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Notices

This information was developed for products and services offered in the U.S.A. 
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Preface

This IBM® Redbook provides an insight into the performance considerations of 
Advanced POWERTM Virtualization on the IBM System p5 and IBM  ̂p5 
servers. It discusses the major hardware, software, benchmarks, and various 
tools that are available.

This book is suitable for professionals who want a better understanding of the 
IBM POWER5TM architecture and Micro-PartitioningTM that is supported by the 
IBM System p5 and Sserver p5 servers. It targets clients, sales and marketing 
professionals, technical support professionals, and IBM Business Partners.

The Advanced POWER™ Virtualization feature is a combination of hardware and 
software that supports and manages the virtual I/O environment on 
POWER5™-based systems. The main technologies are:

� POWER5 microprocessor architecture with simultaneous multithreading 
support

� Micro-Partitioning™

� Virtual SCSI Server

� Virtual Ethernet

� Shared Ethernet Adapter

� Partition Load Manager

This redbook is intended as an additional source of information that, together 
with existing sources referenced throughout this document, enhances your 
knowledge of IBM solutions for the UNIX® marketplace. It does not replace the 
latest marketing materials and tools.

While the focus in this publication is IBM Sserver p5 hardware and the AIX® 
5LTM operating system, the concepts and methodology can be extended to the 
i5/OSTM and Linux® operating systems as well as the IBM System p5 and IBM 
Sserver i5 platform.

A basic understanding of logical partitioning is required.
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Part 1 Virtualization 
technology

In this part, we provide an in-depth look at the technology behind the 
virtualization capabilities of the IBM  ̂p5 systems. Detailed information is 
provided about the IBM POWER5 microprocessor architecture, the POWER 
Hypervisor, simultaneous multithreading, Micro-Partitioning, and virtual I/O.

Part 1
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Chapter 1. Introduction

This book takes an in-depth look at the performance considerations of the 
IBM  ̂p5 servers, advancing the concepts and terminology provided in 
the redbook entitled Advanced POWER Virtualization on IBM eServer p5 
Servers: Introduction and Basic Configuration, SG24-7940. If you are not familiar 
with the terminology and concepts of virtualization, we strongly suggest that you 
read that book before starting the material in this book, as this book assumes 
that you are already familiar with the concepts of virtualization.

As a quick review, the following terms are defined here:

Virtualization The pooling of system resources via the POWER 
Hypervisor to access processors, memory, and I/O 
devices across logical partitions

POWER Hypervisor Supports partitioning and dynamic resource movement 
across multiple operating system environments

Micro-Partitioning Enables you to allocate less than a full physical 
processor to a logical partition

Virtual LAN Provides network virtualization capabilities that enable 
you to prioritize traffic on shared networks

Virtual I/O Provides the ability to dedicate I/O adapters and devices 
to a virtual server, enabling the on demand allocation 
and management of I/O devices

1
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Capacity on Demand Enables inactive processors and memory to be activated 
on an as-needed basis

Simultaneous multithreading
Enables applications to increase overall resource 
utilization by virtualizing multiple physical CPUs through 
the use of multithreading

Why would the information presented in this book be of importance to you? 
Some of the reasons are:

�  Reduce costs by increasing asset utilization.
�  Re-deploy talent to manage your business, not the infrastructure.
�  Rapidly provision new servers.
�  Drive new levels of IT staff productivity.
�  Simplify server management and operations.
�  Communicate more securely with virtual Ethernet.

The IBM Sserver p5 family of servers includes powerful new capabilities such 
as the partitioning of processors to 1/10th of a processor, sharing processor 
resources in a pool to drive up utilization, sharing physical disk storage and 
communications adapters between partitions, and taking advantage of 
cross-partition workload management, to mention a few.

Upcoming chapters include an in-depth discussion about each component that 
makes up the new IBM capabilities available on the POWER5 family of systems, 
such as POWER Hypervisor, simultaneous multithreading, Micro-Partitioning, 
virtual LAN, and Virtual I/O.

We hope that by the end of this book you will have a more complete 
understanding of virtualization as it applies to the POWER5 architecture and the 
Sserver p5 systems.
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1.1  Performance tuning redefined
With the advent of this new technology and functionality, our traditional concepts 
and methods of system and applications performance tuning must accommodate 
the virtual dimension. In addition to defining and explaining these concepts and 
methods, this book also covers traditional performance issues as well as 
performance as a function of a system environment with virtual capabilities.

1.1.1  Understanding performance
Technological improvements in microprocessors, disks, and networking 
equipment have dramatically changed the landscape of server computing. While 
those improvements have more often than not reduced the incidence of 
performance problems in client environments, they have also increased the 
capabilities of systems such that more complex problems may be solved. Thus, 
performance tuning has tended to change in nature from simple hardware and 
software bottleneck analysis toward evaluation of more complex interactions. 
Performance evaluation and tuning of complex systems requires discipline and 
exactness. Frequently, the solution to a problem is not obvious. Often the steps 
along the journey toward the solution may seem inconclusive or even 
counterproductive. But, with a systematic rigor, nearly every bottleneck can be 
alleviated in some way. To help the reader achieve the goal of making system 
tuning rewarding and beneficial, we have dedicated one chapter to provide you 
with tools to help in the effort.

In addition, it is important to note that performance tuning can be subdivided into 
system tuning and application tuning. The objectives of these two tuning areas 
are very different. System tuning relies on the ability to modify system 
parameters in order to provide faster throughput measurements. This throughput 
consists of the amount of work performed over a period of time and normally 
corresponds to a series of identical or different jobs running simultaneously and 
competing for the same system resources. Application tuning looks at the source 
code for a particular application and requires tailoring or optimizing the code to a 
particular architecture or common architectural features.

An IBM Sserver p5 system is subjected to various types of loads. The load can 
vary widely depending on the number of applications used and the type of 
applications being run. Obviously the number of loads and type of applications 
will vary widely over the period of the server’s working life. Consequently, 
changes have to be made to the server’s hardware and software setup to 
accommodate these changing conditions. Applications require tuning as well.

System administrators often refer to any degradation of service as a bottleneck in 
the server system. Bottlenecks must be understood and compensated for if the 
 Chapter 1. Introduction 3



system administrators are to keep the users satisfied with performance. Similarly, 
programmers must identify bottlenecks within the source code of certain 
applications that form part of the system load.

System tuning
Within a server there are limited resources that can affect the performance of a 
given system. Each of these resources work together hand-in-hand and are 
capable of influencing the behavior of one another. If performance modifications 
are not carefully administered, the overall effect could be a deterioration of server 
performance.

Here we distinguish between three types of resources:

� Logical resources

The resources as seen by the operating system. For example, a central 
processing unit (CPU) may be available to the operating system as cpu0, but 
it may not be the first CPU installed in the system. The operating system 
could be installed in the third partition of the system and using the third 
physical CPU in the system as cpu0.

� Virtual resources

The resources that appear to be available for the operating system to use. For 
example, virtual storage provides the appearance that there is more memory 
available than is actually installed in the system. With the use of paging 
space, the operating system no longer has to be limited by the amount of 
physical memory installed in the system.

� Physical resources

The actual hardware resources found in the system, such as processors, 
memory, disk drives, and network adapters. The efficiency of the operating 
system will maximize the hardware performance.

As server performance is distributed throughout each server component and 
type of resource, it is essential to identify the most important factors or 
bottlenecks that will affect the performance for a particular activity.

Detecting the bottleneck within a server system depends on a range of factors 
such as:

� Configuration of the server hardware
� Software applications workload
� Configuration parameters of the operating system
� Network configuration and topology

File servers need fast network adapters and fast disk subsystems. In contrast, 
database server environments typically produce high processor and disk 
4 Advanced POWER Virtualization on IBM Eserver p5 Servers



utilization, requiring fast processors or multiple processors and fast disk 
subsystems. Both file and database servers require large amounts of memory for 
caching by the operating system.

Traditionally there has been a simplified approach to performance tuning: If the 
performance bottleneck is the processor, then either a faster processor or more 
processors could be installed. An alternative to processor upgrade is to offload 
processing requirements by using workload management techniques. If the 
bottleneck is memory, then additional memory could be installed. Memory 
bottlenecks often result in excessive disk I/O as a result of paging (swapping) 
between paging space and memory. If the bottleneck is the disk subsystem, then 
either additional disk drives, disk adapters, or both can be installed. In addition, a 
specialized high-performance disk subsystem could be used. If the bottleneck is 
the network adapter then a faster network interface could be installed. Another 
optimization technique that can be employed is to utilize multiple network 
adapters in the server increasing throughput onto one or multiple segments.

Before any tuning is actually performed, it is worth understanding the framework 
within which performance testing is done. Follow a set of simple guidelines to 
assist in any type of performance analysis.

There are many trade-offs related to performance tuning that have to be 
considered. In order to chose the best set of options it is vital to ensure that there 
is a balance between them. The trade-offs are:

� Cost versus performance. In some situations, the only way performance can 
be improved is by using more or faster hardware while keeping in mind, “Does 
the additional cost result in a proportional increase in performance?”

� Conflicting performance requirements. When more than one application is 
used simultaneously, there may be conflicting performance requirements.

� Speed versus functionality. Here, for example, resources may be increased to 
improve a particular section, but serve as an overall detriment to the system. 
Using a methodical approach you can obtain improved server performance, 
such as by:

– Understanding the factors that can affect server performance, for the 
specific server functional requirements and for the characteristics of the 
particular system

– Measuring the current performance of the server

– Identifying a performance bottleneck

– Upgrading the component that is causing the bottleneck
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– Measuring the new performance of the server to check for improvement

Although we cover this material in this book, additional information may be found 
in this redbook: AIX 5L Performance Tools Handbook, SG24-6039.

Application tuning
Application tuning (or application optimization) requires careful analysis of the 
source code to tailor it to a particular hardware architecture. In other words, it is 
the goal of the programmer to make the application aware of the hardware 
features that are accessible to the application. For instance, we shall see in the 
applications tuning chapter how to optimize do loops to take advantage of the L2 
cache on Sserver p5 architectures.

We shall see that, in general, any tuning that we carry out at the application level 
will leverage systems with and without virtual environments. The following 
redbooks cover this subject on POWER3™ and POWER4™:

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and 
Tuning Guide, SG24-5155

� The POWER4 Processor Introduction and Tuning Guide, SG24-7041

1.1.2  Performance considerations
The goal of virtualization is to allow the deployment of resources in a flexible 
manner. This flexibility enables best use of resources and, when correctly used, 
should improve performance and the end-user experience. However, 
virtualization alters the way we look at system performance. We still follow the 
same rules for identifying existing or potential bottlenecks, but the remedy can be 
different and difficult to obtain. Virtualization is a flexible resource model for the 
on demand world. The focus here is more on increasing resource utilization and 
responding to changing workloads. Resources are dynamically allocated, 
including fractional, on an as-needed basis. Capacity on Demand (CoD) enables 
the allocation of additional resources as needed, and Workload Manager (WLM) 
enables the optimization of resources to respond to changing workloads.

This book follows the model of a system consisting of four major subsystems: 
processor complex, memory hierarchy, storage model and network topology.
� Beginning with Chapter 2, “IBM POWER5 architecture” on page 9, an 

in-depth look at the IBM POWER5 microprocessor architecture is provided.

� Chapter 3, “Simultaneous multithreading” on page 41 takes a detailed look at 
the simultaneous multithreading feature of the POWER5 microprocessor.

Application and system programmers will find the information in chapters 2 
and 3 useful to their programming efforts.
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� Chapter 4, “POWER Hypervisor” on page 73 is dedicated to the POWER 
HypervisorTM and its role in the system.

