequal message lengths
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent message length
Inconsistent root

Match of blocking and non-blocking collectives

Related information

MPI_GATHER

28 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IGATHERV

MPE_IGATHERV, MPE_lgatherv

Purpose

Performs a nonblocking gatherv operation.

C synopsis

#include <mpi.h>

int MPE_Igatherv(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcounts,int *displs,MPI_Datatype recvtype,
int root,MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IGATHERV (CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNTS (), INTEGER DISPLS(*),
INTEGER RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER REQUEST,
INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_GATHERV. It performs the same
function as MPI_GATHERV except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements to be sent (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice, significant only at root) (OUT)

recvcounts
An integer array (of length group size) that contains the number of
elements received from each task (significant only at root) (IN)

displs An integer array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from task i
(significant only at root) (IN)

recvtype
The datatype of the receive buffer elements (handle, significant only at
root) (IN)

root The rank of the receiving task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 2. Nonblocking collective communication subroutines 29

MPE_IGATHERV

30

Notes

Errors

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting

environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IGATHERV

Invalid communicator type
must be intra-communicator

Invalid counts
Invalid datatypes
Type not committed

Invalid root
root < 0 or root >= groupsize

A send and receive have unequal message lengths
MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent root

Match of blocking and non-blocking collectives

Related information
MPI_GATHERV

Chapter 2. Nonblocking collective communication subroutines 31

MPE_IREDUCE

MPE_IREDUCE, MPE_Ireduce

Purpose

Performs a nonblocking reduce operation.

C synopsis

#include <mpi.h>

int MPE_Ireduce(void* sendbuf,void* recvbuf,int count,
MPI_Datatype datatype,MPI_Op op,int root,MPI_Comm comm,
MPI_Request +*request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IREDUCE (CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,
INTEGER DATATYPE,INTEGER OP, INTEGER ROOT,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_REDUCE. It performs the same
function as MPI_REDUCE except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The address of the send buffer (choice) (IN)

recvbuf
The address of the receive buffer (choice, significant only at root) (OUT)

count The number of elements in the send buffer (integer) (IN)

datatype
The datatype of elements of the send buffer (handle) (IN)

op The reduction operation (handle) (IN)
root The rank of the root task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

32 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors

MPE_IREDUCE

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid count
count < 0

Invalid datatype
Type not committed
Invalid op

Invalid root
root < 0 or root > = groupsize

Invalid communicator

Invalid communicator type
must be intra-communicator

Unequal message lengths

Chapter 2. Nonblocking collective communication subroutines 33

MPE_IREDUCE

MPI_IN_PLACE not valid
MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent datatype

Inconsistent message length

Inconsistent op

Inconsistent root

Match of blocking and non-blocking collectives

Related information
MPI_REDUCE

34 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IREDUCE_SCATTER

MPE_IREDUCE_SCATTER, MPE_Ireduce_scatter

Purpose

Performs a nonblocking reduce_scatter operation.

C synopsis

#include <mpi.h>

int MPE_Ireduce scatter(void* sendbuf,voidx recvbuf,int xrecvcounts,
MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,
MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IREDUCE_SCATTER(CHOICE SENDBUF,CHOICE RECVBUF,
INTEGER RECVCOUNTS (*), INTEGER DATATYPE,INTEGER OP,
INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_REDUCE_SCATTER. It performs
the same function as MPI_REDUCE_SCATTER except that it returns a request
handle that must be explicitly completed by using one of the MPI wait or test
operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

recvbuf
The starting address of the receive buffer (choice) (OUT)

recvcounts
An integer array specifying the number of elements in result distributed to
each task. Must be identical on all calling tasks. (IN)

datatype
The datatype of elements in the input buffer (handle) (IN)

op The reduction operation (handle) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the

Chapter 2. Nonblocking collective communication subroutines 35

MPE_IREDUCE_SCATTER

participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Errors

Invalid recvcounts
recvcounts(i) < 0

Invalid datatype

Type not committed
Invalid op

Invalid communicator

Invalid communicator type
must be intra-communicator

36 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IREDUCE_SCATTER

Unequal message lengths
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent datatype
Inconsistent op

Match of blocking and non-blocking collectives

Related information
MPI_REDUCE_SCATTER

Chapter 2. Nonblocking collective communication subroutines 37

MPE_ISCAN

MPE_ISCAN, MPE_Iscan

Purpose

Performs a nonblocking scan operation.

C synopsis

#include <mpi.h>

int MPE_Iscan(void* sendbuf,void* recvbuf,int count,
MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,
MPI_Request +*request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_ISCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,
INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER REQUEST,
INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_SCAN. It performs the same
function as MPI_SCAN except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

recvbuf
The starting address of the receive buffer (choice) (OUT)

count The number of elements in sendbuf (integer) (IN)

datatype
The datatype of elements in sendbuf (handle) (IN)

op The reduction operation (handle) (IN)
comm The communicator (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

38 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_ISCAN

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid count
count < 0

Invalid datatype

Type not committed
Invalid op

Invalid communicator

Invalid communicator type
must be intra-communicator

Unequal message lengths

MPI_IN_PLACE not valid

Chapter 2. Nonblocking collective communication subroutines 39

MPE_ISCAN

MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent datatype

Inconsistent message length

Inconsistent op

Match of blocking and non-blocking collectives

Related information
MPI_SCAN

40 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_ISCATTER

MPE_ISCATTER, MPE_Iscatter

Purpose

Performs a nonblocking scatter operation.

C synopsis

#include <mpi.h>

int MPE_Iscatter(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,
MPI_Comm comm,MPI_Request xrequest);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_ISCATTER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,
INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_SCATTER. It performs the same
function as MPI_SCATTER except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

sendbuf
The address of the send buffer (choice, significant only at root) (IN)

sendcount
The number of elements to be sent to each task (integer, significant only at
root) (IN)

sendtype
The datatype of the send buffer elements (handle, significant only at root)
(IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcount
The number of elements in the receive buffer (integer) (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

root The rank of the sending task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided

Chapter 2. Nonblocking collective communication subroutines 41

MPE_ISCATTER

42

Errors

to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in [BM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid counts
count < 0

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_ISCATTER

Invalid datatypes
Type not committed

Invalid root
root < 0 or root >= groupsize

Unequal message lengths
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent message length
Inconsistent root

Match of blocking and non-blocking collectives

Related information
MPI_SCATTER

Chapter 2. Nonblocking collective communication subroutines 43

MPE_ISCATTERV

MPE_ISCATTERYV, MPE_lIscatterv

Purpose

Performs a nonblocking scatterv operation.

C synopsis

#include <mpi.h>

int MPE_Iscatterv(void* sendbuf,int *sendcounts,int xdispls,
MPI_Datatype sendtype,void* recvbuf,int recvcount,
MPI _Datatype recvtype,int root,MPI_Comm comm,MPI_Comm *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_ISCATTERV(CHOICE SENDBUF,INTEGER SENDCOUNTS(*),INTEGER DISPLS(*),
INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,
INTEGER ROOT,INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_SCATTERV. It performs the same
function as MPI_SCATTERV except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The address of the send buffer (choice, significant only at root) (IN)

sendcounts
An integer array (of length group size) that contains the number of
elements to send to each task (significant only at root) (IN)

displs An integer array (of length group size). Entry i specifies the displacement
relative to sendbuf from which to take the outgoing data to task i
(significant only at root) (IN)

sendtype
The datatype of the send buffer elements (handle, significant only at root)
(IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcount
The number of elements in the receive buffer (integer) (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

root The rank of the sending task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

44 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPE_ISCATTERV

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

Chapter 2. Nonblocking collective communication subroutines 45

MPE_ISCATTERV

Invalid communicator type
must be intra-communicator

Invalid counts
count < 0

Invalid datatypes
Type not committed

Invalid root
root < 0 or root >= groupsize

Unequal message lengths
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent root

Match of blocking and non-blocking collectives

Related information

MPI_SCATTERV

46 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Chapter 3. MPI subroutines and functions

This chapter includes descriptions of the MPI subroutines and functions that are
available for parallel programming. Each of these subroutines and functions is
defined in the MPI standard. Codes that use these subroutines and functions can
be ported to another MPI implementation through re-compilation of the source
code. Review [Chapter 1, “A sample MPI subroutine,” on page 1| before proceeding
to better understand how the subroutine and function descriptions are structured.

Do not match blocking (MPI) and non-blocking (MPE_I) collectives in the same
64-bit application. If it is suspected a hang may be due to such mixing, turn on
DEVELOP mode by setting the environment variable MP_EUIDEVELOP to yes,
and look for error messages. If you receive a message about a mismatch, either run
with MP_SHARED_MEMORY set to no, or change the application to no longer
match blocking and non-blocking collectives.

For more information about matching blocking and non-blocking collectives in the
same application, see the chapter Programming considerations for user application in
POE of IBM Parallel Environment for AIX: MPI Programming Guide.

© Copyright IBM Corp. 1993, 2005 47

MPI_ABORT

MPI_ABORT, MPI_Abort

48

Purpose

Forces all tasks of an MPI job to terminate.

C synopsis

#include <mpi.h>

int MPI_Abort(MPI_Comm comm,int errorcode);
C++ synopsis

#incTude mpi.h
void MPI::Comm::Abort(int errorcode);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ABORT (INTEGER COMM, INTEGER ERRORCODE,INTEGER IERROR)

Description

This subroutine forces an MPI program to terminate all tasks in the job. comm
currently is not used. All tasks in the job are aborted. The low-order 8 bits of
errorcode are returned as an AIX return code.

Parameters

comm
The communicator of the tasks to abort. (IN)

errorcode
The error code returned to the invoking environment. (IN)

IERROR
The FORTRAN return code. This is always the last argument.

Notes
MPI_ABORT causes all tasks to exit immediately.

Errors

MPI already finalized
MPI not initialized

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ACCUMULATE

MPI_ACCUMULATE, MPI_Accumulate

Purpose

Accumulates, according to the specified reduction operation, the contents of the
origin buffer to the specified target buffer.

C synopsis
#include <mpi.h>
int MPI_Accumulate (void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target disp, int target count,
MPI_Datatype target_datatype, MPI_Op op,
MPI_Win win);

C++ synopsis

#include mpi.h
void MPI::Win::Accumulate(const void* origin_addr, int origin_count,
const MPI::Datatype& origin_datatype,
int target_rank, MPI::Aint target_disp,
int target_count, const MPI::Datatype& target datatype,
const MPI::0p& op) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_ACCUMULATE (CHOICE ORIGIN_ADDR, INTEGER ORIGIN_COUNT,
INTEGER ORIGIN_DATATYPE, INTEGER TARGET_RANK,
INTEGER TARGET DISP, INTEGER TARGET COUNT,
INTEGER TARGET _DATATYPE, INTEGER OP,
INTEGER WIN, INTEGER IERROR)

Description

This subroutine accumulates the contents of the origin buffer (as defined by
origin_addr, origin_count, and origin_datatype) to the buffer specified by arguments
target_count and target_datatype, at offset target_disp, in the target window specified
by target_rank and win, using the operation op. MPI_ACCUMULATE is similar to
MPI_PUT, except that data is combined into (rather than overwritten in) the target
area.

Any of the predefined operations for MPI_REDUCE can be used. User-defined
functions cannot be used. For example, if op is MPI_SUM, each element of the
origin buffer is added to the corresponding element in the target, replacing the
former value in the target.

Each datatype argument must be a predefined datatype or a derived datatype,
where all basic components are of the same predefined datatype. Both datatype
arguments must be constructed from the same predefined datatype. The operation
op applies to elements of that predefined type. target_datatype must not specify
overlapping entries, and the target buffer must fit in the target window.

A new predefined operation, MPI_REPLACE, corresponds to the associative

function f(a,b) = b. That is, the current value in the target memory is replaced by
the value supplied by the origin.

Chapter 3. MPI subroutines and functions 49

MPI_ACCUMULATE

Parameters

Notes

Errors

origin_addr
The initial address of the origin buffer (choice) (IN)

origin_count
The number of entries in origin buffer (nonnegative integer) (IN)

origin_datatype
The datatype of each entry in the origin buffer (handle) (IN)

target_rank
The rank of the target (nonnegative integer) (IN)

target_disp
The displacement from the start of the window to the target buffer
(nonnegative integer) (IN)

target_count
The number of entries in the target buffer (nonnegative integer) (IN)

target_datatype
The datatype of each entry in the target buffer (handle) (IN)

op The reduction operation (handle) (IN)
win
The window object used for communication (handle) (IN)

TIERROR
The FORTRAN return code. It is always the last argument.

MPI_ACCUMULATE does not require that data move from origin to target until
some synchronization occurs. PE MPI may try to combine multiple puts to a target
within an epoch into a single data transfer. The user must not modify the source
buffer or make any assumption about the contents of the destination buffer until
after a synchronization operation has closed the epoch.

On some systems, there may be reasons to use special memory for one-sided
communication buffers. MPI_ ALLOC_MEM may be the preferred way to allocate
buffers on these systems. With PE MPI, there is no advantage to using
MPI_ALLOC_MEM, but you can use it to improve the portability of your MPI
code.

Invalid origin count (count)
Invalid origin datatype (handle)
Invalid target rank (rank)

Invalid target displacement (value)
Invalid target count (count)
Invalid target datatype (handle)
Invalid window handle (handle)
Target outside access group

Origin buffer too small (size)

50 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ACCUMULATE

Target buffer ends outside target window
Target buffer starts outside target window
RMA communication call outside access epoch
RMA communication call in progress

RMA synchronization call in progress

Origin datatype inappropriate for accumulate
Target datatype inappropriate for accumulate
Incompatible origin and target datatypes

Invalid reduction operation (op)
Related information

MPI_GET
MPI_PUT

Chapter 3. MPI subroutines and functions 51

MPI_ADD_ERROR_CLASS

MPI_ADD_ERROR_CLASS, MPI_Add_error_class

52

Purpose

Creates a new error class and returns the value for it.

C synopsis

#include <mpi.h>
int MPI_Add_error_class(int *errorclass);

C++ synopsis

#incTude mpi.h
int MPI::Add_error_class();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ADD_ERROR_CLASS(INTEGER ERRORCLASS, INTEGER IERROR)

Description

This subroutine creates a new error class and returns the value for it so that the
user classes do not conflict with any existing codes or classes. See [Table 1 on pagé
for a list of the predefined PE MPI error classes.

Parameters

errorclass
The value for the new error class (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Because a call to MPI_ADD_ERROR_CLASS is local, the same error class may not
be returned on all tasks that make this call. Thus, it is not safe to assume that
registering a new error class or code on a set of tasks at the same time will yield
the same error class or code on all of the tasks. Only if all calls to create an error
class or code occur in the same order on each task of MPI_COMM_WORLD will
the values be globally consistent. The value of MPI_ERR_LASTCODE is not
affected by new user-defined error codes and classes, as it is a constant value.
Instead, a predefined attribute key MPI_LASTUSEDCODE is associated with
MPI_COMM_WORLD. The attribute value corresponding to this key is the current
maximum error class including the user-defined ones. This is a local value and
may be different on different tasks. The value returned by this key is always
greater than or equal to MPI_ERR_LASTCODE.

The value returned by the key MPI_LASTUSEDCODE will not change unless the
user calls a function to explicitly add an error class or code. In a multi-threaded
environment, the user must take extra care in assuming this value has not
changed. Note that error codes and error classes are not necessarily dense. A user
may not assume that each error class below MPI_LASTUSEDCODE is valid. An
error is returned if the user tries to set the predefined MPI_LASTUSEDCODE
using MPI_COMM_SET_ATTR.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors

Fatal errors:
MPI already finalized
MPI not initialized

Related information
MPI_ADD_ERROR_CODE
MPI_ADD_ERROR_STRING
MPI_ERROR_CLASS
MPI_ERROR_STRING

MPI_ADD_ERROR_CLASS

Chapter 3. MPI subroutines and functions

53

MPI_ADD_ERROR_CODE

MPI_ADD ERROR_CODE, MPI_Add_error_code

54

Purpose

Creates a new error code associated with errorclass and returns its value in
errorcode.

C synopsis

#include <mpi.h>
int MPI_Add_error_code(int errorclass, int xerrorcode);

C++ synopsis

#incTude mpi.h
int MPI::Add_error_code(int errorclass);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ADD_ERROR_CODE (INTEGER ERRORCLASS, INTEGER ERRORCODE, INTEGER IERROR)

Description

This subroutine creates a new error code associated with errorclass and returns its
value in errorcode so that there are no conflicts with existing codes or classes.

Parameters

errorclass
The error class (integer) (IN)

errorcode
The new error code associated with errorclass (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Because a call to MPI_ADD_ERROR_CLASS is local, the same error class may not
be returned on all tasks that make this call. Thus, it is not safe to assume that
registering a new error class or code on a set of tasks at the same time will yield
the same error class or code on all of the tasks. Only if all calls to create an error
class or code occur in the same order on each task of MPI_COMM_WORLD will
the values be globally consistent. The value of MPI_ERR_LASTCODE is not
affected by new user-defined error codes and classes, as it is a constant value.
Instead, a predefined attribute key MPI_LASTUSEDCODE is associated with
MPI_COMM_WORLD. The attribute value corresponding to this key is the current
maximum error class including the user-defined ones. This is a local value and
may be different on different tasks. The value returned by this key is always
greater than or equal to MPI_ERR_LASTCODE.

The value returned by the key MPI_LASTUSEDCODE will not change unless the
user calls a function to explicitly add an error class or code. In a multi-threaded
environment, the user must take extra care in assuming this value has not
changed. Note that error codes and error classes are not necessarily dense. A user
may not assume that each error class below MPI_LASTUSEDCODE is valid. An
error is returned if the user tries to set the predefined MPI_ LASTUSEDCODE
using MPI_COMM_SET_ATTR.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors
Fatal errors:
Invalid error class
MPI already finalized
MPI not initialized

Related information
MPI_ADD_ERROR_CLASS
MPI_ADD_ERROR_STRING
MPI_ERROR_CLASS
MPI_ERROR_STRING

MPI_ADD_ERROR_CODE

Chapter 3. MPI subroutines and functions

55

MPI_ADD_ERROR_STRING

MPI_ADD_ERROR_STRING, MPI_Add_error_string

56

Purpose

Associates an error string with an error code or class.

C synopsis

#include <mpi.h>
int MPI_Add_error_string(int errorcode, char xstring);

C++ synopsis

#incTude mpi.h
void MPI::Add_error_string(int errorcode, const char* string);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ADD_ERROR_STRING(INTEGER ERRORCODE, CHARACTER+(x) STRING, INTEGER IERROR)

Description

This subroutine associates an error string with an error code or class. The string
length must be no more than the value specified by MPI_MAX_ERROR_STRING
(128 characters).

Parameters

errorcode
The error code or class (integer) (IN)

string
The text corresponding to errorcode (string) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The length of the string does not include the null terminator in C or C++. Trailing
blanks are deleted in FORTRAN. Calling MPI_ADD_ERROR_STRING for an error
code that already has a string will replace the old string with the new string. It is
erroneous to call MPI_ ADD_ERROR_STRING for an error code or class with a
value that is less than or equal to the value specified by MPI_ERR_LASTCODE. In
other words, error strings on PE MPI-defined errors cannot be replaced. If
MPI_ERROR_STRING is called when no string has been set, it returns a empty
string (all spaces in FORTRAN or "” in C and C++).

Errors

Fatal errors:

Error string too long

Improper error message change
Invalid error code

MPI already finalized

MPI not initialized

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ADD_ERROR_STRING

Related information
MPI_ADD_ERROR_CLASS
MPI_ADD_ERROR_STRING
MPI_ERROR_CLASS
MPI_ERROR_STRING

Chapter 3. MPI subroutines and functions 57

MPI_ADDRESS

MPI_ADDRESS, MPI_Address

58

Purpose

Returns the address of a variable in memory.

C synopsis

#include <mpi.h>
int MPI_Address(void* location,MPI Aint xaddress);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ADDRESS (CHOICE LOCATION,INTEGER ADDRESS,INTEGER IERROR)

Description

This subroutine returns the byte address of location.

Parameters

location
The location in caller memory (choice) (IN)

address
The address of location (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_GET_ADDRESS supersedes MPI_ADDRESS.

The FORTRAN MPI_ADDRESS binding is not valid for 64-bit FORTRAN programs
because it is not possible to predict when an address will fit in 32 bits.

On the IBM RS/6000 SP and on the clustered server, MPI_ ADDRESS is equivalent
to address= (MPI_Aint) location in C, but this subroutine is portable to processors
with less straightforward addressing.

Errors

MPI not initialized
MPI already finalized

Related information
MPI_TYPE_HINDEXED
MPI_TYPE_INDEXED
MPI_TYPE_STRUCT

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLGATHER

MPI_ALLGATHER, MPI_Allgather

Purpose

Gathers individual messages from each task in comm and distributes the resulting
message to each task.

C synopsis

#include <mpi.h>
int MPI_Allgather(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI Datatype recvtype,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Allgather(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
int recvcount, const MPI::Datatype& recvtype)
const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_ALLGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,
INTEGER COMM, INTEGER IERROR)

Description

MPI_ALLGATHER is similar to MPIL_GATHER except that all tasks receive the
result instead of just the root.

The block of data sent from task j is received by every task and placed in the jth
block of the buffer recvbuf.

The type signature associated with sendcount, sendtype at a task must be equal to
the type signature associated with recvcount, recvtype at any other task.

The "in place” option for intra-communicators is specified by passing the value
MPI_IN_PLACE to sendbuf at all tasks. The sendcount and sendtype arguments are
ignored. The input data of each task is assumed to be in the area where that task
would receive its own contribution to the receive buffer. Specifically, the outcome
of a call to MPI_ALLGATHER in the "in place” case is as if all tasks issued n calls
to:

MPI_GATHER(MPI IN_PLACE, O, MPI_DATATYPE NULL, recvbuf, recvcount, recvtype,
root, comm)

for: root = 0 to n-1.

If comm is an inter-communicator, each task in group A contributes a data item.
These items are concatenated and the result is stored at each task in group B.
Conversely, the concatenation of the contributions of the tasks in group B is stored
at each task in group A. The send buffer arguments in group A must be consistent

with the receive buffer arguments in group B, and vice versa.

MPI_IN_PLACE is not supported for inter-communicators.

Chapter 3. MPI subroutines and functions 59

MPI_ALLGATHER

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcount
The number of elements received from any task (integer) (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm
The communicator (handle) (IN)

TIERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
Invalid communicator

Invalid counts
count < 0

Invalid datatypes

Type not committed

Unequal message lengths
Invalid use of MPI_IN_PLACE
MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent message length

Related information
MPE_TALLGATHER
MPI_ALLGATHER
MPI_GATHER

60 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLGATHERV

MPI_ALLGATHERYV, MPI_Allgatherv

Purpose

Collects individual messages from each task in comm and distributes the resulting
message to all tasks. Messages can have different sizes and displacements.

C synopsis

#include <mpi.h>

int MPI_Allgatherv(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int xrecvcounts,int *displs,MPI_Datatype recvtype,
MPI_Comm comm) ;

C++ synopsis

#incTude mpi.h

void MPI::Comm::Allgatherv(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displs[],
const MPI::Datatype& recvtype) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_ALLGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DISPLS(*),
INTEGER RECVTYPE,INTEGER COMM, INTEGER IERROR)

Description

This subroutine collects individual messages from each task in comm and
distributes the resulting message to all tasks. Messages can have different sizes and
displacements.

The block of data sent from task j is recvcounts[j] elements long, and is received by
every task and placed in recvbuf at offset displs[j].

The type signature associated with sendcount, sendtype at task j must be equal to
the type signature of recvcounts|jl, recvtype at any other task.

The "in place” option for intra-communicators is specified by passing the value
MPI_IN_PLACE to sendbuf at all tasks. The sendcount and sendtype arguments are
ignored. The input data of each task is assumed to be in the area where that task
would receive its own contribution to the receive buffer. Specifically, the outcome
of a call to MPI_ALLGATHERYV in the "in place” case is as if all tasks issued # calls
to:

MPI_GATHERV(MPI_IN_PLACE, O, MPI_DATATYPE_NULL, recvbuf, recvcount, recvtype,
root, comm)

for: root = 0 to n- 1.

If comm is an inter-communicator, each task in group A contributes a data item.
These items are concatenated and the result is stored at each task in group B.
Conversely, the concatenation of the contributions of the tasks in group B is stored
at each task in group A. The send buffer arguments in group A must be consistent

with the receive buffer arguments in group B, and vice versa.

MPI_IN_PLACE is not supported for inter-communicators.

Chapter 3. MPI subroutines and functions 61

MPI_ALLGATHERV

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcounts
An integer array (of length groupsize) that contains the number of elements
received from each task (IN)

displs
An integer array (of length groupsize). Entry i specifies the displacement
(relative to recvbuf) at which to place the incoming data from task i (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
Invalid communicator

Invalid counts
count < 0

Invalid datatypes

Type not committed

Unequal message lengths
Invalid use of MPI_IN_PLACE
MPI not initialized

MPI already finalized

Develop mode error if:

None

Related information
MPE_TALLGATHERV
MPI_ALLGATHER

62 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLOC_MEM

MPI_ALLOC_MEM, MPI_Alloc_mem

Purpose

Allocates storage and returns a pointer to it.

C synopsis

#include <mpi.h>
int MPI_Alloc_mem (MPI_Aint size, MPI _Info info, void xbaseptr);

C++ synopsis

#incTude mpi.h
void* MPI::Alloc_mem(MPI::Aint size, const MPI::Info& info);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ALLOC_MEM(INTEGER SIZE, INTEGER INFO, INTEGER BASEPTR, INTEGER IERROR)

Description

This subroutine allocates at least size bytes of storage and returns a pointer to it in
the baseptr argument. The block of allocated storage is aligned so that it may be
used for any type of data.

The info argument may be used in some implementations to provide directives that
control the desired location of the allocated memory. Such a directive does not
affect the semantics of the call. Valid info values are implementation-dependent. PE
MPI does not recognize any hints for MPI_ALLOC_MEM. A null directive value of
info = MPI_INFO_NULL is always valid.

Parameters

Notes

Errors

size
The size of the memory segment in bytes (nonnegative integer) (IN)

info
The Info argument (handle) (IN)

baseptr
The pointer to the beginning of the memory segment allocated (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

If the requested amount of memory is not available, the error handler associated
with MPI_COMM_WORLD is invoked. By default, this is
MPI_ERRORS_ARE_FATAL.

Fatal errors:

Out of memory (MPI_ERR_NO_MEM)
Invalid info (MPI_ERR_INFO)

MPI not initialized (MPI_ERR_OTHER)

Chapter 3. MPI subroutines and functions 63

MPI_ALLOC_MEM

MPI already finalized (MPI_ERR_OTHER)
Related information

MPI_FREE_MEM
MPI_WIN_CREATE

64 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLREDUCE

MPI_ALLREDUCE, MPI_Allreduce

Purpose

Applies a reduction operation to the vector sendbuf over the set of tasks specified
by comm and places the result in recobuf on all of the tasks in comm.

C synopsis

#include <mpi.h>
int MPI_Allreduce(void* sendbuf,void* recvbuf,int count,
MPI Datatype datatype,MPI_Op op,MPI_Comm comm)

C++ synopsis

#include mpi.h

void MPI::Comm::Allreduce(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::0p& op)
const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ALLREDUCE (CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,
INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER IERROR)

Description

This subroutine applies a reduction operation to the vector sendbuf over the set of
tasks specified by comm and places the result in recobuf on all of the tasks.

This subroutine is similar to MPI_ REDUCE except the result is returned to the
receive buffer of all the group members.

The "in place” option for intra-communicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at the root. In this case, the input data is
taken at each task from the receive buffer, where it will be replaced by the output
data.

If comm is an inter-communicator, the result of the reduction of the data provided
by tasks in group A is stored at each task in group B, and vice versa. Both groups
should provide the same count value.

MPI_IN_PLACE is not supported for inter-communicators.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

recvbuf
The starting address of the receive buffer (choice) (OUT)

count
The number of elements in the send buffer (integer) (IN)

Chapter 3. MPI subroutines and functions 65

MPI_ALLREDUCE

datatype
The datatype of elements in the send buffer (handle) (IN)

op The reduction operation (handle) (IN)

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

See IBM Parallel Environment for AIX: MPI Programming Guide for information about
reduction functions.

The MPI standard urges MPI implementations to use the same evaluation order for
reductions every time, even if this negatively affects performance. PE MPI adjusts
its reduce algorithms for the optimal performance on a given task distribution. The
MPI standard suggests, but does not mandate, this sacrifice of performance. PE
MPI chooses to put performance ahead of the MPI standard’s recommendation.
This means that two runs with the same task count may produce results that differ
in the least significant bits, due to rounding effects when evaluation order changes.
Two runs that use the same task count and the same distribution across nodes will
always give identical results.

In the 64-bit library, this function uses a shared memory optimization among the
tasks on a node. This optimization is discussed in the chapter Using shared memory
of IBM Parallel Environment for AIX: MPI Programming Guide, and is enabled by
default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid count
count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator
Unequal message lengths
Invalid use of MPI_IN_PLACE
MPI not initialized

MPI already finalized

Develop mode error if:
Inconsistent op
Inconsistent datatype

Inconsistent message length

66 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLREDUCE

Related information
MPE_TALLREDUCE
MPI_OP_CREATE
MPI_REDUCE
MPI_REDUCE_SCATTER

Chapter 3. MPI subroutines and functions 67

MPI_ALLTOALL

MPI_ALLTOALL, MPI_Alitoall

Purpose

Sends a distinct message from each task to every task.

C synopsis

#include <mpi.h>

int MPI_A11toall(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,
MPI_Comm comm) :

C++ synopsis

#incTude mpi.h

void MPI::Comm::Al11toall(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
int recvcount, const MPI::Datatype& recvtype)
const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,
INTEGER COMM, INTEGER IERROR

Description
MPI_ALLTOALL sends a distinct message from each task to every task.

The jth block of data sent from task 7 is received by task j and placed in the ith
block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at a task must be equal to
the type signature associated with recucount, recvtype at any other task. This means
the amount of data sent must be equal to the amount of data received, pair wise
between every pair of tasks. The type maps can be different.

All arguments on all tasks are significant.

MPI_ALLTOALL does not support MPI_IN_PLACE on either type of
communicator.

If comm is an inter-communicator, the outcome is as if each task in group A sends a
message to each task in group B, and vice versa. The jth send buffer of task 7 in
group A should be consistent with the ith receive buffer of task j in group B, and
vice versa.

When MPI_ALLTOALL is run on an inter-communicator, the number of data items
sent from tasks in group A to tasks in group B does not need to be equal to the
number of items sent in the reverse direction. In particular, you can have
unidirectional communication by specifying sendcount = 0 in the reverse direction.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

68 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLTOALL

Parameters

Errors

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements sent to each task (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcount
The number of elements received from any task (integer) (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Fatal errors:
Unequal lengths

Invalid counts
count < 0

Invalid datatypes

Type not committed

Invalid communicator
Unequal message lengths
Invalid use of MPI_IN_PLACE
MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent message lengths

Related information

MPE_IALLTOALL
MPI_ALLTOALLV

Chapter 3. MPI subroutines and functions 69

MPI_ALLTOALLV

MPI_ALLTOALLYV, MPI_Alltoallv

Purpose

Sends a distinct message from each task to every task. Messages can have different
sizes and displacements.

C synopsis

#include <mpi.h>

int MPI_Al1toallv(void* sendbuf,int *sendcounts,int *sdispls,
MPI_Datatype sendtype,void* recvbuf,int xrecvcounts,int *rdispls,
MPI Datatype recvtype,MPI_Comm comm);

C++ synopsis

#incTude mpi.h
void MPI::Comm::Al1toallv(const void* sendbuf, const int sendcounts[],
const int sdispls[], const MPI::Datatype& sendtype,
void* recvbuf, const int recvcounts[],
const int rdispls[], const MPI::Datatype& recvtype)
const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_ALLTOALLV(CHOICE SENDBUF,INTEGER SENDCOUNTS(*),
INTEGER SDISPLS(*),INTEGER SENDTYPE,CHOICE RECVBUF,
INTEGER RECVCOUNTS (*),INTEGER RDISPLS(*),INTEGER RECVTYPE,
INTEGER COMM, INTEGER IERROR)

Description

MPI_ALLTOALLV sends a distinct message from each task to every task. Messages
can have different sizes and displacements.

This subroutine is similar to MPI_ ALLTOALL with the following differences.
MPI_ALLTOALLV allows you the flexibility to specify the location of the data for
the send with sdispls and the location of where the data will be placed on the
receive with rdispls.

The block of data sent from task 7 is sendcounts[j] elements long, and is received by
task j and placed in recobuf at offset rdispls[i]. These blocks do not have to be the
same size.

The type signature associated with sendcount[j], sendtype at task i must be equal to
the type signature associated with recvcounts[i], recvtype at task j. This means the
amount of data sent must be equal to the amount of data received, pair wise
between every pair of tasks. Distinct type maps between sender and receiver are
allowed.

All arguments on all tasks are significant.

MPI_ALLTOALLV does not support MPI_IN_PLACE on either type of
communicator.

If comm is an inter-communicator, the outcome is as if each task in group A sends a
message to each task in group B, and vice versa. The jth send buffer of task i in
group A should be consistent with the ith receive buffer of task j in group B, and
vice versa.

70 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLTOALLV

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcounts
An integer array (of length groupsize) specifying the number of elements to
send to each task (IN)

sdispls
An integer array (of length groupsize). Entry j specifies the displacement
relative to sendbuf from which to take the outgoing data destined for task j.
(IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcounts
An integer array (of length groupsize) specifying the number of elements to be
received from each task (IN)

rdispls
An integer array (of length groupsize). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from task i. (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

Invalid counts
count < 0

Invalid datatypes

Type not committed

Invalid communicator

A send and receive have unequal message lengths
Invalid use of MPI_IN PLACE

MPI not initialized

MPI already finalized

Chapter 3. MPI subroutines and functions 71

MPI_ALLTOALLV

Related information
MPE_IALLTOALLV
MPI_ALLTOALL

72 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLTOALLW

MPI_ALLTOALLW, MPI_Alltoallw

Purpose

Sends a distinct message from each task to every task. Messages can have different
datatypes, sizes, and displacements.

C synopsis

#include <mpi.h>

int MPI_Al1toallw(void* sendbuf, int sendcounts[], int sdispls[],
MPI Datatype sendtypes[], void *recvbuf, int recvcounts[],
int rdispls[], MPI Datatype recvtypes[], MPI_Comm comm);

C++ synopsis

#incTude mpi.h

void MPI::Comm::Al1toallw(const void *sendbuf, const int sendcounts[],
const int sdispls[], const MPI::Datatype sendtypes[],
void *recvbuf, const int recvcounts[], const int rdispls[],
const MPI::Datatype recvtypes[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_ALLTOALLW(CHOICE SENDBUF(*), INTEGER SENDCOUNTS(*), INTEGER SDISPLS(*),
INTEGER SENDTYPES(*), CHOICE RECVBUF, INTEGER RECVCOUNTS(*),
INTEGER RDISPLS(*), INTEGER RECVTYPES(*), INTEGER COMM, INTEGER IERROR)

Description

This subroutine is an extension of MPI_ALLTOALLV. It allows separate
specification of count, displacement and datatype. In addition, to allow maximum
flexibility, the displacement of blocks within the send and receive buffers is
specified in bytes.

The jth block sent from task i is received by task j and is placed in the ith block of
recvbuf. These blocks need not all have the same size.

The type signature associated with sendcounts[j], sendtypes[j] at task i must be equal
to the type signature associated with recvcounts[il, recvtypes|i] at task j. This means
the amount of data sent must be equal to the amount of data received, pair wise
between every pair of tasks. Distinct type maps between sender and receiver are
allowed.

All arguments on all tasks are significant.

MPI_ALLTOALLW does not support MPI_IN_PLACE on either type of
communicator.

If comm is an inter-communicator, the outcome is as if each task in group A sends a
message to each task in group B, and vice versa. The jth send buffer of task i in
group A should be consistent with the ith receive buffer of task j in group B, and
vice versa.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Chapter 3. MPI subroutines and functions 73

MPI_ALLTOALLW

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcounts
An integer array (of length groupsize) specifying the number of elements to
send to each task (IN)

sdispls
An integer array (of length groupsize). Entry j specifies the displacement in
bytes (relative to sendbuf) from which to take the outgoing data destined for
task j. (IN)

sendtypes
The array of datatypes (of length groupsize). Entry j specifies the type of data to
send to task j. (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcounts
An integer array (of length groupsize) specifying the number of elements to be
received from each task (IN)

rdispls
An integer array (of length groupsize). Entry i specifies the displacement in
bytes (relative to recvbuf) at which to place the incoming data from task 7. (IN)

recvtypes
The array of datatypes (of length groupsize). Entry i specifies the type of data
received from task i. (handle) (IN)

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

In the bindings for this subroutine, the send displacement and receive
displacements are arrays of integers. This may limit the usability of this subroutine
in certain 64-bit applications. It is likely that the MPI Forum will define a
replacement for MPI_ALLTOALLW and deprecate this binding. The replacement
subroutine will use arrays of address_size integers. The MPI_ALLTOALLW
subroutine with the present binding will remain available.