� Chapter 5, “Micro-Partitioning” on page 93 provides detailed information 
about Micro-Partitioning.

� Chapter 6, “Virtual I/O” on page 143 focuses on virtual input/output, which 
includes virtual Ethernet, virtual SCSI, and the Shared Ethernet Adapter.

Part 2 of this book addresses performance tuning and application tuning:

� Chapter 7 looks at the support provided by the AIX 5L Version 5.3 operating 
system and the changes to the performance analysis tools.

� Chapter 8 focuses on application tuning with information about compiler 
options, profiling, memory management, and optimization techniques. This 
chapter will benefit those who are involved in benchmarks and providing 
solutions enablement.

� Chapter 9 looks at support provided by the Partition Load Manager and its 
implementation into the virtualization model.
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Chapter 2. IBM POWER5 architecture

The POWER5 system is the next generation of POWER processor–based 
microprocessors. It builds on the IBM POWER4 architecture, providing new and 
improved functional support designed to meet a variety of client needs and 
requirements.

This chapter provides an in-depth overview of the POWER5 design and 
discusses various aspects of the functional enhancements that the POWER5 
system is designed to support. The chapter is intended to provide you with a look 
at the POWER5 microprocessor technology. It includes information about the 
instruction pipelines and the L1, L2, and L3 caches.

2
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2.1  Introduction
The POWER5 processor is the latest 64-bit implementation of the PowerPC® AS 
architecture (Version 2.02). This dual core processor with simultaneous 
multithreading technology is fabricated using silicon-on-insulator (SOI) devices 
and copper interconnects. SOI technology is used to reduce the device 
capacitance and increase transistor performance. Wire resistance is lower in 
copper interconnects and results in reduced delays in wire-dominated chip timing 
paths. The chip is implemented using 130 nm lithography with eight metal layers 
and a die that measures 389 mm2. The chip is made up of 276 million transistors.

The primary design objectives of POWER5 technology are:

� Maintain binary and structural compatibility with existing POWER4 systems
� Enhance and extend symmetric multiprocessor (SMP) scalability
� Continue superior performance
� Provide additional server flexibility
� Deliver power-efficient design
� Enhance reliability, availability, and serviceability

The POWER5 microprocessor is downward binary compatible with all PowerPC 
and PowerPC AS application-level code. The POWER5 has been designed for 
very high frequency operations with operating frequencies of up to 1.9 GHz. 
POWER5 consists of a deeply pipelined design with 16 stages for fixed-point 
register-to-register operations, 18 stages for most load and store operations (with 
L1 data cache hits), and 21 stages for most floating-point operations. 

The processor exhibits a speculative superscalar inner core organization with 
aggressive branch prediction, out-of-order issues, register renaming, a large 
number of instructions in flight, and fast selective flush of incorrect speculative 
fetched instructions and results. There has been a specific focus on storage 
latency management where the core can issue out-of-order load operations with 
support for up to eight outstanding L1 data cache line misses. There is 
hardware-initiated or software-initiated instruction prefetching from the L2, L3, 
and memory along with hardware-initiated data stream prefetching, and software 
instruction prefetching based on branch prediction hints.

The POWER5 architecture is an enhancement over the POWER4 architecture, 
but it maintains binary and structural compatibility. The identical pipeline 
structure enables complier optimizations targeted for POWER4 to work equally 
well on POWER5-based systems.

Each POWER5 processor core is designed to support both simultaneous 
multithreading and single-threaded modes. Software (an operating system using 
POWER Hypervisor calls) can switch the processor from simultaneous 
multithreading mode to single-threaded mode. Chapter 3, “Simultaneous 
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multithreading” on page 41 offers detailed information about simultaneous 
multithreading.

Figure 2-1 shows the layout of the POWER5 processor.

Figure 2-1   POWER5 processor chip

FXU - Fixed-Point (Integer) Unit FPU - Floating-Point Unit
ISU - Instruction Sequencing Unit IDU - Instruction Decoding Unit
LSU - Load Store Unit IFU - Instruction Fetch Unit
 L2 - Level 2 Cache L3  - Level 3 Cache Controller
 MC - Memory Controller
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2.2  Chip design
Two identical processor cores are found in a single POWER5 chip. Figure 2-2 
shows the high-level layout of a POWER5 processor, including the L3 cache and 
memory. Because of the dual-core design and support for simultaneous 
multithreading (two hardware threads per core), a single POWER5 chip appears 
as a four-way microprocessor system to the operating system.

Figure 2-2   High-level structure of POWER5

Simultaneous multithreading is a hardware multithreading1 technology that can 
greatly improve the utilization of the processor’s hardware resources, resulting in 
better system performance. Superscalar processors can issue multiple 
instructions in a single cycle from a single code path (hardware thread), but 
processors using simultaneous multithreading can issue multiple instructions 
from multiple code paths (hardware threads) in a single cycle. POWER5 provides 
for two hardware threads per processor core. Hence, multiple instructions from 

1  The terminology multithreading used here refers to the hardware execution of threads provided on a 
processor core as used in the computer architecture community. It is not same as the software use of 
the term.
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both the hardware threads can be issued in a single processor cycle on the 
POWER5.

2.3  POWER5 enhancements
Table 2-1 shows a comparison between the POWER4 architecture and the 
POWER5 architecture. Most of the enhancements were made to accommodate 
simultaneous multithreading support in the POWER5 processors. (See 
Chapter 3, “Simultaneous multithreading” on page 41.)

Table 2-1   Differences between POWER4 and POWER5

Unit POWER4 POWER5

Instruction Fetch Unit (IFU) Direct-mapped 64 KB 
Level 1 Instruction Cache

Two-way 64 KB Level 1 
Instruction Cache

4-entry direct mapped 
prefetch buffer

Split, 2-entry per thread 
prefetch buffer

16-entry Branch 
Information Queue (BIQ)

Split, 8-entry per thread 
BIQ

Branch prediction control Replicated branch 
prediction control

Link stack Replicated link stack

Instruction Decode Unit 
(IDU)

8-entry Instruction Fetch 
Buffer (IFB)

6-entry IFB per thread

Instruction Issue Unit (ISU) 20-entry FIFO Global 
Completion Table (GCT)

20-entry linked list GCT

80 General Purpose 
Registers (GPR), 72 
Floating-point Registers 
(FPR) mapper

120 GPR, 120 FPR 
mapper

32-entry Condition 
Register (CR) mapper

40-entry CR mapper

24-entry Fixed-point 
Exception Register (XER) 
mapper

32-entry XER mapper

20-entry Floating-point 
Issue Queue (FPQ)

24-entry packed FPQ

Fixed-point Unit (FXU) 80-entry GPR 120-entry GPR
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The POWER5 architecture provides for two threads of execution in parallel. To do 
this, some of the processor resources had to be replicated. For example, the 
16-entry Branch Information Queue (BIQ) in POWER4 has been split into two 
8-entry queues, one per each thread.

2.4  POWER5 instruction pipelines
The POWER5 instruction pipeline can be subdivided into a master pipeline and 
several different execution pipelines. Figure 2-3 on page 16 depicts the POWER5 
instruction master pipeline. Each box in the diagram represents a pipeline stage. 
The POWER5 pipeline structure is very similar to the POWER4 pipeline 
structure. Even the pipeline latencies including penalties for mispredicted 
branches and load-to-use latencies for L1 data cache hits remain the same. This 

Floating-point Unit (FPU) 72-entry FPR 120-entry FPR

Load/Store Unit (LSU) 32 K, two-way 
set-associative Data 
Cache

32 K, four-way 
set-associative Data 
Cache

128-entry two-way 
set-associative Effective to 
Real Address Translation 
(ERAT)

128-entry fully associative 
ERAT

64-entry Segment 
Lookaside Buffer (SLB)

Replicated 64-entry SLB 
per thread

32-entry Load Reorder 
Queue (LRQ)

16-entry real and 16-entry 
virtual LRQ per thread

32-entry Store Reorder 
Queue (SRQ)

16-entry real and 16-entry 
virtual SRQ per thread

8-entry Load Miss Queue 
(LMQ)

8-entry LMQ with thread 
control

One set of Special 
Purpose Registers (SPR)

Replicated Special 
Purpose Registers (SPRs) 
with thread ID

L2 1.45 MB on chip 1.9 MB on chip

L3 16 MB Cache 36 MB, directory, controller 
on-chip

Unit POWER4 POWER5
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design lets the compiler optimizations designed for POWER4 to work equally well 
on POWER5.

The master pipeline presents speculative in-order instructions to the mapping, 
sequencing and dispatch functions, and ensures an orderly completion of the 
real execution path. The master pipeline (in-order processing) throws away any 
potential speculative results associated with mispredicted branches. The 
execution pipelines allow out-of-order issuing of speculative and non-speculative 
instructions. The execution unit pipelines progress independently from the 
master pipeline and each other.

The POWER5 processor consists of the following instruction pipeline features:

� Deeply pipelined design

– 16 stages of execution for most fixed-point (integer) register-to-register 
operations. (IF to CP in Figure 2-3 on page 16)

– 18 stages for most load and store operations

– 21 stages for most floating-point operations

� Out of order issue of up to 8 instructions into 8 execution pipelines

– Two load or store instruction pipelines

– Two fixed-point instruction pipelines

– Two floating-point instruction pipelines

– One branch instruction pipeline

– One condition register operation instruction pipeline

2.4.1  Instruction fetching
In simultaneous multithreading, the POWER5 core uses two separate Instruction 
Fetch Address Registers (IFAR) to store the program counter for the two threads 
from the same program or different programs. Instructions are fetched every 
alternate cycle for each hardware thread (see IF - instruction fetch stage in 
Figure 2-3 on page 16). In single-threaded mode, instructions are fetched from 
the active thread every cycle, and the program counter corresponding to that 
hardware thread is used. The POWER5 core can fetch an eight-word (32-byte) 
aligned block of eight instructions per cycle. Keep in mind that all instructions in 
POWER and PowerPC are 32 bits (one word). The two threads share the 
instruction cache and the instruction address translation facility (L1 I-cache and 
I-ERAT). POWER5 also provides a four-entry instruction prefetch queue above 
the I-cache for hardware initiated prefetching. The first two entries of the 
instruction prefetch queue are dedicated for thread 0 and the remaining two 
entries for thread 1 regardless of whether the core is running in simultaneous 
multithreading or single-threaded mode.
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Figure 2-3   POWER5 instruction pipeline

IF - Instruction Fetch IC - Instruction Cache Access
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FP2 - Floating-point Multiply FP3 - Floating-point Add
FP4 - Floating-point Add FP5 - Floating-point Normalize Result
FP6 - Floating-point Round Result XMT - Finish and Transmit
CP - Group Completion

2.4.2  Branch prediction
The eight fetched instructions are scanned for branch instructions each cycle (BP 
stage in Figure 2-3). If branch instructions are found, the branch direction is 
predicted using three Branch History Tables (BHT). The tables are shared by the 
two threads, and two of the tables use bimodal and path-correlated branch 
prediction mechanisms to predict branches. The third table is used as a selector 
designed to predict which of these prediction mechanisms is more likely to 
predict the right instruction path. The BP stage can predict all of the branches at 
the same time in the fetched instruction group. If the fetched instructions contain 
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multiple branches, the core logic has the capability to track up to eight 
outstanding branches per thread in simultaneous multithreading and 16 
outstanding branches in single-threaded mode. The core logic also predicts the 
target of a taken branch in the current cycle’s eight instruction group. The target 
address of most branches is calculated from the instruction’s address plus an 
offset as described by the Power Architecture™ and PowerPC Architecture™. 
For predicting targets of subroutine returns, the core logic uses a per-thread, 
eight-entry Link Stack (return stack). For predicting targets of the bcctr (branch 
conditional to address in the Count Register) instruction, a 32-entry target cache 
shared by both the threads is used. If a branch is taken, the core logic loads the 
program counter with the target address of the branch. If the branch is not 
predicted as taken, the address of the next sequential instruction (current 
instruction address + 4) is loaded into the program counter.

2.4.3  Instruction decoding and preprocessing
Instructions in the predicted path from BP stage are placed in the per-thread 
Instruction Fetch Buffers (IFBs). This happens in the D0 stage (see Figure 2-3 
on page 16). The core has two 6-entry IFBs, one for each thread. Each IFB entry 
can hold four instructions. Up to eight instructions can be placed in one of the two 
IFBs every cycle. Up to five instructions can be taken out from either of the two 
IFBs every cycle. Based on the thread priorities, instructions from one of the IFBs 
are selected, split into internal instructions in some cases (instruction cracking), 
and an instruction group is formed. This corresponds to the D1 to D3 stages.

Because instructions are later executed out of order, it is necessary to remember 
the program order of all instructions in flight. Instruction groups are formed to 
minimize the logic for tracking large numbers of instructions in flight. Groups of 
these instructions are tracked instead. Care is taken during group formation so 
that internal instructions that resulted from the cracking of an instruction do not 
end up in different groups. All instructions in a group belong to the same thread 
and are decoded in parallel. Each group can have a maximum of five instructions.

2.4.4  Group dispatch
The process of moving the instructions belonging to a group formed in the D0 to 
D3 stages into the issue queues is known as group dispatch (GD). Before a group 
can be dispatched, the processor must ensure that resources required by the 
instructions in the group are available:

� Each instruction in the group needs an available entry in an appropriate issue 
queue.

� Each load instruction and store instruction needs an entry in the load reorder 
queue and store reorder queue respectively to be able to detect out-of-order 
execution hazards.
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� Each dispatched group needs an available entry in the Global Completion 
Table (GCT). The GCT is used to track the groups of five instructions formed 
in the D0-D3 stage. The core logic allocates GCT entries in program order for 
each thread.

When all of the necessary resources are available for the group, the group is 
dispatched (GD stage). Note in Figure 2-3 on page 16 that the instruction flow 
from the IF stage to the GD stage happens in program order.

2.4.5  Register renaming
To facilitate out-of-order and parallel execution of instructions in a group, the 
architected registers (the ones specified in the instruction) are renamed by 
utilizing a large physical register file provided in the core. Each register that is 
renamed must have a corresponding physical register. The Rename Mapper 
serves this purpose, and renaming takes place in the MAP stage of the 
instruction pipeline. Example 2-1 shows a code example where register 
renaming is needed in this parallel execution environment.

Example 2-1   Register renaming example

mulw r4, r5, r8 ; Multiply contents of GPR 5 to GPR8, result in GPR4
addi r5, r6, r7 ; Add contents of GPR6 and GPR7, result in GPR5
lwzx r7, r1, r9 ; Load 32-bit word at address determined by adding

; contents of GPR1 and GPR9 into GPR7

In this code example, the three instructions can execute in parallel. Referring to 
Figure 2-3 on page 16, the mulw and addi instructions would be issued to the 
fixed-point instruction pipelines (two fixed-point pipelines in each core) and the 
lwzx instruction would be issued to the load/store pipeline. If GPR5 was not 
remapped in the addi instruction during execution, it could change the source 
operand for the mulw instruction if the mulw instruction would stall for some 
reason. Rename registers are necessary for other situations in a parallel 
execution (superscalar) environment such as supporting precise interrupts. 
However, these discussions are beyond the scope of this book.

Table 2-2 on page 19 summarizes the rename resources that are available to the 
POWER5 core. For example, the compiler has 32 GPRs that are available for 
integer operations in the program. The POWER5 core has a total of 120 registers 
for renaming. With simultaneous multithreading, both threads can dynamically 
share the physical register files (rename resources). Instruction-level parallelism 
exploited for each thread is limited by the physical registers available for each 
thread. Certain workloads such as scientific applications exhibit high instruction- 
level parallelism. To exploit instruction-level parallelism of such applications, the 
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POWER5 makes all of the physical registers available to a single thread in 
single-threaded mode, enabling higher-instruction level parallelism.

Table 2-2   Rename resources in the POWER5 core

2.4.6  Instruction execution
After the MAP stage, instructions enter the issue queues shared by the two 
threads. These issue queues feed the execution pipelines. 

Each POWER5 processor core contains:

� Two fixed-point (integer) execution pipelines2

– Both capable of basic arithmetic, logical, and shifting operations

– Both capable of multiplies

– One capable of divides and the other capable of Special Purpose Register 
(SPR) operations

� Two 6-stage load/store execution pipelines

� Two 9-stage floating-point execution pipeline (6-stage execution)

– Both capable of the full set of floating-point instructions

– All data formats supported in hardware including IEEE 754

Resource type Available to each thread Physically in the core

GPRs 32 (36a)

a. The POWER5 architecture uses four extra scratch registers known as eGPRs
and one additional 4-bit CR field known as eCR for instruction cracking and group-
ing. These are not the architected registers and are not available for the program-
ming environment.

120

FPRs 32 120

XER 4 fieldsb

b. The XER has four mappable fields and one non-mappable field per thread.

32

CTR 2 16

LR 2 16

CR 8 (9c) 4-bit fields

c. Eight CR fields plus one non-architected eCR field for instruction cracking and
grouping.

40

FPSCR 1 20

2  Figure 2-3 on page 16 does not illustrate the number of execution units. See Figure 2-4 on page 21 
instead.
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� One branch execution pipeline

� One condition register logical pipeline

The following instruction issue queues are built into the POWER5 core:

� Combined, two 18-entry issue queues to feed the fixed-point and load/store 
execution pipelines

� Two 12-entry issue queues to feed the floating-point execution pipelines

� One 12-entry issue queue for branch execution pipeline

� One 10-entry issue queue for condition register logical execution pipeline

In summary, each POWER5 processor core has eight execution units, each of 
which can issue instructions out of order, with bias toward the oldest instructions 
first. Each execution unit can issue an instruction each cycle and complete an 
instruction every cycle. Keep in mind that the total latency of an instruction 
depends on the number and nature of each pipeline stage of execution.

Instructions in the issue queue become eligible for issue when all of the input 
operands for that instruction become available. The issue logic selects an eligible 
instruction from the issue queue and issues it (ISS stage). While in simultaneous 
multithreading mode, the issue logic does not differentiate between instructions 
from the two threads. Therefore, instructions from either of the threads can be 
issued at any given time, simultaneous to the execution units, thus making the 
core truly simultaneous multi-threaded. Upon issue of an instruction, the source 
operand registers for that instruction are read (RF stage), executed on the proper 
execution unit (EX stage), and results written back to the target register (WB 
stage). In each load/store unit (LSU), an adder is used to compute the effective 
address to read from (load) or write to (store) in the EA stage, and the data cache 
is subsequently accessed in the DC stage. For load instructions, when data is 
returned from the data cache, a formatter selects the correct bytes from the 
cache line (FMT stage) and writes them to the register (WB stage).

When all of the instructions in a group have executed without generating an 
exception and the group is the oldest of a given thread, the group is completed 
(CP stage). Completion is when the results are moved from the temporary 
rename registers into the registers that are specified in the program. The 
processor core can complete two groups per cycle, one from each thread. The 
GCT entry allocated to the group during the GD stage is deallocated when the 
group is committed. Each POWER5 processor core has a 20-entry GCT shared 
by the two threads. Figure 2-4 on page 21 provides some additional detail.
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Figure 2-4   POWER5 instruction and data flow

2.5  Caches
The POWER5 microprocessor contains up to three levels of cache hierarchy. The 
level 1 (L1) cache employs a Harvard cache organization in which instructions 
are separate from the data. The L1 instruction cache is 64 KB and the L1 data 
cache is 32 KB in size. The L1 caches are private to each processor core. The 
cache line size for both caches is 128 bytes. In simultaneous multithreading, the 
caches are shared by the two hardware threads running in the core.

Both processor cores in a chip share a 1.9 MB unified level 2 (L2) cache. The 
processor chip houses a level 3 (L3) cache controller that provides for an L3 
cache directory on the chip. However, the L3 cache itself is on a separate 
Merged Logic DRAM (MLD) cache chip. The L3 is a 36 MB victim cache of the L2 
cache. The L3 cache is shared by the two processor cores in the POWER5 chip. 
Needless to say, the L2 and L3 caches are shared by all of the hardware threads 
of both processor cores on the chip. Table 2-3 on page 30 lists the cache 
characteristics of the POWER5 processor architecture.

L1 instruction cache
The 64 KB L1 instruction cache is two-way set associative cache for instructions 
of programs running in the core. This cache uses a least recently used (LRU) 
replacement policy and is indexed using 15 bits of the effective address, as 
shown in Figure 2-5 on page 24. The 15 bits consist of a 7-bit byte offset and an 
8-bit set number. Two-way set associative refers to the fact that there are two 
address comparators per each set. For any address in memory, the item being 
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referenced has a predetermined set membership in the cache. Instructions are 
not fetched on an individual basis from memory as this would be very inefficient. 
An instruction cache line is fetched from memory. The size of a cache line in the 
instruction cache is 128 bytes (32 instructions) and is aligned on a 128-byte 
boundary. Therefore, as shown in Figure 2-5 on page 24, the right-most seven 
bits (bits 25:31) of the effective address represent the byte offset within the cache 
block. Based on bits 17 to 24 of the effective address, the line that comes from 
memory is placed into one of the two ways for the specified set number based on 
the LRU replacement policy.

When instructions are fetched from the cache, the address of the requested 
instruction is compared to the addresses in each of the two ways at the specified 
set number. If the address matches one of the ways, then it is considered to be a 
cache hit and the requested instructions are returned to the fetch unit. If a cache 
miss occurs, the instructions have to be obtained from one of the other memories 
in the hierarchy.

For both the instruction cache and the data cache the bus width to the L2 cache 
is 256 bits (32 bytes). Therefore it takes a minimum of four “beats” or cycles to 
transfer the 128-byte cache line. Each 32-byte beat is referred to as a sector.

When a cache miss occurs for instruction fetch, instructions will be returned from 
the L2 cache if they are present there; otherwise they will come from L3 or 
system memory. When the instructions arrive, they will take a bypass path so that 
the instructions will be sent to the fetch unit as quickly as possible. A state 
machine is used when the bypass path is being used and writes whatever 
sectors that have arrived into the prefetch buffer. If the instructions are arriving 
from the L2, then all the sectors will be written. If the data is not from the L2, then 
it will arrive at a later time and, after the last sector arrives, the state machine will 
be initiated again to write all of the sectors into the instruction cache.

The instruction cache is single ported, enabling either a read or write operation to 
occur. Writes to the instruction cache occur in a cycle when the instruction cache 
cannot be read. The state machine uses a pattern of fetching to try to reduce the 
impact of these cycles. For example, instead of writing on four consecutive 
cycles, the state machine spreads the writes out such that each thread does not 
miss consecutive fetch opportunities. (Each thread is allocated every other cycle 
of the instruction cache so that if a write occurs on cycle n it will not occur on 
cycle n+2). Because the instruction cache fetch unit can fetch more instructions 
then it can execute, the performance impact of these writes is very small.