Errors

Fatal errors:

Invalid counts
count < 0

Invalid datatypes

Type not committed

Invalid communicator

A send and receive have unequal message lengths

Invalid use of MPI_IN_PLACE

74 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ALLTOALLW

MPI not initialized
MPI already finalized

Related information
MPI_ALLTOALLV

Chapter 3. MPI subroutines and functions 75

MPI_ATTR_DELETE

MPI_ATTR_DELETE, MPI_Attr_delete

Purpose

Removes an attribute value from a communicator.

C synopsis

#include <mpi.h>
int MPI_Attr_delete(MPI_Comm comm,int keyval);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ATTR DELETE(INTEGER COMM,INTEGER KEYVAL,INTEGER IERROR)

Description

This subroutine deletes an attribute from cache by key and invokes the attribute
delete function delete_fn specified when the keyval is created.

Parameters

comm
The communicator that the attribute is attached (handle) (IN)

keyval
The key value of the deleted attribute (integer) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_DELETE_ATTR supersedes MPI_ATTR_DELETE.

MPI_ATTR_DELETE does not inter-operate with MPI_ COMM_DELETE_ATTR. The
FORTRAN bindings for MPI-1 caching functions presume that an attribute is an
INTEGER. The MPI-2 caching bindings use INTEGER
(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit
addresses and 32-bit INTEGERS, the two formats would be incompatible.

Errors
A delete_fn did not return MPI_SUCCESS

Invalid communicator

Invalid keyval
keyval is undefined

Invalid keyval
keyval is predefined

MPI not initialized
MPI already finalized

Related information
MPI_KEYVAL_CREATE

76 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ATTR_GET

MPI_ATTR_GET, MPI_Attr_get

Purpose

Retrieves an attribute value from a communicator.

C synopsis

#include <mpi.h>
int MPI_Attr_get(MPI_Comm comm,int keyval,void *attribute val,
int *flag);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ATTR GET(INTEGER COMM,INTEGER KEYVAL,INTEGER ATTRIBUTE VAL,
LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine retrieves an attribute value by key. If there is no key with value
keywval, the call is erroneous. However, the call is valid if there is a key value keyval,
but no attribute is attached on comm for that key. In this case, the call returns flag =
false.

Parameters

comm
The communicator to which attribute is attached (handle) (IN)

keyval
The key value (integer) (IN)

attribute_val
The attribute value unless flag = false (OUT)

flag
Set to true if an attribute value was extracted and false if no attribute is
associated with the key. (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_GET_ATTR supersedes MPI_ATTR_GET.

MPI_ATTR_GET does not inter-operate with MPI_COMM_GET_ATTR. The
FORTRAN bindings for MPI-1 caching functions presume that an attribute is an
INTEGER. The MPI-2 caching bindings use INTEGER
(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit
addresses and 32-bit INTEGERS, the two formats would be incompatible.

The implementation of MPI_ATTR_GET and MPI_ATTR_PUT involves saving a
single word of information in the communicator. The languages C and FORTRAN
have different approaches to using this capability:

In C:
As the programmer, you normally define a struct that holds arbitrary attribute
information. Before calling MPI_ATTR_PUT, you allocate some storage for the
attribute structure and then call MPI_ATTR_PUT to record the address of this

Chapter 3. MPI subroutines and functions 77

MPI_ATTR_GET

78

Errors

structure. You must make sure that the structure remains intact as long as it
may be useful. As the programmer, you will also declare a variable of type
“pointer to attribute structure” and pass the address of this variable when
calling MPI_ATTR_GET. Both MPI_ATTR_PUT and MPI_ATTR_GET take a
void* parameter, but this does not imply that the same parameter is passed to
either one.

In FORTRAN:

MPI_ATTR_PUT records an INTEGER*4 and MPI_ATTR_GET returns the
INTEGER*4. As the programmer, you can choose to encode all attribute
information in this integer or maintain some kind of database in which the
integer can index. Either of these approaches will port to other MPI
implementations.

XL FORTRAN has an additional feature that will allow some of the same
functions a C programmer would use. This is the POINTER type, which is
described in the IBM XL FORTRAN Compiler for AIX Language Reference. Use of
this feature will impact the program’s portability.

Invalid communicator

Invalid keyval

keyval is undefined.

MPI not initialized
MPI already finalized

Related information

MPI_ATTR_PUT

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ATTR_PUT

MPI_ATTR_PUT, MPI_Attr_put

Purpose

Stores an attribute value in a communicator.

C synopsis

#include <mpi.h>
int MPI_Attr_put(MPI_Comm comm,int keyval,void* attribute val);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ATTR_PUT(INTEGER COMM,INTEGER KEYVAL,INTEGER ATTRIBUTE VAL,
INTEGER IERROR)

Description

This subroutine stores the attribute value for retrieval by MPI_ATTR_GET. Any
previous value is deleted with the attribute delete_fn being called and the new
value is stored. If there is no key with value keywval, the call is erroneous.

Parameters

comm
The communicator to which attribute will be attached (handle) (IN)

keyval
The key value as returned by MPI_KEYVAL_CREATE (integer) (IN)

attribute_val
The attribute value (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_SET_ATTR supersedes MPI_ATTR_PUT.

MPI_ATTR_PUT does not inter-operate with MPI_COMM_SET_ATTR. The
FORTRAN bindings for MPI-1 caching functions presume that an attribute is an
INTEGER. The MPI-2 caching bindings use INTEGER
(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit
addresses and 32-bit INTEGERS, the two formats would be incompatible.

The implementation of MPI_ATTR_PUT and MPI_ATTR_GET involves saving a
single word of information in the communicator. The languages C and FORTRAN
have different approaches to using this capability:

In C:
As the programmer, you normally define a struct that holds arbitrary attribute
information. Before calling MPI_ATTR_PUT, you allocate some storage for the
attribute structure and then call MPI_ATTR_PUT to record the address of this
structure. You must make sure that the structure remains intact as long as it
may be useful. As the programmer, you will also declare a variable of type
“pointer to attribute structure” and pass the address of this variable when

Chapter 3. MPI subroutines and functions 79

MPI_ATTR_PUT

calling MPI_ATTR_GET. Both MPI_ATTR_PUT and MPI_ATTR_GET take a
void* parameter, but this does not imply that the same parameter is passed to
either one.

In FORTRAN:
MPI_ATTR_PUT records an INTEGER*4 and MPI_ATTR_GET returns the
INTEGER*4. As the programmer, you can choose to encode all attribute
information in this integer or maintain some kind of database in which the
integer can index. Either of these approaches will port to other MPI
implementations.

XL FORTRAN has an additional feature that will allow some of the same
functions a C programmer would use. This is the POINTER type, which is
described in the IBM XL FORTRAN Compiler for AIX Language Reference. Use of
this feature will impact the program’s portability.

Errors
A delete_fn did not return MPI_SUCCESS

Invalid communicator

Invalid keyval
keyval is undefined.

Predefined keyval
You cannot modify predefined attributes.

MPI not initialized
MPI already finalized

Related information
MPI_COMM_COPY_ATTR_FUNCTION
MPI_COMM_CREATE_KEYVAL
MPI_COMM_DELETE_ATTR
MPI_ COMM_DELETE_ATTR_FUNCTION
MPI_ COMM_GET_ATTR

80 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_BARRIER

MPI_BARRIER,

MPI_Barrier

Purpose

Blocks each task until all tasks have called it.

C synopsis

#include <mpi.h>
int MPI _Barrier(MPI_Comm comm);

C++ synopsis

#incTude mpi.h
void MPI::Comm::Barrier() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_BARRIER(INTEGER COMM,INTEGER IERROR)

Description

This subroutine blocks until all tasks have called it. Tasks cannot exit the operation
until all group members have entered.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Parameters

Notes

Errors

comm
A communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

comm can be an inter-communicator or an intra-communicator. If comm is an
inter-communicator, the barrier is performed across all tasks in the
inter-communicator. In this case, all tasks in the local group of the
inter-communicator can exit the barrier when all of the tasks in the remote group
have entered the barrier.

In the 64-bit library, this function uses a shared memory optimization among the
tasks on a node. This optimization is discussed in the chapter Using shared memory
of IBM Parallel Environment for AIX: MPI Programming Guide, and is enabled by
default. This optimization is not available to 32-bit programs.

Fatal errors:

Invalid communicator
MPI not initialized
MPI already finalized

Chapter 3. MPI subroutines and functions ~ 81

MPI_BARRIER

Related information
MPE_IBARRIER

82 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_BCAST

MPI_BCAST, MPI_Bcast

Purpose

Broadcasts a message from root to all tasks in comm.

C synopsis

#include <mpi.h>
int MPI Bcast(void* buffer, int count, MPI Datatype datatype,
int root, MPI_Comm comm) ;

C++ synopsis

#include mpi.h
void MPI::Comm::Bcast(void* buffer, int count, const MPI::Datatype& datatype,
int root) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_BCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER DATATYPE,INTEGER ROOT,
INTEGER COMM,INTEGER IERROR)

Description

This subroutine broadcasts a message from root to all tasks in comm. The contents
of root’s communication buffer are copied to all tasks on return.

The type signature of count, datatype on any task must be equal to the type
signature of count, datatype at the root. This means the amount of data sent must be
equal to the amount of data received, pair wise between each task and the root.
Distinct type maps between sender and receiver are allowed.

If comm is an inter-communicator, the call involves all tasks in the
inter-communicator, but with one group (group A) defining the root task. All tasks
in the other group (group B) pass the same value in root, which is the rank of the
root in group A. The root passes the value MPI_ROOT in root. All other tasks in
group A pass the value MPI_PROC_NULL in root. Data is broadcast from the root
to all tasks in group B. The receive buffer arguments of the tasks in group B must
be consistent with the send buffer argument of the root.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Parameters

buffer
The starting address of the buffer (choice) (INOUT)

count
The number of elements in the buffer (integer) (IN)

datatype
The datatype of the buffer elements (handle) (IN)

root
The rank of the root task (integer) (IN)

Chapter 3. MPI subroutines and functions 83

MPI_BCAST

84

Notes

Errors

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

In the 64-bit library, this function uses a shared memory optimization among the
tasks on a node. This optimization is discussed in the chapter Using shared memory
of IBM Parallel Environment for AIX: MPI Programming Guide, and is enabled by
default. This optimization is not available to 32-bit programs.

Fatal errors:
Invalid communicator

Invalid count
count < 0

Invalid datatype
Type not committed
Invalid root
For an intra-communicator: root < 0 or root >= groupsize

For an inter-communicator: root < 0 and is neither MPI_ROQOT nor
MPI_PROC_NULL, or root >= groupsize of the remote group

Unequal message lengths
Invalid use of MPI_IN_PLACE
MPI not initialized

MPI already finalized

Develop mode error if:
Inconsistent root

Inconsistent message length

Related information

MPE_IBCAST

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_BSEND

MPI_BSEND, MPI_Bsend

Purpose

Performs a blocking buffered mode send operation.

C synopsis

#include <mpi.h>
int MPI Bsend(void* buf,int count,MPI Datatype datatype,
int dest,int tag,MPI_Comm comm)

C++ synopsis

#include mpi.h
void MPI::Comm::Bsend(const void* buf, int count, const MPI::Datatype& datatype,
int dest, int tag) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_BSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,
INTEGER TAG,INTEGER COMM, INTEGER IERROR)

Description

This subroutine is a blocking buffered mode send operation. It is a local operation.
It does not depend on the occurrence of a matching receive in order to complete. If
a send operation is started and no matching receive is posted, the outgoing
message is buffered to allow the send call to complete.

Return from an MPI_BSEND does not guarantee the message was sent. It may
remain in the buffer until a matching receive is posted. MPI_BUFFER_DETACH
will block until all messages are received.

Parameters

buf
The initial address of the send buffer (choice) (IN)

count
The number of elements in the send buffer (integer) (IN)

datatype
The datatype of each send buffer element (handle) (IN)

dest
The rank of destination (integer) (IN)

tag
The message tag (positive integer) (IN)

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Make sure you have enough buffer space available. An error occurs if the message
must be buffered and there is there is not enough buffer space. The amount of

Chapter 3. MPI subroutines and functions 85

MPI_BSEND

buffer space needed to be safe depends on the expected peak of pending messages.
The sum of the sizes of all of the pending messages at that point plus
(MPI_BSEND_OVERHEAD*number_of_messages) should be sufficient.

Avoid using MPI_BSEND if possible. It adds overhead because it requires an extra
memory-to-memory copy of the outgoing data. If MPI_BSEND is used, the
associated receive operations may perform better with MPI_CSS_INTERRUPT
enabled.

Errors

Invalid count
count < 0

Invalid datatype
Type not committed

Invalid destination
dest < 0 or dest > = groupsize

Invalid tag
tag <0

Invalid comm
Insufficient buffer space
MPI not initialized

MPI already finalized

Related information
MPI_BUFFER_ATTACH
MPI_BUFFER_DETACH
MPI_IBSEND
MPI_SEND

86 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_BSEND_INIT

MPI_BSEND_INIT, MPI_Bsend_init

Purpose

Creates a persistent buffered mode send request.

C synopsis

#include <mpi.h>
int MPI Bsend_init(void* buf,int count,MPI Datatype datatype,
int dest,int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Prequest MPI::Comm::Bsend init(const void* buf, int count,
const MPI::Datatype& datatype,
int dest, int tag) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_BSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER REQUEST,
INTEGER IERROR)

Description

This subroutine creates a persistent communication request for a buffered mode
send operation. MPI_START or MPI_STARTALL must be called to activate the
send.

Because it is the MPI_START that initiates communication, any error related to
insufficient buffer space occurs at the MPI_START.

Parameters

buf
The initial address of the send buffer (choice) (IN)

count
The number of elements to be sent (integer) (IN)

datatype
The type of each element (handle) (IN)

dest
The rank of the destination task (integer) (IN)

tag
The message tag (positive integer) (IN)

comm
The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions 87

MPI_BSEND_INIT

Notes

Make sure you have enough buffer space available. An error occurs if the message
must be buffered and there is there is not enough buffer space. The amount of
buffer space needed to be safe depends on the expected peak of pending messages.
The sum of the sizes of all of the pending messages at that point plus
(MPI_BSEND_INIT_OVERHEAD*number_of_messages) should be sufficient.

Avoid using MPI_BSEND_INIT if possible. It adds overhead because it requires
an extra memory-to-memory copy of the outgoing data. If MPI_BSEND_INIT is
used, the associated receive operations may perform better with
MPI_CSS_INTERRUPT enabled.

Errors

Invalid count
count < 0

Invalid datatype
Type not committed

Invalid destination
dest < 0 or dest > = groupsize

Invalid tag
tag <0

Invalid comm
MPI not initialized
MPI already finalized

Related information

MPI_IBSEND
MPI_START

88 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_BUFFER_ATTACH

MPI_BUFFER_ATTACH, MPI_Buffer_attach

Purpose

Provides MPI with a buffer to use for buffering messages sent with MPI_BSEND
and MPI_IBSEND.

C synopsis

#include <mpi.h>

int MPI Buffer_attach(void* buffer,int size);
C++ synopsis

#incTude mpi.h
void MPI::Attach_buffer(void* buffer, int size);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_BUFFER_ATTACH(CHOICE BUFFER,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine provides MPI a buffer in the user’s memory which is used for
buffering outgoing messages. This buffer is used only by messages sent in buffered
mode, and only one buffer is attached to a task at any time.

Parameters

buffer
The initial buffer address (choice) (IN)

size
The buffer size in bytes (integer) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

MPT uses part of the buffer space to store information about the buffered messages.
The number of bytes required by MPI for each buffered message is given by
MPI_BSEND_OVERHEAD.

If a buffer is already attached, it must be detached by MPI_BUFFER_DETACH
before a new buffer can be attached.

Errors

Invalid size
size < 0

Buffer is already attached
MPI not initialized
MPI already finalized

Chapter 3. MPI subroutines and functions 89

MPI_BUFFER_ATTACH

Related information
MPI_BSEND
MPI_BUFFER_DETACH
MPI_IBSEND

90 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_BUFFER_DETACH

MPI_BUFFER_DETACH, MPI_Buffer_detach

Purpose

Detaches the current buffer.

C synopsis

#include <mpi.h>
int MPI Buffer_detach(void* buffer,int xsize);

C++ synopsis

#incTude mpi.h
int MPI::Detach_buffer(void+& buffer);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_BUFFER _DETACH(CHOICE BUFFER,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine detaches the current buffer. Blocking occurs until all messages in
the active buffer are transmitted. Once this function returns, you can reuse or
deallocate the space taken by the buffer. There is an implicit
MPI_BUFFER_DETACH inside MPI_FINALIZE. Because a buffer detach can block,
the implicit detach creates some risk that an incorrect program will hang in
MPI_FINALIZE.

If there is no active buffer, MPI acts as if a buffer of size 0 is associated with the
task.

Parameters

Notes

buffer

The initial buffer address (choice) (OUT)
size

The buffer size in bytes (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

It is important to detach an attached buffer before it is deallocated. If this is not
done, any buffered message may be lost.

In FORTRAN 77, the buffer argument for MPI_BUFFER_DETACH cannot return a
useful value because FORTRAN 77 does not support pointers. If a fully portable
MPI program written in FORTRAN calls MPI_BUFFER_DETACH, it either passes
the name of the original buffer or a throwaway temporary buffer as the buffer
argument.

If a buffer was attached, PE MPI returns the address of the freed buffer in the first
word of the buffer argument. If the size being returned is 0 to 4 bytes,
MPI_BUFFER_DETACH will not modify the buffer argument. This implementation
is harmless for a program that uses either the original buffer or a throwaway

Chapter 3. MPI subroutines and functions 91

MPI_BUFFER_DETACH

temporary buffer of at least word size as buffer. It also allows the programmer who
wants to use an XL FORTRAN POINTER as the buffer argument to do so. Using
the POINTER type will affect portability.

Errors

MPI not initialized
MPI already finalized

Related information

MPI_BSEND
MPI_BUFFER_ATTACH
MPI_IBSEND

92 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CANCEL

MPI_CANCEL, MPI_Cancel

Purpose

Marks a nonblocking request for cancellation.

C synopsis

#include <mpi.h>
int MPI_Cancel (MPI_Request *request);

C++ synopsis

#incTude mpi.h
void MPI::Request::Cancel(void) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CANCEL (INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine marks a nonblocking request for cancellation. The cancel call is
local. It returns immediately; it can return even before the communication is
actually cancelled. It is necessary to complete an operation marked for cancellation
by using a call to MPI_WAIT or MPI_TEST (or any other wait or test call).

You can use MPI_CANCEL to cancel a persistent request in the same way it is
used for nonpersistent requests. A successful cancellation cancels the active
communication, but not the request itself. After the call to MPI_ CANCEL and the
subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can
be activated for a new communication. It is erroneous to cancel an inactive
persistent request.

The successful cancellation of a buffered send frees the buffer space occupied by
the pending message.

Either the cancellation succeeds or the operation succeeds, but not both. If a send
is marked for cancellation, either the send completes normally, in which case the
message sent was received at the destination task, or the send is successfully
cancelled, in which case no part of the message was received at the destination.
Then, any matching receive has to be satisfied by another send. If a receive is
marked for cancellation, then the receive completes normally or the receive is
successfully cancelled, in which case no part of the receive buffer is altered. Then,
any matching send has to be satisfied by another receive.

If the operation has been cancelled successfully, information to that effect is
returned in the status argument of the operation that completes the
communication, and may be retrieved by a call to MPI_TEST_CANCELLED.

Parameters

request
A communication request (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions 93

MPI_CANCEL

Notes

Nonblocking collective communication requests cannot be cancelled.
MPI_CANCEL may be called on non-blocking file operation requests. The eventual
call to MPI_TEST_CANCELLED will show that the cancellation did not succeed.

Errors
Invalid request
CCL request
Cancel inactive persistent request
MPI Grequest cancel function returned an error
MPI not initialized
MPI already finalized

Related information

MPI_TEST_CANCELLED
MPI_WAIT

94 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CART_COORDS

MPI_CART_COORDS, MPI_Cart_coords

Purpose

Translates task rank in a communicator into Cartesian task coordinates.

C synopsis

#include <mpi.h>
MPI_Cart_coords(MPI_Comm comm,int rank,int maxdims,int *coords);

C++ synopsis

#incTude mpi.h
void MPI::Cartcomm::Get_coords(int rank, int maxdims,
int coords[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CART_COORDS (INTEGER COMM,INTEGER RANK,INTEGER MAXDIMS,
INTEGER COORDS(*),INTEGER IERROR)

Description

This subroutine translates task rank in a communicator into task coordinates.

Parameters

comm
A communicator with Cartesian topology (handle) (IN)

rank
The rank of a task within group comm (integer) (IN)

maxdims
The length of array coords in the calling program (integer) (IN)

coords

An integer array specifying the Cartesian coordinates of a task. (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Task coordinates in a Cartesian structure begin their numbering at 0. Row-major

numbering is always used for the tasks in a Cartesian structure.

Errors
MPI not initialized
MPI already finalized
Invalid communicator
No topology

Invalid topology
Type must be Cartesian.

Invalid rank
rank < 0 or rank > = groupsize

Chapter 3. MPI subroutines and functions

95

MPI_CART_COORDS

Invalid array size
maxdims < 0

Related information

MPI_CART_CREATE
MPI_CART_RANK

96 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CART_CREATE

MPI_CART_CREATE, MPI_Cart_create

Purpose

Creates a communicator containing topology information.

C synopsis

#include <mpi.h>
int MPI_Cart_create(MPI_Comm comm_old,int ndims,int xdims,
int *periods,int reorder,MPI_Comm *comm_cart);

C++ synopsis

#include mpi.h
MPI::Cartcomm MPI::Intracomm::Create_cart(int ndims, const int dims[],
const bool periods[], bool reorder) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CART_CREATE(INTEGER COMM_OLD,INTEGER NDIMS,INTEGER DIMS(%*),
INTEGER PERIODS (*),INTEGER REORDER,INTEGER COMM_CART, INTEGER IERROR)

Description

This subroutine creates a new communicator that contains Cartesian topology
information defined by ndims, dims, periods, and reorder. MPI_CART_CREATE
returns a handle for this new communicator in comm_cart. If there are more tasks
in comm than are required by the grid, some tasks are returned and comm_cart =
MPI_COMM_NULL. comm_old must be an intra-communicator.

Parameters

comm_old
The input communicator (handle) (IN)

ndims
The number of Cartesian dimensions in the grid (integer) (IN)

dims
An integer array of size ndims specifying the number of tasks in each
dimension (IN)

periods
A logical array of size ndims specifying if the grid is periodic or not in each
dimension (IN)

reorder
Set to true, ranking may be reordered. Set to false, rank in comm_cart must be
the same as in comm_old. (logical) (IN)

comm_ cart
A communicator with new Cartesian topology (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions 97

MPI_CART_CREATE

Notes

Most or perhaps all MPI implementations before PE MPI 3.1 have ignored reorder.
If you have a program that works with reorder = false and fails with reorder = true,
examine your code for communication on comm_cart using ranks from comm_old.

Errors
MPI not initialized
Conflicting collective operations on communicator
MPI already finalized
Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid ndims
ndims < 0 or ndims > groupsize

Invalid dimension
Related information

MPI_CART_SUB
MPI_GRAPH_CREATE

98 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CART_GET

MPI_CART_GET, MPI_Cart_get

Purpose

Retrieves Cartesian topology information from a communicator.

C synopsis

#include <mpi.h>
MPI_Cart_get(MPI_Comm comm,int maxdims,int *dims,int *periods,int *coords);

C++ synopsis

#incTude mpi.h
void MPI::Cartcomm::Get_topo(int maxdims, int dims[],
bool periods[], int coords[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CART GET(INTEGER COMM,INTEGER MAXDIMS,INTEGER DIMS(*),
INTEGER PERIODS(*),INTEGER COORDS(*),INTEGER IERROR)

Description

This subroutine retrieves the Cartesian topology information associated with a

communicator in dims, periods and coords.

Parameters

comm
A communicator with Cartesian topology (handle) (IN)

maxdims

The length of dims, periods, and coords in the calling program (integer) (IN)

dims

The number of tasks for each Cartesian dimension (array of integer) (OUT)

periods

A logical array specifying if each Cartesian dimension is periodic or not. (OUT)

coords

The coordinates of the calling task in the Cartesian structure (array of integer)

(OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
MPI not initialized
MPI already finalized
Invalid communicator
No topology

Invalid topology type
Type must be Cartesian.

Invalid array size
maxdims < 0

Chapter 3. MPI subroutines and functions

99

MPI_CART_GET

Related information
MPI_CART_CREATE
MPI_CARTDIM_GET

100 1IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CART_MAP

MPI_CART_MAP, MPI_Cart_map

Purpose

Computes placement of tasks on the physical processor.

C synopsis

#include <mpi.h>
MPI_Cart_map(MPI_Comm comm,int ndims,int *dims,int *periods,
int *newrank);

C++ synopsis

#include mpi.h
int MPI::Cartcomm::Map(int ndims, const int dims[],
const bool periods[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CART_MAP(INTEGER COMM,INTEGER NDIMS,INTEGER DIMS(*),
INTEGER PERIODS (*),INTEGER NEWRANK,INTEGER IERROR)

Description

MPI_CART_MAP allows MPI to compute an optimal placement for the calling task
on the physical processor layout by reordering the tasks in comm.

Parameters

Notes

Errors

comm
The input communicator (handle) (IN)

ndims
The number of dimensions of the Cartesian structure (integer) (IN)
dims
An integer array of size ndims specifying the number of tasks in each
coordinate direction (IN)

periods
A logical array of size ndims specifying the periodicity in each coordinate
direction (IN)

newrank
The reordered rank or MPI_UNDEFINED if the calling task does not belong to
the grid (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The rank determined by MPI_CART_MAP depends on the distribution of task per
node. The value may or may not match rank in MPI._ COMM_WORLD.

MPI not initialized
MPI already finalized

Chapter 3. MPI subroutines and functions 101

MPI_CART_MAP

Invalid communicator

Invalid communicator type
Communication type must be intra-communicator.

Invalid ndims
ndims < 1 or ndims > groupsize

Invalid dimension
ndims[i] <=0

Invalid grid size
n< 0 or n > groupsize, where n is the product of dims[i]

102 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CART_RANK

MPI_CART_RANK, MPI_Cart_rank

Purpose

Translates task coordinates into a task rank.

C synopsis

#include <mpi.h>
MPI_Cart_rank (MPI_Comm comm,int *coords,int *rank);

C++ synopsis

#incTude mpi.h
int MPI::Cartcomm::Get cart_rank(const int coords[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CART_RANK(INTEGER COMM,INTEGER COORDS(*),INTEGER RANK,
INTEGER IERROR)

Description

This subroutine translates Cartesian task coordinates into a task rank.

For dimension i with periods(i) = true, if the coordinate coords(i) is out of range, that
is, coords(i) < 0 or coords(i) >= dims(i), it is automatically shifted back to the interval
0 <= coords(i) < dims(i). Out-of-range coordinates are erroneous for non-periodic
dimensions.

Parameters

Notes

Errors

comm
A communicator with Cartesian topology (handle) (IN)

coords
An integer array of size ndims specifying the Cartesian coordinates of a task
(IN)

rank
An integer specifying the rank of specified task (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Task coordinates in a Cartesian structure begin their numbering at 0. Row-major
numbering is always used for the tasks in a Cartesian structure.

MPI not initialized
MPI already finalized
Invalid communicator
No topology

Invalid topology type
Type must be Cartesian.

Chapter 3. MPI subroutines and functions 103

MPI_CART_RANK

Invalid coordinates
Refer to Description above.

Related information

MPI_CART_COORDS
MPI_CART_CREATE

104 1BM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CART_SHIFT

MPI_CART_SHIFT, MPI_Cart_shift

Purpose

Returns shifted source and destination ranks for a task.

C synopsis

#include <mpi.h>
MPI_Cart_shift(MPI_Comm comm,int direction,int disp,
int *rank_source,int *rank_dest);

C++ synopsis

#include mpi.h
void MPI::Cartcomm::Shift(int direction, int disp, int &rank source,
int &rank_dest) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CART_SHIFT(INTEGER COMM,INTEGER DIRECTION,INTEGER DISP,
INTEGER RANK_SOURCE, INTEGER RANK DEST,INTEGER IERROR)

Description

This subroutine shifts the local rank along a specified coordinate dimension to
generate source and destination ranks.

rank_source is obtained by subtracting disp from the nth coordinate of the local task,
where 1 is equal to direction. Similarly, rank_dest is obtained by adding disp to the
nth coordinate. Coordinate dimensions (direction) are numbered starting with 0.

If the dimension specified by direction is non-periodic, off-end shifts result in the
value MPI_PROC_NULL being returned for rank_source or rank_dest or both.

Parameters

Notes

comm
A communicator with Cartesian topology (handle) (IN)

direction
The coordinate dimension of shift (integer) (IN)

disp
The displacement (> 0 = upward shift, < 0 = downward shift) (integer) (IN)

rank_source
The rank of the source task (integer) (OUT)

rank_dest
The rank of the destination task (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

In C and FORTRAN, the coordinate is identified by counting from 0. For example,
FORTRAN A(X,Y) or C A[x] [y] both have x as direction 0.

Chapter 3. MPI subroutines and functions 105

MPI_CART_SHIFT

Errors
MPI not initialized
MPI already finalized
Invalid communicator

Invalid topology type
Type must be Cartesian.

No topology

Related information

MPI_CART_COORDS
MPI_CART_CREATE
MPI_CART_RANK

106 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CART_SUB

MPI_CART_SUB, MPI_Cart_sub

Purpose

Partitions a Cartesian communicator into lower-dimensional subgroups.

C synopsis

#include <mpi.h>
MPI_Cart_sub(MPI_Comm comm,int *remain_dims,MPI_Comm *newcomm);

C++ synopsis

#incTude mpi.h
MPI::Cartcomm MPI::Cartcomm::Sub(const bool remain_dims[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CART_SUB(INTEGER COMM,LOGICAL REMAIN_DIMS(*),INTEGER NEWCOMM,
INTEGER IERROR)

Description

If a Cartesian topology was created with MPI_CART_CREATE, you can use the
function MPI_CART_SUB:

* to partition the communicator group into subgroups forming lower-dimensional
Cartesian subgrids

* to build a communicator with the associated subgrid Cartesian topology for each
of those subgroups.

This function is closely related to MPI_COMM_SPLIT.

For example, suppose MPI_CART_CREATE (..., comm) defined a 2 x 3 x 4 grid and
remain_dims = (true, false, true). A call to:

MPI_CART_SUB(comm, remain_dims,comm_new),

creates three communicators. Each has eight tasks in a 2 x 4 Cartesian topology. If
remain_dims = (false, false, true), the call to:

MPI_CART_SUB(comm, remain_dims,comm_new),

creates six non-overlapping communicators, each with four tasks in a
one-dimensional Cartesian topology.

Parameters

comm
A communicator with Cartesian topology (handle) (IN)

remain_dims
The ith entry of remain_dims specifies whether the ith dimension is kept in the
subgrid or is dropped. (logical vector) (IN)

newcomm

The communicator containing the subgrid that includes the calling task
(handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions 107

MPI_CART_SUB

Errors
MPI not initialized
MPI already finalized
Invalid communicator

Invalid topology
Type must be Cartesian.

No topology
Related information

MPI_CART_CREATE
MPI_COMM_SPLIT

108 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_CARTDIM_GET

MPI_CARTDIM_GET, MPI_Cartdim_get

Purpose

Retrieves the number of Cartesian dimensions from a communicator.

C synopsis

#include <mpi.h>

MPI_Cartdim get(MPI_Comm comm,int *ndims);
C++ synopsis

#incTude mpi.h
int MPI::Cartcomm::Get_dim() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_CARTDIM_GET(INTEGER COMM,INTEGER NDIMS,INTEGER IERROR)

Description

This subroutine retrieves the number of dimensions in a Cartesian topology.

Parameters

comm
A communicator with Cartesian topology (handle) (IN)

ndims

An integer specifying the number of dimensions of the Cartesian topology

(OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Invalid communicator
No topology

Invalid topology type
Type must be Cartesian.

MPI not initialized
MPI already finalized

Related information

MPI_CART_CREATE
MPI_CART_GET

Chapter 3. MPI subroutines and functions

109

MPI_Comm_c2f

MPI_Comm_c2f

Purpose

Translates a C communicator handle into a FORTRAN handle to the same
communicator.

C synopsis

#include <mpi.h>
MPI_Fint MPI_Comm_c2f(MPI_Comm comm);

Description

This function does not have C++ or FORTRAN bindings. MPI_Comm_c2f
translates a C communicator handle into a FORTRAN handle to the same
communicator. This function maps a null handle into a null handle and a handle
that is not valid into a handle that is not valid. The converted handle is returned
as the function’s value. There is no error detection or return code.

Parameters

comm
A communicator (handle) (IN)

Errors

None.

Related information
MPI_Comm_f2c

110 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_CALL_ERRHANDLER

MPI_COMM_CALL_ERRHANDLER, MPI_Comm_call_errhandler

Purpose

Calls the error handler assigned to the communicator with the error code supplied.

C synopsis

#include <mpi.h>
int MPI_Comm_call_errhandler (MPI_Comm comm, int errorcode);

C++ synopsis

#incTude mpi.h
void MPI::Comm::Call_errhandler(int errorcode) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_CALL_ERRHANDLER(INTEGER COMM, INTEGER ERRORCODE, INTEGER IERROR)

Description

This subroutine calls the error handler assigned to the communicator with the
error code supplied.

Parameters

comm
The communicator with the error handler (handle) (IN)

errorcode
The error code (integer) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

MPI_ COMM_CALL_ERRHANDLER returns MPI_SUCCESS in C and C++ and the
same value in IERROR if the error handler was successfully called (assuming the
error handler itself is not fatal).

The default error handler for communicators is MPI_ ERRORS_ARE_FATAL. Thus,
calling MPI_COMM_CALL_ERRHANDLER will terminate the job if the default
error handler has not been changed for this communicator or on the parent before
the communicator was created. When a predefined error handler is used on comm,
the error message printed by PE MPI will indicate the error code that is passed in.
You cannot force PE MPI to issue a specific predefined error by passing its error
code to this subroutine.

Error handlers should not be called recursively with
MPI_COMM_CALL_ERRHANDLER. Doing this can create a situation where an
infinite recursion is created. This can occur if MPI_ COMM_CALL_ERRHANDLER
is called inside an error handler.

Error codes and classes are associated with a task, so they can be used in any error
handler. An error handler should be prepared to deal with any error code it is

Chapter 3. MPI subroutines and functions 111

MPI_COMM_CALL_ERRHANDLER

given. Furthermore, it is good practice to call an error handler only with the
appropriate error codes. For example, communicator errors would normally be
sent to the communicator error handler.

Errors
Invalid communicator
Invalid error code
MPI not initialized
MPI already finalized

Related information
MPI_COMM_CREATE_ERRHANDLER
MPI_ COMM_GET_ERRHANDLER
MPI_COMM_SET _ERRHANDLER
MPI_ERRHANDLER_FREE

112 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI::Comm::Clone

MPI::Comm::Clone

Purpose

Creates a new communicator that is a duplicate of an existing communicator.

C++ synopsis

#include mpi.h
MPI::Cartcomm& MPI::Cartcomm::Clone() const;

#include mpi.h
MPI::Graphcomm& MPI::Graphcomm::Clone() const;

#include mpi.h
MPI::Intercomm& MPI::Intercomm::Clone() const;

#include mpi.h
MPI::Intracomm& MPI::Intracomm::Clone() const;

Description

This subroutine is a pure virtual function. For the derived communicator classes,
MPI::Comm::Clone() behaves like Dup(), except that it returns a new object by
reference.

Parameters

comm
The communicator (handle) (IN)

newcomm
The copy of comm (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Conflicting collective operations on communicator
A copy_fn did not return MPI_SUCCESS
A delete_fn did not return MPI_SUCCESS
Invalid communicator
MPI not initialized
MPI already finalized

Related information
MPI_COMM_DUP

Chapter 3. MPI subroutines and functions 113

MPI_COMM_COMPARE

MPI_COMM_COMPARE, MPI_Comm_compare

Purpose

Compares the groups and context of two communicators.

C synopsis

#include <mpi.h>
int MPI_Comm_compare(MPI_Comm comml,MPI_Comm comm2,int xresult);

C++ synopsis

#incTude mpi.h
int MPI::Comm::Compare(const MPI::Comm& comml, const MPI::Comm& comm?);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_COMPARE(INTEGER COMMI1,INTEGER COMM2,INTEGER RESULT,INTEGER IERROR)

Description

This subroutine compares the groups and contexts of two communicators. This is
an explanation of each MPI_COMM_COMPARE defined value:

MPI_IDENT
comm1 and comm?2 are handles for the identical object.

MPI_CONGRUENT
The underlying groups are identical in constituents and rank order (both
local and remote groups for intercommunications), but are different in
context.