L1 data cache
The 32 KB L1 data cache is a four-way set associative cache for data used by 
programs running in the core. This cache uses a least-recently used (LRU) 
replacement policy and is indexed using 13 bits of the effective address as shown 
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in Figure 2-5 on page 24. The 13 bits consist of a 7-bit byte offset and a 6-bit set 
number. Four-way set associative refers to the fact that there are four address 
comparators per each set. For any address in memory, the item being referenced 
has a predetermined set membership in the cache. Data is not typically fetched 
on an individual basis from memory as this would be very inefficient. Instead, a 
data cache line is fetched from memory. The size of a data cache line is identical 
to an instruction cache line of 128 bytes and is aligned on a 128-byte boundary. 
Therefore, as shown in Figure 2-5 on page 24, the rightmost seven bits (bits 25 
to 31) of the effective address represent the byte offset within the cache block. 
Based on bits 19 to 24 of the effective address, the line that arrives from memory 
is placed into one of the four ways for the specified set number based on the LRU 
replacement policy.

When data is loaded from or stored into the cache, the address of the data item 
is compared to the addresses in each of the four ways at the specified set 
number. If the address matches one of the ways, then it is considered to be a 
cache hit and the data is either returned from (load operation) or written to (store 
operation) the data cache. If a cache miss occurs, the data will have to be 
obtained from one of the other memories in the hierarchy.

The data cache is a write-through cache and therefore never holds modified 
data. When a store occurs to an existing L1 data cache line, the L1 data cache 
line is updated as well as a write to the L2 cache using an independent 8-byte 
(64-bit) data bus.

The L1 data cache provides two read ports and one write port to the core. On a 
cache miss, data is returned on the L2 cache interface in four 32-byte beats. Like 
instruction cache misses, the L2 always returns the “critical sector” (the sector 
containing the specific data item address that referenced the cache line) in the 
first beat, and the load miss queue (LMQ) forwards these load requests into the 
pipeline as quickly as possible. This is called critical data forwarding (CDF). As 
each 32-byte beat is received it is written to the cache. When all four 32-byte 
beats are received, the data cache directory is updated.
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Figure 2-5   L1 caches
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2.5.1  Level 2 (L2) cache
The L2 is a unified cache (contains both instructions and data) shared by both 
cores on the POWER5 chip. In addition, it maintains full hardware memory 
coherency within the system and can supply modified data to the cores on other 
POWER5 processors and I/O devices. Logically, the L2 is an in-line cache. Unlike 
the L1 data cache, which is write-through, it is a copy-back (store-in) cache. A 
copy-back cache will not propagate changes to the next levels in the memory 
hierarchy such as L3 and system memory. By doing this, bus traffic is kept to a 
minimum and avoids bottlenecks due to memory contention. The L2 cache will 
respond to other processors and I/O devices requesting any modified data that it 
currently has.

The L2 cache is fully inclusive of the L1 instruction and data caches located in 
the two processor cores on one POWER5 chip.

The L2 is a total of 1.9 MB and is physically partitioned into three symmetrical 
slices with each slice holding 640 KB of instructions or data. As shown in 
Figure 2-7 on page 26, each slice is comprised of 512 associative sets. Each set 
contains ten 128-byte cache lines. Each of the slices has a separate L2 cache 
controller. Either processor core of the chip can independently access each L2 
controller. The correct slice is determined by a hashing algorithm involving bits 
36 to 55 of the physical address, as shown in Figure 2-6 on page 26.

When the slice has been determined, the indexing of the cache by the L2 
controller is performed using the address bits as shown in Figure 2-6 on page 26. 
Using the address of either the requested instruction or data, bits 57 through 63 
are used to represent the byte offset within the cache line. Address bits 48 
through 56 are used to select the congruence class. A physical tag comparison 
(that is, real address bits 14 through 47) is used to determine if the desired cache 
line is resident within one of the 10 ways for that congruence class.

Each slice has a castout/intervention/push bus (16 bytes wide) to the fabric 
controller and operates at half the core frequency. Error Correction Control 
(ECC) provides single-bit error recovery. To aid performance, eight 64-byte-wide 
store queues are provided per slice supporting simultaneous multithreading. To 
minimize bus contention, store gathering is also supported. Store gathering is a 
performance enhancement that is used when storing to non-cachable memory 
areas such as memory-mapped I/O. When stores are to contiguous memory, the 
individual stores by the program are gathered into one bus operation, instead of 
a complete bus transaction for each individual store.
 Chapter 2. IBM POWER5 architecture 25



Figure 2-6   Cache indexing bits

Figure 2-7   L2 cache organization
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2.5.2  Level 3 (L3) cache
The L3 cache is a unified 36 MB cache accessed by both cores on the POWER5 
processor chip. It maintains full memory coherency with the system and can 
supply intervention data to cores on other POWER5 processor chips. The L3 is a 
victim cache and is not inclusive of the L2. This means that the same cache line 
will never reside in both caches simultaneously and a valid, modified cache line 
cast out from the L2 due to being least-recently used is written into the L3 cache 
associated by its set number.

This cache is implemented off-chip as a separate Merged Logic DRAM (MLD) 
cache chip. However, the L3 cache directory and control is on the POWER5 
processor chip itself. Having the L3 directory on the processor chip itself helps 
the processor check the directory after an L2 miss without experiencing off-chip 
delays. Figure 2-8 shows a high-level diagram of this design.

Figure 2-8   L3 cache high-level design

The cache is split into three identical 12 MB slices on the cache chip. The same 
hashing algorithm for selecting the L2 slices is used to select the L3 slices for a 
given physical address. A slice is 12-way set-associative. There are 4096 sets 
that are two-way sectored (which means that the directory manages two 
128-byte cache lines per entry). Each of the 12 MB slices can be accessed 
concurrently. Figure 2-9 on page 28 depicts the L3 cache organization 
graphically.
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Figure 2-9   L3 cache organization

Unlike in the POWER4 microprocessors, the L3 cache is on the processor side 
and not on the memory side of the fabric. This is depicted in Figure 2-10 on 
page 29. This design lets the POWER5 satisfy L2 cache misses more efficiently 
with hits on the off-chip cache, thus avoiding traffic on the interchip fabric. 
References to data not on the L2 cause the system to check the L3 cache before 
sending requests onto the interchip fabric. The L3 operates as a back door with 
separate 128-bit (16-byte) data busses for reads and writes that operate at 
one-half the processor speed. Because of higher transistor density of the 
POWER5 fabrication technology, the memory controller has now been moved 
onto the chip, eliminating the need for a separate memory controller chip as in 
POWER4 systems. These architectural changes to the POWER5 processor have 
the significant benefits of reducing latency to the L3 and main memory as well as 
the number of chips necessary to build a system. The result is a higher level of 
SMP scaling. Initial POWER5 systems support 64 physical processors.
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Figure 2-10   Comparison between POWER4 and POWER5
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2.5.3  Summary of caches on POWER5
Table 2-3   Cache characteristics of the POWER5 processor

2.5.4  Address translation resources
The POWER5 chip supports translation from a 64-bit effective address (EA) to a 
65-bit virtual address (VA) and then to a 50-bit real address (RA). The processor 
architecture specifies a Translation Lookaside Buffer (TLB) and a Segment 
Lookaside Buffer (SLB) to translate the effective address used by software to a 
real address (physical address) used by the hardware. Each processor core 
contains a unified, 1024 entry, four-way set associative TLB. The TLB is a cache 
of recently accessed page table entries that describe the pages of memory.

There are two effective-to-real address translation (ERATs) caches. They are 
called the I-ERAT (for instruction address translation) and the D-ERAT (for data 
address translation).

Cache 
characteristics

L1 
instruction 

cache

L1 
data cache

L2
cache

L3
cache

Contents Instructions 
only

Data only Instructions 
and data

Instructions 
and data

Size 64 KB 32 KB 1.9 MB 36 MB

Associativity two-way Four-way 10-way 12-way

Replacement 
Policy

LRU LRU LRU LRU

Line size 128 B 128 B 128 B 256 B 

Indexed by Effective 
address

Effective 
address

Physical 
address

Physical 
address

Tags Physical 
address

Physical 
address

Physical 
address

Physical 
address

Inclusivity N/A N/A Inclusive of L1 
instruction 
and data 
caches

Not inclusive 
of L2 cache 
(victim cache 
of L2)

Hardware 
Coherency

Yes Yes Yes (separate 
snoop ports)

Yes (separate 
snoop ports)

Store policy N/A Write-through
No allocate on 
store miss

Copy-back 
Allocate on 
store miss

Copy-back
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The I-ERAT is a 128-entry, two-way set associative translation cache that uses a 
FIFO-based replacement algorithm. In this algorithm, one bit is kept per 
congruence class and is used to indicate which of the two entries was loaded 
first. As the name implies, the first entry loaded is the first entry targeted for 
replacement when a new entry has to be loaded into that congruence class.

Each entry in the I-ERAT provides translation for a 4 KB block of storage. In the 
event that a particular section of storage is actually mapped by a large page TLB 
entry (16 MB), each referenced 4 KB block of that large page will occupy an entry 
in the I-ERAT (that is, large page translation is not directly supported in the 
I-ERAT). 

The D-ERAT is a 128-entry, fully associative translation cache that uses a binary 
LRU replacement algorithm. As with the I-ERAT, the D-ERAT provides address 
translations for 4 KB and 16 MB pages of storage.

2.6  Timing facilities
The Time Base, Decrementer, and the POWER Hypervisor Decrementer provide 
timing functions for the system. The mftb instruction is used to read the Time 
Base; the mtspr and mfspr instructions are used to write the Time Base and 
Decrementers and to read the Decrementers.

Time Base (TB) The Time Base provides a long-period counter driven at 
1/8 the processor clock frequency.

Decrementer (DEC) The Decrementer, a counter that is updated at the same 
rate as the Time Base, provides a means of signaling an 
interrupt after a specified amount of time has elapsed 
unless the Decrementer is altered by software in the 
interim, or the Time Base update frequency changes.

POWER Hypervisor Decrementer
The POWER Hypervisor Decrementer (HDEC) provides a 
means for the POWER Hypervisor to manage timing 
functions independently of the Decrementer, which is 
managed by virtual partitions. Similar to the Decrementer, 
the HDEC is a counter that is updated at the same rate as 
the Time Base, and it provides a means of signaling an 
interrupt after a specified amount of time has elapsed. 
Software must have POWER Hypervisor privilege to 
update the HDEC.
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Time Base
The Time Base (TB in Figure 2-11) is a 64-bit register and contains a 64-bit 
unsigned integer that is incremented by one every eight processor clock cycles, 
as shown in Figure 2-11. Each increment adds 1 to the low-order bit (bit 63). The 
Time Base increments until its value becomes 0xFFFF_FFFF_FFFF_FFFF (264 - 
1). At the next increment, its value becomes 0x0000_0000_0000_0000. There is 
no interrupt or other indication when this occurs.

Figure 2-11   Time Base register

If we consider the IBM Sserver p5 570 model with 1.65 GHz processors, we 
can determine the time base, as shown in Example 2-2.

Example 2-2   Calculating the Time Base period

Decrementer
The Decrementer (DEC) is a 32-bit decrementing counter that provides a 
mechanism for causing a Decrementer interrupt after a programmable delay. The 
contents of the Decrementer are treated as a signed integer. The Decrementer is 
driven by the same frequency as the Time Base. The period of the Decrementer 
depends on the driving frequency, but if the same values are used as given 
above for the Time Base and if the Time Base update frequency is constant, the 
period would be as shown in Example 2-3.

Example 2-3   Calculating the Decrementer period

Whenever bit 0 (most significant bit) of the Decrementer changes from 0 to 1, an 
interrupt request is signaled. If multiple Decrementer interrupt requests are 
received before the first can be reported, only one interrupt is reported. The 

0 31 63

TBU TBL

Where TBU is the upper 32-bits of the 64-bit Time Base
and TBL is the lower 32-bits of the 64-bit Time Base.

264 x 8

1.65 GHz
TBP = = 8.94 x 1010 seconds or approx. 2,836 years

232 x 8

1.65 GHz
DP = = 20.82 seconds
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occurrence of a Decrementer interrupt cancels the request. If the Decrementer is 
altered by software and the contents of bit 0 are changed from 0 to 1, an interrupt 
request is signaled.

POWER Hypervisor Decrementer
The POWER Hypervisor Decrementer (HDEC) is a 32-bit decrementing counter 
and POWER Hypervisor resource that provides a mechanism for causing a 
POWER Hypervisor decrementer interrupt after a programmable delay. The 
contents of the Decrementer are treated as a signed integer.

The HDEC is driven by the same frequency as the Time Base. The period of the 
HDEC will depend on the driving frequency, but if the same values are used as 
given above for the Time Base and if the Time Base update frequency is 
constant, the period would be as shown in Example 2-4.

Example 2-4   Calculating the POWER Hypervisor decrementer

2.7  Dynamic power management
Chip power is a very important and limiting factor in modern processor designs. 
A nice side benefit of complementary metal oxide semiconductor (CMOS) 
technology is that if the logic is not clocking, there is no switching of the gates, 
and if there is no switching, there is negligible power consumption. To reduce 
power consumption, POWER5 chips use a fine-grained dynamic clock-gating 
mechanism to gate off clocks to a local clock buffer, if the dynamic power 
management logic knows that the set of latches driven by that clock buffer will not 
be used in the next cycle. For example, if the floating-point registers will not be 
read on the next cycle, the dynamic power management logic detects it and turns 
off the clocks to the read ports of the floating-point registers. A minimum amount 
of logic implements the clock gating function. Special care has been taken to 
ensure clock gating logic does not cause performance loss or create a critical 
timing path for the chip.

While in simultaneous multithreading mode, the number of instructions executed 
per cycle goes up, thus increasing the chip’s total power consumption. In addition 
to power consumption, leakage of power has become a performance limiter. 
POWER5 uses transistors with low threshold voltage only in critical paths such 
as floating-point register read ports. Figure 2-12 on page 34 shows photographs 
taken with thermal sensitive cameras on prototype POWER5 chips, with and 

232 x 8

1.65 GHz
HDEC = = 20.82 seconds
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without dynamic power management, and single-threaded versus simultaneous 
multithreading. From the picture, it is evident that dynamic power management 
reduces power consumption below the standard single-threaded level without 
power management enabled.

POWER5 also provides for the software environment to control low-power 
modes. When the thread priority is set to low priority, the POWER5 dispatches 
instructions every 32 cycles, thus saving power. Thread priorities are discussed 
in 3.3.2, “Adjustable thread priorities” on page 50.

Figure 2-12   POWER5 photos using thermal-sensitive camera

2.8  Processor Utilization Resource Register (PURR)
Previously, a local timer tick (10 ms in AIX 5L, 1 ms in Linux with HZ=1000) was 
charged to the current running process that was preempted by the timer 
interrupt. If the process was executing code in the kernel via a system call, the 
entire tick was charged to the process’s system time. If the process was 
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executing application code, the entire tick was charged to the process’s user 
time. Otherwise, if the current running process was the operating system’s idle 
process, the tick was charged in a separate variable. UNIX commands such as 
iostat and vmstat show these as %usr, %sys, and %idle. Through the outputs, it 
was possible to determine the utilization of the processor. The problem with this 
method is that the process receiving the tick most likely has not run for the entire 
timer period and, unfortunately, was executing when the timer expired. The issue 
becomes more complicated using simultaneous multithreading as threads from 
perhaps two different processes share the physical processor resources.

To address these issues and to provide more accurate details of processor 
utilization, the POWER5 architecture introduces a Processor Utilization 
Resource Register. This is a special-purpose register that can be read or written 
by the POWER Hypervisor but is read-only by the operating system (supervisor 
mode). There are two registers, one for each hardware thread. As with the 
timebase register, it increments by one every eight processor clock cycles when 
the processor is in single-threaded mode. When the processor is in simultaneous 
multithreading mode, the thread that dispatches a group of instructions in a cycle 
will increment the counter by 1/8 in that cycle. In no group dispatch occurs in a 
given cycle, both threads increment their PURR by 1/16. Over a period of time, 
the sum of the two PURR registers when running in simultaneous multithreading 
mode should be very close but not greater than the number of timebase ticks.

AIX 5L Version 5.3 uses the PURR for process accounting. Instead of charging 
the entire 10 ms clock tick to the interrupted process as before, processes are 
charged based on the PURR delta for the hardware thread since the last interval, 
which is an approximation of the computing resource that the thread actually 
received. This makes for a more accurate accounting of processor time in the 
simultaneous multithreading environment.

For example, in simultaneous multithreading mode, the operating system sees 
the two hardware threads as two separate processors, and dispatches two 
separate tasks (processes), one on each logical processor. If the old method of 
charging the current running thread a tick every 10 ms, each logical processor 
reports a utilization of 100%, representing the portion of time that the logical 
processor was busy. Using the PURR method, each logical processor reports a 
utilization of 50%, representing the proportion of physical processor resources 
that it used, assuming equal distribution of physical processor resources to both 
the hardware threads.
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2.9  Large POWER5 SMPs
Somewhat like the POWER4, the POWER5 uses Dual Chip Modules (DCMs)3 
and Multi-Chip Modules (MCMs) as the basic building blocks for low-/mid-range 
and high-end servers respectively.

Figure 2-13 depicts a POWER5 DCM, and an actual POWER5 DCM is shown in 
Figure 2-14 on page 37. The chips in POWER5 are designed to support multiple 
system configurations ranging from a low-end uniprocessor up through a 64-way 
(with MCMs).

Figure 2-13   POWER5 Dual Chip Module (DCM)

3  DCM has one POWER5 chip and one L3 MLD cache chip, hence the name dual chip module. The 
DCM has only one POWER5 chip with two cores.
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Figure 2-14   Actual DCM

As with the POWER4, POWER5 exploits the enhanced distributed switch for 
interconnects. All chip interconnects operate at half the processor frequency and 
scale with processor frequency.

Figure 2-15 on page 38 depicts the logical view of a POWER5 MCM. MCMs are 
used as basic building blocks on high-end SMPs. MCMs have four POWER5 
chips and four L3 cache chips each. Each MCM is a eight-way building block. 
Figure 2-16 on page 38 shows an actual picture of a POWER5 MCM.

L3 Cache Chip
POWER5 Chip
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Figure 2-15   Logical view of the POWER5 multi-chip module

Figure 2-16   POWER5 multi-chip module
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Two POWER5 MCMs can be tightly coupled to form a book, as shown in 
Figure 2-17. These books are interconnected again to form larger SMPs, up to 
64-way. The MCMs and books can be interconnected to form eight-way, 16-way, 
32-way, 48-way, and 64-way SMPs with one, two, four, six, and eight MCMs 
respectively.

Figure 2-17   16-way POWER5 building block

Figure 2-18   64-way POWER5 SMP interconnection
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2.10  Summary
POWER5 processor–based systems provide excellent flexibility and performance. 
Many of the features that enable flexibility and performance challenge existing 
notions of how systems look and feel. IBM has already invested in ensuring that 
software can exploit the increased performance levels POWER5 systems will be 
offering, and is continuing in its pursuit to produce system-level enhancements to 
provide even greater performance increases over time.
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Chapter 3. Simultaneous 
multithreading

A very-high-frequency processor can spend more than half of its execution time 
waiting for cache and TLB misses. Given the trend for advances in processor 
cycle time and performance to increase faster than DRAM performance, it is 
expected that memory access delays will make up an increasing proportion of 
processor cycles per instruction. This is often referred to as the memory wall. 
One technique for tolerating memory latency that has been known for several 
years is multithreading. There are several different forms of multithreading. A 
traditional form called fine grain multithreading keeps N threads, or states, in the 
processor and interleaves the threads on a cycle-by-cycle basis. This eliminates 
all pipeline dependencies if N is large enough that instructions from the same 
thread are separated by a sufficient number of cycles in the execution pipelines.

The form of multithreading implemented in the POWER5 architecture is called 
simultaneous multithreading and is a hardware design enhancement that 
enables two separate instruction streams (threads) to execute simultaneously on 
the processor. It combines the multiple instruction-issue capabilities of 
superscalar processors with the latency-addressing capabilities of 
multithreading.

3
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3.1  What is multithreading?
In general, the evolution of multithreading can be broadly divided into:

� Single threading
� Coarse grain threading
� Fine grain threading
� Simultaneous multithreading

Figure 3-1 provides an overview of these four types of multithreading. Each box 
in the diagram represents an execution stage in the respective instruction 
pipeline. The acronyms provided on the left of each block represent the 
fixed-point execution (FX) units, the load store (LS) units, the float-point (FP) 
units, the branch execution (BRX) units, and the condition register logical 
execution unit (CRL).

Figure 3-1   multithreading techniques

In single-threaded mode, we see a thread executing two instructions per cycle. 
Note that in the single-threaded mode, just two execution units (FX0 and 
load/store unit 0 (LS0)) are utilized in the first cycle (vertical column). In this 
mode, execution unit utilization is dependent on instruction-level parallelism 
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produced by the compiler or assembly language programmer to take advantage 
of the eight instruction pipelines (FX0 - CRL) in this superscalar processor.

The IBM STAR series of processors utilized in RS/6000 Model S85 servers used 
a hardware multithreading technique called course grain threading that, when 
enabled, enabled multiple threads to run in parallel. In coarse grain threading, 
one thread known as the active thread executes on the processor while the other 
threads are dormant. If the active thread experiences a long latency event such 
as a cache miss, the processor places the active thread into the dormant state 
and switches to one of the other dormant threads waiting on the processor. For 
such threading mechanisms to work efficiently, the latency of switching from one 
thread to the other must be shorter than the latency of the event (servicing of a 
cache miss) that caused the switch. For example in Figure 3-1 on page 42, a 
branch instruction (subroutine call) executed in the BRX unit causes an 
instruction cache miss. While the instructions are being fetched from memory, 
another thread that was dormant is allowed to execute and its instructions start in 
the FP1 and CRL execution units. However, as processor pipelines become more 
complex, efficiency of thread switching is diminishes.

Fine-grain threading is a hardware multithreading technique in which threads 
take turns every processor clock cycle executing their instructions. While fine 
grain threaded processors tolerate long latency operations better and utilize the 
execution units better, all instruction pipelines may not be utilized. Therefore, 
similar to single threaded processors, efficiency of fine grained threaded 
processors is also limited by the instruction level parallelism.

In a simultaneous multi-threaded processor, the processor fetches instructions 
from more than one thread. Since instructions from any of the threads can be 
fetched by the processor in a given cycle, the processor is no longer limited by 
the instruction level parallelism of the individual threads. What differentiates this 
implementation is its ability to schedule instructions for execution from all threads 
concurrently. With simultaneous multithreading, the system dynamically adjusts 
to the environment, enabling instructions to execute from each thread if possible, 
and allowing instructions from one thread to utilize all of the execution units if the 
other thread encounters a long latency event. For instance, when one of the 
threads has a cache miss, the second thread can continue to execute.