MPI_SIMILAR
The group members of both communicators are the same, but are different
in rank order (both local and remote groups for intercommunication).

MPI_UNEQUAL
None of the above.

Parameters

comm1
The first communicator (handle) (IN)

comm?2
The second communicator (handle) (IN)

result
An integer specifying the result. The defined values are: MPI_IDENT,
MPI_CONGRUENT, MPI_SIMILAR, and MPI_UNEQUAL. (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid communicators
MPI not initialized
MPI already finalized

114 1BM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_COMPARE

Related information
MPI_GROUP_COMPARE

Chapter 3. MPI subroutines and functions 115

MPI_COMM_CREATE

MPI_COMM_CREATE, MPI_Comm_create

Purpose

Creates a new communicator with a given group.

C synopsis

#include <mpi.h>
int MPI_Comm_create(MPI_Comm comm_in, MPI_Group group, MPI_Comm *comm_out);

C++ synopsis
#incTude mpi.h
MPI::Intercomm MPI::Intercomm::Create(const MPI::Group& group) const;

#include mpi.h
MPI::Intracomm MPI::Intracomm::Create(const MPI::Group& group) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_CREATE(INTEGER COMM_IN, INTEGER GROUP, INTEGER COMM_OUT,
INTEGER IERROR)

Description

MPI_COMM_CREATE is a collective operation that is invoked by all tasks in the
group associated with comm_in. This subroutine creates a new communicator
comm_out with the communication group defined by group and a new context.
Cached information is not propagated from comm_in to comm_out.

For tasks that are not in group, MPI_COMM_NULL is returned. The call is
erroneous if group is not a subset of the group associated with comm_in. The call is
invoked by all tasks in comm_in even if they do not belong to the new group.

If comm_in is an inter-communicator, the output communicator is also an
inter-communicator where the local group consists only of those tasks contained in
group. The group argument should contain only those tasks in the local group of the
input inter-communicator that are to be a part of comm_out. If either group does
not specify at least one task in the local group of the inter-communicator, or if the
calling task is not included in the group, MPI_COMM_NULL is returned.

Parameters

comm_in
The original communicator (handle) (IN)

group
A group of tasks that will be in the new communicator (handle) (IN)

comm_out
The new communicator (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_CREATE provides a way to subset a group of tasks for the purpose
of separate MIMD computation with separate communication space. You can use

116 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_CREATE

comm_out in subsequent calls to MPI_COMM_CREATE or other communicator
constructors to further subdivide a computation into parallel sub-computations.

Errors

Fatal errors:
Conflicting collective operations on communicator
Invalid communicator

Invalid group
group is not a subset of the group associated with comm_in.

MPI not initialized
MPI already finalized

Related information

MPI_COMM_DUP
MPI_COMM_SPLIT

Chapter 3. MPI subroutines and functions 117

MPI_COMM_CREATE_ERRHANDLER

MPI_COMM_CREATE_ERRHANDLER, MPI_Comm_create_errhandler

118

Purpose

Creates an error handler that can be attached to communicators.

C synopsis

#include <mpi.h>
int MPI_Comm_create_errhandler (MPI_Comm_errhandler fn *function,
MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h
static MPI::Errhandler MPI::Comm::Create_errhandler,
(MPI::Comm::Errhandler_fn* function);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_CREATE_ERRHANDLER (EXTERNAL FUNCTION, INTEGER ERRHANDLER,
INTEGER IERROR)

Description

In C, the user subroutine should be a function of type MPI_Comm_errhandler_fn,
which is defined as:

typedef void MPI_Comm_errhandler_fn(MPI_Comm *, int *, ...);

The first argument is the communicator in use, the second is the error code to be
returned.

In C++, the user subroutine should be of the form:
typedef void MPI::Comm::Errhandler_fn(MPI::Comm &, int *, ...);

In FORTRAN, the user subroutine should be of the form:

SUBROUTINE COMM_ERRHANDLER_FN(COMM, ERROR_CODE, ...)
INTEGER COMM, ERROR_CODE

Parameters

function
The user-defined error handling procedure (function) (IN)

errhandler
The MPI error handler (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_CREATE_ERRHANDLER supersedes MPI_ERRHANDLER _CREATE.

The MPI standard specifies a varargs error handler prototype. A correct user error
handler would be coded as:

void my_handler(MPI_Comm *comm, int *errcode, ...){}

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors

MPI_COMM_CREATE_ERRHANDLER

PE MPI passes additional arguments to an error handler. The MPI standard allows
this and urges an MPI implementation that does so to document the additional
arguments. These additional arguments will be ignored by fully portable user error
handlers. The extra errhandler arguments can be accessed by using the C varargs
(or stdargs) facility, but programs that do so will not port cleanly to other MPI
implementations that might have different additional arguments.

The effective prototype for an error handler in PE MPI is:

typedef void (MPI_Handler_ function)
(MPI_Comm *comm, int *code, char *routine_name, int *flag,
MPI_Aint xbadval)

The additional arguments are:

routine_name
the name of the MPI routine in which the error occurred

flag true if badval is meaningful, otherwise false
badval

the non-valid integer or long value that triggered the error

The interpretation of badval is context-dependent, so badval is not likely to be useful
to a user error handler function that cannot identify this context. The routine_name
string is more likely to be useful.

Fatal errors:
MPI not initialized
MPI already finalized

Null function not allowed
function cannot be NULL.

Related information

MPI_COMM_CALL_ERRHANDLER
MPI_COMM_GET_ERRHANDLER
MPI_COMM_SET_ERRHANDLER
MPI_ERRHANDLER_CREATE
MPI_ERRHANDLER_FREE

Chapter 3. MPI subroutines and functions 119

MPI_COMM_CREATE_KEYVAL

MPI_COMM_CREATE_KEYVAL, MPI_Comm_create_keyval

120

Purpose

Creates a new attribute key for a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_create_keyval (MPI_Comm_copy attr function xcomm_copy attr fn,
MPI_Comm_delete_attr_function xcomm_delete_attr_fn,
int *comm_keyval, void *extra_state);

C++ synopsis

#incTude mpi.h

int MPI::Comm::Create_keyval(MPI::Comm::Copy_attr_function* comm_copy attr_fn,
MPI::Comm: :Delete_attr_function* comm_delete attr_fn,
void* extra_state);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_CREATE_KEYVAL (EXTERNAL COMM_COPY _ATTR_FN, EXTERNAL COMM_DELETE ATTR_FN,
INTEGER COMM_KEYVAL, INTEGER EXTRA_STATE, INTEGER IERROR)

Description

This subroutine creates a new attribute key for a communicator and returns a
handle to it in the comm_keyval argument. A key is unique in a task and is opaque
to the user. Once created, a key can be used to associate an attribute with a
communicator and access it within the local task.

The argument comm_copy_attr_fn can be specified as
MPI_COMM_NULL_COPY_EN or MPI_ COMM_DUP_EN in C, C++, or
FORTRAN. The MPI_COMM_NULL_COPY_EN function returns flag = 0 and
MPI_SUCCESS. MPI_COMM_DUP_EN is a simple copy function that sets flag = 1,
returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.

The argument comm_delete_attr_fn can be specified as
MPI_COMM_NULL_DELETE_EN in C, C++, or FORTRAN. The
MPI_COMM_NULL_DELETE_FN function, which supersedes
MPI_NULL_DELETE_EN, returns MPI_SUCCESS.

The C callback functions are:

typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm, int comm_keyval,
void *extra_state, void *attribute_val_in,
void *attribute_val out, int *flag);

and

typedef int MPI_Comm_delete_attr_ function(MPI_Comm comm, int comm_keyval,
void *attribute val, void *extra_state);

The FORTRAN callback functions are:

SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,
ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT

LOGICAL FLAG

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_CREATE_KEYVAL

and

SUBROUTINE COMM DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,
EXTRA_STATE, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS KIND) ATTRIBUTE VAL, EXTRA_STATE

The C++ callback functions are:

typedef int MPI::Comm::Copy_attr_function(const MPI::Comm& oldcomm,
int comm_keyval, void* extra_state, void* attribute_val_in,
void* attribute val out, bool& flag);

and

typedef int MPI::Comm::Delete attr function(MPI::Comm& comm, int comm keyval,
void* attribute_val, void* extra_state);

The attribute_val_in parameter is the value of the attribute. The attribute_val_out

parameter is the address of the value, so the function can set a new value. The

attribute_val_out parameter is logically a void**, but it is prototyped as void*, to
avoid the need for complex casting.

Parameters

Notes

Errors

extra_state
The extra state for callback functions (IN)

comm_copy_attr_fn
The copy callback function for comm_keyval (IN)

comm_delete_attr_fn
The delete callback function for comm_keyval (IN)

comm_keyval
The key value for future access (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

MPI_COMM_CREATE_KEYVAL supersedes MPI_ KEYVAL_CREATE.

MPI_COMM_CREATE_KEYVAL does not inter-operate with
MPI_KEYVAL_CREATE. The FORTRAN bindings for MPI-1 caching functions
presume that an attribute is an INTEGER. The MPI-2 caching bindings use
INTEGER (KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses
64-bit addresses and 32-bit INTEGERS, the two formats would be incompatible.

MPI not initialized
MPI already finalized

Related information

MPI_COMM_FREE_KEYVAL
MPI_KEYVAL_CREATE

Chapter 3. MPI subroutines and functions 121

MPI_COMM_DELETE_ATTR

MPI_COMM_DELETE_ATTR, MPI_Comm_delete_attr

122

Purpose

Removes an attribute value from a communicator.

C synopsis

#include <mpi.h>
int MPI_Comm_delete_attr (MPI_Comm comm, int comm_keyval);

C++ synopsis

#incTude mpi.h
void MPI::Comm::Delete_attr(int comm_keyval);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM _DELETE_ATTR(INTEGER COMM, INTEGER COMM_KEYVAL, INTEGER IERROR)

Description

This subroutine deletes an attribute from cache by key and invokes the attribute
delete function delete_fn specified when the keyval is created.

Parameters

comm
The communicator from which the attribute is deleted (handle) (INOUT)

comm_keyval
The key value (integer) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_DELETE_ATTR supersedes MPI_ATTR_DELETE.

MPI_COMM_DELETE_ATTR does not inter-operate with MPI_ATTR_DELETE. The
FORTRAN bindings for MPI-1 caching functions presume that an attribute is an
INTEGER. The MPI-2 caching bindings use INTEGER
(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit
addresses and 32-bit INTEGERS, the two formats would be incompatible.

Errors
Fatal errors:
MPI not initialized
MPI already finalized
Wrong keytype (MPI_ERR_ARG) attribute key is not a communicator key

Related information
MPI_ATTR_DELETE
MPI_COMM_CREATE_KEYVAL
MPI_ COMM_GET_ATTR
MPI_ COMM_SET_ATTR

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_DUP

MPI_COMM_DUP, MPI_Comm_dup

Purpose

Creates a new communicator that is a duplicate of an existing communicator.

C synopsis

#include <mpi.h>
int MPI_Comm_dup(MPI_Comm comm,MPI_Comm xnewcomm) ;

C++ synopsis

#incTude mpi.h
MPI::Cartcomm MPI::Cartcomm::Dup() const;

#include mpi.h
MPI::Graphcomm MPI::Graphcomm::Dup() const;

#include mpi.h
MPI::Intercomm MPI::Intercomm::Dup() const;

#include mpi.h
MPI::Intracomm MPI::Intracomm::Dup() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_DUP(INTEGER COMM,INTEGER NEWCOMM, INTEGER IERROR)

Description

MPI_COMM_DUP is a collective operation that is invoked by the group associated
with comm. This subroutine duplicates the existing communicator comm with its
associated key values.

For each key value the respective copy callback function determines the attribute
value associated with this key in the new communicator. One action that a copy
callback may take is to delete the attribute from the new communicator. Returns in
newcomm a new communicator with the same group and any copied cached
information, but a new context.

This subroutine applies to both intra-communicators and inter-communicators.

Parameters

Notes

comm
The communicator (handle) (IN)

newcomm
The copy of comm (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Use this operation to produce a duplicate communication space that has the same
properties as the original communicator. This includes attributes and topologies.

This subroutine is valid even if there are pending point-to-point communications
involving the communicator comm.

Chapter 3. MPI subroutines and functions 123

MPI_COMM_DUP

Remember that MPI_COMM_DUP is collective on the input communicator, so it is
erroneous for a thread to attempt to duplicate a communicator that is
simultaneously involved in an MPI_COMM_DUP or any collective on some other
thread.

Errors
Conflicting collective operations on communicator
A copy_fn did not return MPI_SUCCESS.
A delete_fn did not return MPI_SUCCESS.
Invalid communicator
MPI not initialized
MPI already finalized

Related information

MPI::Comm::Clone
MPI_KEYVAL_CREATE

124 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_Comm_f2c

MPI_Comm_f2c

Purpose

Returns a C handle to a communicator.

C synopsis

#include <mpi.h>
MPI_Comm MPI_Comm_f2c(MPI_Fint comm);

Description

This function does not have C++ or FORTRAN bindings. MPI_Comm_f2c¢ returns a
C handle to a communicator. If comm is a valid FORTRAN handle to a
communicator, MPI_Comm_f2c returns a valid C handle to that same
communicator. If comm is set to the FORTRAN value MPI_COMM_NULL,
MPI_Comm_{2¢ returns the equivalent null C handle. If comm is not a valid
FORTRAN handle, MPI_Comm_f2c returns a C handle that is not valid. The
converted handle is returned as the function’s value. There is no error detection or
return code.

Parameters

comm
The communicator (handle) (IN)

Errors

None.

Related information
MPI_Comm_c2f

Chapter 3. MPI subroutines and functions 125

MPI_COMM_FREE

MPI_COMM_FREE, MPI_Comm_free

Purpose

Marks a communicator for deallocation.

C synopsis

#include <mpi.h>

int MPI_Comm_free(MPI_Comm *comm)
C++ synopsis

#incTude mpi.h
void MPI::Comm::Free(void);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_FREE(INTEGER COMM,INTEGER IERROR)

Description

This collective operation marks either an intra-communicator or an
inter-communicator object for deallocation. MPI_COMM_FREE sets the handle to
MPI_COMM_NULL. Actual deallocation of the communicator object occurs when
active references to it have completed. The delete callback functions for all cached
attributes are called in arbitrary order. The delete functions are called immediately
and not deferred until deallocation.

Parameters

comm
The communicator to be freed (handle) (INOUT)

IERROR
The FORTRAN return code. It is always the last argument.
Errors
A delete_fn did not return MPI_SUCCESS.
Invalid communicator
MPI not initialized
MPI already finalized

Related information
MPI_KEYVAL_CREATE

126 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_FREE_KEYVAL

MPI_COMM_FREE_KEYVAL, MPI_Comm_free_keyval

Purpose

Marks a communicator attribute key for deallocation.

C synopsis

#include <mpi.h>
int MPI_Comm_free_ keyval (int *comm_keyval);

C++ synopsis

#incTude mpi.h
void MPI::Comm::Free_keyval(int& comm_keyval);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_FREE_KEYVAL(INTEGER COMM_KEYVAL, INTEGER IERROR)

Description

This subroutine sets keyval to MPI_KEYVAL_INVALID and marks the attribute key
for deallocation. You can free an attribute key that is in use because the actual
deallocation occurs only when all active references to it are complete. These
references, however, need to be explicitly freed. Use calls to
MPI_COMM_DELETE_ATTR to free one attribute instance. To free all attribute
instances associated with a communicator, use MPI_COMM_FREE.

Parameters

Notes

Errors

comm_keyval
The key value (integer) (INOUT)

IERROR
The FORTRAN return code. It is always the last argument.

MPI_COMM_FREE_KEYVAL supersedes MPI_KEYVAL_FREE.

MPI_COMM_FREE_KEYVAL does not inter-operate with MPI_KEYVAL_FREE. The
FORTRAN bindings for MPI-1 caching functions presume that an attribute is an
INTEGER. The MPI-2 caching bindings use INTEGER
(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit
addresses and 32-bit INTEGERS, the two formats would be incompatible.

Fatal errors:

MPI not initialized

MPI already finalized

Wrong keytype (MPI_ERR_ARG) attribute key is not a communicator key

Related information

MPI_COMM_CREATE_KEYVAL
MPI_KEYVAL_FREE

Chapter 3. MPI subroutines and functions 127

MPI_COMM_GET_ATTR

MPI_COMM_GET_ATTR, MPI_Comm_get_attr

128

Purpose

Retrieves the communicator attribute value identified by the key.

C synopsis

#include <mpi.h>
int MPI_Comm_get_attr (MPI_Comm comm, int comm_keyval,
void *attribute_val, int *flag);

C++ synopsis

#include mpi.h
bool MPI::Comm::Get attr(int comm _keyval, void* attribute val) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_GET ATTR(INTEGER COMM, INTEGER COMM_KEYVAL, INTEGER ATTRIBUTE VAL,
LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine retrieves an attribute value by key. If there is no key with value
keywval, the call is erroneous. However, the call is valid if there is a key value keyval,
but no attribute is attached on comm for that key. In this case, the call returns flag
set to false.

Parameters

comm
The communicator to which the attribute is attached (handle) (IN)

comm_keyval
The key value (integer) (IN)

attribute_val
The attribute value, unless flag is false (OUT)

flag
Set to false if there is no attribute associated with the key (logical) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_GET_ATTR supersedes MPI_ ATTR_GET.

MPI_COMM_GET_ATTR does not inter-operate with MPI_ATTR_GET. The
FORTRAN bindings for MPI-1 caching functions presume that an attribute is an
INTEGER. The MPI-2 caching bindings use INTEGER
(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit
addresses and 32-bit INTEGERS, the two formats would be incompatible.

The implementation of MPI_COMM_SET_ATTR and MPI_COMM_GET_ATTR
involves saving a single word of information in the communicator. The languages
C and FORTRAN have different approaches to using this capability:

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors

MPI_COMM_GET_ATTR

In C:

As the programmer, you normally define a struct that holds arbitrary attribute
information. Before calling MPI_COMM_SET_ATTR, you allocate some storage
for the attribute structure and then call MPI. COMM_SET_ATTR to record the
address of this structure. You must make sure that the structure remains intact
as long as it may be useful. As the programmer, you will also declare a variable
of type “pointer to attribute structure” and pass the address of this variable
when calling MPI_COMM_GET_ATTR. Both MPI_COMM_SET_ATTR and
MPI_COMM_GET_ATTR take a void* parameter, but this does not imply that
the same parameter is passed to either one.

In FORTRAN:

MPI_COMM_SET_ATTR records an address-size integer and
MPI_COMM_GET_ATTR returns the address-size integer. As the programmer,
you can choose to encode all attribute information in this integer or maintain
some kind of database in which the integer can index. Either of these
approaches will port to other MPI implementations.

XL FORTRAN has an additional feature that will allow some of the same
functions a C programmer would use. This is the POINTER type, which is
described in the IBM XL FORTRAN Compiler for AIX Language Reference. Use of
this feature will impact the program’s portability.

Fatal errors:

MPI not initialized

MPI already finalized

Wrong keytype (MPI_ERR_ARG) attribute key is not a communicator key

Related information

MPI_ATTR_GET
MPI_COMM_DELETE_ATTR
MPI_COMM_SET_ATTR

Chapter 3. MPI subroutines and functions 129

MPI_COMM_GET_ERRHANDLER

MPI_COMM_GET_ERRHANDLER, MPI_Comm_get_errhandler

Purpose

Retrieves the error handler currently associated with a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_get_errhandler (MPI_Comm comm, MPI_Errhandler xerrhandler);
C++ synopsis

#incTude mpi.h
MPI::Errhandler MPI::Comm::Get_errhandler() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_GET_ERRHANDLER(INTEGER COMM, INTEGER ERRHANDLER, INTEGER IERROR)

Description

This subroutine returns the error handler errhandler currently associated with
communicator commi.

Parameters

comm
The communicator (handle) (IN)

errhandler
The error handler that is currently associated with the communicator (handle)
(OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_GET_ERRHANDLER supersedes MPI_ERRHANDLER_GET.

Errors

Fatal errors:

Invalid communicator
MPI not initialized
MPI already finalized

Related information
MPI_COMM_CALL_ERRHANDLER
MPI_COMM_CREATE_ERRHANDLER
MPI_COMM_SET_ERRHANDLER
MPI_ERRHANDLER_FREE

130 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_GET_NAME

MPI_COMM_GET_NAME, MPI_Comm_get_name

Purpose

Returns the name that was last associated with a communicator.

C synopsis

#include <mpi.h>
int MPI_Comm_get name (MPI_Comm comm, char xcomm_name, int xresultlen);

C++ synopsis

#incTude mpi.h
void MPI::Comm::Get_name(char* comm_name, int& resultlen) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_GET_NAME (INTEGER COMM, CHARACTERx(*) COMM_NAME, INTEGER RESULTLEN,
INTEGER IERROR)

Description

This subroutine returns the name that was last associated with the specified
communicator. The name can be set and retrieved from any language. The same
name is returned independent of the language used. The name should be allocated
so0 it can hold a resulting string that is the length of MPI._ MAX_OBJECT_NAME.
For PE MP], the value of MPI_MAX_OBJECT_NAME is 256.
MPI_COMM_GET_NAME returns a copy of the set name in comm_name.

Parameters

comm
The communicator with the name to be returned (handle) (IN)

comm_name
The name previously stored on the communicator, or an empty string if no
such name exists (string) (OUT)

resultlen
The length of the returned name (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

If you did not associate a name with a communicator, or if an error occurs,
MPI_COMM_GET_NAME returns an empty string (all spaces in FORTRAN or ""
in C and C++). The two predefined communicators have predefined names
associated with them. Thus, the names of MPI_COMM_SELF and
MPI_COMM_WORLD have the default of MPI_COMM_SELF and
MPI_COMM_WORLD. The fact that the system may have assigned a default name
to a communicator does not prevent you from setting a name on the same
communicator. Doing this removes the old name and assigns the new one.

It is safe simply to print the string returned by MPI_COMM_GET_NAME, as it is
always a valid string even if there was no name.

Chapter 3. MPI subroutines and functions 131

MPI_COMM_GET_NAME

Errors

Fatal errors:

Invalid communicator
MPI already finalized
MPI not initialized

Related information

MPI::Comm::Clone
MPI_COMM_DUP
MPI_COMM_SET_NAME

132 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_GROUP

MPI_COMM_GROUP, MPI_Comm_group

Purpose

Returns the group handle associated with a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_group(MPI_Comm comm,MPI _Group *group);
C++ synopsis

#incTude mpi.h
MPI::Group MPI::Comm::Get _group() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_GROUP(INTEGER COMM,INTEGER GROUP,INTEGER IERROR)

Description

This subroutine returns the group handle associated with a communicator.

Parameters

comm
The communicator (handle) (IN)

group
The group corresponding to comm (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

If comm is an inter-communicator, group is set to the local group. To determine the
remote group of an inter-communicator, use MPI_ COMM_REMOTE_GROUP.

Errors

Invalid communicator
MPI not initialized
MPI already finalized

Related information
MPI_COMM_REMOTE_GROUP

Chapter 3. MPI subroutines and functions 133

MPI_COMM_RANK

MPI_COMM_RANK, MPI_Comm_rank

Purpose

Returns the rank of the local task in the group associated with a communicator.

C synopsis

#include <mpi.h>
int MPI_Comm_rank(MPI_Comm comm,int xrank);

C++ synopsis

#incTude mpi.h
int MPI::Comm::Get_rank() const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_COMM_RANK(INTEGER COMM,INTEGER RANK,INTEGER IERROR)
Description

This subroutine returns the rank of the local task in the group associated with a
communicator.

You can use this subroutine with MPI_COMM_SIZE to determine the amount of
concurrency available for a specific job. MPI_COMM_RANK indicates the rank of
the task that calls it in the range from 0 to size-1 , where size is the return value of
MPI_COMM_SIZE.

This subroutine is a shortcut to:

* Accessing the communicator’s group with MPI_COMM_GROUP.
e Computing the rank using MPI_GROUP_RANK.

* Freeing the temporary group using MPI_GROUP_FREE.

If comm is an inter-communicator, rank is the rank of the local task in the local

group.

Parameters

comm
The communicator (handle) (IN)

rank
An integer specifying the rank of the calling task in group of comm (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Invalid communicator
MPI not initialized
MPI already finalized

Related information
MPI_GROUP_RANK

134 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_REMOTE_GROUP

MPI_COMM_REMOTE_GROUP, MPI_Comm_remote_group

Purpose

Returns the handle of the remote group of an inter-communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_remote_group(MPI_Comm comm,MPI_group *group);
C++ synopsis

#incTude mpi.h
MPI::Group MPI::Intercomm::Get_remote_group() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_REMOTE_GROUP(INTEGER COMM,MPI_GROUP GROUP,INTEGER IERROR)

Description

This subroutine is a local operation that returns the handle of the remote group of
an inter-communicator.

Parameters

comm
The inter-communicator (handle) (IN)

group
The remote group corresponding to comm. (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
To determine the local group of an inter-communicator, use MPI_COMM_GROUP.

Errors

Invalid communicator

Invalid communicator type
Communication type must be inter-communicator.

MPI not initialized
MPI already finalized

Related information
MPI_COMM_GROUP

Chapter 3. MPI subroutines and functions 135

MPI_COMM_REMOTE_SIZE

MPI_COMM_REMOTE_SIZE, MPI_Comm_remote_size

Purpose

Returns the size of the remote group of an inter-communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_remote_size(MPI_Comm comm,int *size);
C++ synopsis

#incTude mpi.h
int MPI::Intercomm::Get remote_size() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_REMOTE_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine is a local operation that returns the size of the remote group of an
inter-communicator.

Parameters

comm
The inter-communicator (handle) (IN)

size
An integer specifying the number of tasks in the remote group of comm. (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

To determine the size of the local group of an inter-communicator, use
MPI_COMM_SIZE.

Errors

Invalid communicator

Invalid communicator type
Communication type must be inter-communicator.

MPI not initialized
MPI already finalized

Related information
MPI_COMM_SIZE

136 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_SET_ATTR

MPI_COMM_SET_ATTR, MPI_Comm_set_attr

Purpose

Attaches the communicator attribute value to the communicator and associates it
with the key.

C synopsis

#include <mpi.h>
int MPI_Comm_set_attr (MPI_Comm comm, int comm_keyval, void *attribute val);

C++ synopsis

#incTude mpi.h
void MPI::Comm::Set_attr(int comm_keyval, const void* attribute val) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_SET ATTR(INTEGER COMM, INTEGER COMM_KEYVAL,
INTEGER ATTRIBUTE_ VAL, INTEGER IERROR)

Description

This subroutine stores the attribute value for retrieval by MPI_COMM_GET_ATTR.
Any previous value is deleted with the attribute delete_fn being called and the
new value is stored. If there is no key with value keyval, the call is erroneous.

Parameters

comm
The communicator to which the attribute will be attached (handle) (INOUT)

comm_keyval
The key value (integer) (IN)

attribute_val
The attribute value (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_SET_ATTR supersedes MPI_ATTR_PUT.

MPI_COMM_SET_ATTR does not inter-operate with MPI_ ATTR_PUT. The
FORTRAN bindings for MPI-1 caching functions presume that an attribute is an
INTEGER. The MPI-2 caching bindings use INTEGER
(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit
addresses and 32-bit INTEGERS, the two formats would be incompatible.

The implementation of MPI_ COMM_SET_ATTR and MPI_COMM_GET_ATTR
involves saving a single word of information in the communicator. The languages
C and FORTRAN have different approaches to using this capability:

In C:
As the programmer, you normally define a struct that holds arbitrary attribute
information. Before calling MPI_COMM_SET_ATTR, you allocate some storage
for the attribute structure and then call MPI._ COMM_SET_ATTR to record the

Chapter 3. MPI subroutines and functions 137

MPI_COMM_SET_ATTR

138

Errors

address of this structure. You must make sure that the structure remains intact
as long as it may be useful. As the programmer, you will also declare a variable
of type “pointer to attribute structure” and pass the address of this variable
when calling MPI_COMM_GET_ATTR. Both MPI_COMM_SET_ATTR and
MPI_COMM_GET_ATTR take a void* parameter, but this does not imply that
the same parameter is passed to either one.

In FORTRAN:

MPI_COMM_SET_ATTR records an address-size integer and
MPI_COMM_GET_ATTR returns the address-size integer. As the programmer,
you can choose to encode all attribute information in this integer or maintain
some kind of database in which the integer can index. Either of these
approaches will port to other MPI implementations.

XL FORTRAN has an additional feature that will allow some of the same
functions a C programmer would use. This is the POINTER type, which is
described in the IBM XL FORTRAN Compiler for AIX Language Reference. Use of
this feature will impact the program’s portability.

Fatal errors:

MPI not initialized

MPI already finalized

Wrong keytype (MPI_ERR_ARG) attribute key is not a communicator key

Related information

MPI_ATTR_PUT
MPI_COMM_DELETE_ATTR
MPI_COMM_GET_ATTR

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_SET_ERRHANDLER

MPI_COMM_SET_ERRHANDLER, MPI_Comm_set_errhandler

Purpose

Attaches a new error handler to a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_set_errhandler (MPI_Comm comm, MPI_Errhandler xerrhandler);
C++ synopsis

#incTude mpi.h
void MPI::Comm::Set_errhandler(const MPI::Errhandler& errhandler);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_SET_ERRHANDLER(INTEGER COMM, INTEGER ERRHANDLER, INTEGER IERROR)

Description

This subroutine attaches a new error handler to a communicator. The error handler
must be either a predefined error handler, or an error handler created by a call to
MPI_COMM_CREATE_ERRHANDLER. The previously-attached error handler is
replaced.

Parameters

comm
The communicator (handle) (INOUT)

errhandler
The new error handler for the communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_COMM_SET_ERRHANDLER supersedes MPI_ERRHANDLER_SET.

For information about a predefined error handler for C++, see IBM Parallel
Environment for AIX: MPI Programming Guide.

Errors
Invalid communicator
Invalid error handler
MPI not initialized
MPI already finalized

Related information
MPI_ COMM_CALL_ERRHANDLER
MPI_COMM_CREATE_ERRHANDLER
MPI_COMM_GET_ERRHANDLER
MPI_ERRHANDLER_FREE

Chapter 3. MPI subroutines and functions 139

MPI_COMM_SET_NAME

MPI_COMM_SET_NAME, MPI_Comm_set_name

140

Purpose

Associates a name string with a communicator.

C synopsis

#include <mpi.h>
int MPI_Comm_set_name (MPI_Comm comm, char xcomm_name) ;

C++ synopsis

#incTude mpi.h
void MPI::Comm::Set _name(const char* comm_name);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_SET_NAME(INTEGER COMM, CHARACTER+(*) COMM_NAME, INTEGER IERROR)

Description

This subroutine lets you associate a name string with a communicator. The name is
intended for use as an identifier, so when the communicator is copied or
duplicated, the name does not propagate.

The character string that is passed to MPI_COMM_SET_NAME is copied to space
managed by the MPI library (so it can be freed by the caller immediately after the
call, or allocated on the stack). Leading spaces in the name are significant, but
trailing spaces are not.

Parameters

Notes

comm
The communicator with the identifier to be set (handle) (INOUT)

comm_name
The character string that is saved as the communicator’s name (string) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

MPI_COMM_SET_NAME is a local (non-collective) operation, which affects only
the name of the communicator as specified in the task that made the
MPI_COMM_SET_NAME call. There is no requirement that the same (or any)
name be assigned to a communicator in every task where that communicator
exists. However, to avoid confusion, it is a good idea to give the same name to a
communicator in all of the tasks where it exists.

The length of the name that can be stored is limited to the value of
MPI_MAX_OBJECT_NAME in FORTRAN and MPI_MAX_OBJECT_NAME-1 in C
and C++ to allow for the null terminator. An attempt to use a longer name is not
an error, but will result in truncation of the name. For PE MPI, the value of
MPI_MAX_OBJECT_NAME is 256.

Associating a name with a communicator has no effect on the semantics of an MPI
program, and (necessarily) increases the store requirement of the program, because

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_SET_NAME

the names must be saved. Therefore, there is no requirement that you use this
function to associate names with communicators. However, debugging and
profiling MPI applications can be made easier if names are associated with
communicators, as the debugger or profiler should then be able to present
information in a less cryptic manner.

Errors

Fatal errors:

Invalid communicator
MPI already finalized
MPI not initialized

Related information
MPI::Comm::Clone
MPI_COMM_DUP
MPI_COMM_GET_NAME

Chapter 3. MPI subroutines and functions 141

MPI_COMM_SIZE

MPI_COMM_SIZE, MPI_Comm_size

Purpose

Returns the size of the group associated with a communicator.

C synopsis

#include <mpi.h>
int MPI_Comm_size(MPI_Comm comm,int *size);

C++ synopsis

#incTude mpi.h
int MPI::Comm::Get_size() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine returns the size of the group associated with a communicator.
MPI_COMM_SIZE is a shortcut to:

¢ Accessing the communicator’s group with MPI_COMM_GROUP.

e Computing the size using MPI_ GROUP_SIZE.

* Freeing the temporary group using MPI_GROUP_FREE.

If comm is an inter-communicator, size will be the size of the local group. To
determine the size of the remote group of an inter-communicator, use
MPI_COMM_REMOTE_SIZE.

You can use this subroutine with MPI_ COMM_RANK to determine the amount of
concurrency available for a specific library or program. MPI_COMM_RANK
indicates the rank of the task that calls it in the range from 0...size — 1, where size is
the return value of MPI_COMM_SIZE. The rank and size information can then be
used to partition work across the available tasks.

Parameters

comm
The communicator (handle) (IN)

size
An integer specifying the number of tasks in the group of comm (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

This function indicates the number of tasks in a communicator. For
MPI_COMM_WORLD, it indicates the total number of tasks available.

Errors
Invalid communicator

MPI not initialized

142 1BM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_SIZE

MPI already finalized

Related information
MPI_COMM_GROUP
MPI_COMM_RANK
MPI_COMM_REMOTE_SIZE
MPI_GROUP_FREE
MPI_GROUP_SIZE

Chapter 3. MPI subroutines and functions 143

MPI_COMM_SPLIT

MPI_COMM_SPLIT, MPI_Comm_split

144

Purpose

Splits a communicator into multiple communicators based on color and key.

C synopsis

#include <mpi.h>
int MPI_Comm_split(MPI_Comm comm_in, int color, int key, MPI_Comm *comm out);

C++ synopsis
#incTude mpi.h
MPI::Intercomm MPI::Intercomm::Split(int color, int key) const;

#include mpi.h
MPI::Intracomm MPI::Intracomm::Split(int color, int key) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_SPLIT(INTEGER COMM_IN, INTEGER COLOR, INTEGER KEY,
INTEGER COMM_OUT, INTEGER IERROR)

Description

MPI_COMML_SPLIT is a collective operation that partitions the group associated
with comm_in into disjoint subgroups, one for each value of color. Each subgroup
contains all tasks of the same color. Within each subgroup, the tasks are ranked in
the order defined by the value of the argument key. Ties are broken according to
their rank in the old group. A new communicator is created for each subgroup and
returned in comm_out. If a task supplies the color value MPI_UNDEFINED,
comm_out returns MPI_COMM_NULL. Even though this is a collective operation,
each task is allowed to provide different values for color and key.

The value of color must be greater than or equal to 0.

Parameters

comm_in
The original communicator (handle) (IN)

color

An integer specifying control of subset assignment (IN)
key

An integer specifying control of rank assignment (IN)

comm_out
The new communicator (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The result of MPI_ COMM_SPLIT on an inter-communicator is that those tasks on
one side of the inter-communicator with the same color as those tasks on the other
side of the inter-communicator combine to create a new inter-communicator. The
key argument describes the relative rank of tasks on each side of the
inter-communicator. For those colors that are specified only on one side of the

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_COMM_SPLIT

inter-communicator, MPI_COMM_NULL is returned. MPI_COMM_NULL is also
returned to those tasks that specify MPI_UNDEFINED as the color.

Errors

Fatal errors:
Conflicting collective operations on communicator

Invalid color
color < 0

Invalid communicator
MPI not initialized
MPI already finalized

Related information
MPI_CART_SUB

Chapter 3. MPI subroutines and functions 145

MPI_COMM_TEST_INTER

MPI_COMM_TEST _INTER, MPI_Comm_test_inter

Purpose

Returns the type of a communicator (intra- or inter-).

C synopsis

#include <mpi.h>

int MPI_Comm_test_inter(MPI_Comm comm,int *flag);
C++ synopsis

#incTude mpi.h
bool MPI::Comm::Is_inter() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_COMM_TEST_INTER(INTEGER COMM,LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine is used to determine if a communicator is an inter- or
intra-communicator.

If comm is an inter-communicator, the call returns true. If comm is an
intra-communicator, the call returns false.

Parameters

comm
The communicator (handle) (INOUT)

flag
The communicator type (logical)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Though many subroutines accept either an inter-communicator or an
intra-communicator, the usage and semantic can be quite different.

Errors
Invalid communicator
MPI not initialized
MPI already finalized

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_DIMS_CREATE

MPI_DIMS_CREATE, MPI_Dims_create

Purpose

Defines a Cartesian grid to balance tasks.

C synopsis

#include <mpi.h>

MPI Dims_create(int nnodes,int ndims,int *dims);
C++ synopsis

#incTude mpi.h

void MPI::Compute_dims(int nnodes, int ndims, int dims[]);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_DIMS CREATE(INTEGER NNODES,INTEGER NDIMS,INTEGER DIMS(x),
INTEGER IERROR)

Description

This subroutine creates a Cartesian grid with a given number of dimensions and a
given number of nodes. The dimensions are constrained to be as close to each
other as possible.

If dimsli] is a positive number when MPI_DIMS_CREATE is called, the routine will
not modify the number of nodes in dimension i. Only those entries where dims[i] is
equal to 0 are modified by the call.

Parameters

nnodes
An integer specifying the number of nodes in a grid (IN)

ndims
An integer specifying the number of Cartesian dimensions (IN)

dims
An integer array of size ndims that specifies the number of nodes in each
dimension. (INOUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
MPI_DIMS_CREATE chooses dimensions so that the resulting grid is as close as

possible to being an ndims-dimensional cube.
Errors

MPI not initialized

MPI already finalized

Invalid ndims
ndims < 0

Chapter 3. MPI subroutines and functions 147

MPI_DIMS_CREATE

Invalid nnodes
nnodes < 0

Invalid dimension
dims[i] < 0 or nnodes is not a multiple of the non-zero entries of dims

Related information
MPI_CART_CREATE

148 1BM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_Errhandler_c2f

MPI_Errhandler_c2f

Purpose
Translates a C error handler into a FORTRAN handle to the same error handler.

C synopsis
#include <mpi.h>
MPI_Fint MPI_Errhandler c2f(MPI_Errhandler errhandler);

Description
This function does not have C++ or FORTRAN bindings. MPI_Errhandler_c2f
translates a C error handler into a FORTRAN handle to the same error handler.
The converted handle is returned as the function’s value. There is no error
detection or return code.

Parameters
errhandler

The error handler (handle) (IN)

Errors

None.

Related information
MPI_Errhandler_f2c

Chapter 3. MPI subroutines and functions 149

MPI_ERRHANDLER_CREATE

MPI_ERRHANDLER_CREATE, MPI_Errhandler_create

150

Purpose

Registers a user-defined error handler.

C synopsis

#include <mpi.h>
int MPI_Errhandler_create(MPI_Handler function xfunction,
MPI_Errhandler *errhandler);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ERRHANDLER CREATE(EXTERNAL FUNCTION,INTEGER ERRHANDLER,
INTEGER IERROR)

Description

This subroutine registers the user routine function for use as an MPI error handler.

You can associate an error handler with a communicator. MPI will use the
specified error handling routine for any exception that takes place during a call on
this communicator. Different tasks can attach different error handlers to the same
communicator. MPI calls not related to a specific communicator are considered as
attached to the communicator MPI. COMM_WORLD.

Parameters

Notes

function
A user-defined error handling procedure (IN)

errhandler
An MPI error handler (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPI standard specifies a varargs error handler prototype. A correct user error
handler would be coded as:

void my_handler(MPI_Comm *comm, int *errcode, ...){}

PE MPI passes additional arguments to an error handler. The MPI standard allows
this and urges an MPI implementation that does so to document the additional
arguments. These additional arguments will be ignored by fully portable user error
handlers. The extra errhandler arguments can be accessed by using the C varargs
(or stdargs) facility, but programs that do so will not port cleanly to other MPI
implementations that might have different additional arguments.

The effective prototype for an error handler in PE MPI is:

typedef void (MPI_Handler_ function)
(MPI_Comm *comm, int *code, char *routine_name, int *flag,
MPI_Aint xbadval)

The additional arguments are:

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ERRHANDLER_CREATE

routine_name
The name of the MPI routine in which the error occurred

flag Set to true if badval is meaningful, otherwise set to false.
badval

The incorrect integer or long value that triggered the error

The interpretation of badval is context-dependent, so badval is not likely to be useful
to a user error handler function that cannot identify this context. The routine_name
string is more likely to be useful.

Errors
MPI not initialized
MPI already finalized

Null function not allowed
function cannot be NULL.

Related information
MPI_ERRHANDLER_FREE
MPI_ERRHANDLER_GET
MPI_ERRHANDLER_SET

Chapter 3. MPI subroutines and functions 151

MPI_Errhandler_f2c

MPI_Errhandler_f2c

Purpose

Returns a C handle to an error handler.

C synopsis

#include <mpi.h>
MPI_Errhandler MPI_Errhandler f2c(MPI_Fint errorhandler);

Description

This function does not have C++ or FORTRAN bindings. MPI_Errhandler_f2c
returns a C handle to an error handler. If errhandler is a valid FORTRAN handle to
an error handler, MPI_Errhandler_f2c¢ returns a valid C handle to that same error
handler. If errhandler is not a valid FORTRAN handle, MPI_Errhandler f2c returns
a non-valid C handle. The converted handle is returned as the function’s value.
There is no error detection or return code.

Parameters

errhandler
The error handler (handle) (IN)

Errors

None.

Related information
MPI_Errhandler_c2f

152 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ERRHANDLER_FREE

MPI_ERRHANDLER_FREE, MPI_Errhandler_free

Purpose

Marks an error handler for deallocation.

C synopsis

#include <mpi.h>
int MPI_Errhandler_free(MPI_Errhandler xerrhandler);

C++ synopsis

#incTude mpi.h
void MPI::Errhandler::Free();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ERRHANDLER_FREE(INTEGER ERRHANDLER,INTEGER IERROR)

Description

This subroutine marks errhandler for deallocation and sets it (errhandler) to

MPI_ERRHANDLER_NULL. Actual deallocation occurs when all communicators

associated with the error handler have been deallocated or have had new error

handlers attached.

Parameters

errhandler
An MPI error handler (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors
Invalid error handler
MPI not initialized
MPI already finalized

Related information
MPI_ERRHANDLER_CREATE

Chapter 3. MPI subroutines and functions

153

MPI_ERRHANDLER_GET

MPI_ERRHANDLER_GET, MPI_Errhandler_get

Purpose

Gets an error handler associated with a communicator.

C synopsis

#include <mpi.h>
int MPI_Errhandler_get(MPI_Comm comm,MPI _Errhandler xerrhandler);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ERRHANDLER_GET (INTEGER COMM, INTEGER ERRHANDLER,INTEGER IERROR)

Description

This subroutine returns the error handler errhandler currently associated with
communicator comm.

Parameters

comm
A communicator (handle) (IN)

errhandler
The MPI error handler currently associated with comm (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid communicator
MPI not initialized
MPI already finalized

Related information

MPI_ERRHANDLER_CREATE
MPI_ERRHANDLER_SET

154 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ERRHANDLER_SET

MPI_ERRHANDLER_SET, MPI_Errhandler_set

Purpose

Associates a new error handler with a communicator.

C synopsis

#include <mpi.h>
int MPI_Errhandler_set(MPI_Comm comm,MPI_Errhandler errhandler);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ERRHANDLER_SET(INTEGER COMM, INTEGER ERRHANDLER, INTEGER IERROR)

Description

This subroutine associates error handler errhandler with communicator comm. The
association is local.

MPI will use the specified error handling routine for any exception that takes place
during a call on this communicator. Different tasks can attach different error
handlers to the same communicator. MPI calls not related to a specific
communicator are considered as attached to the communicator
MPI_COMM_WORLD.

Parameters

Notes

comm
A communicator (handle) (IN)

errhandler
A new MPI error handler for comm (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

An error handler that does not end in the MPI job being terminated, creates
undefined risks. Some errors are harmless, while others are catastrophic. For
example, an error detected by one member of a collective operation can result in
other members waiting indefinitely for an operation which will never occur.

It is also important to note that the MPI standard does not specify the state the
MPI library should be in after an error occurs. MPI does not provide a way for
users to determine how much, if any, damage has been done to the MPI state by a
particular error.

The default error handler is MPI_ERRORS_ARE_FATAL, which behaves as if it
contains a call to MPI_ ABORT. MPI_ERRHANDLER_SET allows users to replace
MPI_ERRORS_ARE_FATAL with an alternate error handler. The MPI standard
provides MPI_ERRORS_RETURN, and IBM adds the non-standard
MPE_ERRORS_WARN. These are pre-defined handlers that cause the error code to
be returned and MPI to continue to run. Error handlers that are written by MPI
users may call MPI_ABORT. If they do not abort, they too will cause MPI to
deliver an error return code to the caller and continue to run.

Chapter 3. MPI subroutines and functions 155

MPI_ERRHANDLER_SET

Error handlers that let MPI return should be used only if every MPI call checks its
return code. Continuing to use MPI after an error involves undefined risks. You

may do cleanup after an MPI error is detected, as long as it does not use MPI calls.
This should normally be followed by a call to MPI_ABORT.

The error Invalid error handler will be raised if errhandler is either a file error
handler (created with MPI_FILE_CREATE_ERRHANDLER) or a window error
handler (created with MPI_ WIN_CREATE_ERRHANDLER). The predefined error
handlers MPI_ERRORS_ARE_FATAL and MPI_ERRORS_RETURN can be
associated with both communicators and file handles.

Errors

Invalid communicator
Invalid error handler
MPI not initialized
MPI already finalized

Related information

MPI_ERRHANDLER_CREATE
MPI_ERRHANDLER_GET

156 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_ERROR_CLASS

MPI_ERROR_CLASS, MPI_Error_class

Purpose

Returns the error class for the corresponding error code.

C synopsis

#include <mpi.h>
int MPI_Error_class(int errorcode,int xerrorclass);

C++ synopsis

#incTude mpi.h
int MPI::Get_error_class(int errorcode);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ERROR_CLASS(INTEGER ERRORCODE,INTEGER ERRORCLASS,INTEGER IERROR)

Description

This subroutine returns the error class corresponding to an error code.

lists the predefined error classes.

Table 1. MPI error classes

Error classes Description

MPI_ERR_ACCESS permission denied

MPI_ERR_AMODE error related to the amode passed to
MPI_FILE_OPEN

MPI_ERR_ARG non-valid argument

MPI_ERR_ASSERT non-valid assert argument

MPI_ERR_BAD_FILE non-valid file name (the path name is too
long, for example)

MPI_ERR_BASE non-valid base argument

MPI_ERR_BUFFER non-valid buffer pointer

MPI_ERR_COMM non-valid communicator

MPI_ERR_CONVERSION an error occurred in a user-supplied data
conversion function

MPI_ERR_COUNT non-valid count argument

MPI_ERR_DIMS non-valid dimension argument

MPI_ERR_DISP non-valid disp argument

MPI_ERR_DUP_DATAREP conversion functions could not be registered
because a previously-defined data
representation was passed to
MPI_REGISTER_DATAREP

MPI_ERR_FILE non-valid file handle

MPI_ERR_FILE_EXISTS file exists

MPI_ERR_FILE_IN_USE file operation could not be completed
because the file is currently opened by some
task

Chapter 3. MPI subroutines and functions 157

MPI_ERROR_CLASS

158

Table 1. MPI error classes (continued)

Error classes

Description

MPI_ERR_GROUP

non-valid group

MPI_ERR_IN_STATUS

error code is in status

MPI_ERR_INFO

Info object is not valid

MPI_ERR_INFO_KEY

Info key is not valid

MPI_ERR_INFO_NOKEY

Info key is not defined

MPI_ERR_INFO_VALUE

info value is not valid

MPI_ERR_INTERN

internal MPI error

MPI_ERR_IO

other 1/0O error

MPI_ERR_LASTCODE

last standard error code

MPI_ERR_LOCKTYPE

non-valid locktype argument

MPI_ERR_NO_SPACE

not enough space

MPI_ERR_NO_SUCH_FILE

file does not exist

MPI_ERR_NOT_SAME

collective argument is not identical on all
tasks

MPI_ERR_OP

non-valid operation

MPI_ERR_OTHER

known error not provided

MPI_ERR_PENDING

pending request

MPI_ERR_QUOTA

quota exceeded

MPI_ERR_RANK

non-valid rank

MPI_ERR_READ_ONLY

read-only file or file system

MPI_ERR_REQUEST

non-valid request (handle)

MPI_ERR_RMA_CONFLICT

conflicting accesses to window

MPI_ERR_RMA_SYNC

incorrect synchronization of RMA calls

MPI_ERR_ROOT

non-valid root

MPI_ERR_SIZE

non-valid size argument

MPI_ERR_TAG

non-valid tag argument

MPI_ERR_TOPOLOGY

non-valid topology

MPI_ERR_TRUNCATE

message truncated on receive

MPI_ERR_TYPE

non-valid datatype argument

MPI_ERR_UNKNOWN

unknown error

MPI_ERR_UNSUPPORTED_DATAREP

unsupported datarep passed to
MPI_FILE_SET_VIEW

MPI_ERR_UNSUPPORTED_OPERATION

unsupported operation, such as seeking on a
file that supports only sequential access

MPI_ERR_WIN

non-valid win argument

MPI_SUCCESS

no error

Parameters

errorcode

The predefined or user-created error code returned by an MPI subroutine (IN)

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPI_ERROR_CLASS

errorclass
The predefined or user-defined error class for errorcode (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

For PE MPI, see the IBM Parallel Environment for AIX: Messages, which provides a
list of all the error messages issued, as well as the error class to which the message
belongs. Be aware that the MPI standard is not explicit enough about error classes
to guarantee that every implementation of MPI will use the same error class for
every detectable user error.

In general, the subroutine return code and the error message associated with it
provide more specific information than the error class does.

This subroutine can also return new error classes that are defined by a user
application. The meaning of such classes is determined entirely by the user who
creates them. User-defined error classes will be found only on user-created error
codes.

MPI not initialized
MPI already finalized

Related information

MPI_ADD_ERROR_CLASS
MPI_ADD_ERROR_CODE
MPI_ERROR_STRING

Chapter 3. MPI subroutines and functions 159

MPI_ERROR_STRING

MPI_ERROR_STRING, MPI_Error_string

Purpose

Returns the error string for a given error code.

C synopsis

#include <mpi.h>
int MPI_Error_string(int errorcode,char xstring,
int xresultlen);

C++ synopsis

#include mpi.h
void MPI::Get_error_string(int errorcode, charx string, int& resultlen);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_ERROR STRING(INTEGER ERRORCODE,CHARCTER STRING(*),
INTEGER RESULTLEN,INTEGER IERROR)

Description

This subroutine returns the error string for a given error code. The returned string
is null terminated with the terminating byte not counted in resultlen.

Storage for string must be at least MPI_MAX_ERROR_STRING characters long.
The number of characters actually written is returned in resultlen.

This subroutine returns an empty string (all spaces in FORTRAN, "” in C and C++)
for any user-defined error code or error class, unless the the user provides a string
using MPI_ADD_ERROR_STRING.

Parameters

errorcode
The error code returned by an MPI routine (IN)

string
The error message for the errorcode (OUT)

resultlen
The character length of string (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Invalid error code
The errorcode is not defined.

MPI not initialized
MPI already finalized
Related information
MPI_ADD_ERROR_STRING
MPI_ERROR_CLASS

160 1BM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_EXSCAN

MPI_EXSCAN, MPI_Exscan

Purpose

Performs a prefix reduction on data distributed across the group.

C synopsis

#include <mpi.h>
int MPI_Exscan(void *sendbuf, void *recvbuf, int count,
MPI Datatype datatype, MPI_Op op, MPI_Comm comm)

C++ synopsis

#include mpi.h
void MPI::Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::0p& op) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_EXSCAN(CHOICE SENDBUF, CHOICE RECVBUF, INTEGER COUNT,
INTEGER DATATYPE, INTEGER OP, INTEGER COMM, INTEGER IERROR)

Description

Use this subroutine to perform a prefix reduction operation on data distributed
across a group. The value in recvbuf on the task with rank 0 is undefined, and
recobuf is not significant on task 0. The value in recvbuf on the task with rank 1 is
defined as the value in sendbuf on the task with rank 0. For tasks with rank 7 > 1,
the operation returns, in the receive buffer of the task with rank i, the reduction of
the values in the send buffers of tasks with ranks 0 to i-1 inclusive. The type of
operations supported, their semantics, and the constraints on send and receive
buffers, are as for MPI_REDUCE.

MPI_EXSCAN is not supported for inter-communicators and does not accept
MPI_IN_PLACE.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

recvbuf
The starting address of the receive buffer (choice) (OUT)

count
The number of elements in the input buffer (integer) (IN)

datatype
The datatype of elements in the input buffer (handle) (IN)

op The reduction operation (handle) (IN)

comm
The intra-communicator (handle) (IN)

Chapter 3. MPI subroutines and functions 161

MPI_EXSCAN

162

IERROR
The FORTRAN return code. It is always the last argument.

Notes

As for MPI_SCAN, MPI does not specify which tasks can call the reduction
operation, only that the result be correctly computed. In particular, note that the
task with rank 1 need not call the MPI_Op, because all it needs to do is to receive
the value from the task with rank 0. However, all tasks, even the tasks with ranks
0 and 1, must provide the same op.

Errors

Fatal errors:

Invalid count
count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator
Unequal message lengths
Invalid use of MPI_IN_PLACE
MPI not initialized

MPI already finalized

Develop mode error if:
Inconsistent op
Inconsistent datatype

Inconsistent message length

Related information
MPI_REDUCE
MPI_SCAN

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_File_c2f

MPI_File_c2f

Purpose
Translates a C file handle into a FORTRAN handle to the same file.

C synopsis

#include <mpi.h>
MPI_Fint MPI_File c2f(MPI File file);

Description

This function does not have C++ or FORTRAN bindings. MPI_File_c2f translates a
C file handle into a FORTRAN handle to the same file. This function maps a null
handle into a null handle and a non-valid handle into a non-valid handle. The
converted handle is returned as the function’s value. There is no error detection or
return code.

Parameters

file
The file (handle) (IN)

Errors

None.

Related information
MPI _File f2c

Chapter 3. MPI subroutines and functions 163

MPI_FILE_CALL_ERRHANDLER

MPI_FILE_CALL_ERRHANDLER, MPI_File_call_errhandler

164

Purpose

Calls the error handler assigned to the file with the error code supplied.

C synopsis

#include <mpi.h>
int MPI_File_call_errhandler (MPI File fh, int errorcode);

C++ synopsis

#incTude mpi.h
void MPI::File::Call_errhandler(int errorcode) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_CALL_ERRHANDLER(INTEGER FH, INTEGER ERRORCODE, INTEGER IERROR)

Description

This subroutine calls the error handler assigned to the file with the error code
supplied.

Parameters

Notes

fh The file with the error handler (handle) (IN)

errorcode
The error code (integer) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

MPI_FILE_CALL_ERRHANDLER returns MPI_SUCCESS in C and C++ and the
same value in IERROR if the error handler was successfully called (assuming the
error handler itself is not fatal).

The default error handler for files is MPI_ERRORS_RETURN. Thus, calling
MPI_FILE_CALL_ERRHANDLER will be transparent if the default error handler
has not been changed for this file or on the parent before the file was created.
When a predefined error handler is used on fh, the error message printed by PE
MPI is a specific PE MPI error message that will indicate the error code that is
passed in. You cannot force PE MPI to issue a caller-chosen predefined error by
passing its error code to this subroutine.

Error handlers should not be called recursively with
MPI_FILE_CALL_ERRHANDLER. Doing this can create a situation where an
infinite recursion is created. This can occur if MPI_FILE_CALL_ERRHANDLER is
called inside an error handler.

Error codes and classes are associated with a task, so they can be used in any error
handler. An error handler should be prepared to deal with any error code it is
given. Furthermore, it is good practice to call an error handler only with the
appropriate error codes. For example, file errors would normally be sent to the file
error handler.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors

Invalid error code
The errorcode is not defined.

Invalid file handle
MPI not initialized
MPI already finalized

Related information
MPI_ERRHANDLER_FREE
MPI_FILE_ CREATE_ERRHANDLER
MPI_FILE_ GET_ERRHANDLER
MPI_FILE_SET _ERRHANDLER

MPI_FILE_CALL_ERRHANDLER

Chapter 3. MPI subroutines and functions

165

MPI_FILE_CLOSE

MPI_FILE_CLOSE, MPI_File_close

Purpose

Closes the file referred to by its file handle fh. It may also delete the file if the
appropriate mode was set when the file was opened.

C synopsis

#include <mpi.h>
int MPI_File_close (MPI File =*fh);

C++ synopsis

#incTude mpi.h
void MPI::File::Close();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE CLOSE(INTEGER FH,INTEGER IERROR)

Description

MPI_FILE_CLOSE closes the file referred to by fl and deallocates associated
internal data structures. This is a collective operation. The file is also deleted if
MPI_MODE_DELETE_ON_CLOSE was set when the file was opened. In this
situation, if other tasks have already opened the file and are still accessing it
concurrently, these accesses will proceed normally, as if the file had not been
deleted, until the tasks close the file. However, new open operations on the file
will fail. If I/O operations are pending on fh, an error is returned to all the
participating tasks, the file is neither closed nor deleted, and fi remains a valid file
handle.

Parameters

Notes

Errors

fh The file handle of the file to be closed (handle) (INOUT)

IERROR
The FORTRAN return code. It is always the last argument.

You are responsible for making sure all outstanding nonblocking requests and split
collective operations associated with fi made by a task have completed before that
task calls MPI_FILE_CLOSE.

If you call MPI_FINALIZE before all files are closed, an error will be raised on
MPI_COMM_WORLD.

MPI_FILE_CLOSE deallocates the file handle object and sets fh to
MPI_FILE_NULL.

Fatal errors:
MPI not initialized
MPI already finalized

166 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_CLOSE

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle

Pending I/O operations (MPI_ERR_OTHER)
There are pending I/O operations

Internal close failed (MPI_ERR_I0)
An internal close operation on the file failed

Returning errors when a file is to be deleted (MPI Error Class):

Permission denied (MPI_ERR_ACCESS)
Write access to the directory containing the file is denied

File does not exist (MPI_ERR_NO_SUCH_FILE)
The file that is to be deleted does not exist

Read-only file system (MPI_ERR_READ_ONLY)
The directory containing the file resides on a read-only file system

Internal unlink failed (MPI_ERR_IO)
An internal unlink operation on the file failed

Related information
MPI_FILE_DELETE
MPI_FILE_ OPEN
MPI_FINALIZE

Chapter 3. MPI subroutines and functions 167

MPI_FILE_CREATE_ERRHANDLER

MPI_FILE_CREATE_ERRHANDLER, MPI_File_create_errhandler

168

Purpose

Registers a user-defined error handler that you can associate with an open file.

C synopsis

#include <mpi.h>
int MPI_File_create_errhandler (MPI _File errhandler fn *function,
MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h
static MPI::Errhandler MPI::File::Create_errhandler,
(MPI::File::Errhandler_fn* function);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_CREATE_ERRHANDLER(EXTERNAL FUNCTION,INTEGER ERRHANDLER,INTEGER IERROR)

Description

MPI_FILE_CREATE_ERRHANDLER registers the user routine function for use as
an MPI error handler that can be associated with a file handle. Once associated
with a file handle, MPI uses the specified error handling routine for any exception
that takes place during a call on this file handle.

Parameters

function
A user defined file error handling procedure (IN)

errhandler
An MPI error handler (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Different tasks can associate different error handlers with the same file.
MPI_ERRHANDLER_FREE is used to free any error handler.

The MPI standard specifies the following error handler prototype:
typedef void (MPI_File_errhandler_fn) (MPI File %, int *, ...);

A correct user error handler would be coded as:
void my_handler(MPI_File *fh, int *errcode,...){}

PE MPI passes additional arguments to an error handler. The MPI standard allows
this and urges an MPI implementation that does so to document the additional
arguments. These additional arguments will be ignored by fully portable user error
handlers. The extra errhandler arguments can be accessed by using the C varargs
(or stdargs) facility, but programs that do so will not port cleanly to other MPI
implementations that might have different additional arguments.

The effective prototype for an error handler in PE MPI is:

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_CREATE_ERRHANDLER

typedef void (MPI_File_errhandler_fn)
(MPI_File *fh, int *code, char *routine_ name, int *flag,
MPI_Aint *badval)

The additional arguments are:

routine_name
The name of the MPI routine in which the error occurred.

flag Set to true if badval is meaningful, set to false if not.

badval
The incorrect integer value that triggered the error.

The interpretation of badval is context-dependent, so badval is not likely to be useful
to a user error handler function that cannot identify this context. The routine_name
string is more likely to be useful.

Errors
Fatal errors:
MPI not initialized
MPI already finalized

Null function not allowed
function cannot be NULL.

Related information
MPI_ERRHANDLER_FREE
MPI_FILE_CALL_ERRHANDLER
MPI_FILE_ GET_ERRHANDLER
MPI_FILE_SET _ERRHANDLER

Chapter 3. MPI subroutines and functions 169

MPI_FILE_DELETE

MPI_FILE_DELETE, MPI_File_delete

Purpose

Deletes the file referred to by filename after pending operations on the file
complete. New operations cannot be initiated on the file.

C synopsis

#include <mpi.h>
int MPI_File_delete (char =filename,MPI Info info);

C++ synopsis

#incTude mpi.h
static void MPI::File::Delete(const charx filename, const MPI::Info& info);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE DELETE(CHARACTER«(*) FILENAME,INTEGER INFO,
INTEGER IERROR)

Description

This subroutine deletes the file referred to by filename. If other tasks have already
opened the file and are still accessing it concurrently, these accesses will proceed
normally, as if the file had not been deleted, until the tasks close the file. However,
new open operations on the file will fail. There are no hints defined for
MPI_FILE_DELETE.

Parameters

filename
The name of the file to be deleted (string) (IN)

info
An Info object specifying file hints (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Fatal errors:

MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Pathname too long (MPI_ERR_BAD_FILE)
A filename must contain less than 1024 characters.

Invalid file system type (MPI_ERR_OTHER)
filename refers to a file belonging to a file system of an unsupported type.

Invalid info (MPI_ERR_INFO)
info is not a valid Info object.

Permission denied (MPI_ERR_ACCESS)
Write access to the directory containing the file is denied.

170 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_DELETE

File or directory does not exist (MPI_ERR_NO_SUCH_FILE)
The file that is to be deleted does not exist, or a directory in the path does
not exist.

Read-only file system (MPI_ERR_READ_ONLY)
The directory containing the file resides on a read-only file system.

Internal unlink failed (MPI_ERR_IO)
An internal unlink operation on the file failed.

Related information
MPI_FILE_CLOSE

Chapter 3. MPI subroutines and functions 171

MPI_File_f2c

MPI_File_f2c

Purpose

Returns a C handle to a file.

C synopsis

#include <mpi.h>
MPI _File MPI_File f2c(MPI Fint file);

Description

This function does not have C++ or FORTRAN bindings. MPI_File_f2c returns a C
handle to a file. If file is a valid FORTRAN handle to a file, MPI_File_f2c returns a
valid C handle to that same file. If file is set to the FORTRAN value
MPI_FILE_NULL, MPI_File_f2c returns the equivalent null C handle. If file is not a
valid FORTRAN handle, MPI_File_f2c returns a non-valid C handle. The converted
handle is returned as the function’s value. There is no error detection or return
code.

Parameters

file
The file (handle) (IN)

Errors

None.

Related information
MPI_File c2f

172 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_GET_AMODE

MPI_FILE_GET_AMODE, MPI_File_get_amode

Purpose

Retrieves the access mode specified when the file was opened.

C synopsis

#include <mpi.h>

int MPI_File_get _amode (MPI _File fh,int *amode);
C++ synopsis

#incTude mpi.h
int MPI::File::Get_amode() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_AMODE(INTEGER FH,INTEGER AMODE,INTEGER IERROR)

Description

MPI_FILE_GET_AMODE lets you retrieve the access mode specified when the file
referred to by fh was opened.

Parameters
fh The file handle (handle) (IN)

amode
The file access mode used to open the file (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Related information
MPI_FILE_OPEN

Chapter 3. MPI subroutines and functions 173

MPI_FILE_GET_ATOMICITY

MPI_FILE_GET_ATOMICITY, MPI_File_get_atomicity

Purpose

Retrieves the current atomicity mode in which the file is accessed.

C synopsis

#include <mpi.h>

int MPI_File_get atomicity (MPI _File fh,int xflag);
C++ synopsis

#incTude mpi.h
bool MPI::File::Get_atomicity() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_ATOMICITY (INTEGER FH,LOGICAL FLAG,INTEGER IERROR)

Description

MPI_FILE_GET_ATOMICITY returns 1 in flag if the atomic mode is enabled for the

file referred to by fh. Otherwise, flag returns 0.

Parameters

fh The file handle (handle) (IN)

flag
TRUE if atomic mode, FALSE if non-atomic mode (logical) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The atomic mode is set to FALSE by default when the file is first opened.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Related information

MPI_FILE_OPEN
MPI_FILE_SET_ATOMICITY

174 1BM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_GET_BYTE_OFFSET

MPI_FILE_GET_BYTE_OFFSET, MPI_File_get_byte_offset

Purpose

Allows conversion of an offset.

C synopsis
#include <mpi.h>
int MPI_File_get byte offset(MPI File fh, MPI Offset offset,
MPI_Offset =*disp);
C++ synopsis

#include mpi.h
MPI::0ffset MPI::File::Get_byte offset(const MPI::0ffset disp) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET BYTE OFFSET(INTEGER FH, INTEGER(KIND=MPI OFFSET KIND) OFFSET,
INTEGER (KIND=MPI_OFFSET_KIND) DISP, INTEGER IERROR)

Description

This subroutine allows conversion of an offset, expressed as a number of
elementary datatypes from the file displacement and within the file view, to an
absolute number of bytes from the beginning of the file.

Parameters

fh The file handle (handle) (IN)

offset
The offset (integer) (IN)

disp
The absolute byte position of offset (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid offset (MPI_ERR_FILE)
offset is not a valid offset.

Related information

MPI_FILE_OPEN
MPI_FILE_SET_VIEW

Chapter 3. MPI subroutines and functions 175

MPI_FILE_GET_ERRHANDLER

MPI_FILE_GET_ERRHANDLER, MPI_File_get_errhandler

176

Purpose

Retrieves the error handler currently associated with a file handle.

C synopsis

#include <mpi.h>
int MPI_File_get_errhandler (MPI File file,MPI Errhandler xerrhandler);

C++ synopsis

#incTude mpi.h
MPI::Errhandler MPI::File::Get_errhandler() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_ERRHANDLER (INTEGER FILE,INTEGER ERRHANDLER,
INTEGER IERROR)

Description

If fh is MPI_FILE_NULL, MPI_FILE_GET_ERRHANDLER returns, in errhandler, the
default file error handler currently assigned to the calling task. If fh is a valid file
handle, MPI_FILE_GET _ERRHANDLER returns, in errhandler, the error handler
currently associated with the file handle fh. Error handlers may be different at each
task.

Parameters
fh A file handle or MPI_FILE_NULL (handle) (IN)

errhandler
The error handler currently associated with fh or the current default file error
handler (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

At MPI_INIT time, the default file error handler is MPI_ERRORS_RETURN. You
can alter the default by calling the routine MPI_FILE_SET_ERRHANDLER and
passing MPI_FILE_NULL as the file handle parameter. Any program that uses
MPI_ERRORS_RETURN should check function return codes.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Invalid file handle
fh must be a valid file handle or MPI_FILE_NULL.

Related information
MPI_ERRHANDLER_FREE
MPI_FILE CALL_ERRHANDLER

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_GET_ERRHANDLER

MPI_FILE_CREATE_ERRHANDLER
MPI_FILE_SET_ERRHANDLER

Chapter 3. MPI subroutines and functions 177

MPI_FILE_GET_GROUP

MPIL_FILE_GET_GROUP, MPI_File_get_group

Purpose
Retrieves the group of tasks that opened the file.

C synopsis

#include <mpi.h>

int MPI_File_get group (MPI File fh,MPI _Group x*group);
C++ synopsis

#incTude mpi.h
MPI::Group MPI::File::Get_group() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_GROUP (INTEGER FH,INTEGER GROUP,INTEGER IERROR)

Description

MPI_FILE_GET_GROUP lets you retrieve in group the group of tasks that opened
the file referred to by fh. You are responsible for freeing group using
MPI_GROUP_FREE.

Parameters
fh The file handle (handle) (IN)

group
The group that opened the file handle (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Related information

MPI_FILE_OPEN
MPI_GROUP_FREE

178 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_GET_INFO

MPI_FILE_GET_INFO, MPI_File_get_info

Purpose

Returns a new Info object.

C synopsis

#include <mpi.h>

int MPI_File_get_info (MPI File fh,MPI Info *info used);
C++ synopsis

#incTude mpi.h
MPI::Info MPI::File::Get_info() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_INFO (INTEGER FH,INTEGER INFO_USED,
INTEGER IERROR)

Description

This subroutine creates a new Info object containing the file hints in effect for the
file referred to by fh, and returns its handle in info_used.

Use the MPI_INFO_FREE subroutine to free info_used.

Parameters
fh The file handle (handle) (IN)

info_used
The new Info object (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

You can specify file hints using the info parameter of these subroutines:
MPI_FILE_OPEN, MPI_FILE_SET_INFO, and MPI_FILE_SET_VIEW.

If the user does not specify any file hints, MPI will assign default values to file
hints it supports.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Chapter 3. MPI subroutines and functions 179

MPI_FILE_GET_INFO

Related information
MPI_FILE_OPEN
MPI_FILE_SET INFO
MPI_FILE_SET VIEW
MPI_INFO_FREE

180 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_GET_POSITION

MPI_FILE_GET_POSITION, MPI_File_get_position

Purpose

Returns the current position of the individual file pointer relative to the current file
view.

C synopsis

#include <mpi.h>

int MPI_File_get position(MPI _File fh,MPI Offset xoffset);
C++ synopsis

#incTude mpi.h
MPI::0ffset MPI::File::Get_position() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_POSITION(INTEGER FH, INTEGER(KIND=MPI_OFFSET KIND) OFFSET,
INTEGER IERROR)

Description

This subroutine returns, in offset, the current position of the individual file pointer
relative to the current file view, in elementary datatype units.

Parameters

fh The file handle (handle) (IN).

offset
The offset of the individual file pointer (integer) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Chapter 3. MPI subroutines and functions 181

MPI_FILE_GET_POSITION_SHARED

MPI_FILE_GET_POSITION_SHARED, MPI_File_get_position_shared

Purpose

Returns the current position of the shared file pointer relative to the current file
view.

C synopsis

#include <mpi.h>

int MPI_File_get position_shared(MPI File fh,MPI Offset xoffset);
C++ synopsis

#incTude mpi.h
MPI::0ffset MPI::File::Get_position_shared() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_POSITION_SHARED(INTEGER FH, INTEGER(KIND=MPI_OFFSET KIND) OFFSET,
INTEGER IERROR)

Description

This subroutine returns, in offset, the current position of the shared file pointer
relative to the current file view, in elementary datatype units.

Parameters
fh The file handle (handle) (IN).

offset
The offset of the shared file pointer (integer) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

All tasks in the file group must use the same file view. MPI does not verify that
file views are identical.

The position returned may already be inaccurate at the time the subroutine returns
if other tasks are concurrently making calls that alter the shared file pointer. It is
the user’s responsibility to ensure that there are no race conditions between calls to
this subroutine and other calls that may alter the shared file pointer.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

182 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_GET_SIZE

MPI_FILE_GET_SIZE, MPI_File_get_size

Purpose

Retrieves the current file size.

C synopsis

#include <mpi.h>

int MPI_File_get size (MPI File fh,MPI Offset xsize);
C++ synopsis

#incTude mpi.h
MPI::0ffset MPI::File::Get_size() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_SIZE (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE,
INTEGER IERROR)

Description

MPI_FILE_GET_SIZE returns in size the current length in bytes of the open file
referred to by fh.

Parameters
fh The file handle (handle) (IN)

size
The size of the file in bytes (long long) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

You can alter the size of the file by calling the routine MPI_FILE_SET_SIZE. The
size of the file will also be altered when a write operation to the file results in
adding data beyond the current end of the file.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Internal fstat failed (MPI_ERR_IO)
An internal fstat operation on the file failed.

Related information
MPI_FILE_IWRITE_AT
MPI_FILE_SET SIZE

Chapter 3. MPI subroutines and functions 183

MPI_FILE_GET_SIZE

MPI_FILE_WRITE_AT
MPI_FILE_WRITE_AT_ALL

184 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_GET_TYPE_EXTENT

MPI_FILE_GET_TYPE_EXTENT, MPI_File_get_type_extent

Purpose

Retrieves the extent of a datatype.

C synopsis

#include <mpi.h>
int MPI_File_get type extent(MPI File fh, MPI Datatype datatype,
MPI_Aint =extent);

C++ synopsis

#include mpi.h
MPI::Aint MPI::File::Get _type extent(const MPI::Datatype& datatype) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE GET TYPE EXTENT (INTEGER FH, INTEGER DATATYPE,
INTEGER (KIND=MPI_ADDRESS_KIND) EXTENT,
INTEGER IERROR)

Description

This subroutine retrieves (in extent) the extent of datatype in the current data
representation associated with the open file referred to by fh.