More information about simultaneous multithreading may be found in the 
following references:

� Simultaneous Multi-threading: Maximizing On-Chip Parallelism, 22nd 
International Symposium on Computer Architecture

� Exploiting Choice: Instruction Fetch and Issue on an Implementable 
Simultaneous Multithreading Processor, 23rd Annual International 
Symposium on Computer Architecture
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3.2  POWER5 simultaneous multithreading features
The POWER5 simultaneous multithreading implementation is a natural extension 
to the eight instruction pipeline superscalar POWER4 design. When in 
simultaneous multithreading mode, instructions from either thread can use the 
eight instruction pipelines in a given clock cycle. By duplicating portions of logic 
in the instruction pipeline and increasing the capacity of the register rename pool, 
the POWER5 processor can execute two instruction streams, or threads, 
concurrently. The POWER5 also features dynamic resource balancing (DRB) 
and adjustable thread priorities for efficient utilization of the resources shared by 
both threads. Through hardware and software thread prioritization, greater 
utilization of the hardware resources can be realized without an impact to 
application performance. Figure 3-2 on page 45 illustrates the increased 
processor resource utilization using simultaneous multithreading in POWER5 
compared with POWER4. Notice the increased utilization of the instruction 
pipelines, shown by the shaded boxes. Processor utilization can also be seen in 
Figure 2-12 on page 34, which shows the thermal image comparison.

Each hardware thread is supported as a separate logical processor by AIX 5L 
V5.3. So, a dedicated partition that is created with one physical processor is 
configured by AIX 5L V5.3 as a logical two-way by default. This is independent of 
the partition type, so a shared partition with two virtual processors is configured 
by AIX 5L V5.3 as a logical four-way by default. When simultaneous 
multithreading is disabled, at least half of the logical processors will be offline.

Characteristics of the POWER5 simultaneous multithreading implementation are 
as follows:

� Eight priority levels for each thread that can be raised or lowered by the 
POWER Hypervisor, operating system, or application

� Processor resources optimized for best simultaneous multithreading 
performance, providing the ability to reduce priority of a thread that is 
consuming maximum resources or hold decode of a thread with long latency 
events

� Dynamic feedback of shared resources, enabling balanced thread execution

� Software-controlled thread priority

� Dynamic thread switching capabilities

Note: Each POWER5 processor core appears to the operating system as a 
two-way symmetric multiprocessor (SMP).
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IBM has estimated the performance benefit of simultaneous multithreading at 
30% for commercial transaction processing workloads. Read more about this at:

http://www.ibm.com/servers/eserver/pseries/hardware/system_perf.html

Figure 3-2   Single-threaded versus simultaneous multithreading

In simultaneous multithreading mode, the POWER5 processor uses two 
separate instruction fetch address registers (IFARs) to store the program 
counters for the two threads. Instruction fetches (IF stage) alternate between the 
two threads. Up to eight instructions can be fetched from the instruction cache 
(IC stage) and placed into one of the two instruction fetch buffers every cycle. Up 
to five instructions can be taken out of the instruction fetch buffer per cycle for 
execution. The two threads share the instruction cache and the instruction 
translation facility. In a given cycle, all fetched instructions are unique for each 
thread.

Not all applications benefit from simultaneous multithreading. Having two threads 
executing on the same processor will not increase the performance of 
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applications with execution-unit-limited performance or applications that 
consume all of the processor’s memory bandwidth. For this reason, the 
POWER5 supports single-threaded execution mode. In this mode, the POWER5 
gives all physical resources to the active thread, enabling it to achieve higher 
performance than a POWER4 system at equivalent frequencies. In 
single-threaded mode, the POWER5 uses only one instruction fetch address 
register and fetches instructions for one thread every cycle.

3.2.1  Dynamic switching of thread states
The POWER5 processor provides for the software to dynamically switch from 
simultaneous multithreading mode to single-threaded mode and vice versa. 
There are instances when this could be useful, such as real-time applications 
where guaranteed latency is more important than overall throughput, or scientific 
applications that are limited by execution resources (for example, when sharing 
of execution resources will prove counterproductive).

There may also be instances when there are not enough processes ready-to-run 
on all available hardware threads. For example, in simultaneous multithreading 
mode, one hardware thread of execution is the operating system’s idle process 
and the other hardware thread is application code. Because the hardware thread 
of the idle process also needs to map registers from the rename register pool, 
there may be a performance impact for a task when it is run in simultaneous 
multithreading mode compared to when it is run in single-threaded mode. In 
single-threaded mode and as designed, the operating system’s idle process 
would not execute until there were no other processes in the ready-to-run state.

When the POWER5 processor is operating in single-threaded mode, the inactive 
thread will be in one of two possible states, dormant or null, as shown in 
Figure 3-3 on page 47. From a hardware perspective, the only difference 
between these states is whether the thread awakens on an external or 
decrementer interrupt.
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Figure 3-3   POWER5 thread states

When the POWER5 processor is powered on, each core is brought up in 
single-threaded mode with thread 0 active, and thread 1 is dormant by default. To 
define these three states:

Active state Thread is active and running as seen by software and 
hardware. Hardware maintains the architected state of the 
thread.

Dormant state Thread is inactive in hardware but active in software 
(processor structures are maintained by software). The 
POWER5 processor does not make any distinction 
between dormant and null and behaves the same way.

Null state The hardware thread is inactive in hardware and inactive 
in software. This is true single-threaded mode.

As an example, we previously noted that to the AIX 5L V5.3 and Linux operating 
systems, each POWER5 processor core appears as a two-way (two logical 
processors) system. In the null state, only one logical processor would exist. In the 
dormant state, two logical processors would exist to the operating system, but only 
one physical hardware thread (Thread 0) would be used. The second hardware 
thread would have to be activated in order to use the second logical processor.

3.2.2  Snooze and snooze delay
In the dormant state, the architected register state is not maintained in the 
hardware, but the software maintains knowledge of the logical processor, such as 
per-processor data. (The term software refers to either the operating system or 
the POWER Hypervisor.) The processor is set up so that the dormant thread can 
return to the active state by a decrementer or external interrupt.

ACTIVE

DORMANT NULL

software
initiated

software
initiated

hardware
or software
initiated
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The process of putting an active thread into a dormant state is known as 
snoozing. If there are not enough tasks available to run on both hardware 
threads, the operating system’s idle process will be selected to run on the 
available hardware thread. It is better for the operating system to snooze the idle 
process’ thread and switch to single-threaded mode. Doing so enables all of the 
processor resources to be available to the task doing meaningful work.

To snooze a thread, the operating system will invoke the H_CEDE POWER 
Hypervisor call (refer to Table 4-1 on page 81). The thread then goes to the 
dormant state. A snoozed thread is brought alive when a decrementer, external 
interrupt, or an H_PROD POWER Hypervisor call is received. When other tasks 
become ready to run, the processor transitions from single-threaded mode to 
simultaneous multithreading mode through any of the means mentioned earlier. 
This involves the snoozed thread coming to life at the system reset interrupt 
vector for the thread and having the POWER Hypervisor restore the operating 
system state, and then returning from the original H_CEDE POWER Hypervisor 
call made by the thread to snooze. This means several thousand cycles of thread 
startup latency.

Therefore, it does not make sense to snooze a thread as soon as the idle 
condition is detected. There could be another thread in the ready-to-run state in 
the run queue by the time the snooze occurs, resulting in wasted cycles due to 
the thread start-up latency. It is good for performance if the operating system 
waits for a small amount of time for work to come in before snoozing a thread. 
This short idle spinning time is known as simultaneous multithreading snooze 
delay. An operating system can optionally make this delay tunable. 

Both AIX 5L and Linux incorporate changes to snooze an idle thread. They also 
provide snooze delay tunables.

When the system is set to operate in single-threaded mode, by use of the smtctl 
AIX 5L command, the inactive thread is put into the null state, and the operating 
system is unaware of the hardware thread’s existence. No system resources are 
allocated to the second hardware thread. This mode is advantageous if all the 
system’s executing tasks perform better in single-threaded mode.

The AIX 5L V5.3 smtctl command, which controls enabling and disabling of 
simultaneous multithreading mode, provides privileged users and applications 
with a means to enable or disable simultaneous multithreading for all processors 
in a partition either immediately or on a subsequent boot of the system.

The two flags associated with smtctl are -m and -w; they are defined as follows:

-m off Sets simultaneous multithreading mode to disabled

-m on Sets simultaneous multithreading mode to enabled
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-w boot Makes the simultaneous multithreading mode change effective on 
the next and subsequent reboots

-w now Makes the mode change effective immediately, but will not persist 
across reboot

The smtctl command does not rebuild the boot image. To change the default 
simultaneous multithreading mode of AIX 5L and Linux, the bosboot command 
must be used to rebuild the boot image. The boot image in AIX 5L V5.3 and 
Linux has been extended to include an indicator that controls the default 
simultaneous multithreading mode.

3.3  Controlling priority of threads
Because the POWER5 processor core is capable of fetching instructions from 
two separate instruction paths, contention arises between the two threads for the 
processor’s resources. There are also times when the code executing in the 
processor is not doing any meaningful work, such as running the operating 
system’s idle process. There is also the case where one thread is currently 
holding a lock and another thread wants the lock. If a spin-lock is implemented, 
the thread that holds the lock would be forced to contend with the thread asking 
for the lock, delaying the release of the lock. In addition, critical sections of code 
in the operating system or real-time applications must be able to execute with 
some guaranteed latency. To address these issues, the POWER5 processor 
provides:

� Dynamic resource balancing (DRB)
� Adjustable thread priorities

In this section, we discuss each of these two features of controlling threads in the 
simultaneous multithreading environment.

3.3.1  Dynamic resource balancing (DRB)
The purpose of this resource is to ensure smooth flow of both threads through 
the processor. If either of the two hardware threads start dominating the 
processor resources and depriving the other thread, the DRB logic throttles down 
the dominating thread so that the other thread can flow smoothly without stalling. 
For example, if one thread experiences multiple L2 cache misses for loading of 
data, the dependant load instructions can block in the issue queue slots, 
preventing the other thread from dispatching instructions. (Refer to the processor 
pipeline discussion in 2.4, “POWER5 instruction pipelines” on page 14.) To 
prevent such stalls, the DRB logic monitors the miss queues, and if a particular 
thread reaches a threshold for L2 cache misses, it throttles that thread down so 
that the other thread can progress smoothly. Similarly, one thread could start 
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using too many Global Completion Table (GCT) entries, preventing the other 
thread from dispatching instructions. DRB logic then detects this condition and 
throttles down the thread dominating the GCT.

POWER5 DRB can throttle down a thread in three different ways, with the choice 
of the throttling mechanism depending on the situation:

1. Reducing the thread’s priority.

This is used in situations in which a thread has used more than a 
predetermined number of GCT entries.

2. Holding the thread from decoding instructions until resource congestion is 
cleared.

This applies to when the number of L2 misses incurred by a thread reaches a 
threshold.

3. Flushing all of the dominating thread’s instructions waiting for dispatch and 
holding the thread’s decoding unit until congestion clears.

This is used if a long latency instruction such as memory ordering instructions 
(for example, sync) causes dominating of the issue queues. 

Studies have shown that higher performance is realized when resources are 
balanced across the threads using DRB.

3.3.2  Adjustable thread priorities
The DRB logic is built into the hardware to ensure balanced resource utilization 
by the threads. However, there are instances when software knows that a 
process running on a hardware thread might not be doing any computational 
work, such as spinning for a lock or executing the operating system’s idle 
process. The operating system might also want to quickly dispatch a process, 
such as a process holding a critical spinlock, and needs to elevate its priority. For 
better utilization of processor resources under such scenarios, the POWER5 
features adjustable thread priorities, where software can specify whether the 
hardware thread running the process can have more or fewer execution 
resources.