Parameters

fh The file handle (handle) (IN)

datatype
The datatype (handle) (IN)

extent
The datatype extent (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Chapter 3. MPI subroutines and functions 185

MPI_FILE_GET_TYPE_EXTENT

Related information
MPI_REGISTER_DATAREP

186 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_GET_VIEW

MPI_FILE_GET_VIEW, MPI_File_get_view

Purpose

Retrieves the current file view.

C synopsis

#include <mpi.h>
int MPI_File_get view (MPI File fh,MPI Offset xdisp,
MPI Datatype *etype,MPI Datatype =*filetype,char *datarep);

C++ synopsis

#include mpi.h
void MPI::File::Get_view(MPI::0ffset& disp,MPI::Datatype& etype,
MPI::Datatype& filetype, char* datarep) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE GET_VIEW (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP,
INTEGER ETYPE,INTEGER FILETYPE,INTEGER DATAREP,INTEGER IERROR)

Description

MPI_FILE _GET_VIEW retrieves the current view associated with the open file
referred to by fh. The current view displacement is returned in disp. A reference to
the current elementary datatype is returned in etype and a reference to the current
file type is returned in filetype. The current data representation is returned in
datarep. If etype and filetype are named types, they cannot be freed. If either one is a
user-defined types, it should be freed. Use MPI_TYPE_GET_ENVELOPE to identify
which types should be freed using MPI_TYPE_FREE. Freeing the MPI_Datatype
reference returned by MPI_FILE_GET_VIEW invalidates only this reference.

Parameters

Notes

fh The file handle (handle) (IN)

disp
The displacement (long long) (OUT)

etype
The elementary datatype (handle) (OUT).

filetype
The file type (handle) (OUT).

datarep
The data representation (string) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

1. The default view is associated with the file when the file is opened. This view
corresponds to a byte stream starting at file offset 0 (zero) and using the native
data representation, which is:

disp equals 0(zero)
etype equals MPI_BYTE
filetype equals MPI_BYTE

Chapter 3. MPI subroutines and functions 187

MPI_FILE_GET_VIEW

188

Errors

datarep equals “native”
To alter the view of the file, you can call the routine MPI_FILE_SET_VIEW.

. An MPI type constructor, such as MPI_TYPE_CONTIGUOUS, creates a

datatype object within MPI and gives a handle for that object to the caller. This
handle represents one reference to the object. In PE MPI, the MPI datatypes
obtained with calls to MPL_TYPE_GET_VIEW are new handles for the existing
datatype objects. The number of handles (references) given to the user is
tracked by a reference counter in the object. MPI cannot discard a datatype
object unless MPI_TYPE_FREE has been called on every handle the user has
obtained.

The use of reference-counted objects is encouraged, but not mandated, by the
MPI standard. Another MPI implementation may create new objects instead.
The user should be aware of a side effect of the reference count approach.
Suppose aatype was created by a call to MPI_TYPE_VECTOR and used so that
a later call to MPI_TYPE_GET_VIEW returns its handle in bbtype. Because both
handles identify the same datatype object, attribute changes made with either
handle are changes in the single object. That object will exist at least until
MPI_TYPE_FREE has been called on both aatype and bbtype. Freeing either
handle alone will leave the object intact and the other handle will remain valid.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Related information

MPI_FILE_OPEN
MPI_FILE SET_VIEW
MPI_TYPE_FREE

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_IREAD

MPI_FILE_IREAD, MPI_File_iread

Purpose

Performs a nonblocking read operation.

C synopsis
#include <mpi.h>

int MPI_File_iread (MPI File fh,void xbuf, int count,
MPI Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h
MPI::Request MPI::File::Iread(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE IREAD (INTEGER FH, CHOICE BUF, INTEGER COUNT,
INTEGER DATATYPE, INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_READ. It performs the
same function as MPI_FILE_READ, except it returns immediately and stores a
request handle in request. This request handle can be used to either test or wait for
the completion of the read operation, or it can be used to cancel the read
operation. The memory buffer buf cannot be accessed until the request has
completed with a completion subroutine call. Completion of the request guarantees
that the read operation is complete.

When MPI_FILE_IREAD completes, the actual number of bytes read is stored in
the completion subroutine’s status argument. If an error occurs during the read
operation, the error is returned by the completion subroutine through its return
value or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when
all requests complete successfully or when the first I/O request fails. In the latter
case, each element of the array_of_statuses argument is updated to contain
MPI_ERR_PENDING for each request that did not yet complete. The first error
determines the outcome of the entire completion subroutine, whether the error is
on a file request or a communication request. In other words, the error handler
associated with the first failing request is triggered.

Parameters

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

request
The request object (handle) (OUT).

Chapter 3. MPI subroutines and functions 189

MPI_FILE_IREAD

190

IERROR
The FORTRAN return code. It is always the last argument.

Notes

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The
eventual call to MPI_TEST_CANCELLED on the status will show that the cancel
was unsuccessful.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument
causes PE MPI to skip filling in the status fields. By passing this value for status,
you can avoid having to allocate a status object in programs that do not need to
examine the status fields.

If an error occurs during the read operation, the number of bytes contained in the
status argument of the completion subroutine is meaningless.

For more information, see [“MPI_FILE_READ, MPI File read” on page 215

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Errors returned by the completion subroutine (MPI error class):

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_IREAD

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Related information
MPI_CANCEL
MPI_FILE_READ
MPI_TEST
MPIL_WAIT

Chapter 3. MPI subroutines and functions 191

MPI_FILE_IREAD_AT

MPI_FILE_IREAD_AT, MPI_File_iread_at

Purpose

Performs a nonblocking read operation using an explicit offset.

C synopsis

#include <mpi.h>
int MPI_File_iread_at (MPI File fh,MPI Offset offset,void *buf,
int count,MPI _Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h
MPI::Request MPI::File::Iread at(MPI::0Offset offset, void* buf,
int count, const MPI::Datatyped datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE_IREAD AT (INTEGER FH,INTEGER (KIND=MPI_OFFSET_KIND) OFFSET,

CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER REQUEST,
INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_READ_AT. It performs the
same function as MPI_FILE_READ_AT, except it returns immediately and stores a
request handle in request. This request handle can be used to either test or wait for
the completion of the read operation, or it can be used to cancel the read
operation. The memory buffer buf cannot be accessed until the request has
completed with a completion subroutine call, such as MPI_TEST, MPI_WAIT, or
one of the other MPI test or wait functions. Completion of the request guarantees

that the read operation is complete.

When MPI_FILE_IREAD_AT completes, the actual number of bytes read is stored
in the completion subroutine’s status argument. If an error occurs during the read
operation, the error is returned by the completion subroutine through its return
value or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when
all requests complete successfully or when the first I/O request fails. In the latter
case, each element of the array_of statuses argument is updated to contain
MPI_ERR_PENDING for each request that did not yet complete. The first error
determines the outcome of the entire completion subroutine, whether the error is
on a file request or a communication request. In other words, the error handler

associated with the first failing request is triggered.

Parameters
fh The file handle (handle) (IN).

offset
The file offset (long long) (IN).

buf
The initial address of buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

192 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPI_FILE_IREAD_AT

datatype
The datatype of each buffer element (handle) (IN).

request
The request object (handle) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The
eventual call to MPI_TEST CANCELLED on the status will show that the cancel
was unsuccessful.

Note that when you specify a value for the offset argument, constants of the
appropriate type should be used. In FORTRAN, constants of type
INTEGER(KIND=8) should be used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument
causes PE MPI to skip filling in the status fields. By passing this value for status,
you can avoid having to allocate a status object in programs that do not need to
examine the status fields.

If an error occurs during the read operation, the number of bytes contained in the
status argument of the completion subroutine is meaningless.

For more information, see [‘MPI_FILE_READ_AT, MPI_File_read_at” on page 223

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Chapter 3. MPI subroutines and functions 193

MPI_FILE_IREAD_AT

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Errors returned by the completion subroutine (MPI error class):

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Related information
MPI_CANCEL
MPI_FILE READ_AT
MPI_TEST
MPI_WAIT

194 1BM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_IREAD_SHARED

MPI_FILE_IREAD_SHARED, MPI_File_iread_shared

Purpose

Performs a nonblocking read operation using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_iread_shared (MPI File fh,void xbuf, int count,
MPI Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h
MPI::Request MPI::File::Iread_shared(void* buf, int count,
const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_IREAD_SHARED (INTEGER FH, CHOICE BUF, INTEGER COUNT,
INTEGER DATATYPE, INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_READ_SHARED. It
performs the same function as MPI_FILE_READ_SHARED, except it returns
immediately and stores a request handle in request. This request handle can be
used to either test or wait for the completion of the read operation, or it can be
used to cancel the read operation. The memory buffer buf cannot be accessed until
the request has completed with a completion subroutine call, such as MPI_TEST,
MPI_WALIT, or one of the other MPI test or wait functions. Completion of the
request guarantees that the read operation is complete.

When MPI_FILE_IREAD_SHARED completes, the actual number of bytes read is
stored in the completion subroutine’s status argument. If an error occurs during the
read operation, the error is returned by the completion routine through its return
value or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when
all requests complete successfully or when the first I/O request fails. In the latter
case, each element of the array_of_statuses argument is updated to contain
MPI_ERR_PENDING for each request that did not yet complete. The first error
determines the outcome of the entire completion subroutine, whether the error is
on a file request or a communication request. In other words, the error handler
associated with the first failing request is triggered.

Parameters
fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

Chapter 3. MPI subroutines and functions 195

MPI_FILE_IREAD_SHARED

request
The request object (handle) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The
eventual call to MPI_TEST CANCELLED on the status will show that the cancel
was unsuccessful.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument
causes PE MPI to skip filling in the status fields. By passing this value for status,
you can avoid having to allocate a status object in programs that do not need to
examine the status fields.

If an error occurs during the read operation, the number of bytes contained in the
status argument of the completion subroutine is meaningless.

For more information, see [“MPI_FILE_ READ SHARED, MPI File read_shared” on|

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Errors returned by the completion subroutine (MPI error class):

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

196 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_IREAD_SHARED

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Related information
MPI_CANCEL
MPI_FILE_ READ_SHARED
MPI_TEST
MPIL_WAIT

Chapter 3. MPI subroutines and functions 197

MPI_FILE_IWRITE

MPI_FILE_IWRITE, MPI_File_iwrite

198

Purpose

Performs a nonblocking write operation.

C synopsis

#include <mpi.h>
int MPI_File_iwrite (MPI_File fh, void *buf, int count,
MPI Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h
MPI::Request MPI::File::Iwrite(const void* buf, int count,
const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_IWRITE(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_WRITE. It performs the
same function as MPI_FILE_WRITE, except it returns immediately and stores a
request handle in request. This request handle can be used to either test or wait for
the completion of the write operation or it can be used to cancel the write
operation. The memory buffer buf cannot be modified until the request has
completed with a completion subroutine call, such as MPI_TEST, MPI_WAIT, or
one of the other MPI test or wait functions.

When MPI_FILE_IWRITE completes, the actual number of bytes written is stored
in the completion subroutine’s status argument. If an error occurs during the write
operation, the error is returned by the completion subroutine through its return
code or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when
all requests complete successfully or when the first I/O request fails. In the latter
case, each element of the array_of statuses argument is updated to contain
MPI_ERR_PENDING for each request that did not yet complete. The first error
determines the outcome of the entire completion subroutine whether the error is
on a file request or a communication request. In other words, the error handler
associated with the first failing request is triggered.

Parameters

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPI_FILE_IWRITE

request
The request object (handle) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Completion of the request does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The
eventual call to MPI_TEST _CANCELLED on the status will show that the cancel
was unsuccessful.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument
causes PE MPI to skip filling in the status fields. By passing this value for status,
you can avoid having to allocate a status object in programs that do not need to
examine the status fields.

If an error occurs during the write operation, the number of bytes contained in the
status argument of the completion subroutine is meaningless.

For more information, see [“MPI_FILE_WRITE, MPI_File_write” on page 257.|

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Chapter 3. MPI subroutines and functions 199

MPI_FILE_IWRITE

Errors returned by the completion subroutine (MPI error class):

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)
The file has reached the maximum size allowed.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Related information
MPI_CANCEL
MPI_FILE_WRITE
MPI_TEST
MPI_WAIT

200 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_IWRITE_AT

MPI_FILE_IWRITE_AT, MPI_File_iwrite_at

Purpose

Performs a nonblocking write operation using an explicit offset.

C synopsis
#include <mpi.h>

int MPI_File_iwrite_at (MPI _File fh,MPI _Offset offset,void *buf,
int count,MPI Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h
MPI::Request MPI::File::Iwrite_at(MPI::0ffset offset, const void* buf,
int count, const MPI::Datatyped datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE_IWRITE_AT(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,
CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER REQUEST,
INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_WRITE_AT. It performs
the same function as MPI_FILE_WRITE_AT, except it returns immediately and
stores a request handle in request. This request handle can be used to either test or
wait for the completion of the write operation or it can be used to cancel the write
operation. The memory buffer buf cannot be modified until the request has
completed with a completion subroutine call, such as MPI_TEST, MPI_WAIT, or
one of the other MPI test or wait functions.

When MPI_FILE_IWRITE_AT completes, the actual number of bytes written is
stored in the completion subroutine’s status argument. If an error occurs during the
write operation, the error is returned by the completion subroutine through its
return code or in the appropriate element of the array_of statuses argument.

If the completion subroutine is associated with multiple requests, it returns when
all requests complete successfully or when the first I/O request fails. In the latter
case, each element of the array_of_statuses argument is updated to contain
MPI_ERR_PENDING for each request that did not yet complete. The first error
determines the outcome of the entire completion subroutine whether the error is
on a file request or a communication request. In other words, the error handler
associated with the first failing request is triggered.

Parameters
fh The file handle (handle) (INOUT).

offset
The file offset (long long) (IN).

buf
The initial address of buffer (choice) (IN).

count
The number of elements in buffer (integer) (IN).

Chapter 3. MPI subroutines and functions 201

MPI_FILE_IWRITE_AT

Notes

Errors

datatype
The datatype of each buffer element (handle) (IN).

request
The request object (handle) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Completion of the request does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The
eventual call to MPI_TEST_CANCELLED on the status will show that the cancel
was unsuccessful.

Note that when you specify a value for the offset argument, constants of the
appropriate type should be used. In FORTRAN, constants of type
INTEGER(KIND=8) should be used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument
causes PE MPI to skip filling in the status fields. By passing this value for status,
you can avoid having to allocate a status object in programs that do not need to
examine the status fields.

If an error occurs during the write operation, the number of bytes contained in the
status argument of the completion subroutine is meaningless.

For more information, see [“MPI_FILE_WRITE_AT, MPI_File_write_at” on page 266

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

202 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_IWRITE_AT

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Errors returned by the completion subroutine (MPI error class):

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)
The file has reached the maximum size allowed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Related information
MPI_FILE_CANCEL
MPI_FILE_TEST
MPI_FILE WAIT
MPI_FILE_ WRITE_AT

Chapter 3. MPI subroutines and functions 203

MPI_FILE_IWRITE_SHARED

MPI_FILE_IWRITE_SHARED, MPI_File_iwrite_shared

204

Purpose

Performs a nonblocking write operation using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_iwrite_shared (MPI _File fh,void xbuf, int count,
MPI Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h
MPI::Request MPI::File::Iwrite_shared(const void* buf, int count,
const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_IWRITE_SHARED (INTEGER FH, CHOICE BUF, INTEGER COUNT,
INTEGER DATATYPE, INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_WRITE_SHARED. It
performs the same function as MPI_FILE_ WRITE_SHARED, except it returns
immediately and stores a request handle in request. This request handle can be
used to either test or wait for the completion of the write operation, or it can be
used to cancel the write operation. The memory buffer buf cannot be modified
until the request has completed with a completion subroutine call, such as
MPI_TEST, MPI_WAIT, or one of the other MPI test or wait functions.

When MPI_FILE_IWRITE_SHARED completes, the actual number of bytes written
is stored in the completion subroutine’s status argument. If an error occurs during
the write operation, the error is returned by the completion routine through its
return value or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when
all requests complete successfully or when the first I/O request fails. In the latter
case, each element of the array_of statuses argument is updated to contain
MPI_ERR_PENDING for each request that did not yet complete. The first error
determines the outcome of the entire completion subroutine, whether the error is
on a file request or a communication request. In other words, the error handler
associated with the first failing request is triggered.

Parameters
fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPI_FILE_IWRITE_SHARED

request
The request object (handle) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Completion of the request does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The
eventual call to MPI_TEST _CANCELLED on the status will show that the cancel
was unsuccessful.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument
causes PE MPI to skip filling in the status fields. By passing this value for status,
you can avoid having to allocate a status object in programs that do not need to
examine the status fields.

If an error occurs during the read operation, the number of bytes contained in the
status argument of the completion subroutine is meaningless.

For more information, see f’MPI_FILE_WRITE_SHARED, MPI_File_write_shared”|

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Errors returned by the completion subroutine (MPI error class):

Chapter 3. MPI subroutines and functions 205

MPI_FILE_IWRITE_SHARED

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)
The file has reached the maximum size allowed.

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Related information
MPI_CANCEL
MPI_FILE_ WRITE_SHARED
MPI_TEST
MPI_WAIT

206 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_OPEN

MPI_FILE_OPEN, MPI_File_open

Purpose
Opens a file.

C synopsis

#include <mpi.h>
int MPI_File_open (MPI_Comm comm,char =filename,int amode,
MPI_Info info, MPI File *fh);

C++ synopsis

#include mpi.h
static MPI::File MPI::File::0pen(const MPI::Intracommé comm, const char* filename,
int amode, const MPI::Info& info);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_OPEN(INTEGER COMM,CHARACTER FILENAME(*),INTEGER AMODE,
INTEGER INFO,INTEGER FH,INTEGER IERROR)

Description

MPI_FILE_OPEN opens the file referred to by filename, sets the default view on the
file, and sets the access mode amode. MPI_FILE_OPEN returns a file handle fh used
for all subsequent operations on the file. The file handle fh remains valid until the
file is closed (MPI_FILE_CLOSE). The default view is similar to a linear byte
stream in the native representation starting at file offset 0. You can call
MPI_FILE_SET_VIEW to set a different view of the file. Though most I/O can be
done with the default file view, much of the optimization MPI-IO can provide
depends on the effective use of appropriate user-defined file views.

MPI_FILE_OPEN is a collective operation. comm must be a valid
intra-communicator. Values specified for amode by all participating tasks must be
identical. Participating tasks must refer to the same file through their own
instances of filename.

The following access modes (specified in amode), are supported:
MPI_MODE_APPEND - set initial position of all file pointers to end of file
MPI_MODE_CREATE - create the file if it does not exist
MPI_MODE_DELETE_ON_CLOSE - delete file on close
MPI_MODE_EXCL - raise an error if the file already exists and
MPI_MODE_CREATE is specified
MPI_MODE_RDONLY - read only
MPI_MODE_RDWR - reading and writing
MPI_MODE_SEQUENTIAL - file will only be accessed sequentially
MPI_MODE_UNIQUE_OPEN - file will not be concurrently opened elsewhere
MPI_MODE_WRONLY - write only

MPI_MODE_UNIQUE_OPEN allows PE MPI-IO to use an optimization that is not
possible when a file may be shared by other jobs. The optimization is more likely
to help with read performance than with write performance. If it is known that the

file will not be shared, try using MPI_MODE_UNIQUE_OPEN.

In C and C++: You can use bit vector OR to combine these integer constants.

Chapter 3. MPI subroutines and functions 207

MPI_FILE_OPEN

In FORTRAN: You can use the bit vector IOR intrinsic to combine these integers.
If addition is used, each constant should appear only once.

File hints can be associated with a file when it is being opened. MPI_FILE_OPEN
ignores the hint value if it is not valid. Any Info key, value pair the user provides
will either be accepted or ignored. There will never be an error returned or change
in semantic as a result of a hint.

File Hints

lists the supported file hints or info keys. There are restrictions on which file
hints can be used simultaneously, and on when and under what circumstances a
hint value can be set or used. In general, if a hint is specified in a circumstance
where it is not supported, it will be ignored. Use the MPI_FILE_GET_INFO routine
to verify the set of hints in effect for a file.

Table 2. Supported file hints

Hint name Description

filename Default value: The file name specified by MPI_FILE_OPEN.
Valid values: Not applicable
Subroutines you can use to set it: This hint cannot be set with an Info object. The
hint value is taken from the file name specified by the filename parameter of the
MPI_FILE_OPEN subroutine.
Value consistency requirement: Not applicable
Notes: This hint can be retrieved only by the MPI_FILE_GET_INFO subroutine.

file_perm Default value: 644 if specified by MPI_FILE_OPEN with a mode of
MPI_MODE_CREATE; otherwise, the value reflects the access permissions
associated with the file.
Valid values: Octal values 000 through 777
Subroutines you can use to set it: MPI_FILE_OPEN
Value consistency requirement: Consistent values are required at all participating
tasks
Notes:

This hint can be specified in the Info object when calling MPI_FILE_OPEN with
the mode MPI_MODE_CREATE enabled in order to set the access permissions of
the file to be created.

This hint can also be retrieved when the MPI_FILE_GET_INFO subroutine is
called, and its value then represents the access permissions associated with the
file.

The hint value is expressed as a three-digit octal number, similar to the format
used by the numeric mode of the chmod shell command. The value is the sum of
the following values:

400 permits read by owner
200 permits write by owner
100 permits execute by owner

040 permits read by group
020 permits write by group
010 permits execute by group
004 permits read by others
002 permits write by others
001 permits execute by others

208 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_OPEN

Table 2. Supported file hints (continued)

Hint name

Description

IBM_io_buffer_size

Default value: number of bytes corresponding to 16 file blocks

Valid values: any positive value up to 128 MB. The size can be expressed either as
a number of bytes, or as a number of kilobytes (KB), using the letter K or k as the
suffix, or as a number of megabytes (MB), using the letter M or m as the suffix
Subroutines you can use to set it: MPI_FILE_OPEN, or, if there is no pending
1/0 operation: MPI_FILE_SET_INFO or MPI_FILE_SET_VIEW

Value consistency requirement: Consistent values are required at all participating
tasks

Notes: This hint specifies the size that is used to stripe the file across I/O agents
in round-robin style. In general, one I/O agent is associated with each MPI task.
However, if the MP_IONODEFILE environment variable or the poe -ionodefile
command is used, one I/O agent is associated with each task running on any of
the nodes specified in the file referred to by MP_IONODEFILE or -ionodefile.

PE MPI rounds up the number of bytes specified to an integral number of file
blocks. The size of a file block is returned in the st_blksize field of the struct stat
argument passed to the stat or fstat routine. For example, if IBM_io_buffer_size has
a value of 23240, all data access operations on a file that belongs to a GPFS file
system with a block size of 16KB will be performed as follows: the first 32KB of
the file will be handled by the first I/O agent, all data access operations to the
next 32KB of the file will be handled by the second I/O agent, and so on.
Increasing the IBM_io_buffer_size value can improve performance when using large
files, where large refers to hundreds of megabytes, particularly if the program uses
collective data access operations.

This hint applies only when the IBM_largeblock_io hint has a value of false. When
IBM_largeblock_io is enabled, data striping across I/O agents is not performed.

IBM_largeblock_io

Default value: false

Valid values: switchable, true, false

Subroutines you can use to set it: MPI_FILE_OPEN, or, if there is no pending
1/0O operation: MPI_FILE_SET_INFO or MPI_FILE_SET_VIEW

Value consistency requirement: Consistent values are required at all participating
tasks

Notes: Examples of applications that should benefit from using this hint are those
in which each task accesses a large, contiguous chunk of the file, or in which the
file is divided into distinct regions that are accessed by separate tasks. The hint
value switchable, which can be specified only when calling MPI_FILE_OPEN,
indicates that the hint value can be toggled between true and false until the file is
closed. If the hint is specified as switchable on the call to MPI_FILE_OPEN, the
hint value is set to false and can be toggled on calls to MPI_FILE_SET_INFO or
MPI_FILE_SET_VIEW. If the hint is specified as true or false on the call to
MPI_FILE_OPEN, the hint value cannot be changed by either
MPI_FILE_SET_INFO or MPI_FILE_SET_VIEW. This hint can be used only if all
tasks are being used for I/O: either the MP_IONODEFILE environment variable
is not set, or it specifies a file that lists all nodes on which the application is
running. For JFS files, this hint can be set only if all tasks are running on the same
node.

Chapter 3. MPI subroutines and functions 209

MPI_FILE_OPEN

Table 2. Supported file hints (continued)

Hint name

Description

IBM_sparse_access

Lets you specify the future file access pattern of the application for the associated file.
Specifically, you can specify whether the file access requests from participating tasks
are sparse (the value is set to true) or dense (the value is set to false).
Default value: false
Valid values: true, false
Subroutines you can use to set it: MPI_FILE_OPEN, MPI_FILE_SET_INFO,
MPI_FILE_SET_VIEW
Value consistency requirement: Consistent values are required at all participating
tasks
Notes: In cases where each single MPI collective read or write operation touches
most of the sections in a fairly large region of a file, this hint will not help. In
cases where the entire range of each collective read or write is relatively small or,
if the range is large and only widely-separated bits of the file are touched, this
hint may improve performance. In this context, "section” refers to either the
default or explicitly set IBM_io_buffer_size and "large” begins somewhere near
(IBM_io_buffer_size multiplied by sizeof(MPI_ COMM_WORLD)).

Parameters

Notes

comm
The communicator (handle) (IN)

filename
The name of the file to open (string) (IN)

amode
The file access mode (integer) (IN)

info
The Info object (handle) (IN)

fh The new file handle (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

When you open a file, the atomicity is set to false.

If you call MPI_FINALIZE before all files are closed, an error will be raised on
MPI_COMM_WORLD.

Parameter consistency checking is performed only if the environment variable
MP_EUIDEVELORP is set to yes. If this variable is set and the amodes specified are
not identical, the error Inconsistent amodes will be raised on some tasks. Similarly,
if this variable is set and the file inodes associated with the file names are not
identical, the error Inconsistent file inodes will be raised on some tasks. In either
case, the error Consistency error occurred on another task will be raised on the
other tasks.

MPI-1O in PE MPI is targeted to the IBM General Parallel File System (GPFS) for
production use. File access through MPI-IO normally requires that a single GPFS
file system image be available across all tasks of an MPI job. PE MPI with MPI-IO
can be used for program development on any other file system that supports a
POSIX interface (AFS®, DFS™, JES, or NFS) as long as all tasks run on a single
node or workstation. This is not expected to be a useful model for production use

210 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors

MPI_FILE_OPEN

of MPI-IO. PE MPI can be used without all nodes on a single file system image by
using the MP_IONODEFILE environment variable. See IBM Parallel Environment
for AIX: Operation and Use, Volume 1 for information about MP_IONODEFILE.

When MPI-IO is used correctly, a file name will refer to the same file system at
every task. In one detectable error situation, a file will appear to be on different file
system types. For example, a particular file could be visible to some tasks as a
GPFS file and to others as NFS-mounted.

The default for MP_CSS_INTERRUPT is no. If you do not override the default,
MPI-1O enables interrupts while files are open. If you have forced interrupts to yes
or no, MPI-IO does not alter your selection.

MPI-IO depends on hidden threads that use MPI message passing. MPI-IO cannot
be used with MP_SINGLE_THREAD set to yes.

For AFS, DFS, and NFS, MPI-IO uses file locking for all accesses by default. If
other tasks on the same node share the file and also use file locking, file
consistency is preserved. If the MPI_FILE_OPEN is done with mode
MPI_MODE_UNIQUE_OPEN, file locking is not done.

Because the actual file I/O is carried out by agent threads spread across all tasks of
the job, hand-coded "optimizations” based on an assumption that I/O occurs at the
task making the MPI-IO call are more likely to do harm than good. If this kind of
optimization is done, set the IBM_largeblock_io hint to true. This will shut off the
shipping of data to agents and cause file I/O to be done by the calling task.

Fatal errors:
MPI not initialized
MPI already finalized

Invalid communicator
comm is not a valid communicator.

Can’t use an inter-communicator
comm is an inter-communicator.

Conflicting collective operations on communicator

Internal stat failed (MPI_ERR_IO)
An internal stat operation on the file failed.

Returning errors (MPI error class):

Pathname too long (MPI_ERR_BAD_FILE)
File name must contain less than 1024 characters.

Invalid access mode (MPI_ERR_AMODE)
amode is not a valid access mode.

Invalid file system type (MPI_ERR_OTHER)
filename refers to a file belonging to a file system of an unsupported type.

Invalid info (MPI_ERR_INFO)
info is not a valid Info object.

Invalid file handle

Chapter 3. MPI subroutines and functions 211

MPI_FILE_OPEN

Locally detected error occurred on another task (MPI_ERR_ARG)
Local parameter check failed on other tasks.

Inconsistent file inodes (MPI_ERR_NOT_SAME)
Local filename corresponds to a file inode that is not consistent with that
associated with the filename of other tasks.

Inconsistent file system types (MPI_ERR_NOT_SAME)
Local file system type associated with filename is not identical to that of
other tasks.

Inconsistent amodes (MPI_ERR_NOT_SAME)
Local amode is not consistent with the amode of other tasks.

Consistency error occurred on another task (MPI_ERR_ARG)
Consistency check failed on other tasks.

Permission denied (MPI_ERR_ACCESS)
Access to the file was denied.

File already exists (MPI_ERR_FILE_EXISTS)
MPI_MODE_CREATE and MPI_MODE_EXCL are set and the file exists.

File or directory does not exist (MPI_ERR_NO_SUCH_FILE)
The file does not exist and MPI_MODE_CREATE is not set, or a directory
in the path does not exist.

Not enough space in file system (MPI_ERR_NO_SPACE)
The directory or the file system is full.

File is a directory (MPI_ERR_BAD_FILE)
The file is a directory.

Read-only file system (MPI_ERR_READ_ONLY)
The file resides in a read-only file system and write access is required.

Internal open failed (MPI_ERR_IO)
An internal open operation on the file failed.

Internal fstat failed (MPI_ERR_IO)
An internal fstat operation on the file failed.

Internal fstatvfs failed (MPI_ERR_IO)
An internal fstatvfs operation on the file failed.

Related information
MPI_FILE _CLOSE
MPI_FILE_SET VIEW
MPI_FINALIZE

212 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_PREALLOCATE

MPI_FILE_PREALLOCATE, MPI_File_preallocate

Purpose

Ensures that storage space is allocated for the first size bytes of the file associated
with fh.

C synopsis

#include <mpi.h>
int MPI_File_preallocate (MPI File fh, MPI Offset size);

C++ synopsis

#incTude mpi.h
void MPI::File::Preallocate(MPI::0ffset size);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE PREALLOCATE(INTEGER FH, INTEGER SIZE, INTEGER IERROR)

Description

This subroutine ensures that storage space is allocated for the first size bytes of the
file associated with fh. MPI_FILE_ PREALLOCATE is collective; all tasks in the
group must pass identical values for size. Regions of the file that have previously
been written are unaffected. For newly-allocated regions of the file,
MPI_FILE_PREALLOCATE has the same effect as writing undefined data. If size is
larger than the current file size, the file size increases to size. If size is less than or
equal to the current file size, the file size is unchanged. The treatment of file
pointers, pending nonblocking accesses, and file consistency, is the same as with
MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when the
file was opened, it is erroneous to call this subroutine.

Parameters
fh The file handle (handle) (INOUT)

size
The size to preallocate the file (integer) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

GPFS handles this operation efficiently; this may not be true for other file systems.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning Errors:

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Chapter 3. MPI subroutines and functions 213

MPI_FILE_PREALLOCATE

214

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Pending I/O operations (MPI_ERR_OTHER)
There are pending I/O operations.

Invalid file size (MPI_ERR_ARG)
size is a negative value.

Locally detected error occurred on another task (MPI_ERR_OTHER)
A local parameter check failed on one or more other tasks.

Inconsistent file sizes (MPI_ERR_NOT_SAME)
The local size is not consistent with the file size on other tasks.

Consistency error occurred on another task (MPI_ERR_OTHER)
A consistency check failed on one or more other tasks.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Internal gpfs_prealloc failed (MPI_ERR_IO)
An internal gpfs_prealloc operation on the file failed.

Internal fstat failed (MPI_ERR_IO)
An internal fstat operation failed.

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Related information

MPI_FILE_SET_SIZE

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ

MPI_FILE_READ, MPI_File_read

Purpose

Reads from a file.

C synopsis

#include <mpi.h>
int MPI_File_read (MPI File fh, void xbuf, int count,
MPI Datatype datatype,MPI_Status =*status);

C++ synopsis

#include mpi.h
void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,
MPI::Status& status);

#include mpi.h
void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_READ(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine tries to read, from the file referred to by fh, count items of type
datatype into the buffer buf, starting at the current file location as determined by the
value of the individual file pointer. The call returns only when data is available in
buf. status contains the number of bytes successfully read. You can use accessor
functions MPI_GET_COUNT and MPI_GET_ELEMENTS to extract from status the
number of items and the number of intrinsic MPI elements successfully read,
respectively. You can check for a read beyond the end-of-file condition by
comparing the number of items requested with the number of items actually read.

Parameters

Notes

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

Chapter 3. MPI subroutines and functions 215

MPI_FILE_READ

If an error is raised, the number of bytes contained in the status argument is
meaningless.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Invalid status ignore value

Related information
MPI_FILE_IREAD
MPI_FILE_READ_ALL
MPI_FILE READ_ALL_BEGIN
MPI_FILE READ_ALL_END

216 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_ALL

MPI_FILE_READ_ALL, MPI_File_read_all

Purpose

Reads from a file collectively.

C synopsis

#include <mpi.h>
int MPI_File_read_all (MPI _File fh, void xbuf, int count,
MPI Datatype datatype,MPI_Status =*status);

C++ synopsis

#include mpi.h
void MPI::File::Read all(void* buf, int count, const MPI::Datatype& datatype,
MPI::Status& status);

#include mpi.h
void MPI::File::Read all(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_READ_ALL(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine is the collective version of MPI_FILE_READ. It performs the same
function as MPI_FILE_READ. The number of bytes actually read by the calling
task is stored in status. The call returns when the data requested by the calling task
is available in buf. The call does not wait for accesses from other tasks associated
with the file handle fh to have data available in their buffers.

Parameters

Notes

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is
meaningless.

Chapter 3. MPI subroutines and functions 217

MPI_FILE_READ_ALL

218

For more information, see ["MPI_FILE_READ, MPI_File_read” on page 215|

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

MPI_FILE_IREAD
MPI_FILE_READ

MPI_FILE_ READ_ALL_BEGIN
MPI_FILE_READ_ALL_END

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_ALL_BEGIN

MPI_FILE_READ_ALL_BEGIN, MPI_File_read_all_begin

Purpose

Initiates a split collective read operation from a file.

C synopsis

#include <mpi.h>
int MPI_File_read_all_begin (MPI File fh, void xbuf, int count,
MPI Datatype datatype);

C++ synopsis

#include mpi.h
void MPI::File::Read_all _begin(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE READ ALL BEGIN (INTEGER FH, CHOICE BUF, INTEGER COUNT,
INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the
matching end subroutine (MPI_FILE_READ_ALL_END), produces an equivalent
result to that of the collective routine MPI_FILE_ READ_ALL.

This subroutine returns immediately.

Begin operations are collective over the group of tasks that participated in the
collective open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer
passed to a begin subroutine while the operation is outstanding. The operation
must be completed with an end subroutine before it is safe to access, reuse, or free
the buffer.

Parameters

Notes

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Chapter 3. MPI subroutines and functions 219

MPI_FILE_READ_ALL_BEGIN

220

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective read operation, an
MPI_FILE_READ_ALL on one task does not match an
MPI_FILE_READ_ALL_BEGIN and MPI_FILE READ_ALL_END pair on another
task.

The begin and end subroutines must be called from the same thread.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Related information

MPI_FILE READ_ALL
MPI_FILE_READ_ALL_END

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_ALL_END

MPI_FILE_READ_ALL_END, MPI_File_read_all_end

Purpose

Completes a split collective read operation from a file.

C synopsis

#include <mpi.h>
int MPI_File_read_all_end(MPI File fh,void *buf,MPI Status xstatus);

C++ synopsis

#incTude mpi.h
void MPI::File::Read_all_end(void* buf);

#include mpi.h
void MPI::File::Read all _end(void* buf, MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE READ_ALL END(INTEGER FH,CHOICE BUF,INTEGER STATUS(MPI_STATUS SIZE),
INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching
begin subroutine (MPI_FILE_READ_ALL_BEGIN). Combined with the begin
routine, it produces an equivalent result to that of the collective routine
MPI_FILE_READ_ALL.

End calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations. Each end call matches
the preceding begin call for the same collective operation. When an end call is
made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the data to be read is available in the user’s
buffer. The call does not wait for accesses from other tasks associated with the file

handle to have data available in their user’s buffers.

The number of bytes actually read by the calling task is stored in status.