The POWER5 supports the eight levels of thread priorities (0-7) shown in 
Table 3-1 on page 51. The thread priority is independent of the AIX 5L and Linux 
thread priorities. Each thread has a 64-bit thread status register (TSR) 
associated with it.

Important: DRB is done at the processor level and is not tunable by software.
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Table 3-1   POWER5 thread priority levels

The POWER5 processor supports three processor states:

� POWER Hypervisor mode: All thread priority values can be set.

� Supervisor mode (AIX 5L or Linux kernel code): Only priority levels one 
through six can be set. 

� User mode (application programs): Restricted to levels two through four.

By default, threads execute at normal priority in both kernel mode and user 
mode.

The priority level can be set in two ways. The thread in the correct mode can 
execute an mtspr instruction to set the three-bit priority field in the thread status 
register to the desired thread priority. The second method uses the equivalent 
no-operation (nop) instruction. In the POWER and PowerPC architectures, there 
is no actual nop instruction. However, if the or instruction is executed with the two 
source registers and the destination register being the same register, it is 
considered a nop. The POWER5 architecture takes it one step further by 
providing the ability to control thread priority. Which GPR is used with the or 

Thread 
priority level

Priority level Privilege level for software 
to set this prioritya

a. Certain fields in a thread control register (TCR) affect the privilege level. This
column assumes recommended setting and setups, which is usually the case with
well-behaved software.

Equivalent nop 
instruction

0 Thread shut-off POWER Hypervisor Modeb

b. The POWER Hypervisor is the highest privilege level followed by supervisor
(usually the O/S) and user applications.

-

1 Very low Supervisor Mode or 31,31,31

2 Low User/Supervisor Mode or 1,1,1

3 Medium low User/Supervisor Mode or 6,6,6

4 Normal User/Supervisor Mode or 2,2,2

5 Medium high Supervisor Mode or 5,5,5

6 High Supervisor Mode or 3,3,3

7 Extra high POWER Hypervisor Mode or 7,7,7

Important: The thread priorities mentioned here are independent of the 
operating system’s concept of thread priority.
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instruction affects the priority of the thread. The last column in Table 3-1 on 
page 51 shows the equivalent nop instructions that set the thread priority.

Thread priority adjustment can be performed in C/C++ code with the use of the 
#pragma compiler directives. Example 3-1 shows how an application programmer 
can adjust priorities of the application. Keep in mind that the three priorities 
shown in the code example are the only priorities available to applications 
running in user mode. The other priorities are reserved for kernel code 
(supervisor mode) or the POWER Hypervisor.

Example 3-1   C/C++ code example of setting thread priorities

void smt_low_priority(void); /* The three priorities available to */
void smt_mediumlow_priority(void); /* application programs (user mode) */
void smt_normal_priority(void);

#pragma mc_func smt_low_priority { "7c210b78" } /* or r1, r1, r1 */
#pragma mc_func smt_medium_priority{ "7cc63378" } /* or r6, r6, r6 */
#pragma mc_func smt_normal_priority{ "7c421378" } /* or r2, r2, r2 */

int main(int argc, char **argv)
{

.

.
smt_low_priority();
.
.
smt_normal_priority();

}

3.3.3  Thread priority implementation
When the priority of thread execution is manipulated by software, the effect is to 
throttle the execution of the lower priority threads. This is done by holding the 
instructions of the thread in their instruction fetch buffers. As described in 3.3.1, 
“Dynamic resource balancing (DRB)” on page 49, the lower priority thread is kept 
from entering the decode stage of the pipeline, thus yielding the decode 
resources to the higher priority thread.

Most applications will not be concerned with manipulating their priority. However, 
there may be instances where the application programmer might want to use the 
priority adjustment for synchronization. For example, your application is either 
multi-threaded or multi-tasking. Each thread or task processes its own data, but 
the application as a whole cannot proceed until all threads or tasks are complete. 
As each thread or task finishes its part of the work, it can lower its priority to 
enable the others to catch up.
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Table 3-2 shows the effect of thread priority on obtaining execution time in the 
instruction pipeline. If both threads have a priority of 0, the processor is 
essentially stopped and an I/O or decrementer interrupt will be required to 
resume execution. If thread 0 has the priority of 0 and thread 1 has a priority of 1 
(very low priority), then a group of up to five instructions is started every 32 
processor clock cycles for thread 1. Having a priority of 1 is really intended for the 
operating system’s idle process and locking mechanism. If one thread holds a 
lock and the other thread wants the lock, you want the thread that holds the lock 
to use the processor resources and not have to share cycles with the thread that 
keeps asking whether the lock is available yet (spin lock). There are other 
scenarios for using priority manipulation, but the discussion of these scenarios is 
beyond the scope of this book.

Table 3-2   Effect of thread priorities on decode slot usage

When both threads have a priority greater than 1, the following equation is used:

For example, if thread 0 has a priority of 4 and thread 1 has a priority of 2, then 
thread 1 gets 1/(2(|4 - 2|) + 1)) = 1/8 cycles or one processor cycle out of every 
eight. Thread 0 gets the other seven cycles.

Figure 3-4 on page 54 depicts the effects of thread priorities on instructions 
executed per cycle. The x-axis labels with comma separators represent actual 
thread priority pairs. For example, 7,0 implies that thread 0 has a priority of 7 and 

Thread 0 
priority (X)

Thread 1 
priority (Y)

Decode slots status

0 0 Both Thread 0 and Thread 1 are stopped.

0 1 Thread 1 begins decoding up to five instructions every 32 
processor cycles for power savings. Thread 0 is stopped.

0 >1 Thread 1 uses all processor resources and will be 
fetching and executing instructions every clock cycle.

1 1 Every 64 cycles, each thread will start up to five 
instructions for power saving.

1 >1 Thread 1 gets all of the execution resources and thread 0 
gets any leftover resources. Thread 1 should have the 
performance similar to single-threaded mode.

>1 >1 How many cycles each thread gets before yielding to the 
other is determined by the equation 1/(2** (x-y+1))

1

2
X Y– 1+( )

---------------------
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thread 1 has been stopped. The numbers without comma separators represent 
the value of (X - Y) where X is the priority of thread 0 and Y is the priority of 
thread 1. A value of 5 on the x-axis indicates either (7,2) or (6,1) for X and Y.

Figure 3-4   Effect of adjusting thread priorities
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3.4  Software considerations
The goal of simultaneous multithreading is to increase overall throughput of the 
system by executing two threads that when run individually on the processor in 
single-threaded mode may not utilize the processor execution resources to the 
desired level. Simultaneous multithreading performance depends on the type of 
application; however, for most cases some general rules can be introduced:

� Simultaneous multithreading does not speed up individual threads of 
execution, but overall throughput should improve. 

� If applications care about real-time responses rather than overall system 
performance, they are better off running in single-threaded mode. 

� For workloads that are limited by the processor execution resources, such as 
technical workloads that exhibit high instruction level parallelism and 
consume large amount of rename resources such as floating-point registers 
(FPRs), simultaneous multithreading will not help much. 

In general, based on previous work, the following rules can be summarized for 
application performance on simultaneous multithreading environments:

� Applications found in commercial environments showed higher simultaneous 
multithreading gain than scientific applications.

� Experiments on different workloads have shown varying degrees of 
simultaneous multithreading gain ranging from -11% to 43%. On average, 
most of the workloads showed a positive gain running in simultaneous 
multithreading mode.

Applications that showed a negative simultaneous multithreading gain may be 
attributed to L2 cache thrashing and increased local latency under 
simultaneous multithreading.

3.4.1  Simultaneous multithreading aware scheduling
A multi-processor kernel can run on a POWER5 simultaneous multithreading 
enabled system without modifications, since the kernel will see the two hardware 
threads as two separate logical processors. For example, on an IBM Sserver p5 
system with two physical processors (four hardware threads) and two 
ready-to-run processes, the scheduler could schedule the processes to run on 
the two hardware threads of the same processor core, resulting in the other 
processor core being idle. If the operating system is not simultaneous 

Important: The POWER5 provides facilities for the operating system to 
dynamically switch simultaneous multithreading on and off for applications 
and workloads that might benefit from simultaneous multithreading.
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multithreading aware, there would be no way for the scheduler to distinguish 
between threads on the same processor or different processors. Obviously, this 
does not lead to efficient utilization of system processing capacity. Given this 
background, the most obvious optimization for simultaneous multithreading is to 
make sure that work is distributed to all of the primary threads (thread 0) before 
work is dispatched to secondary threads (thread 1). Secondary threads can be 
snoozed or put at very low priorities if they are idle. The AIX Version 5L V5.3 and 
Linux 2.6 kernel are simultaneous multithreading aware.

Another optimization is to consider the two threads of a core as one affinity 
(AIX 5L V5.3) or scheduling (Linux) domain, so that the domain reflects sharing 
of resources such as the translation look-aside buffer (TLB) used to map virtual 
addresses to real addresses, between the two hardware threads. It might be 
beneficial for software threads of the same process to run in the same domain so 
that the shared processor caches (L1, TLB, and so on.) are effectively utilized by 
the software. It also makes sense to maintain the affinity of software tasks to 
domains where they ran earlier, so that they get a warmer cache.

The bindprocessor command has been enhanced in AIX 5L V5.3 to accept 
command line options to display all primary threads or all secondary threads. 
This is to help applications that use binding to bind to one physical processor.

These two optimization techniques are meant to illustrate that simultaneous 
multithreading awareness helps the operating system perform better. As both the 
AIX 5L and Linux operating systems evolve, more optimization techniques can 
be expected.

3.4.2  Thread priorities on AIX 5L V5.3
AIX 5L V5.3 does not lower the priority of the idle thread if simultaneous 
multithreading is enabled. It searches for work in its own run queue and other run 
queues for threads with normal priorities. This ensures that any information 
about available work is current and can be acted on with least latency. If no work 
is available and if the snooze delay is not over, it will spin in a loop for a tunable 
number of times in a very low priority loop (for power savings only), checking for 
work only on its own run queue. After that it returns to top of the idle process and 
repeats the search for work until snooze delay expires. 

Normally, AIX maintains both hardware threads at the same priority but will boost 
or lower thread priorities in a few key places to optimize performance, and lowers 
thread priorities when the thread is doing non-productive work such as spinning 

Note: Both AIX 5L V5.3 and the Linux 2.6 kernel are simultaneous 
multithreading aware.
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in the idle process or on a kernel lock. When a thread is holding a critical kernel 
lock, AIX boosts the thread’s priority. These priority adjustments are made only 
with code executing in kernel mode (device drivers, system calls, and so on.).

AIX has tunable options (such as the schedo command) to enable the boosting of 
priority for hot locks to medium-high (5) priority. There is code in the first level 
interrupt handlers to reset the priority back to normal (4) priority, so the priority 
boost for hot locks does not boost interrupt handlers and exception handlers. 
There is a tunable to enable the priority boost to be preserved across the 
interrupts and to be kept until the job gets dispatched, but that is not the default.

Dedicated partition implementation
For instances where the processor is dedicated to a partition, simultaneous 
multithreading is enabled, and if there are no ready-to-run tasks, the idle process 
is started and invokes the POWER Hypervisor’s H_CEDE call. AIX will set the 
priority of the idle process to low (2) and wait for the simultaneous multithreading 
snooze delay to decrement to zero.

If kernel code is waiting for a spinlock, AIX changes the waiting thread’s priority to 
low (2). Therefore the spinning thread yields processor resources to the thread 
holding the lock. Using the formula mentioned in 3.3.3, “Thread priority 
implementation” on page 52, this would result in the idle thread getting one cycle 
compared to eight cycles for the thread that holds the lock, assuming normal 
priority for the thread that holds the lock.