Parameters

Notes

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Chapter 3. MPI subroutines and functions 221

MPI_FILE_READ_ALL_END

222

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective read operation, an
MPI_FILE_READ_ALL on one task does not match an
MPI_FILE_READ_ALL_BEGIN and MPI_FILE READ_ALL_END pair on another
task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)
The end phase of a split collective data access operation is attempted while
there is no pending split collective data access operation.

Internal 1seek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

MPI_FILE_ READ_ALL
MPI_FILE READ_ALL_BEGIN

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_AT

MPI_FILE_READ_AT, MPI_File_read_at

Purpose

Reads from a file using an explicit offset.

C synopsis
#include <mpi.h>

int MPI_File_read_at (MPI File fh,MPI Offset offset,void *buf,
int count,MPI Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h
void MPI::File::Read at(MPI::0ffset offset, void* buf, int count,
const MPI::Datatype& datatype);

#include mpi.h
void MPI::File::Read_at(MPI::0ffset offset, void* buf, int count,
const MPI::Datatyped datatype, MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE READ AT(INTEGER FH,INTEGER(KIND=MPI OFFSET KIND) OFFSET,
CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine tries to read, from the file referred to by fh, count items of type
datatype into the buffer buf, starting at offset, relative to the current view. The call
returns only when data is available in buf. status contains the number of bytes
successfully read. You can use accessor functions MPI_GET_COUNT and
MPI_GET_ELEMENTS to extract from status the number of items and the number
of intrinsic MPI elements successfully read, respectively. You can check for a read
beyond the end of file condition by comparing the number of items requested with
the number of items actually read.

Parameters

fh The file handle (handle) (IN).

offset
The file offset (long long) (IN).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions 223

MPI_FILE_READ_AT

224

Notes

Errors

When you specify a value for the offset argument, constants of the appropriate type
should be used. In FORTRAN, constants of type INTEGER(KIND=8) should be
used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is
meaningless.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Internal 1seek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Invalid status ignore value

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_AT

Related information
MPI_FILE IREAD_ AT
MPI_FILE READ AT ALL
MPI_FILE_ READ_AT ALL_BEGIN
MPI_FILE READ_AT_ALL_END

Chapter 3. MPI subroutines and functions 225

MPI_FILE_READ_AT_ALL

MPI_FILE_READ_AT_ALL, MPI_File_read_at_all

Purpose

Reads from a file collectively using an explicit offset.

C synopsis

#include <mpi.h>
int MPI_File_read at_all (MPI File fh,MPI Offset offset,void *buf,
int count,MPI Datatype datatype,MPI Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read at_all(MPI::0ffset offset, void* buf, int count,
const MPI::Datatype& datatype);

#incTude mpi.h

void MPI::File::Read_at_all(MPI::0Offset offset, void* buf, int count,
const MPI::Datatyped datatype, MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE READ AT ALL(INTEGER FH,INTEGER(KIND=MPI_OFFSET KIND) OFFSET,
CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine is the collective version of MPI_FILE_READ_AT. It performs the
same function as MPI_FILE_READ_AT. The number of bytes actually read by the
calling task is returned in status. The call returns when the data requested by the
calling task is available in buf. The call does not wait for accesses from other tasks
associated with the file handle fh to have data available in their buffers.

Parameters

Notes

fh The file handle (handle) (IN).

offset
The file offset (long long) (IN).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

When you specify a value for the offset argument, constants of the appropriate type
should be used. In FORTRAN, constants of type INTEGER(KIND=8) should be
used, for example, 45_8.

226 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_AT_ALL

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

For more information, see [“MPI_FILE_READ_AT, MPI_File_read_at” on page 223|

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Invalid status ignore value

Related information
MPI_FILE_IREAD_ AT
MPI_FILE READ_ AT

Chapter 3. MPI subroutines and functions 227

MPI_FILE_READ_AT_ALL

MPI_FILE READ_AT_ALL_BEGIN
MPI_FILE_READ_AT_ALL_END

228 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_AT_ALL_BEGIN

MPI_FILE_READ_AT_ALL_BEGIN, MPI_File_read_at_all_begin

Purpose

Initiates a split collective read operation from a file using an explicit offset.

C synopsis

#include <mpi.h>
int MPI_File_read_at_all_begin(MPI _File fh,MPI _Offset offset,void *buf,
int count,MPI _Datatype datatype);

C++ synopsis

#include mpi.h
void MPI::File::Read _at_all_begin(MPI::0ffset offset, void* buf, int count,
const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE_READ AT _ALL BEGIN(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,
CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the
matching end subroutine (MPI_FILE_READ_AT_ALL_END), produces an
equivalent result to that of the collective routine MPI_FILE_READ_AT_ALL.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer
passed to a begin subroutine while the operation is outstanding. The operation
must be completed with an end subroutine before it is safe to access, reuse, or free
the buffer.

Parameters
fh The file handle (handle) (IN).

offset
The file offset (integer) (IN).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions 229

MPI_FILE_READ_AT_ALL_BEGIN

230

Notes

Errors

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective read operation, an
MPI_FILE READ_AT ALL on one task does not match an
MPI_FILE_READ_AT_ALL_BEGIN and MPI_FILE_READ_AT_ALL_END pair on
another task.

The begin and end subroutines must be called from the same thread.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Related information

MPI_FILE READ_AT_ALL
MPI_FILE_READ_AT_ALL_END

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_AT_ALL_END

MPI_FILE_READ_AT_ALL_END, MPI_File_read_at_all_end

Purpose

Completes a split collective read operation from a file.

C synopsis

#include <mpi.h>
int MPI_File_read_at_all_end(MPI File fh,void *buf,MPI Status xstatus);

C++ synopsis

#incTude mpi.h
void MPI::File::Read_at_all_end(void *buf, MPI::Status& status);

#include mpi.h
void MPI::File::Read at_all _end(void *buf);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE READ AT ALL END(INTEGER FH,CHOICE BUF,
INTEGER STATUS (MPI_STATUS SIZE),
INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching
begin subroutine (MPI_FILE_READ_AT_ALL_BEGIN). Combined with the begin
subroutine, it produces an equivalent result to that of the collective routine
MPI_FILE_READ_AT_ALL.

End calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations. Each end operation
matches the preceding begin call for the same collective operation. When an end
call is made, exactly one unmatched begin call for the same operation must
precede it.

This subroutine returns only when the data to be read is available in the user’s
buffer. The operation does not wait for accesses from other tasks associated with
the file handle to have data available in their user’s buffers.

The number of bytes actually read by the calling task is stored in status.

Parameters
fh The file handle (handle) (IN).

buf
The initial address of the buffer (choice) (OUT).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes
Only one split collective operation can be active on any given file handle.

Chapter 3. MPI subroutines and functions 231

MPI_FILE_READ_AT_ALL_END

232

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective read operation, an
MPI_FILE_READ_AT ALL on one task does not match an
MPI_FILE_READ_AT_ALL_BEGIN and MPI_FILE_READ_AT_ALL_END pair on
another task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

MPI_FILE READ_AT_ALL
MPI_FILE READ_AT_ALL_BEGIN

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_ORDERED

MPI_FILE_READ_ORDERED, MPI_File_read_ordered

Purpose

Reads from a file collectively using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_read_ordered(MPI File fh, void xbuf, int count,
MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h
void MPI::File::Read ordered(void* buf, int count, const MPI::Datatype& datatype,
MPI::Status& status);

#include mpi.h
void MPI::File::Read_ordered(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_READ_ORDERED(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine is a collective version of MPI_FILE_ READ_SHARED. It performs
the same function as MPI_FILE_READ_SHARED, except that it behaves as if the
operations were initiated by the participating tasks in rank order. The number of
bytes actually read by the calling task is stored in status. The call returns only
when data requested by the calling task is available in buf, disregarding data
accesses from other tasks associated with file handle fh.

Parameters

Notes

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is
meaningless.

Chapter 3. MPI subroutines and functions 233

MPI_FILE_READ_ORDERED

For more information, see ["MPI_FILE_READ_SHARED, MPI_File_read_shared” on|

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Invalid status ignore value

Related information
MPI_FILE_IREAD_SHARED
MPI_FILE_ READ_ORDERED_BEGIN
MPI_FILE READ_ORDERED_END
MPI_FILE READ SHARED

234 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_ORDERED_BEGIN

MPI_FILE_READ_ORDERED_BEGIN, MPI_File_read_ordered_begin

Purpose

Initiates a split collective read operation from a file using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_read ordered begin(MPI File fh, void xbuf, int count,
MPI Datatype datatype);

C++ synopsis

#include mpi.h
void MPI::File::Read ordered begin(void* buf, int count,
const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_READ ORDERED BEGIN (INTEGER FH, CHOICE BUF, INTEGER COUNT,
INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the
matching end subroutine (MPI_FILE_READ_ORDERED_END), produces an
equivalent result to that of the collective routine MPI_FILE_READ_ORDERED.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer
passed to a begin subroutine while the operation is outstanding. The operation
must be completed with an end subroutine before it is safe to access, reuse, or free
the buffer.

Parameters
fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

Chapter 3. MPI subroutines and functions 235

MPI_FILE_READ_ORDERED_BEGIN

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective read operation, an
MPI_FILE_READ_ORDERED on one task does not match an
MPI_FILE_READ_ORDERED_BEGIN and MPI_FILE_READ_ORDERED_END pair
on another task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Related information

MPI_FILE_ READ_ORDERED
MPI_FILE_READ_ORDERED_END

236 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_ORDERED_END

MPI_FILE_READ_ORDERED_END, MPI_File_read_ordered_end

Purpose

Completes a split collective read operation from a file using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_read_ordered_end(MPI File fh,void xbuf,MPI Status *status)

C++ synopsis

#incTude mpi.h
void MPI::File::Read_ordered_end(void* buf, MPI::Statusé& status);

#include mpi.h
void MPI::File::Read ordered end(void* buf);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_READ_ORDERED END(INTEGER FH,CHOICE BUF,INTEGER STATUS(MPI_STATUS SIZE),
INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching
begin subroutine (MPI_FILE_READ_ORDERED_BEGIN). Combined with the begin
subroutine, it produces an equivalent result to that of the collective routine
MPI_FILE_READ_ORDERED.

End calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations. Each end call matches
the preceding begin call for the same collective operation. When an end call is
made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the data to be read is available in the user’s
buffer. The call does not wait for accesses from other tasks associated with the file
handle to have data available in their user’s buffers.

The number of bytes actually read by the calling task is stored in status.

Parameters
fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Chapter 3. MPI subroutines and functions 237

MPI_FILE_READ_ORDERED_END

238

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective read operation, an
MPI_FILE_READ_ORDERED on one task does not match an
MPI_FILE_READ_ORDERED_BEGIN and MPI_FILE_READ_ORDERED_END pair
on another task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)
The end phase of a split collective data access operation is attempted while
there is no pending split collective data access operation.

Invalid status ignore value

Related information

MPI_FILE READ_ORDERED
MPI_FILE READ_ORDERED_BEGIN

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_READ_SHARED

MPI_FILE_READ_SHARED, MPI_File_read_shared

Purpose

Reads from a file using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_read_shared (MPI File fh, void xbuf, int count,
MPI Datatype datatype,MPI_Status =*status);

C++ synopsis

#include mpi.h
void MPI::File::Read shared(void* buf, int count, const MPI::Datatype& datatype);

#include mpi.h
void MPI::File::Read_shared(void* buf, int count, const MPI::Datatype& datatype,
MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_READ_SHARED(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine tries to read, from the file referred to by fh, count items of type
datatype into the buffer buf, starting at the current file location as determined by the
value of the shared file pointer. The call returns only when data is available in buf.
status contains the number of bytes successfully read. You can use accessor
functions MPI_GET_COUNT and MPI_GET_ELEMENTS to extract from status the
number of items and the number of intrinsic MPI elements successfully read,
respectively. You can check for a read beyond the end-of-file condition by
comparing the number of items requested with the number of items actually read.

Parameters

Notes

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (OUT).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

Chapter 3. MPI subroutines and functions 239

MPI_FILE_READ_SHARED

If an error is raised, the number of bytes contained in the status argument is
meaningless.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Internal 1seek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal read failed (MPI_ERR_IO)
An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the read operation failed.

Invalid status ignore value

Related information
MPI_FILE IREAD_SHARED
MPI_FILE_READ_ORDERED
MPI_FILE_ READ_ORDERED_BEGIN
MPI_FILE_ READ_ORDERED_END

240 1IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_SEEK

MPI_FILE_SEEK, MPI_File_seek

Purpose

Sets a file pointer.

C synopsis

#include <mpi.h>

int MPI_File_seek (MPI File fh,MPI Offset offset, int whence);
C++ synopsis

#incTude mpi.h
void MPI::File::Seek(MPI::0Offset offset, int whence);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE SEEK (INTEGER FH, INTEGER(KIND=MPI_OFFSET KIND) OFFSET,
INTEGER WHENCE, INTEGER IERROR)

Description

This subroutine updates the individual file pointer according to whence, which can
have one of the following values:

MPI_SEEK_CUR
the file pointer is set to its current position plus offset

MPI_SEEK_END
the file pointer is set to the end of the file position plus offset

MPI_SEEK_SET
the file pointer is set to offset

The offset can be negative, which allows to seek backwards. However, it is
erroneous to seek to a negative position in the current file view. A seek past the
end of the file is valid.

Parameters
fh The file handle (handle) (INOUT).

offset
The file offset (integer) (IN).

whence
The update mode (state) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Chapter 3. MPI subroutines and functions 241

MPI_FILE_SEEK

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Invalid whence (MPI_ERR_ARG)
whence must be MPI_SEEK_CUR, MPI_SEEK_END, or MPI_SEEK_SET

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Internal 1seek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Related information

MPI_FILE_READ
MPI_FILE_SEEK _SHARED
MPI_FILE_WRITE

242 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_SEEK_SHARED

MPI_FILE_SEEK_SHARED, MPI_File_seek_shared

Purpose

Sets a shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_seek shared(MPI _File fh,MPI Offset offset,int whence);

C++ synopsis

#incTude mpi.h
void MPI::File::Seek shared(MPI::0ffset offset, int whence);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_SEEK _SHARED(INTEGER FH, INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,
INTEGER WHENCE, INTEGER IERROR)

Description

This subroutine updates the shared file pointer according to whence, which can
have one of the following values:

MPI_SEEK_CUR
the file pointer is set to its current position plus offset

MPI_SEEK_END
the file pointer is set to the end of the file position plus offset

MPI_SEEK_SET
the file pointer is set to offset

This is a collective operation. All participating tasks must specify the same values
for offset and whence. The offset can be negative, which allows to seek backwards.
However, it is erroneous to seek to a negative position in the current file view. A
seek past the end of the file is valid.

Parameters

Notes

fh The file handle (handle) (INOUT).

offset
The file offset (integer) (IN).

whence
The update mode (state) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

The position set may already be outdated at the time the subroutine returns if
other tasks are concurrently making calls that alter the shared file pointer. It is the
user’s responsibility to ensure that there are no race conditions between calls to
this subroutine and other calls that may alter the shared file pointer.

Chapter 3. MPI subroutines and functions 243

MPI_FILE_SEEK_SHARED

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Invalid whence (MPI_ERR_ARG)
whence must be MPI_SEEK_CUR, MPI_SEEK_END, or MPI_SEEK_SET

Inconsistent offsets (MPI_ERR_NOT_SAME)
Local offset is not consistent with neighbor’s offset.

Inconsistent whences (MPI_ERR_NOT_SAME)
Local whence is not consistent with neighbor’s whence.

Consistency error occurred on another task (MPI_ERR_ARG)
Consistency check failed on other tasks.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Related information
MPI_FILE READ_SHARED
MPI_FILE_SEEK
MPI_FILE WRITE_SHARED

244 1BM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_SET_ATOMICITY

MPI_FILE_SET_ATOMICITY, MPI_File_set_atomicity

Purpose

Modifies the current atomicity mode for an opened file.

C synopsis

#include <mpi.h>

int MPI_File_set_atomicity (MPI _File fh,int flag);
C++ synopsis

#incTude mpi.h
void MPI::File::Set_atomicity(bool flag);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_SET_ATOMICITY (INTEGER FH,LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine modifies the current atomicity mode for an opened file. This is a
collective operation. All participating tasks must specify the same value for flag.

Parameters

fh The file handle (handle) (INOUT)

flag
Set to true if atomic mode, false if non-atomic mode (logical) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

When you open a file, the atomicity is set to false.

Reading or writing a file in atomic mode can have a substantial negative impact on
performance. Use atomic mode only when it is essential.

Parameter consistency checking is performed only if the environment variable
MP_EUIDEVELORP is set to yes. If this variable is set and the flags specified are
not identical, the error Inconsistent flags will be raised on some tasks and the
error Consistency error occurred on another task will be raised on the other tasks.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Chapter 3. MPI subroutines and functions 245

MPI_FILE_SET_ATOMICITY

Inconsistent flags (MPI_ERR_NOT_SAME)
Local flag is not consistent with neighbor’s flag.

Related information

MPI_FILE_GET_ATOMICITY
MPI_FILE_OPEN

246 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_SET_ERRHANDLER

MPI_FILE_SET_ERRHANDLER, MPI_File_set_errhandler

Purpose

Associates a new error handler to a file.

C synopsis

#include <mpi.h>
int MPI_File_set_errhandler (MPI _File fh,
MPI_Errhandler errhandler);

C++ synopsis

#include mpi.h
void MPI::File::Set_errhandler(const MPI::Errhandler& errhandler);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE SET ERRHANDLER(INTEGER FH,INTEGER ERRHANLDER,
INTEGER IERROR)

Description

MPI_FILE_SET_ERRHANDLER associates a new error handler to a file. If fh is
equal to MPI_FILE_NULL, then MPI_FILE_SET_ERRHANDLER defines the new
default file error handler on the calling task to be error handler errhandler. If fh is a
valid file handle, this subroutine associates the error handler errhandler with the file
referred to by fh.

Parameters

Notes

Errors

fh The valid file handle (handle) (IN)

errhandler
The new error handler for the opened file (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

The error Invalid error handler is raised if errhandler was created with any error
handler create routine other than MPI_FILE_CREATE_ERRHANDLER. You can
associate the predefined error handlers, MPI_ERRORS_ARE_FATAL and
MPI_ERRORS_RETURN, as well as the implementation-specific
MPE_ERRORS_WARN, with file handles.

For information about a predefined error handler for C++, see IBM Parallel
Environment for AIX: MPI Programming Guide.

Fatal errors:
MPI not initialized
MPI already finalized

Invalid file handle
fh must be a valid file handle or MPI_FILE_NULL.

Chapter 3. MPI subroutines and functions 247

MPI_FILE_SET_ERRHANDLER

Invalid error handler
errhandler must be a valid error handler.

Related information
MPI_ERRHANDLER_FREE
MPI_FILE_ CALL_ERRHANDLER
MPI_FILE_CREATE_ERRHANDLER
MPI_FILE_GET_ERRHANDLER

248 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_SET_INFO

MPI_FILE_SET_INFO, MPI_File_set_info

Purpose

Specifies new hints for an open file.

C synopsis

#include <mpi.h>

int MPI_File_set_info (MPI _File fh,MPI _Info info);
C++ synopsis

#incTude mpi.h
void MPI::File::Set_info(const MPI::Info& info);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_SET_INFO(INTEGER FH,INTEGER INFO,INTEGER IERROR)

Description

This subroutine associates legitimate file-related hints contained in the Info
argument with the file referred to by fh. This is a collective operation. If I/O

operations are pending on fh, hint values are ignored.

MPI_FILE_SET_INFO ignores the hint value if it is not valid. Any Info key, value
pair the user provides will either be accepted or ignored. There will never be an

error returned or change in semantic as a result of a hint.

See [Table 2 on page 208] for a list of supported file hints.

Parameters
fh The file handle (handle) (INOUT)

info
The Info object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid info (MPI_ERR_INFO)
info is not a valid Info object.

Related information
MPI_FILE_GET_INFO
MPI_FILE_ OPEN

Chapter 3. MPI subroutines and functions 249

MPI_FILE_SET_INFO

MPI_FILE _SET_VIEW

250 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_SET_SIZE

MPI_FILE_SET_SIZE, MPI_File_set_size

Purpose

Expands or truncates an open file.

C synopsis

#include <mpi.h>
int MPI_File_set size (MPI File fh,MPI Offset size);

C++ synopsis

#incTude mpi.h
void MPI::File::Set_size(MPI::0ffset size);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_SET_SIZE (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE,
INTEGER IERROR)

Description

MPI_FILE_SET_SIZE is a collective operation that lets you expand or truncate the
open file referred to by fh. All participating tasks must specify the same value for
size. If I/O operations are pending on fh, an error is returned to the participating
tasks and the file is not resized.

If size is larger than the current file size, the file length is increased to size and a
read of unwritten data in the extended area returns zeros. However, file blocks are
not allocated in the extended area. If size is smaller than the current file size, the
file is truncated at the position defined by size. File blocks located beyond this
point are de-allocated.

Parameters

Notes

Errors

fh The file handle (handle) (INOUT)
size
The requested size of the file after truncation or expansion (long long) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

Note that when you specify a value for the size argument, constants of the
appropriate type should be used. In FORTRAN, constants of type
INTEGER(KIND=8) should be used, for example, 45_8.

Parameter consistency checking is performed only if the environment variable
MP_EUIDEVELORP is set to yes. If this variable is set and the sizes specified are
not identical, the error Inconsistent file sizes will be raised on some tasks, and the
error Consistency error occurred on another task will be raised on the other tasks.

Fatal errors:

MPI not initialized

Chapter 3. MPI subroutines and functions 251

MPI_FILE_SET_SIZE

252

MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Pending I/O operations (MPI_ERR_OTHER)
There are pending 1/O operations.

Locally detected error occurred on another task (MPI_ERR_ARG)
Local parameter check failed on other tasks.

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid file size (MPI_ERR_ARG)
Local size is negative

Inconsistent file sizes (MPI_ERR_NOT_SAME)
Local size is not consistent with the file size of other tasks.

Consistency error occurred on another task (MPI_ERR_ARG)
Consistency check failed on other tasks.

Internal ftruncate failed (MPI_ERR_IO)
An internal ftruncate operation on the file failed.

Related information

MPI_FILE_GET_SIZE
MPI_FILE PREALLOCATE

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_SET_VIEW

MPI_FILE_SET_VIEW, MPI_File_set_view

Purpose

Associates a new view with the open file.

C synopsis
#include <mpi.h>
int MPI_File_set view (MPI File fh,MPI Offset disp,
MPI_Datatype etype,MPI Datatype filetype,
char *datarep,MPI_Info info);

C++ synopsis

#include mpi.h
void MPI::File::Set_view(MPI::0ffset disp, const MPI::Datatype& etype,
const MPI::Datatype& filetype, const char* datarep,
const MPI::Info& info);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE_SET VIEW (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP,
INTEGER ETYPE,INTEGER FILETYPE,CHARACTER DATAREP(*),INTEGER INFO,
INTEGER IERROR)

Description

This subroutine associates a new view defined by disp, etype, filetype, and
datarep with the open file referred to by fh. This is a collective operation. All
participating tasks must specify the same values for datarep and the same extents
for etype.

There are no further restrictions on etype and filetype, except those referred to in the
MPI-2 standard. No checking is performed on the validity of these datatypes. If
I/0 operations are pending on fh, an error is returned to the participating tasks
and the new view is not associated with the file.

The effective use of MPI_FILE_SET_VIEW by each task of a file group can be
critical to obtaining the performance benefits of MPI-IO. When the tasks each set a
file view that is complementary to the views set by other tasks and use collective
MPI-1O operations in conjunction with these views, the MPI library has the
information that will allow it to optimize the I/O. Without the information
available in the file view settings, fewer opportunities for optimization by MPI-IO
exist.

Valid values for datarep are:

external32
States that read and write operations convert all data from and to the
external32 representation that is documented in the MPI-2 standard.

internal
Can be used for I/O operations in a homogeneous or heterogeneous
environment. IBM has defined its internal format with the intent that any
implementation of MPI provided by IBM can use this format.

native Should be used in most situations. Data in this representation is stored in a
file exactly as it is in memory. This representation is always suitable in a
homogeneous MPI environment and does not incur conversion costs.

Chapter 3. MPI subroutines and functions 253

MPI_FILE_SET_VIEW

File hints can be associated with a file when a view is set on it.
MPI_FILE_SET_VIEW ignores the hint value if it is not valid. Any Info key, value
pair the user provides will either be accepted or ignored. There will never be an
error returned or change in semantic as a result of a hint.

See [Table 2 on page 208| for a list of supported file hints.

Parameters
fh The file handle (handle) (IN).
disp
The displacement (long long) (IN).

etype
The elementary datatype (handle) (IN).

filetype
The filetype (handle) (IN).

datarep
The data representation (string) (IN).

info
The Info object (handle) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Note that when you specify a value for the disp argument, constants of the
appropriate type should be used. In FORTRAN, constants of type
INTEGER(KIND=8) should be used, for example, 45_8.

It is expected that a call to MPI_FILE_SET_VIEW will immediately follow
MPI_FILE_OPEN in many instances.

Parameter consistency checking is performed only if the environment variable
MP_EUIDEVELORP is set to yes. If this variable is set and the extents of the
elementary datatypes specified are not identical, the error Inconsistent elementary
datatypes will be raised on some tasks and the error Consistency error occurred
on another task will be raised on the other tasks.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid displacement (MPI_ERR_ARG)
Invalid displacement.

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
Either etype or filetype has already been freed.

254 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_SET_VIEW

Undefined datatype (MPI_ERR_TYPE)
etype or filetype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
etype or filetype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
Both etype or filetype must be committed.

Invalid data representation (MPI_ERR_UNSUPPORTED_DATAREP)
datarep is not a valid data representation.

Invalid info (MPI_ERR_INFO)
info is not a valid Info object.

Pending I/O operations (MPI_ERR_OTHER)
There are pending I/O operations.

Locally detected error occurred on another task (MPI_ERR_ARG)
Local parameter check failed on other tasks.

Inconsistent elementary datatypes (MPI_ERR_NOT_SAME)
Local etype extent is not consistent with the elementary datatype extent of
other tasks.

Consistency error occurred on another task (MPI_ERR_ARG)
Consistency check failed on other tasks.

Related information
MPI_FILE_GET_VIEW

Chapter 3. MPI subroutines and functions 255

MPI_FILE_SYNC

MPI_FILE_SYNC, MPI_File_sync

256

Purpose

Commits file updates of an open file to one or more storage devices.

C synopsis

#include <mpi.h>
int MPI_File_sync (MPI File fh);

C++ synopsis

#incTude mpi.h
void MPI::File::Sync();

FORTRAN synopsis
include 'mpif.h' or use mpi
MPI_FILE_SYNC (INTEGER FH,INTEGER IERROR)

Description

MPI_FILE_SYNC is a collective operation. It forces the updates to the file referred
to by fh to be propagated to the storage device (or devices) before it returns. If I/O
operations are pending on fh, an error is returned to the participating tasks and no
sync operation is performed on the file.

Parameters

fh The file handle (handle) (INOUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Pending I/O operations (MPI_ERR_OTHER)
There are pending I/O operations.

Locally detected error occurred on another task (MPI_ERR_ARG)
Local parameter check failed on other tasks.

Internal fsync failed (MPI_ERR_IO)
An internal fsync operation failed.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE

MPI_FILE_WRITE, MPI_File_write

Purpose

Writes to a file.

C synopsis

#include <mpi.h>
int MPI_File_write (MPI_File fh,,void *buf, int count,
MPI_Datatype datatype,MPI_Status *status);

C++ synopsis
#include mpi.h
void MPI::File::Write(const void* buf, int count, const MPI::Datatype& datatype);

#include mpi.h
void MPI::File::Write(const void* buf, int count, const MPI::Datatype& datatype,
MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE WRITE(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine tries to write, into the file referred to by fh, count items of type
datatype out of the buffer buf, starting at the current file location as determined by
the value of the individual file pointer. MPI_FILE_WRITE returns when it is safe to
reuse buf. status contains the number of bytes successfully written. You can use
accessor functions MPI_ GET_COUNT and MPI_GET _ELEMENTS to extract from
status the number of items and the number of intrinsic MPI elements successfully
written, respectively.

Parameters

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

Chapter 3. MPI subroutines and functions 257

MPI_FILE_WRITE

Errors

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)
The file has reached the maximum size allowed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

MPI_FILE_IWRITE
MPI_FILE_WRITE_ALL
MPI_FILE_WRITE_ALL_BEGIN
MPI_FILE_WRITE_ALL_END

258 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_ALL

MPI_FILE_WRITE_ALL, MPI_File_write_all

Purpose

Writes to a file collectively.

C synopsis

#include <mpi.h>
int MPI_File write_all (MPI _File fh,,void *buf, int count,
MPI Datatype datatype,MPI_Status =*status);

C++ synopsis

#include mpi.h
void MPI::File::Write_all(const void* buf, int count,
const MPI::Datatype& datatype);

#include mpi.h
void MPI::File::Write_all(const void* buf, int count,
const MPI::Datatyped datatype, MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE WRITE_ALL(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS_SIZE),INTEGER IERROR)

Description
This subroutine is the collective version of MPI_FILE WRITE. It performs the same
function as MPI_FILE_WRITE. MPI_FILE_WRITE_ALL tries to write, into the file
referred to by fh, count items of type datatype out of the buffer buf, starting at the
current file location as determined by the value of the individual file pointer.
MPI_FILE_WRITE returns when it is safe to reuse buf. status contains the number
of bytes successfully written. You can use accessor functions MPI_GET_COUNT
and MPI_GET_ELEMENTS to extract from status the number of items and the
number of intrinsic MPI elements successfully written, respectively.

Parameters

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions 259

MPI_FILE_WRITE_ALL

Notes

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

For more information,|”MPI_FILE_WRITE, MPI_File_write” on page 257]

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)
The file has reached the maximum size allowed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

260 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_ALL

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Related information
MPI_FILE_IWRITE
MPI_FILE_ WRITE
MPI_FILE. WRITE_ALL_BEGIN
MPI_FILE WRITE_ALL_END

Chapter 3. MPI subroutines and functions 261

MPI_FILE_WRITE_ALL_BEGIN

MPI_FILE_WRITE_ALL_BEGIN, MPI_File_write_all_begin

262

Purpose

Initiates a split collective write operation to a file.

C synopsis

#include <mpi.h>
int MPI_File_write_all_begin (MPI _File fh, void xbuf, int count,
MPI Datatype datatype);

C++ synopsis

#include mpi.h
void MPI::File::Write_all_begin(const void* buf, int count,
const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE WRITE_ALL BEGIN (INTEGER FH, CHOICE BUF, INTEGER COUNT,
INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the
matching end subroutine (MPI_FILE_WRITE_ALL_END), produces an equivalent
result to that of the collective routine MPI_FILE_WRITE_ALL.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer
passed to a begin subroutine while the operation is outstanding. The operation
must be completed with an end subroutine before it is safe to access, reuse, or free
the buffer.

Parameters
fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_ALL_BEGIN

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective write operation, an
MPI_FILE_WRITE_ALL on one task does not match an
MPI_FILE_WRITE_ALL_BEGIN and MPI_FILE_WRITE_ALL_END pair on another
task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Related information
MPI_FILE_ WRITE
MPI_FILE_ WRITE_ALL
MPI_FILE WRITE_ALL_END

Chapter 3. MPI subroutines and functions 263

MPI_FILE_WRITE_ALL_END

MPI_FILE_WRITE_ALL_END, MPI_File_write_all_end

264

Purpose

Completes a split collective write operation to a file.

C synopsis

#include <mpi.h>
int MPI_File_write_all_end(MPI _File fh,void xbuf,MPI Status *status);

C++ synopsis

#incTude mpi.h
void MPI::File::Write_all_end(void* buf);

#include mpi.h
void MPI::File::Write_all end(void* buf, MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE WRITE_ALL END(INTEGER FH,CHOICE BUF,INTEGER STATUS(MPI_STATUS SIZE)
INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching
begin subroutine (MPI_FILE_WRITE_ALL_BEGIN). Combined with the begin
routine, it produces an equivalent result to that of the collective routine
MPI_FILE_WRITE_ALL.

End calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations. Each end call matches
the preceding begin call for the same collective operation. When an end call is
made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the user’s buffer that contains the data to be
written can be modified safely.

The number of bytes actually written by the calling task is stored in status.

Parameters

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_ALL_END

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective write operation, an
MPI_FILE_WRITE_ALL on one task does not match an
MPI_FILE_WRITE_ALL_BEGIN and MPI_FILE_WRITE_ALL_END pair on another
task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)
The end phase of a split collective data access operation is attempted while
there is no pending split collective data access operation.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Related information
MPI_FILE_ WRITE
MPI_FILE_ WRITE_ALL
MPI_FILE_ WRITE_ALL_BEGIN

Chapter 3. MPI subroutines and functions 265

MPI_FILE_WRITE_AT

MPI_FILE_WRITE_AT, MPI_File_write_at

Purpose

Performs a blocking write operation using an explicit offset.

C synopsis

#include <mpi.h>
int MPI_File write_at (MPI File fh,MPI Offset offset,void *buf,
int count,MPI Datatype datatype,MPI Status *status);

C++ synopsis

#include mpi.h
void MPI::File::Write_at(MPI::0ffset offset, const void* buf,
int count, const MPI::Datatype& datatype);

#incTude mpi.h

void MPI::File::Write_at(MPI::0ffset offset, const void* buf,
int count, const MPI::Datatypeé& datatype,
MPI::Statusé& status);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE_WRITE_AT(INTEGER FH,INTEGER(KIND_MPI_OFFSET_KIND) OFFSET,
CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),
INTEGER IERROR)

Description

MPI_FILE_WRITE_AT tries to write into the file referred to by fh count items of
type datatype out of the buffer buf, starting at offset and relative to the current view.
MPI_FILE_WRITE_AT returns when it is safe to reuse buf. status contains the
number of bytes successfully written and accessor functions MPI_GET_COUNT
and MPI_GET_ELEMENTS allow you to extract from status the number of items
and the number of intrinsic MPI elements successfully written, respectively.

Parameters
fh The file handle (handle) (INOUT).

offset
The file offset (long long) (IN).

buf
The initial address of buffer (choice) (IN).

count
The number of elements in buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

266 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPI_FILE_WRITE_AT

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

Note that when you specify a value for the offset argument, constants of the
appropriate type should be used. In FORTRAN, constants of type
INTEGER(KIND=8) should be used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset(MPI_ERR_ARG)
offset is not a valid offset.

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

File too big (MPI_ERR_IO)
The file has reached the maximum size allowed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Chapter 3. MPI subroutines and functions

267

MPI_FILE_WRITE_AT

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Related information
MPI_FILE IWRITE
MPI _FILE WRITE_AT ALL
MPI_FILE WRITE_AT ALL_BEGIN
MPI_FILE WRITE_AT ALL_END

268 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_AT_ALL

MPI_FILE_WRITE_AT_ALL, MPI_File_write_at_all

Purpose

Performs a blocking write operation collectively using an explicit offset.

C synopsis

#include <mpi.h>
int MPI_File write_at_all (MPI _File fh,MPI _Offset offset,void *buf,
int count,MPI Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h
void MPI::File::Write_at _all(MPI::0ffset offset, const voidx buf,
int count, const MPI::Datatyped datatype);

#include mpi.h

void MPI::File::Write_at _all(MPI::0ffset offset, const void* buf,
int count, const MPI::Datatype& datatype,
MPI::Statusé& status);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE_WRITE_AT ALL (INTEGER FH,
INTEGER (KIND=MPI_OFFSET KIND) OFFSET,
CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine is the collective version of MPI_FILE_WRITE_AT. The number of
bytes actually written by the calling task is stored in status. The call returns when
the calling task can safely reuse buf. It does not wait until the storing buffers in
other participating tasks can safely be reused.

Parameters
fh The file handle (handle) (INOUT).

offset
The file offset (long long) (IN).

buf
The initial address of buffer (choice) (IN).

count
The number of elements in buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions 269

MPI_FILE_WRITE_AT_ALL

Notes

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

Note that when you specify a value for the offset argument, constants of the
appropriate type should be used. In FORTRAN, constants of type
INTEGER(KIND=8) should be used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

For more information, see |”MPI_FILE_WRITE_AT, MPI_File_write_at” on page 266.|

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

270 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_AT_ALL

File too big (MPI_ERR_IO)
The file has reached the maximum size allowed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Internal Iseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Related information
MPI_FILE_IWRITE_AT
MPI_FILE_WRITE_AT
MPI_FILE_ WRITE_AT ALL_BEGIN
MPI_FILE_ WRITE_AT _ALL_END

Chapter 3. MPI subroutines and functions 271

MPI_FILE_WRITE_AT_ALL_BEGIN

MPI_FILE_WRITE_AT_ALL_BEGIN, MPI_File_write_at_all_begin

272

Purpose

Initiates a split collective write operation to a file using an explicit offset.

C synopsis

#include <mpi.h>
int MPI_File write_at_all_begin(MPI _File fh,MPI _Offset offset,void *buf,
int count,MPI _Datatype datatype);

C++ synopsis

#include mpi.h
void MPI::File::Write_at_all_begin(MPI::0ffset offset, const void* buf,
int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE WRITE_AT_ALL BEGIN(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,
CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the
matching end subroutine (MPI_FILE_WRITE_AT_ALL_END), produces an
equivalent result to that of the collective routine MPI_FILE WRITE_AT_ALL.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer
passed to a begin subroutine while the operation is outstanding. The operation
must be completed with an end subroutine before it is safe to access, reuse, or free
the buffer.

Parameters
fh The file handle (handle) (INOUT).

offset
The file offset (integer) (IN).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPI_FILE_WRITE_AT_ALL_BEGIN

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective write operation, an
MPI_FILE WRITE_AT_ALL on one task does not match an
MPI_FILE_WRITE_AT_ALL_BEGIN and MPI_FILE_WRITE_AT_ALL_END pair on
another task.

The begin and end subroutines must be called from the same thread.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid offset (MPI_ERR_ARG)
offset is not a valid offset.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Unsupported operation on sequential access file
(MPI_ERR_UNSUPPORTED_OPERATION)
MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Related information

MPI_FILE WRITE
MPI_FILE_WRITE_AT
MPI_FILE_WRITE_AT_ALL
MPI_FILE_WRITE_AT_ALL_END

Chapter 3. MPI subroutines and functions 273

MPI_FILE_WRITE_AT_ALL_END

MPI_FILE_WRITE_AT_ALL_END, MPI_File_write_at_all_end

274

Purpose

Completes a split collective write operation to a file using an explicit offset.

C synopsis

#include <mpi.h>
int MPI_File_write_at_all_end(MPI _File fh,void *buf,MPI Status xstatus)

C++ synopsis
#incTude mpi.h
void MPI::File::Write_at_all_end(const void* buf);

#include mpi.h
void MPI::File::Write_at _all_end(const void* buf, MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_FILE WRITE_AT ALL_END(INTEGER FH,CHOICE BUF,
INTEGER STATUS (MPI_STATUS SIZE),
INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching
begin subroutine (MPI_FILE_WRITE_AT_ALL_BEGIN). Combined with the begin
subroutine, it produces an equivalent result to that of the collective routine
MPI_FILE_WRITE_AT_ALL.

End calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations. Each end call matches
the preceding begin call for the same collective operation. When an end call is
made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the user’s buffer that contains the data to be
written can be modified safely.

The number of bytes actually written by the calling task is stored in status.

Parameters
fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_AT_ALL_END

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective write operation, an
MPI_FILE_WRITE_AT_ALL on one task does not match an
MPI_FILE_WRITE_AT_ALL_BEGIN and MPI_FILE_WRITE_AT_ALL_END pair on
another task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)
The end phase of a split collective data access operation is attempted while
there is no pending split collective data access operation.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Related information
MPI_FILE_ WRITE
MPI_FILE._ WRITE_AT
MPI_FILE WRITE_AT ALL
MPI_FILE_ WRITE_AT ALL_BEGIN

Chapter 3. MPI subroutines and functions 275

MPI_FILE_WRITE_ORDERED

MPI_FILE_WRITE_ORDERED, MPI_File_write_ordered

276

Purpose

Writes to a file collectively using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_write_ordered(MPI File fh, void xbuf, int count,
MPI Datatype datatype,MPI_Status =*status);

C++ synopsis

#include mpi.h
void MPI::File::Write_ordered(const void* buf, int count,
const MPI::Datatype& datatype);

#incTude mpi.h

void MPI::File::Write_ordered(const void* buf, int count,
const MPI::Datatype& datatype,
MPI::Statusé status);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_WRITE_ORDERED(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine is a collective version of MPI_FILE_WRITE_SHARED. It performs
the same function as MPI_FILE_ WRITE_SHARED, except that it behaves as if the
operations were initiated by the participating tasks in rank order. The number of
bytes actually written by the calling task is stored in status. The call returns only
when the calling task can safely reuse buf, disregarding data accesses from other
tasks associated with file handle fh.

Parameters
fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_ORDERED

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is
meaningless.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)
The file has reached the maximum size allowed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Related information
MPI_FILE_IWRITE_SHARED
MPI_FILE_ WRITE_ORDERED_ BEGIN
MPI_FILE WRITE_ORDERED_END
MPI_FILE WRITE_SHARED

Chapter 3. MPI subroutines and functions 277

MPI_FILE_WRITE_ORDERED_BEGIN

MPI_FILE_WRITE_ORDERED_BEGIN, MPI_File_write_ordered_begin

Purpose

Initiates a split collective write operation to a file using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_write_ordered begin(MPI File fh, void xbuf, int count,
MPI Datatype datatype);

C++ synopsis

#include mpi.h
void MPI::File::Write_ordered begin(const void* buf, int count,
const MPI::Datatype& datatype);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE _WRITE_ORDERED BEGIN (INTEGER FH, CHOICE BUF, INTEGER COUNT,
INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the
matching end subroutine (MPI_FILE_WRITE_ORDERED_END), produces an
equivalent result to that of the collective routine MPI_FILE_ WRITE_ORDERED.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer
passed to a begin subroutine while the operation is outstanding. The operation
must be completed with an end subroutine before it is safe to access, reuse, or free
the buffer.

Parameters
fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

278 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_ORDERED_BEGIN

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective write operation, an
MPI_FILE_WRITE_ORDERED on one task does not match an
MPI_FILE_WRITE_ORDERED_BEGIN and MPI_FILE_WRITE_ORDERED_END
pair on another task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)
A collective data access operation is attempted while there is a pending
split collective data access operation on the same file handle.

Related information

MPI_FILE_WRITE_ORDERED
MPI_FILE_WRITE_ORDERED_END
MPI_FILE_WRITE_SHARED

Chapter 3. MPI subroutines and functions 279

MPI_FILE_WRITE_ORDERED_END

MPI_FILE_WRITE_ORDERED_END, MPI_File_write_ordered_end

280

Purpose

Completes a split collective write operation to a file using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_write_ordered end(MPI File fh,void xbuf,MPI Status *status

C++ synopsis
#incTude mpi.h
void MPI::File::Write_ordered_end(const void* buf);

#include mpi.h
void MPI::File::Write ordered end(const void* buf, MPI::Status& status);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE WRITE_ORDERED_END(INTEGER FH,CHOICE BUF,INTEGER STATUS(MPI_STATUS SIZE),
INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching
begin subroutine (MPI_FILE_WRITE_ORDERED_BEGIN). Combined with the
begin subroutine, it produces an equivalent result to that of the collective routine
MPI_FILE_WRITE_ORDERED.

End calls are collective over the group of tasks that participated in the collective
open and follow the ordering rules for collective operations. Each end call matches
the preceding begin call for the same collective operation. When an end call is
made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the user’s buffer that contains the data to be
written can be modified safely.

The number of bytes actually written by the calling task is stored in status.

Parameters

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FILE_WRITE_ORDERED_END

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a
blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular
collective operation. For example, in a single collective write operation, an
MPI_FILE_WRITE_ORDERED on one task does not match an
MPI_FILE_WRITE_ORDERED_BEGIN and MPI_FILE_WRITE_ORDERED_END
pair on another task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip
filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)
The end phase of a split collective data access operation is attempted while
there is no pending split collective data access operation.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Related information
MPI_FILE WRITE_ORDERED
MPI_FILE WRITE_ORDERED_BEGIN
MPI_FILE_ WRITE_SHARED

Chapter 3. MPI subroutines and functions 281

MPI_FILE_WRITE_SHARED

MPI_FILE_WRITE_SHARED, MPI_File_write_shared

282

Purpose

Writes to a file using the shared file pointer.

C synopsis

#include <mpi.h>
int MPI_File_write_shared (MPI _File fh, void xbuf, int count,
MPI Datatype datatype,MPI_Status =*status);

C++ synopsis

#include mpi.h
void MPI::File::Write_shared(const void* buf, int count,
const MPI::Datatype& datatype);

#incTude mpi.h
void MPI::File::Write_shared(const void* buf, int count,
const MPI::Datatype& datatype,
MPI::Statusé status);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FILE_WRITE_SHARED(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,
INTEGER STATUS (MPI_STATUS SIZE),INTEGER IERROR)

Description

This subroutine tries to write, into the file referred to by fh, count items of type
datatype out of the buffer buf, starting at the current file location as determined by
the value of the shared file pointer. The call returns only when it is safe to reuse
buf. status contains the number of bytes successfully written. You can use accessor
functions MPI_GET_COUNT and MPI_GET_ELEMENTS to extract from status the
number of items and the number of intrinsic MPI elements successfully written,
respectively.

Parameters

fh The file handle (handle) (INOUT).

buf
The initial address of the buffer (choice) (IN).

count
The number of elements in the buffer (integer) (IN).

datatype
The datatype of each buffer element (handle) (IN).

status
The status object (Status) (OUT).

IERROR
The FORTRAN return code. It is always the last argument.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPI_FILE_WRITE_SHARED

Return from the call does not guarantee that the data has been written to the
storage device (or devices). In particular, written data may still be present in
system buffers. However, it guarantees that the memory buffer can be safely
reused.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to
allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is
meaningless.

Fatal errors:
MPI not initialized
MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)
fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)
count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)
datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)
datatype is not a defined datatype.

Invalid datatype (MPI_ERR_TYPE)
datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)
datatype must be committed.

Not enough space in file system (MPI_ERR_NO_SPACE)
The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)
The file has reached the maximum size allowed.

Permission denied (MPI_ERR_ACCESS)
The file was opened in read-only mode.

Internal lseek failed (MPI_ERR_IO)
An internal 1seek operation failed.

Internal write failed (MPI_ERR_IO)
An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)
The conversion attempted during the write operation failed.

Invalid status ignore value

Chapter 3. MPI subroutines and functions

283

MPI_FILE_WRITE_SHARED

Related information
MPI_FILE_IWRITE_SHARED
MPI_FILE_ WRITE_ORDERED
MPI_FILE WRITE_ORDERED_BEGIN
MPI_FILE WRITE_ORDERED_END

284 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FINALIZE

MPI_FINALIZE, MPI_Finalize

Purpose

Terminates all MPI processing.

C synopsis

#include <mpi.h>
int MPI_Finalize(void);

C++ synopsis

#incTude mpi.h
void MPI::Finalize();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FINALIZE(INTEGER IERROR)

Description

Make sure this subroutine is the last MPI call. Any MPI calls made after
MPI_FINALIZE raise an error. You must be sure that all pending communications
involving a task have completed before the task calls MPI_FINALIZE. You must
also be sure that all files opened by the task have been closed before the task calls
MPI_FINALIZE.

Although MPI_FINALIZE terminates MPI processing, it does not terminate the
task. It is possible to continue with non-MPI processing after calling
MPI_FINALIZE, but no other MPI calls (including MPI_INIT) can be made.

In a threads environment, both MPI_INIT and MPI_FINALIZE must be called on
the same thread. MPI_FINALIZE closes the communication library and terminates
the service threads. It does not affect any threads you created, other than returning
an error if one subsequently makes an MPI call. If you had registered a SIGIO
handler, it is restored as a signal handler; however, the SIGIO signal is blocked
when MPI_FINALIZE returns. If you want to catch SIGIO after MPI_FINALIZE
has been called, you should unblock it.

At MPI_FINALIZE there is now an implicit MPI_COMM_FREE of
MPI_COMM_SELF. Because MPI_COMM_SELF cannot have been freed by user
code and cannot be used after MPI_FINALIZE, there is no direct effect of this
change. The value of this implicit free is that any attribute that a user may attach
to MPI_COMM_SELF will be deleted in MPI_FINALIZE and its attribute delete
function called. A library layered on MPI can take advantage of this to force its
own cleanup code to run whenever MPI_FINALIZE gets called. This is done by
packaging the cleanup logic as an attribute delete function and attaching an
attribute to MPI_ COMM_SELF. It is legitimate to make MPI calls in the attribute
callbacks and a call to MPI_FINALIZED inside a delete function will report that
MPI is still active.

If an attribute delete function returns a non-zero return code, the code it does
return is passed to the error handler associated with MPI_COMM_WORLD. The
default handler, MPI_ERROR_ARE_FATAL, will embed the error code in the
message it prints. If there is a returning error handler on MPI_ COMM_WORLD,

Chapter 3. MPI subroutines and functions 285

MPI_FINALIZE

MPI_FINALIZE will return a code indicating that a delete callback failed.
MPI_FINALIZE does not return the error return code issued by the delete function.

Parameters

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPI standard does not specify the state of MPI tasks after MPI_FINALIZE,
therefore, an assumption that all tasks continue may not be portable. If
MPI_BUFFER_ATTACH has been used and MPI_BUFFER_DETACH has been not
called, there will be an implicit MPI_ BUFFER_DETACH within MPI_FINALIZE.
See [“MPI_BUFFER_DETACH, MPI_Buffer_detach” on page 91|

Errors
MPI_COMML_SELF attribute delete function returned error
MPI already finalized
MPI not initialized

Related information
MPI_ABORT
MPI_BUFFER_DETACH
MPI_INIT

286 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_FINALIZED

MPI_FINALIZED, MPI_Finalized

Purpose
Returns true if MPI_FINALIZE has completed.

C synopsis

#include <mpi.h>
int MPI_Finalized(int *flag);

C++ synopsis

#incTude mpi.h
bool MPI::Is finalized();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FINALIZED(LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine returns true if MPI_FINALIZE has completed. It is legal to call
MPI_FINALIZED before MPI_INIT and after MPI_FINALIZE.

Parameters

flag
Set to true if MPI is finalized (logical) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Once MPI has been finalized, it is no longer active and cannot be restarted. A
library layered on top of MPI needs to be able to determine this to act accordingly.

MPI is "active” and it is thus safe to call MPI functions if MPI_INIT has completed
and MPI_FINALIZE has not completed. If a library has no other way of knowing
whether MPI is active or not, it can use MPI_INITIALIZED and MPI_FINALIZED
to determine this. For example, MP1 is still "active” in callback functions that are
invoked during the MPI_FINALIZE actions to free MPI_COMM_SELF.

Errors

MPI already finalized
MPI not initialized

Related information

MPI_FINALIZE
MPI_INIT
MPI_INITIALIZED

Chapter 3. MPI subroutines and functions 287

MPI_FREE_MEM

MPI_FREE_MEM, MPI_Free_mem

Purpose

Frees a block of storage.

C synopsis

#include <mpi.h>

int MPI_Free_mem (void *base);
C++ synopsis

#incTude mpi.h
void MPI::Free mem(void *base):

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_FREE_MEM(CHOICE BASE, INTEGER IERROR)

Description

This subroutine frees a block of storage previously allocated by the
MPI_ALLOC_MEM routine and pointed to by the base argument. Undefined
results occur if the base argument is not a pointer to a block of storage that is
currently allocated.

Parameters

base
The initial address of the memory segment allocated by MPI_ALLOC_MEM
(choice) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized (MPI_ERR_OTHER)
MPI already finalized (MPI_ERR_OTHER)

Related information
MPI_ALLOC_MEM

288 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GATHER

MPI_GATHER, MPI_Gather

Purpose

Collects individual messages from each task in comm at the root task.

C synopsis

#include <mpi.h>

int MPI_Gather(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,
MPI_Comm comm) ;

C++ synopsis

#include mpi.h

void MPI::Comm::Gather(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
int recvcount, const MPI::Datatype& recvtype,
int root) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_GATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,
INTEGER COMM, INTEGER IERROR)

Description

This subroutine collects individual messages from each task in comm at the root
task and stores them in rank order.

The type signature of sendcount, sendtype on task i must be equal to the type
signature of recvcount, recvtype at the root. This means the amount of data sent
must be equal to the amount of data received, pair-wise between each task and the
root. Distinct type maps between sender and receiver are allowed.

The following information applies to MPI_GATHER arguments and tasks:

* On the task root, all arguments to the function are significant.

* On other tasks, only the arguments sendbuf, sendcount, sendtype, root, and comm
are significant.

¢ The argument root must be the same on all tasks.

Note that the argument revcount at the root indicates the number of items it
receives from each task. It is not the total number of items received.

A call where the specification of counts and types causes any location on the root
to be written more than once is erroneous.

The "in place” option for intra-communicators is specified by passing
MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and
sendtype are ignored, and the contribution of the root to the gathered vector is
assumed to be already in the correct place in the receive buffer.

If comm is an inter-communicator, the call involves all tasks in the
inter-communicator, but with one group (group A) defining the root task. All tasks
in the other group (group B) pass the same value in root, which is the rank of the
root in group A. The root passes the value MPI_ROOT in root. All other tasks in

Chapter 3. MPI subroutines and functions 289

MPI_GATHER

group A pass the value MPI_PROC_NULL in root. Data is gathered from all tasks
in group B to the root. The send buffer arguments of the tasks in group B must be
consistent with the receive buffer argument of the root.

MPI_IN_PLACE is not supported for inter-communicators.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

Parameters

Notes

Errors

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice, significant only at root) (OUT)

recvcount
The number of elements for any single receive (integer, significant only at root)
(IN)

recvtype
The datatype of the receive buffer elements (handle, significant only at root)
(IN)

root
The rank of the receiving task (integer) (IN)

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

In the 64-bit library, this function uses a shared memory optimization among the
tasks on a node. This optimization is discussed in the chapter Using shared memory
of IBM Parallel Environment for AIX: MPI Programming Guide, and is enabled by
default. This optimization is not available to 32-bit programs.

Fatal errors:
Invalid communicator

Invalid counts
count < 0

Invalid datatypes
Type not committed

Invalid root

290 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GATHER

For an intra-communicator: root < 0 or root >= groupsize

For an inter-communicator: root < 0 and is neither MPI_ROOQOT nor
MPI_PROC_NULL, or root >= groupsize of the remote group

Unequal message lengths
Invalid use of MPI_IN_PLACE
MPI not initialized

MPI already finalized

Develop mode error if:
Inconsistent root

Inconsistent message length

Related information
MPE_IGATHER
MPI_ALLGATHER
MPI_GATHER
MPI_SCATTER

Chapter 3. MPI subroutines and functions 291

MPI_GATHERV

MPI_GATHERYV, MPI_Gatherv

Purpose

Collects individual messages from each task in comm at the root task. Messages can
have different sizes and displacements.

C synopsis

#include <mpi.h>

int MPI_Gatherv(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int xrecvcounts,int *displs,MPI_Datatype recvtype,
int root,MPI_Comm comm) ;

C++ synopsis

#incTude mpi.h

void MPI::Comm::Gatherv(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displs[],
const MPI::Datatyped recvtype, int root) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_GATHERV (CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DISPLS(*),
INTEGER RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

Description

This subroutine collects individual messages from each task in comm at the root
task and stores them in rank order. With recvcounts as an array, messages can have
varying sizes, and displs allows you the flexibility of where the data is placed on
the root.

The type signature of sendcount, sendtype on task i must be equal to the type
signature of recvcounts[i], recvtype at the root. This means the amount of data sent
must be equal to the amount of data received, pair-wise between each task and the
root. Distinct type maps between sender and receiver are allowed.

The following is information regarding MPI_GATHERV arguments and tasks:
¢ On the task root, all arguments to the function are significant.

* On other tasks, only the arguments. sendbuf, sendcount, sendtype, root, and comm
are significant.

* The argument root must be the same on all tasks.

A call where the specification of sizes, types, and displacements causes any
location on the root to be written more than once is erroneous.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

292 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GATHERV

recvbuf
The address of the receive buffer (choice, significant only at root) (OUT)

recvcounts
An integer array (of length groupsize) that contains the number of elements
received from each task (significant only at root) (IN)

displs
An integer array (of length groupsize). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from task i (significant
only at root) (IN)

recvtype
The datatype of the receive buffer elements (handle, significant only at root)
(IN)

root
The rank of the receiving task (integer) (IN)

comm
The communicator (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes
Displacements are expressed as elements of type recotype, not as bytes.

The "in place” option for intra-communicators is specified by passing
MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and
sendtype are ignored, and the contribution of the root to the gathered vector is
assumed to be already in the correct place in the receive buffer.

If comm is an inter-communicator, the call involves all tasks in the
inter-communicator, but with one group (group A) defining the root task. All tasks
in the other group (group B) pass the same value in root, which is the rank of the
root in group A. The root passes the value MPI_ROOT in root. All other tasks in
group A pass the value MPI_PROC_NULL in root. Data is gathered from all tasks
in group B to the root. The send buffer arguments of the tasks in group B must be
consistent with the receive buffer argument of the root.

MPI_IN_PLACE is not supported for inter-communicators.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator occur in the same order at each task. See
IBM Parallel Environment for AIX: MPI Programming Guide for more information on
programming with MPI in a threads environment.

In the 64-bit library, this function uses a shared memory optimization among the
tasks on a node. This optimization is discussed in the chapter Using shared memory
of IBM Parallel Environment for AIX: MPI Programming Guide, and is enabled by
default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid communicator

Chapter 3. MPI subroutines and functions 293

MPI_GATHERV

Invalid counts
count < 0

Invalid datatypes
Type not committed
Invalid root
For an intra-communicator: root < 0 or root >= groupsize

For an inter-communicator: root < 0 and is neither MPI_ROQOT nor
MPI_PROC_NULL, or root >= groupsize of the remote group

Unequal message lengths
Invalid use of MPI_IN_PLACE
MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Related information

MPE_IGATHER
MPI_GATHER

294 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GET

MPI_GET, MPI_Get

Purpose

Transfers data from a window at the target task to the origin task.

C synopsis
#include <mpi.h>
int MPI_Get (void *origin_addr, int origin_count,
MPI_Datatype origin_datatype, int target_rank,
MPI_Aint target _disp, int target_count,
MPI Datatype target_datatype, MPI_Win win);

C++ synopsis
#include mpi.h
void MPI::Win::Get(void* origin_addr, int origin_count,
const MPI::Datatype& origin_datatype, int target_rank,
MPI::Aint target_disp, int target_count,
const MPI::Datatype& target_datatype) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_GET(CHOICE ORIGIN_ADDR, INTEGER ORIGIN_COUNT, INTEGER ORIGIN_DATATYPE,
INTEGER TARGET_RANK, INTEGER TARGET _DISP, INTEGER TARGET_COUNT,
INTEGER TARGET DATATYPE, INTEGER WIN, INTEGER IERROR)

Description

MPI_GET transfers origin_count successive entries of the type specified by
origin_datatype, starting at address origin_addr on the origin task from the target
task specified by win and target_rank.

The data are read from the target buffer at address (target_addr = window_base +
target_disp * disp_unit), where window_base and disp_unit are the base address and
window displacement unit specified at window initialization, by the target task.
The target buffer is specified by the arguments target_count and target_datatype.

The data transfer is the same as that which would occur if the origin task issued a
receive operation with arguments origin_addr, origin_count, origin_datatype,
target_rank, tag, comm, and the target task issued a send operation with arguments
target_addr, target_count, target_datatype, source, tag, comm, where target_addr is the
target buffer address computed as shown in the previous paragraph, and comm is a
communicator for the group of win.

The communication must satisfy the same constraints as for a similar
message-passing communication. The target_datatype may not specify overlapping
entries in the target buffer. The message sent must fit, without truncation, in the
target buffer. Furthermore, the target buffer must fit in the target window.

The target_datatype argument is a handle to a datatype object that is defined at the
origin task, even though it defines a data layout in the target task memory. This
does not cause any problems in a homogeneous environment. In a heterogeneous
environment, only portable datatypes are valid.

Chapter 3. MPI subroutines and functions 295

MPI_GET

The datatype object is interpreted at the target task. The outcome is as if the target
datatype object were defined at the target task, by the same sequence of calls used
to define it at the origin task. The target datatype must contain relative
displacements, not absolute addresses.

Parameters

origin_addr
The initial address of the origin buffer (choice) (IN)

origin_count
The number of entries in origin buffer (nonnegative integer) (IN)

origin_datatype
The datatype of each entry in the origin buffer (handle) (IN)

target_rank
The rank of the target (nonnegative integer) (IN)

target_disp
The displacement from the start of the window to the target buffer
(nonnegative integer) (IN)

target_count
The number of entries in the target buffer (nonnegative integer) (IN)

target_datatype
The datatype of each entry in the target buffer (handle) (IN)

win
The window object used for communication (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

MPI_GET does not require that data move from target to origin until some
synchronization occurs. PE MPI may try to combine multiple gets from a target
within an epoch into a single data transfer. The user must not modify the source
buffer or make any assumption about the contents of the destination buffer until
after a synchronization operation has closed the epoch.

On some systems, there may be reasons to use special memory for one-sided
communication buffers. MPI_ALLOC_MEM may be the preferred way to allocate
buffers on these systems. With PE MP]I, there is no advantage to using
MPI_ALLOC_MEM, but you can use it to improve the portability of your MPI
code.

Errors

Invalid origin count (count)
Invalid origin datatype (handle)
Invalid target rank (rank)

Invalid target displacement (value)
Invalid target count (count)
Invalid target datatype (handle)

Invalid window handle (handle)

296 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GET

Target outside access group

Origin buffer too small (size)

Target buffer ends outside target window
Target buffer starts outside target window
RMA communication call outside access epoch
RMA communication call in progress

RMA synchronization call in progress

Related information
MPI_ACCUMULATE
MPI_PUT

Chapter 3. MPI subroutines and functions 297

MPI_GET_ADDRESS

MPI_GET_ADDRESS, MPI_Get_address

298

Purpose

Returns the address of a location in memory.

C synopsis

#include <mpi.h>
int MPI_Get_address(void *location, MPI_Aint xaddress);

C++ synopsis

#incTude mpi.h
MPI::Aint MPI::Get address(void* location);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_GET_ADDRESS(CHOICE LOCATION(*),
INTEGER (KIND=MPI_ADDRESS KIND) ADDRESS,
INTEGER IERROR)

Description

This subroutine returns the byte address of location.

Parameters

Notes

location
The location in caller memory (choice) (IN)

address
The address of the location (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

On the IBM RS/6000 SP and on the clustered server, MPI_GET_ADDRESS is
equivalent to address= (MPI_Aint) location in C, but this subroutine is portable to
processors with less straightforward addressing.

MPI_GET_ADDRESS is synonymous with MPI_ADDRESS. MPI_ADDRESS is not
available in C++. In FORTRAN, MPI_GET_ADDRESS returns an argument of type
INTEGER(KIND=MPI_ADDRESS_KIND) to support 32-bit and 64-bit addresses.
Such variables may be declared as INTEGER*4 in purely 32-bit codes and as
INTEGER*8 in 64-bit codes; KIND=MPI_ADDRESS_KIND works correctly in either
mode. MPI_ADDRESS is provided for backward compatibility. However, users are
encouraged to switch to MPI_GET_ADDRESS, in both FORTRAN and C.

Current FORTRAN MPI codes will run unmodified, and will port to any system.
However, these codes may fail if addresses larger than (2 (to the power of 32) -1)
are used in the program. New codes should be written so that they use
MPI_GET_ADDRESS. This provides compatibility with C and C++ and avoids
errors on 64-bit architectures. However, such newly-written codes may need to be
rewritten slightly to port to old FORTRAN 77 environments that do not support
KIND declarations.

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GET_ADDRESS

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Related information
MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_CREATE_STRUCT

Chapter 3. MPI subroutines and functions 299

MPI_GET_COUNT

MPI_GET_COUNT, MPI_Get_count

Purpose

Returns the number of elements in a message.

C synopsis

#include <mpi.h>
int MPI_Get_count(MPI_Status *status,MPI Datatype datatype,
int *count);

C++ synopsis

#include mpi.h
int MPI::Status::Get_count(const MPI::Datatype& datatype) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GET _COUNT(INTEGER STATUS (MPI_STATUS SIZE),INTEGER DATATYPE,
INTEGER COUNT,INTEGER IERROR)

Description

This subroutine returns the number of elements in a message. The datatype
argument and the argument provided by the call that set the status variable should
match.

When one of the MPI wait or test calls returns status for a non-blocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait or test call does not contain meaningful source,
tag, or message size information.

Parameters

status
A status object (Status) (IN). Note that in FORTRAN a single status object is an
array of integers.

datatype
The datatype of each message element (handle) (IN)

count
The number of elements (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid datatype

Type not committed
MPI not initialized
MPI already finalized

Related information
MPI_IRECV
MPI_PROBE

300 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GET_COUNT

MPI_RECV
MPI_WAIT

Chapter 3. MPI subroutines and functions 301

MPI_GET_ELEMENTS

MPI_GET_ELEMENTS, MPI_Get_elements

Purpose

Returns the number of basic elements in a message.

C synopsis

#include <mpi.h>
int MPI_Get_elements(MPI_Status *status,MPI Datatype datatype,
int *count);

C++ synopsis

#include mpi.h
int MPI::Status::Get_elements(const MPI::Datatype& datatype) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GET _ELEMENTS(INTEGER STATUS(MPI_STATUS SIZE),INTEGER DATATYPE,
INTEGER COUNT,INTEGER IERROR)

Description

This subroutine returns the number of type map elements in a message. When the
number of bytes does not align with the type signature, MPI. GET_ELEMENTS
returns MPI_UNDEFINED. For example, given type signature (int, short, int, short)

a 10-byte message would return 3 while an 8-byte message would return
MPI_UNDEFINED.

When one of the MPI wait or test calls returns status for a nonblocking operation
request and the corresponding blocking operation does not provide a status
argument, the status from this wait or test call does not contain meaningful source,
tag, or message size information.

Parameters

status
A status of object (status) (IN). Note that in FORTRAN a single status object is
an array of integers.

datatype
The datatype used by the operation (handle) (IN)

count
An integer specifying the number of basic elements (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid datatype
Type is not committed
MPI not initialized
MPI already finalized

302 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GET_ELEMENTS

Related information
MPI_GET_COUNT

Chapter 3. MPI subroutines and functions 303

MPI_GET_PROCESSOR_NAME

MPI_GET_PROCESSOR_NAME, MPI_Get_processor_name

Purpose

Returns the name of the local processor.

C synopsis

#include <mpi.h>
int MPI_Get_processor_name(char *name,int xresultlen);

C++ synopsis

#incTude mpi.h
void MPI::Get_processor_name(charx& name, int& resultlen);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GET_PROCESSOR_NAME (CHARACTER NAME (*),INTEGER RESULTLEN,
INTEGER IERROR)

Description

This subroutine returns the name of the local processor at the time of the call. The
name is a character string from which it is possible to identify a specific piece of
hardware. name represents storage that is at least
MPI_MAX_PROCESSOR_NAME characters long and
MPI_GET_PROCESSOR_NAME can write up to this many characters in name.

The actual number of characters written is returned in resultlen. For C, the returned
name is a null-terminated string with the terminating byte not counted in resultlen.
For FORTRAN, the returned name is a blank-padded string.

Parameters

name
A unique specifier for the actual node (OUT)

resultlen
Specifies the printable character length of the result returned in name (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
MPI not initialized
MPI already finalized

304 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GET_VERSION

MPI_GET_VERSION, MPI_Get_version

Purpose

Returns the version of the MPI standard supported in this release.

C synopsis

#include <mpi.h>
int MPI_Get version(int *version,int xsubversion);

C++ synopsis

#incTude mpi.h
void MPI::Get_version(int& version, int& subversion);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GET_VERSION(INTEGER VERSION, INTEGER SUBVERSION, INTEGER IERROR)

Description

This subroutine is used to determine the version of the MPI standard supported by

the MPI implementation.

The symbolic constants MPI_VERSION and MPI_SUBVERSION, which are
included in mpi.h and mpif.h, provide similar compile-time information.

MPI_GET_VERSION can be called before MPI_INIT.

Parameters

version
MPI standard version number (integer) (OUT)

subversion
MPI standard subversion number (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 3. MPI subroutines and functions

305

MPI_GRAPH_CREATE

MPI_GRAPH_CREATE, MPI_Graph_create

Purpose

Creates a new communicator containing graph topology information.

C synopsis

#include <mpi.h>
MPI_Graph_create(MPI_Comm comm_old,int nnodes, int =*index,
int xedges,int reorder,MPI_Comm *comm_graph);

C++ synopsis

#include mpi.h
MPI::Graphcomm MPI::Intracomm::Create_graph(int nnodes, const int index[],
const int edges[], bool reorder) const;

FORTRAN synopsis

include 'mpif.h' or use mpi

MPI_GRAPH_CREATE(INTEGER COMM_OLD,INTEGER NNODES,INTEGER INDEX(*),
INTEGER EDGES(*),INTEGER REORDER,INTEGER COMM_GRAPH,
INTEGER IERROR)

Description

This subroutine creates a new communicator containing graph topology
information provided by nnodes, index, edges, and reorder. MPI_GRAPH_CREATE
returns the handle for this new communicator in comm_graph.

If there are more tasks in comm_old than there are in nnodes, some tasks are
returned with a value of MPI_COMM_NULL for comm_graph.

Parameters

Notes

comm_old
The input communicator (handle) (IN)

nnodes
An integer specifying the number of nodes in the graph (IN)

index
An array of integers describing node degrees (IN)
edges
An array of integers describing graph edges (IN)
reorder
Set to true means that ranking may be reordered (logical) (IN)
comm_graph
The communicator with the graph topology added (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The following example shows how to define the arguments nnodes, index, and
edges. Suppose there are four tasks (0, 1, 2, 3) with the following adjacency matrix:

306 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors

Task Neighbors
0 1,3

1 0

2 3

3 0,2

Then the input arguments are:

Argument Input

nnodes 4

index 2,3,4,6
edges 1,3,0,3,0 2

MPI_GRAPH_CREATE

Thus, in C, index[0] is the degree of node 0, and index[i]-index[i—1] is the degree of
node i, i=1, ..., nnodes—1. The list of neighbors of node 0 is stored in edges]j], for 0

>= j >= index[0]-1 and the list of neighbors of node i, i > 0, is stored in edges[j],

index[i-1] >= j >= index[i]-1.

In FORTRAN, index(1) is the degree of node 0, and index(i+1)— index(i) is the degree
of node i, i=1, ..., nnodes—1. The list of neighbors of node 0 is stored in edges(j), for 1

>=j >= index(1) and the list of neighbors of node i, i > 0, is stored in edges(j),

index(i)+1 >= j >= index(i+1).

Because node 0 indicates that node 1 is a neighbor, node 1 must indicate that node

0 is its neighbor. For any edge A~B, the edge B>A must also be specified.

MPI not initialized
MPI already finalized
Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid nnodes
nnodes < 0 or nnodes > groupsize

Invalid node degree
(index[i]-index[i-1]) < O

Invalid neighbor
edges[i] < 0 or edges[i]>=nnodes

Asymmetric graph

Conflicting collective operations on communicator

Related information

MPI_CART_CREATE

Chapter 3. MPI subroutines and functions

307

MPI_GRAPH_GET

MPI_GRAPH_GET, MPI_Graph_get

Purpose

Retrieves graph topology information from a communicator.

C synopsis
#include <mpi.h>
MPI_Graph_get(MPI_Comm comm,int maxindex,int maxedges,
int *index,int *edges);
C++ synopsis

#include mpi.h
void MPI::Graphcomm::Get topo(int maxindex, int maxedges, int index[],
int edges[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GRAPH_GET (INTEGER COMM,INTEGER MAXINDEX,INTEGER MAXEDGES,
INTEGER INDEX(*),INTEGER EDGES(x),INTEGER IERROR)

Description

This subroutine retrieves the index and edges graph topology information associated
with a communicator.

Parameters

comm
A communicator with graph topology (handle) (IN)

maxindex
An integer specifying the length of index in the calling program (IN)

maxedges
An integer specifying the length of edges in the calling program (IN)

index
An array of integers containing node degrees (OUT)

edges
An array of integers containing node neighbors (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
MPI not initialized
MPI already finalized
Invalid communicator
No topology

Invalid topology type
topology type must be graph

Invalid array size
maxindex < 0 or maxedges < 0

308 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GRAPH_GET

Related information
MPI_GRAPH_CREATE
MPI_GRAPHDIMS GET

Chapter 3. MPI subroutines and functions 309

MPI_GRAPH_MAP

MPI_GRAPH_MAP, MPI_Graph_map

310

Purpose

Computes placement of tasks on the physical processor.

C synopsis

#include <mpi.h>
MPI_Graph_map(MPI_Comm comm,int nnodes,int *index,int *edges,int *newrank);

C++ synopsis

#incTude mpi.h
int MPI::Graphcomm::Map(int nnodes, const int index[],
const int edges[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GRAPH_MAP(INTEGER COMM,INTEGER NNODES,INTEGER INDEX(*),
INTEGER EDGES(*),INTEGER NEWRANK,INTEGER IERROR)

Description

MPI_GRAPH_MAP allows MPI to compute an optimal placement for the calling
task on the physical processor layout by reordering the tasks in comm.

Parameters

comm
The input communicator (handle) (IN)

nnodes
The number of graph nodes (integer) (IN)

index
An integer array specifying node degrees (IN)

edges
An integer array specifying node adjacency (IN)

newrank
The reordered rank, or MPI_Undefined if the calling task does not belong to
the graph (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

MPI_GRAPH_MAP returns newrank as the original rank of the calling task if it
belongs to the graph or MPI_UNDEFINED if it does not.

Errors

Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid nnodes
nnodes < 0 or nnodes > groupsize

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GRAPH_MAP

Invalid node degree
index[i] <0

Invalid neighbors
edges[i] < 0 or edges|i] >= nnodes

MPI not initialized
MPI already finalized

Related information

MPI_CART_MAP
MPI_GRAPH_CREATE

Chapter 3. MPI subroutines and functions 311

MPI_GRAPH_NEIGHBORS

MPI_GRAPH_NEIGHBORS, MPI_Graph_neighbors

Purpose

Returns the neighbors of the given task.

C synopsis

#include <mpi.h>
MPI_Graph_neighbors(MPI_Comm comm,int rank,int maxneighbors,int *neighbors);

C++ synopsis

#incTude mpi.h

void MPI::Graphcomm::Get _neighbors(int rank, int maxneighbors,
int neighbors[])
const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GRAPH_NEIGHBORS (MPI_COMM COMM, INTEGER RANK,INTEGER MAXNEIGHBORS,
INTEGER NNEIGHBORS (*),INTEGER IERROR)

Description

This subroutine retrieves the adjacency information for a particular task.

Parameters

Errors

comm
A communicator with graph topology (handle) (IN)

rank
The rank of a task within group of comm (integer) (IN)

maxneighbors
The size of array neighbors (integer) (IN)

neighbors
The ranks of tasks that are neighbors of the specified task (array of integer)
(OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Invalid array size
maxneighbors < 0

Invalid rank
rank < 0 or rank > groupsize

MPI not initialized
MPI already finalized
Invalid communicator
No topology

Invalid topology type
no graph topology associate with communicator

312 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GRAPH_NEIGHBORS

Related information
MPI_GRAPH_CREATE
MPI_GRAPH_NEIGHBORS COUNT

Chapter 3. MPI subroutines and functions 313

MPI_GRAPH_NEIGHBORS_COUNT

MPI_GRAPH_NEIGHBORS_COUNT, MPI_Graph_neighbors_count

Purpose

Returns the number of neighbors of the given task.

C synopsis
#include <mpi.h>
MPI_Graph_neighbors_count(MPI_Comm comm,int rank,
int *neighbors);

C++ synopsis

#include mpi.h
int MPI::Graphcomm::Get_neighbors_count(int rank) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GRAPH_NEIGHBORS COUNT(INTEGER COMM, INTEGER RANK,
INTEGER NEIGHBORS (*),INTEGER IERROR)

Description

This subroutine returns the number of neighbors of the given task.

Parameters

comm
A communicator with graph topology (handle) (IN)

rank
The rank of a task within comm (integer) (IN)

neighbors
The number of neighbors of the specified task (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Invalid rank
rank < 0 or rank > = groupsize

MPI not initialized

MPI already finalized

Invalid communicator

No graph topology associated with communicator

Invalid topology type
Related information

MPI_GRAPH_CREATE
MPI_GRAPH_NEIGHBORS

314 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GRAPHDIMS_GET

MPI_GRAPHDIMS_GET, MPI_Graphdims_get

Purpose

Retrieves graph topology information from a communicator.

C synopsis

#include <mpi.h>

MPI_Graphdims_get (MPI_Comm comm,int *nnodes,int *nedges);
C++ synopsis

#incTude mpi.h

void MPI::Graphcomm::Get_dims(int nnodes[],
int nedges[])
const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GRAPHDIMS GET(INTEGER COMM,INTEGER NNDODES,INTEGER NEDGES,
INTEGER IERROR)

Description

This subroutine retrieves the number of nodes and the number of edges in the
graph topology associated with a communicator.

Parameters

comm
A communicator with graph topology (handle) (IN)

nnodes
An integer specifying the number of nodes in the graph. The number of nodes
and the number of tasks in the group are equal. (OUT)

nedges
An integer specifying the number of edges in the graph. (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
MPI not initialized
MPI already finalized
Invalid communicator
No topology

Invalid topology type
topology type must be graph

Related information
MPI_GRAPH_CREATE
MPI_GRAPH_GET

Chapter 3. MPI subroutines and functions 315

MPI_GREQUEST_COMPLETE

MPI_GREQUEST_COMPLETE, MPI_Grequest_complete

316

Purpose

Marks the generalized request complete.

C synopsis

#include <mpi.h>

int MPI_Grequest _complete(MPI Request request);
C++ synopsis

#incTude mpi.h
void MPI::Grequest::Complete();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GREQUEST_COMPLETE(INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine informs MPI that the operations represented by the generalized
request are complete. A call to MPI_WAIT(request, status) will return and a call to
MPI_TEST(request, flag, status) will return flag = true only after a call to
MPI_GREQUEST_COMPLETE has declared that these operations are complete.

Parameters

request
The generalized request (handle) (INOUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

A GRequest free function returned an error
MPI_GRequest_free function fails

Invalid request handle

Not a GRequest handle

MPI already finalized

MPI not initialized

Related information
MPI_GREQUEST_START
MPI_TEST
MPI_WAIT

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GREQUEST_START

MPI_GREQUEST_START, MPI_Grequest_start

Purpose

Initializes a generalized request.

C synopsis

#include <mpi.h>

int MPI _Grequest_start(MPI_Grequest query function *query fn,
MPI_Grequest_free_function *free_fn,
MPI_Grequest_cancel_function *cancel_fn,
void *extra_state, MPI Request *request);

C++ synopsis

#include mpi.h

MPI::Grequest MPI::Grequest::Start(MPI::Grequest::Query function query fn,
MPI::Grequest::Free_function free_fn,
MPI::Grequest::Cancel_function cancel_fn,
void *extra_state);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GREQUEST START(EXTERNAL QUERY FN, EXTERNAL FREE _FN, EXTERNAL CANCEL_FN,
INTEGER EXTRA_STATE, INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine starts a generalized request and returns a handle to it in request.
This is a non-blocking operation.

Parameters

Notes

query_fn
The callback function that is invoked when the request status is queried
(function) (IN)

free_fn
The callback function that is invoked when the request is freed (function) (IN)

cancel_fn
The callback function that is invoked when the request is cancelled (function)
(IN)

extra_state
The extra state (integer) (IN)

request
The generalized request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

For a generalized request, the operation associated with the request is designed by
the application programmer and performed by the application; therefore, the
application must notify MPI when the operation has finished. It does this by
making a call to MPI_GREQUEST_COMPLETE. MPI maintains the "completion”
status of generalized requests. Any other request state has to be maintained by the
user.

Chapter 3. MPI subroutines and functions 317

MPI_GREQUEST_START

In C++, a generalized request belongs to the class MPI::Grequest, which is a
derived class of MPL::Request. It is of the same type as regular requests, in C and
FORTRAN.

The syntax and meaning of the callback functions follow. All callback functions are
passed the extra_state argument that was associated with the request by the starting
call MPI_GREQUEST_START. This can be used to provide extra information to the

callback functions or to maintain the user-defined state for the request.

In C, the query function is:
typedef int MPI_Grequest _query function(void *extra_state, MPI_Status =*status);

In FORTRAN, the query function is:

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA STATE, STATUS, IERROR)
INTEGER STATUS(MPI_STATUS SIZE), IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

In C++, the query function is:
typedef int MPI::Grequest::Query function(void* extra state, MPI::Status& status);

The query_fn function computes the status that should be returned for the
generalized request. The status should include information about the successful or
unsuccessful cancellation of the request (the result to be returned by
MPI_TEST_CANCELLED).

The query_fn callback is invoked by the MPI_WAIT or MPI_TEST

{ANY ISOME | ALL} call that completed the generalized request associated with
this callback. The callback function is also invoked by calls to
MPI_REQUEST_GET_STATUS, if the request is complete when the call occurs. In
both cases, the callback is passed a reference to the corresponding status variable
passed by the user to the MPI call; the status set by the callback function is
returned by the MPI call.

If the user provided MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE to the
MPI function that causes query_fn to be called, MPI passes a valid temporary status
object to query_fn, and this status is discarded upon return of the callback function.
This protects the query_fn from any need to deal with MPI_STATUS_IGNORE.
query_fn is invoked only after MPI_GREQUEST_COMPLETE is called on the
request; it may be invoked several times for the same generalized request, that is,
if the user calls MPI_REQUEST_GET_STATUS several times for this request. A call
to MPL_WAIT or MPI_TEST {SOME | ALL} may cause multiple invocations of
query_fn callback functions, one for each generalized request that is completed by
the MPI call. The order of these invocations is not specified by MPI.

In C, the free function is:
typedef int MPI_Grequest_free_function(void *extra_state);

In FORTRAN, the free function is:

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)
INTEGER IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

In C++, the free function is:
typedef int MPI::Grequest::Free_ function(void* extra_state);

318 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GREQUEST_START

The free_fn function is used to clean up user-allocated resources when the
generalized request is freed or completed. Freeing extra_state is an example.

The free_fn callback is invoked by the MPI_WAIT or MPI_TEST

{ANY ISOME | ALL} call that completed the generalized request associated with
this callback. free_fn is invoked after the call to query_fn for the same request.
However, if the MPI call completed multiple generalized requests, the order in
which free_fn callback functions are invoked is not specified by MPIL

The free_fn is also invoked for generalized requests that are freed by a call to
MPI_REQUEST_FREE (no call to MPI_WAIT or MPI_TEST {ANY |SOME | ALL}
occurs for such a request). In this case, the callback function is called either in the
MPI call MPI_REQUEST_FREE(request), or in the MPI call
MPI_GREQUEST_COMPLETE(request), whichever happens last. That is, in this case
the actual freeing code is run as soon as both MPI_REQUEST_FREE and
MPI_GREQUEST_COMPLETE have occurred. The request is not deallocated until
after free_fn completes. free_fn is invoked only once per request by a correct
program.

Calling MPI_REQUEST_FREE(request) causes the request handle to be set to
MPI_REQUEST_NULL. This handle to the generalized request is no longer valid.
However, user copies of this handle are valid until after free_fn completes because
MPI does not deallocate the object until then. Because free_fn is not called until
after MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to
make this call. Normally, the routine that is to carry out the user’s operation is
passed its own copy of the request handle at the time it is started. It will us this
copy of the request handle in a call to MPI_GREQUEST_COMPLETE once it has
finished. MPI deallocates the object after free_fn completes. At this point, user
copies of the request handle no longer point to a valid request. MPI does not set
user copies to MPI_REQUEST_NULL in this case, so it is up to the user to avoid
accessing this stale handle.

In C, the cancel function is:
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

In FORTRAN, the cancel function is:

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)
INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA STATE

LOGICAL COMPLETE

In C++, the cancel function is:
typedef int MPI::Grequest::Cancel_function(void* extra state, bool complete);

The cancel_fn function is invoked to attempt the cancellation of a generalized
request. It is called by MPI_CANCEL(request). MPI passes complete = true to the
callback function if MPI_ GREQUEST_COMPLETE was already called on the
request, and complete = false otherwise. The user’s cancel_fn must not try to cancel
the operation if it is already complete.

All callback functions must return an error code. The code is passed back and dealt
with as appropriate for that error code by the MPI function that invoked the
callback function. For example, the callback function return code may be returned
as the return code of the function triggering the callback. In the case of an
MPI_WAIT or MPI_TEST call that invokes both query_fn and free_fn and both
returning errors, the MPI completion function will return the error code returned

Chapter 3. MPI subroutines and functions 319

MPI_GREQUEST_START

320

by the last callback, namely free_fn. If one or more of the requests in a call to
MPI_WAIT or MPI_TEST {SOME | ALL} failed, the MPI call returns
MPI_ERR_IN_STATUS. In such a case, if the MPI call was passed an array of
statuses, MPI returns in each of the statuses that correspond to a completed
generalized request the error code returned by the corresponding invocation of its
query_fn or free_fn callback function. However, if the MPI function was passed
MPI_STATUSES_IGNORE, then the individual error codes returned by each
callback functions will be lost.

query_fn must not set the error field of status because it (query_fn may be called by
MPI_WAIT or MPI_TEST, in which case the error field of status should not change.
The MPI library knows the "context” in which query_fn is invoked and can decide
correctly when to put in the error field of status the returned error code.

When the MPI_ERRORS_ARE_FATAL error handler is in effect, the MPI library
issues the same message for all query_fn or free_fn return codes. The return code
value is embedded in the message.

Fatal errors:
MPI already finalized
MPI not initialized

Related information

MPI_CANCEL
MPI_GREQUEST_COMPLETE
MPI_REQUEST_FREE
MPI_REQUEST_GET_STATUS
MPI_TEST
MPI_TEST_CANCELLED
MPI_WAIT

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_Group_c2f

MPI_Group_c2f

Purpose
Translates a C group handle into a FORTRAN handle to the same group.

C synopsis

#include <mpi.h>
MPI_Fint MPI_Group c2f(MPI_Group group);

Description

This function does not have C++ or FORTRAN bindings. MPI_Group_c2f translates
a C group handle into a FORTRAN handle to the same group; it maps a null
handle into a null handle and a non-valid handle into a non-valid handle. The
converted handle is returned as the function’s value. There is no error detection or
return code.

Parameters

group
The group (handle) (IN)

Errors

None.

Related information
MPI_Group_f2c

Chapter 3. MPI subroutines and functions 321

MPI_GROUP_COMPARE

MPI_GROUP_COMPARE, MPI_Group_compare

Purpose

Compares the contents of two task groups.

C synopsis
#include <mpi.h>
int MPI_Group_compare(MPI_Group groupl,MPI Group groupZ,
int *result);
C++ synopsis

#include mpi.h
static int MPI::Group::Compare(const MPI::Group& groupl, const MPI::Group& group?2);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_COMPARE (INTEGER GROUPI,INTEGER GROUP2,INTEGER RESULT,
INTEGER IERROR)

Description

This subroutine compares the contents of two task groups and returns one of the
following:

MPI_IDENT
both groups have the exact group members and group order

MPI_SIMILAR
group members are the same but group order is different

MPI_UNEQUAL
group size is different or group members are different, or both

Parameters

groupl
The first group (handle) (IN)

group2
The second group (handle) (IN)

result
The result (integer) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid groups
MPI not initialized
MPI already finalized

Related information
MPI_COMM_COMPARE

322 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_DIFFERENCE

MPI_GROUP_DIFFERENCE, MPI_Group_difference

Purpose

Creates a new group that is the difference of two existing groups.

C synopsis

#include <mpi.h>
int MPI_Group_difference(MPI_Group groupl,MPI Group groupZ,
MPI_Group *newgroup);

C++ synopsis

#include mpi.h
static MPI::Group MPI::Group::Difference(const MPI::Group& groupl,
const MPI::Group& group?2);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_DIFFERENCE(INTEGER GROUPI,INTEGER GROUP2,
INTEGER NEWGROUP, INTEGER IERROR)

Description

This subroutine creates a new group that is the difference of two existing groups.
The new group consists of all elements of the first group (groupl) that are not in

the second group (group2), and is ordered as in the first group.

Parameters

groupl
The first group (handle) (IN)

group2
The second group (handle) (IN)

newgroup
The difference group (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid groups
MPI not initialized
MPI already finalized

Related information

MPI_GROUP_INTERSECTION
MPI_GROUP_UNION

Chapter 3. MPI subroutines and functions

323

MPI_GROUP_EXCL

MPI_GROUP_EXCL, MPI_Group_excl

Purpose

Creates a new group by excluding selected tasks of an existing group.

C synopsis

#include <mpi.h>
int MPI_Group_excl(MPI_Group group,int n,int xranks,
MPI_Group *newgroup);

C++ synopsis

#include mpi.h
MPI::Group MPI::Group::Excl(int n, const int ranks[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_EXCL(INTEGER GROUP,INTEGER N,INTEGER RANKS(*),
INTEGER NEWGROUP, INTEGER IERROR)

Description
This subroutine removes selected tasks from an existing group to create a new
group.

MPI_GROUP_EXCL creates a group of tasks newgroup obtained by deleting from
group tasks with ranks ranks[0],... ranks[n-1]. The ordering of tasks in newgroup is
identical to the ordering in group. Each of the n elements of ranks must be a valid
rank in group and all elements must be distinct. If n = 0, newgroup is identical to

group.
Parameters

group
The group (handle) (IN)

n The number of elements in array ranks (integer) (IN)

ranks
The array of integer ranks in group that is not to appear in newgroup (IN)

newgroup
The new group derived from the above, preserving the order defined by group
(handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid group

Invalid size
n <0 or n > groupsize

Invalid ranks
ranks[i] < 0 or ranks[i] > = groupsize

Duplicate ranks

324 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_EXCL

MPI not initialized
MPI already finalized

Related information

MPI_GROUP_INCL
MPI_GROUP_RANGE_EXCL
MPI_GROUP_RANGE_INCL

Chapter 3. MPI subroutines and functions 325

MPI_Group_f2c

MPI_Group_f2c

Purpose
Returns a C handle to a group.

C synopsis

#include <mpi.h>
MPI_Group MPI Group f2c(MPI_Fint group);

Description

This function does not have C++ or FORTRAN bindings. MPI_Group_f2c returns a
C handle to a group. If group is a valid FORTRAN handle to a group,
MPI_Group_f2c returns a valid C handle to that same group. If group is set to the
FORTRAN value MPI_GROUP_NULL, MPI_Group_{2c returns the equivalent null
C handle. If group is not a valid FORTRAN handle, MPI_Group_f2c returns a
non-valid C handle. The converted handle is returned as the function’s value.
There is no error detection or return code.

Parameters

group
The group (handle) (IN)

Errors

None.

Related information
MPI_Group_c2f

326 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_FREE

MPI_GROUP_FREE, MPI_Group_free

Purpose

Marks a group for deallocation.

C synopsis

#include <mpi.h>

int MPI_Group_free(MPI_Group *group);
C++ synopsis

#incTude mpi.h
void MPI::Group::Free();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_FREE(INTEGER GROUP,INTEGER IERROR)

Description

MPI_GROUP_FREE sets the handle group to MPI_GROUP_NULL and marks the
group object for deallocation. Actual deallocation occurs only after all operations
involving group are completed. Any active operation using group completes
normally but no new calls with meaningful references to the freed group are
possible.

Parameters

group
The group (handle) (INOUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid group
MPI not initialized
MPI already finalized

Chapter 3. MPI subroutines and functions 327

MPI_GROUP_INCL

MPI_GROUP_INCL, MPI_Group_incl

328

Purpose

Creates a new group consisting of selected tasks from an existing group.

C synopsis

#include <mpi.h>
int MPI_Group_inc1(MPI_Group group,int n,int xranks,
MPI_Group *newgroup);

C++ synopsis

#include mpi.h
MPI::Group MPI::Group::Incl(int n, const int ranks[]) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_INCL(INTEGER GROUP,INTEGER N,INTEGER RANKS(*),
INTEGER NEWGROUP, INTEGER IERROR)

Description

This subroutine creates a new group consisting of selected tasks from an existing

group.

MPI_GROUP_INCL creates a group newgroup consisting of n tasks in group with
ranks rank[0], ..., rank[n-1]. The task with rank i in newgroup is the task with rank

ranks[i] in group.

Each of the n elements of ranks must be a valid rank in group and all elements
must be distinct. If n = 0, newgroup is MPI_GROUP_EMPTY. This function can be

used to reorder the elements of a group.

Parameters

group
The group (handle) (IN)

n The number of elements in array ranks and the size of newgroup (integer) (IN)

ranks

The ranks of tasks in group to appear in newgroup (array of integers) (IN)

newgroup

The new group derived from above in the order defined by ranks (handle)

(OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid group

Invalid size
n < 0 or n > groupsize

Invalid ranks
ranks(i] < 0 or ranks[i] >= groupsize

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_INCL

Duplicate ranks
MPI not initialized
MPI already finalized

Related information

MPI_GROUP_EXCL
MPI_GROUP_RANGE_EXCL
MPI_GROUP_RANGE_INCL

Chapter 3. MPI subroutines and functions 329

MPI_GROUP_INTERSECTION

MPI_GROUP_INTERSECTION, MPI_Group_intersection

Purpose

Creates a new group that is the intersection of two existing groups.

C synopsis

#include <mpi.h>
int MPI_Group_intersection(MPI_Group groupl,MPI Group group2,
MPI_Group *newgroup);

C++ synopsis

#include mpi.h
static MPI::Group MPI::Group::Intersect(const MPI::Group& groupl,
const MPI::Group& group?);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_INTERSECTION(INTEGER GROUPI,INTEGER GROUP2,
INTEGER NEWGROUP, INTEGER IERROR)

Description

This subroutine creates a new group that is the intersection of two existing groups.
The new group consists of all elements of the first group (groupl) that are also part
of the second group (group2), and is ordered as in the first group.

Parameters

groupl
The first group (handle) (IN)

group2
The second group (handle) (IN)

newgroup
The intersection group (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid groups
MPI not initialized
MPI already finalized

Related information

MPI_GROUP_DIFFERENCE
MPI_GROUP_UNION

330 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_RANGE_EXCL

MPI_GROUP_RANGE_EXCL, MPI_Group_range_excl

Purpose

Creates a new group by removing selected ranges of tasks from an existing group.

C synopsis

#include <mpi.h>
int MPI_Group_range_excl(MPI _Group group,int n,
int ranges[][3],MPI_Group *newgroup);

C++ synopsis

#include mpi.h
MPI::Group MPI::Group::Range excl(int n, const int ranges[][3])
const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_RANGE_EXCL(INTEGER GROUP,INTEGER N,INTEGER RANGES(3,*),
INTEGER NEWGROUP, INTEGER IERROR)

Description

This subroutine creates a new group by removing selected ranges of tasks from an
existing group. Each computed rank must be a valid rank in group and all
computed ranks must be distinct.

The function of this subroutine is equivalent to expanding the array ranges to an
array of the excluded ranks and passing the resulting array of ranks and other
arguments to MPI_GROUP_EXCL. A call to MPI_GROUP_EXCL is equivalent to a
call to MPI_GROUP_RANGE_EXCL with each rank i in ranks replaced by the
triplet (,i,1) in the argument ranges.

Parameters

group
The group (handle) (IN)

n The number of triplets in array ranges (integer) (IN)

ranges
An array of integer triplets of the form (first rank, last rank, stride) specifying
the ranks in group of tasks that are to be excluded from the output group
newgroup. (IN)

newgroup

The new group derived from above that preserves the order in group (handle)
(OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Invalid group

Invalid size
n < 0 or n > groupsize

Chapter 3. MPI subroutines and functions 331

MPI_GROUP_RANGE_EXCL

Invalid rank
a computed rank < 0 or >= groupsize

Duplicate ranks

Invalid strides
stride[i] = 0

Too many ranks
Number of ranks > groupsize

MPI not initialized
MPI already finalized

Related information

MPI_GROUP_EXCL
MPI_GROUP_INCL
MPI_GROUP_RANGE_INCL

332 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_RANGE_INCL

MPI_GROUP_RANGE_INCL, MPI_Group_range_.incl

Purpose

Creates a new group consisting of selected ranges of tasks from an existing group.

C synopsis

#include <mpi.h>
int MPI_Group_range_inc1(MPI_Group group,int n,
int ranges[][3],MPI_Group *newgroup);

C++ synopsis

#include mpi.h
MPI::Group MPI::Group::Range_incl(int n, const int ranges[][3])
const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_RANGE_INCL(INTEGER GROUP,INTEGER N,INTEGER RANGES(3,*),
INTEGER NEWGROUP, INTEGER IERROR)

Description

This subroutine creates a new group consisting of selected ranges of tasks from an
existing group. The function of this subroutine is equivalent to expanding the array
of ranges to an array of the included ranks and passing the resulting array of
ranks and other arguments to MPI_GROUP_INCL. A call to MPI_GROUP_INCL is
equivalent to a call to MPI_ GROUP_RANGE_INCL with each rank 7 in ranks
replaced by the triplet (7,4,1) in the argument ranges.

Parameters

group
The group (handle) (IN)

n The number of triplets in array ranges (integer) (IN)

ranges
A one-dimensional array of integer triplets of the form (first_rank, last_rank,
stride) indicating ranks in group of tasks to be included in newgroup (IN)

newgroup
The new group derived from above in the order defined by ranges (handle)
(OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid group

Invalid size
n < 0 or n > groupsize

Invalid ranks
a computed rank < 0 or >= groupsize

Duplicate ranks

Chapter 3. MPI subroutines and functions 333

MPI_GROUP_RANGE_INCL

Invalid strides
stride[i] = 0

Too many ranks
nranks > groupsize

MPI not initialized
MPI already finalized

Related information
MPI_GROUP_EXCL
MPI_GROUP_INCL
MPI_GROUP_RANGE_EXCL

334 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_RANK

MPI_GROUP_RANK, MPI_Group_rank

Purpose

Returns the rank of the local task with respect to group.

C synopsis

#include <mpi.h>

int MPI_Group_rank(MPI_Group group,int xrank);
C++ synopsis

#incTude mpi.h
int MPI::Group::Get_rank() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_RANK(INTEGER GROUP,INTEGER RANK,INTEGER IERROR)

Description

This subroutine returns the rank of the local task with respect to group. This local
operation does not require any intertask communication.

Parameters

group
The group (handle) (IN)

rank
An integer that specifies the rank of the calling task in group or
MPI_UNDEFINED if the task is not a member. (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid group
MPI not initialized
MPI already finalized

Related information
MPI_ COMM_RANK

Chapter 3. MPI subroutines and functions 335

MPI_GROUP_SIZE

MPI_GROUP_SIZE, MPI_Group_size

Purpose

Returns the number of tasks in a group.

C synopsis

#include <mpi.h>

int MPI_Group_size(MPI _Group group,int *size);
C++ synopsis

#incTude mpi.h
int MPI::Group::Get_size() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_SIZE(INTEGER GROUP,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine returns the number of tasks in a group. This is a local operation
and does not require any intertask communication.

Parameters

group
The group (handle) (IN)

size

The number of tasks in the group (integer) (OUT)
IERROR

The FORTRAN return code. It is always the last argument.

Errors
Invalid group
MPI not initialized
MPI already finalized

Related information
MPI_COMM_SIZE

336 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_TRANSLATE_RANKS

MPI_GROUP_TRANSLATE_RANKS, MPI_Group_translate_ranks

Purpose

Converts task ranks of one group into ranks of another group.

C synopsis

#include <mpi.h>
int MPI Group_translate_ranks(MPI _Group groupl,int n,
int *ranksl,MPI_Group groupZ2,int *ranks2);

C++ synopsis

#include mpi.h

void MPI::Group::Translate_ranks(const MPI::Group& groupl, int n,
const int ranksl[],
const MPI::Group& group2, int ranks2[]);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_TRANSLATE_RANKS (INTEGER GROUP1, INTEGER N,
INTEGER RANKSI(*),INTEGER GROUP2,INTEGER RANKS2(*),INTEGER IERROR)

Description

This subroutine converts task ranks of one group into ranks of another group. For
example, if you know the ranks of tasks in one group, you can use this function to

find the ranks of tasks in another group.

Parameters

groupl
The first group (handle) (IN)

n An integer that specifies the number of ranks in ranks1 and ranks2 arrays (IN)

ranks1
An array of zero or more valid ranks in groupl (IN)

group2
The second group (handle) (IN)

ranks2
An array of corresponding ranks in group2. If the task of ranks1(i) is not a
member of group2, ranks2(i) returns MPI_UNDEFINED. (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Invalid groups

Invalid rank count
n<o0

Invalid rank
ranks1[i] < 0 or ranks1[i] > = size of groupl

MPI not initialized
MPI already finalized

Chapter 3. MPI subroutines and functions

337

MPI_GROUP_TRANSLATE_RANKS

Related information
MPI_COMM_COMPARE

338 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_GROUP_UNION

MPI_GROUP_UNION, MPI_Group_union

Purpose

Creates a new group that is the union of two existing groups.

C synopsis

#include <mpi.h>
int MPI_Group_union(MPI _Group groupl,MPI Group groupZ,
MPI_Group *newgroup);

C++ synopsis

#include mpi.h
static MPI::Group MPI::Group::Union(const MPI::Group& groupl,
const MPI::Group& group?);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_GROUP_UNION(INTEGER GROUPI,INTEGER GROUP2,INTEGER NEWGROUP,
INTEGER IERROR)

Description

This subroutine creates a new group that is the union of two existing groups. The
new group consists of the elements of the first group (groupl) followed by all the

elements of the second group (group2) not in the first group.

Parameters

groupl
The first group (handle) (IN)

group2
The second group (handle) (IN)

newgroup
The union group (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors
Invalid groups
MPI not initialized
MPI already finalized

Related information

MPI_GROUP_DIFFERENCE
MPI_GROUP_INTERSECTION

Chapter 3. MPI subroutines and functions

339

MPI_IBSEND

MPI_IBSEND, MPI_lbsend

Purpose

Performs a nonblocking buffered mode send operation.

C synopsis

#include <mpi.h>
int MPI_Ibsend(void* buf,int count,MPI Datatype datatype,
int dest,int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::Comm::Ibsend(const void* buf, int count,
const MPI::Datatype& datatype,
int dest, int tag) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_IBSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,
INTEGER TAG,INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

MPI_IBSEND starts a buffered mode, nonblocking send. The send buffer may not
be modified until the request has been completed by MPI_WAIT, MPI_TEST, or
one of the other MPI wait or test functions.

Parameters

buf
The initial address of the send buffer (choice) (IN)

count
The number of elements in the send buffer (integer) (IN)

datatype
The datatype of each send buffer element (handle) (IN)

dest
The rank of the destination task in comm (integer) (IN)

tag
The message tag (positive integer) (IN)

comm
The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

Make sure you have enough buffer space available. An error occurs if the message
must be buffered and there is there is not enough buffer space. The amount of
buffer space needed to be safe depends on the expected peak of pending messages.

340 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_IBSEND

The sum of the sizes of all of the pending messages at that point plus
(MPI_IBSEND_OVERHEAD*number_of_messages) should be sufficient.

Avoid using MPI_IBSEND if possible. It adds overhead because it requires an
extra memory-to-memory copy of the outgoing data. If MPI_IBSEND is used, the
associated receive operations may perform better with MPI_CSS_INTERRUPT
enabled.

Errors

Invalid count
count < 0

Invalid datatype
Invalid destination

Type not committed
dest < 0 or dest > = groupsize

Invalid tag
tag <0

Invalid comm
MPI not initialized
MPI already finalized

Develop mode error if:

Illegal buffer update

Related information
MPI_BSEND
MPI_BSEND _INIT
MPI_BUFFER_ATTACH
MPI_WAIT

Chapter 3. MPI subroutines and functions 341

MPI_Info_c2f

MPI _Info_c2f

Purpose
Translates a C Info object handle into a FORTRAN handle to the same Info object.

C synopsis

#include <mpi.h>
MPI_Fint MPI_Info c2f(MPI_Info info);

Description

This function does not have C++ or FORTRAN bindings. MPI_Info_c2f translates a
C Info object handle into a FORTRAN handle to the same Info object; it maps a
null handle into a null handle and a non-valid handle into a non-valid handle. The
converted handle is returned as the function’s value. There is no error detection or
return code.

Parameters

info
The Info object (handle) (IN)

Errors

None.

Related information
MPI _Info_f2c

342 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_INFO_CREATE

MPI_INFO_CREATE, MPI_Info_create

Purpose

Creates a new Info object.

C synopsis

#include <mpi.h>
int MPI_Info_create(MPI_Info *info);

C++ synopsis

#incTude mpi.h
static MPI::Info MPI::Info::Create();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_INFO_CREATE(INTEGER INFO,INTEGER IERROR)

Description

This subroutine creates a new Info object and returns a handle to it in the info
argument. The new Info object does not contain any (key,value) pairs, or hints. Any
hints are added to an Info object using MPI_INFO_SET. See [“MPI_INFO_SET)
IMPI_Info_set” on page 356| for information about the MP_HINTS_FILTERED
environment variable.

Parameters

info
The Info object created (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Related information
MPI_INFO_DELETE
MPI_INFO_DUP
MPI_INFO_FREE
MPI_INFO_GET
MPI_INFO_GET _NKEYS
MPI_INFO_GET NTHKEY
MPI_INFO_GET_VALUELEN
MPI_INFO_SET

Chapter 3. MPI subroutines and functions 343

MPI_INFO_DELETE

MPI_INFO_DELETE, MPI_Info_delete

Purpose

Deletes a (key, value) pair from an Info object.

C synopsis

#include <mpi.h>
int MPI_Info_delete(MPI_Info info,char xkey);

C++ synopsis

#incTude mpi.h
void MPI::Info::Delete(const char* key);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_INFO_DELETE(INTEGER INFO,CHARACTER KEY(*),INTEGER IERROR)

Description

This subroutine deletes a (key,value) pair from the Info object referred to by info. If
the key is unrecognized, the attempt to delete it will be ignored and no error
occurs. In other words, an attempt to delete with a key that exists in the object will
succeed. An attempt to delete with a recognized key that is not present in the
object will raise an error. An attempt to delete with an unrecognized key has no
effect. See |“MPI_INFO_SET, MPI Info_set” on page 356| for information about how
the MP_HINTS_FILTERED environment variable can affect which keys are
recognized.

Parameters

info
The Info object (handle) (OUT)

key
The key of the pair to be deleted (string) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Invalid info
info is not a valid Info object

Invalid info key
key must contain less than 128 characters

Key not found in info

Related information
MPI_INFO_CREATE
MPI_INFO_DUP

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_INFO_FREE
MPI_INFO_GET
MPI_INFO_GET_NKEYS
MPI_INFO_GET_NTHKEY
MPI_INFO_GET_VALUELEN
MPI_INFO_SET

MPI_INFO_DELETE

Chapter 3. MPI subroutines and functions

345

MPI_INFO_DUP

MPI_INFO_DUP, MPI_Info_dup

Purpose

Duplicates an Info object.

C synopsis

#include <mpi.h>
int MPI_Info_dup(MPI_Info info,MPI Info *newinfo);

C++ synopsis

#incTude mpi.h
MPI::Info MPI::Info::Dup() const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_INFO_DUP(INTEGER INFO,INTEGER NEWINFO,INTEGER IERROR)

Description

This subroutine duplicates the Info object referred to by info and returns in newinfo
a handle to the newly-created object. The new object has the same (key,value) pairs
and ordering of keys as the old object.

Parameters

info
The Info object to be duplicated(handle) (IN)

newinfo
The new Info object (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Invalid info
info is not a valid Info object

Related information
MPI_INFO_CREATE
MPI_INFO _DELETE
MPI_INFO_FREE
MPI_INFO_GET
MPI_INFO_GET_NKEYS
MPI_INFO_GET NTHKEY
MPI_INFO_GET_VALUELEN
MPI_INFO_SET

346 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_Info_f2c

MPI _Info_f2c

Purpose

Returns a C handle to an Info object.

C synopsis

#include <mpi.h>
MPI_Info MPI_Info f2c(MPI Fint file);

Description

This function does not have C++ or FORTRAN bindings. MPI_Info_f2c returns a C
handle to an Info object. If info is a valid FORTRAN handle to an Info object,
MPI_Info_f2¢ returns a valid C handle to that same file. If info is set to the
FORTRAN value MPI_INFO_NULL, MPI_Info_f2c returns the equivalent null C
handle. If info is not a valid FORTRAN handle, MPI_Info_f2c returns a non-valid C
handle. The converted handle is returned as the function’s value. There is no error
detection or return code.

Parameters

info
The Info object (handle) (IN)

Errors

None.

Related information
MPI_Info_c2f

Chapter 3. MPI subroutines and functions 347

MPI_INFO_FREE

MPI_INFO_FREE, MPI_Info_free

Purpose

Frees the Info object referred to by the info argument and sets it to
MPI_INFO_NULL.

C synopsis

#include <mpi.h>
int MPI_Info_free(MPI_Info *info);

C++ synopsis

#incTude mpi.h
void MPI::Info::Free();

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_INFO_FREE(INTEGER INFO,INTEGER IERROR)

Description

MPI_INFO_FREE frees the Info object referred to by the info argument and sets info
to MPI_INFO_NULL.

Parameters

info
The Info object (handle) (INOUT)

IERROR
The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:
MPI not initialized
MPI already finalized

Invalid info
info is not a valid Info object

Related information
MPI_INFO_CREATE
MPI_INFO_DELETE
MPI_INFO_DUP
MPI_INFO_GET
MPI_INFO_GET _NKEYS
MPI_INFO_GET NTHKEY
MPI_INFO_GET VALUELEN
MPI_INFO_SET

348 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPI_INFO_GET

MPL_INFO_GET, MPI_Info_get

Purpose

Retrieves the value associated with key in an Info object.

C synopsis

#include <mpi.h>

int MPI_Info_get(MPI_Info info,char xkey,int valuelen,char *value,int *flag);
C++ synopsis

#incTude mpi.h
bool MPI::Info::Get(const char* key, int valuelen, char* value) const;

FORTRAN synopsis

include 'mpif.h' or use mpi
MPI_INFO_GET(INTEGER INFO,CHARACTER KEY(*),INTEGER VALUELEN,CHARACTER VALUE(*),
LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine retrieves the value associated with the key in the Info object
referred to by info. If the (key,value) pair is present in the Info object,
M