Micro-Partitioning implementation
For instances where the processor is used in a Micro-Partitioning environment 
and a wait on a spinlock occurs, a wait for a tunable spin delay occurs after 
setting the priority to low (2). After the spin delay, the POWER Hypervisor’s 
H_CONFER call is made only if the task is running with interrupts disabled, 
perhaps to serialize with interrupt service routines. Since it has interrupts 
disabled, we cannot dispatch another job (or thread) from the run queue on the 
processor. The H_CONFER is used to release the hardware thread. If the 
second hardware thread were also to H_CONFER later on, then the whole 
processor is freed up and POWER Hypervisor can redispatch the physical 
processor on another partition. Note that this is a requirement because the 
hardware threads are bound and must run in the same partition. If the task is 
running with interrupts enabled, the task is placed onto the sleep queue and the 
dispatcher is called to dispatch another task. The POWER Hypervisor will control 
priority management and redispatch the physical processor if the other hardware 
thread also cedes or confers.
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3.4.3  Thread priorities on Linux
The Linux 2.6 kernel for POWER lowers the thread priority for the idle process. 
For dedicated LPARs, the priority of the idle process is set to low and then waits 
for the snooze delay period before snoozing the idle thread by means of the 
POWER Hypervisor’s H_CEDE call. For Linux instances in a Micro-Partitioning 
environment, Linux always invokes H_CEDE for the idle process.

The Linux kernel also lowers the priority of a thread spinning for a lock to be 
released. The priority of the waiting thread is set to low (2) and, assuming the other 
hardware thread in the core has a normal (4) priority, like AIX 5L V.53 the waiting 
thread will get one processor clock cycle to every eight cycles of the other thread.

3.4.4  Cache effects
With simultaneous multithreading, thread-level parallelism is used to compensate 
for low instruction level parallelism by having two possibly different tasks share 
the same processor core and caches. This means there could be more 
associativity misses in the caches. (See 2.5, “Caches” on page 21.) To 
compensate for this, POWER5 has increased POWER4’s associativity of the L1 
instruction cache from direct-mapped (one-way) to two-way set associative, and 
increased the data cache from two-way to four-way set associative.

The L2 cache on POWER5 is now a 1.9 MB, 10-way set associative cache, 
compared to the 1.5 MB eight-way set associative L2 cache on POWER4.

The L3 on the POWER5 is 36 MB 12-way set-associative cache compared to the 
32 MB eight-way set-associative on POWER4. The L3 cache on the POWER5 is 
now a victim cache of L2, unlike an inline cache in POWER4. On POWER5, the 
L3 cache runs at half the processor speed, compared to one-third the processor 
speed on POWER4. The L3 cache being a victim cache of L2, it behaves like a 
large (albeit a bit slower) L2 extension. These processor enhancements help 
offset the cache effects due to simultaneous multithreading, resulting in overall 
improved application performance.
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3.5  Simultaneous multithreading performance
Performance measurements for various standard industrial benchmarks were 
made with AIX 5L V5.3 on four-way Sserver p5 570 POWER5 systems to 
validate gains from simultaneous multithreading. The measurements were made 
with simultaneous multithreading enabled and disabled.

Figure 3-5 illustrates simultaneous multithreading gains for various workloads for 
a four-way 1.65 GHz p5 570 POWER5 system. As the chart shows, throughput 
improvement varies from 10% to 50% depending on the workload.

Figure 3-5   Simultaneous multithreading gains for various workloads

3.5.1  Engineering and scientific applications
In this section, we present a series of examples that involve applications in the 
area of High Performance Computing (HPC). These applications correspond to 
the Life Sciences and Computer Aided Engineering (CAE) industry:

� Gaussian03

Gaussian (Gaussian03, Rev.C.01, Gaussian Inc., Wallingford, CT) is a 
connected series of programs that can be used for performing a variety of 
electronic structure calculations; molecular mechanics, semi-empirical, ab 
initio, and density functional theory.
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� Assisted Model Building with Energy Refinement (AMBER)

AMBER is a flexible suite of programs for performing molecular mechanics 
and molecular dynamics calculations based on force fields. AMBER is the 
primary program used for molecular dynamics simulations and is the only 
program considered in our current study. The version used for our tests 
correspond to AMBER7 for IBM systems, and the test that was selected to 
run AMBER is the Joint AMBER-CHARMM (JAC) benchmark.

� Basic Local Alignment Search Tool (BLAST)

BLAST is a set of similarity search programs designed to explore all of the 
available sequence databases regardless of whether the query is protein or 
nucleic acid. The BLAST programs have been designed for speed, with a 
minimal sacrifice of sensitivity to distant sequence relationships. The scores 
assigned in a BLAST search have a well-defined statistical interpretation, 
making real matches easier to distinguish from random background hits. 
BLAST uses a heuristic algorithm that seeks local (as opposed to global) 
alignments and is therefore able to detect relationships among sequences 
that share only isolated regions of similarity.

� FLUENT

FLUENT V6.1.22 (FLUENT, Inc.) is a leading computational fluid dynamics 
(CFD) application program for modeling fluid flow and heat transfer in 
complex geometries. FLUENT provides complete mesh flexibility, solving flow 
problems with unstructured meshes that can be generated about complex 
geometries with relative ease. CFD applications allow for high parallelization.

Although all of these applications are in the same area of High Performance 
Computing, the algorithms that are utilized to carry out their simulations are not 
necessarily the same. This provides a good test for the performance of 
simultaneous multithreading under different conditions or workloads.
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3.5.2  Simultaneous multithreading benchmarks
We ran two sets of test cases for each of these applications: one set for 
single-threaded mode and one set for simultaneous multithreading.

The system used to conduct these tests was an IBM Sserver p5 570 
(9117-570) with four 1.65 GHz processors and 16 GB of memory. The operating 
system was AIX 5L V5.3. Fortran xlf 9.1 and the xlc 7.0 compilers were installed.

Although this is a benchmarks section, we hope it can also provide basic 
information for sizing and capacity planning for this type of application. The 
objective of capacity planning is to provide an estimate of future systems 
resource requirements based on the present knowledge of the system utilization.

An extensive discussion of sizing and capacity planning independent from 
scientific applications can be found in the redbook IBM Eserver pSeries Sizing 
and Capacity Planning, SG24-7071.

Gaussian03 benchmark tests
The first benchmark test corresponds to Gaussian03. For both single-threaded 
and simultaneous multithreading modes, we ran our test case 1-way (sequential), 
and two-way, four-way, and eight-way (parallel). In other words, within the 
Gaussian notation we ran with nproc using one, two, four, and eight processors. 
It is important to note that the system only had four physical processors.

These benchmarks are important because they show that there is almost no 
difference running single-threaded versus simultaneous multithreading when 
utilizing parallel jobs with the total number of physical processors or less. We 
also show that parallel jobs running two times the number of physical processors, 
when running on simultaneous multithreading mode, still show additional 
scalability; that does not happen when running in single-threaded mode.

Figure 3-6 on page 62 illustrates the performance of Gaussian03 using multiple 
processors under single-threaded and simultaneous multithreading modes. In 
this figure we can identify three trends:

� The first trend corresponds to the performance when running with one and 
two processors. In this case we see that when running Gaussian03 under any 
of these two modes, the performance is basically identical (less than 1% 
difference).

� The second trend may be observed when running with four processors. In this 
case we see that when running in single-threaded mode there is a slight 
advantage in performance as there is no sharing of processor resources with 
another hardware thread. The percentage difference is approximately 4%.
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� The last trend may be seen when requesting a run with eight processors. 
Clearly, this case is requesting more than the physical number of processors 
available on this machine. However, in simultaneous multithreading mode 
(abbreviated as SMT in the following figures), the two hardware threads 
appear as two logical processors. Because of the more efficient use of the 
processor, we see more than a 40% improvement in performance when 
compared to running in single-threaded mode.

Figure 3-6   Gaussian03 benchmarks
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Next we look at a performance comparison of the two modes, single-threaded 
and simultaneous multithreading, in a series of throughput benchmarks. We ran 
the throughput benchmarks by carrying out a single calculation on a standalone 
system; this was the only process running. We refer to this scenario as a single 
job. When the job was done, we simultaneously submitted two jobs, three jobs, 
and on to eight simultaneous jobs. Figure 3-7 shows the performance of 
Gaussian03 with a series of throughput benchmarks using single-threaded and 
simultaneous multithreading modes. 

As in the first set of tests, we can identify two trends. The first trend corresponds 
to the throughput benchmarks consisted of one, two, and three simultaneous 
jobs, where there is basically no difference in performance (less than 1%) 
between single-threaded and simultaneous multithreading.

The second trend begins when the number of processors is the same as the 
number of jobs submitted. In our case where there is four physical processors, 
we start seeing the benefit of the simultaneous multithreading mode. Clearly the 
simultaneous multithreading mode outperforms the single-threaded mode. As the 
number of simultaneous jobs is increased the effect becomes more dramatic.

Figure 3-7   Throughput comparison of Gaussian03 tests
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The difference between single-threaded and simultaneous multithreading can be 
seen in Figure 3-8. This figure clearly shows that from one to three simultaneous 
jobs, there is not much difference between single-threaded and simultaneous 
multithreading. However, from four to eight simultaneous jobs, the advantage of 
simultaneous multithreading is clear.

The difference that we see in the case of five jobs running simultaneously, 
compared to four and six simultaneous jobs, might be caused by the operating 
system running daemons and kernel processes in the background; therefore for 
a certain period of time they both were competing for resources. Explicitly 
binding to processor may alleviate this behavior.

Figure 3-8   Performance advantage of the simultaneous multithreading
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AMBER7 benchmark tests
The second application that we tested was AMBER7. Figure 3-9 shows results 
similar to the case of the Gaussian03 benchmark tests. Again we observe 
exactly the same three trends. For the first trend, we see that there is no 
difference between single-threaded mode and simultaneous multithreading 
mode. For the second trend, the performance improvement in single-threaded 
mode again is only about 4%. Finally, as in the case of Gaussian03, we see a 
large performance improvement using simultaneous multithreading when 
running with eight logical processors. The gain is of the order of 25%.

Figure 3-9   AMBER7 benchmark test comparison
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Using the same procedure as with the Gaussian03 tests, we ran throughput 
benchmarks with one, two, four, and eight processors running simultaneous 
copies of the Joint AMBER-CHARMM benchmark input. The results presented in 
Figure 3-10 are similar to the results discussed for Gaussian03.

Perhaps the largest qualitative difference between this case and Gaussian03 is 
for four simultaneous jobs. AMBER7 does not seem to be taking as much 
advantage of simultaneous multithreading as Gaussian did in this case.

Figure 3-10   AMBER7 results for simultaneous jobs
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In Figure 3-11, AMBER7 takes advantage of simultaneous multithreading as a 
function of the number of simultaneous jobs running on the machine. From one 
to four simultaneous jobs, we see AMBER7 taking slight advantage of 
simultaneous multithreading.

However, as the number of simultaneous jobs increases, so does the advantage 
of using simultaneous multithreading. We see that in this case, when running 
seven simultaneous jobs, the improvement when compared to single-threaded is 
as high as 25%. The behavior of the case with eight simultaneous jobs may be 
explained as operating system noise.

Figure 3-11   AMBER7 simultaneous multithreading improvement 
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BLAST benchmark tests
Figure 3-12 shows the results of the BLAST benchmark tests, with the same 
trends as for Gaussian03 and AMBER7. However, it appears that BLAST tends 
to favor simultaneous multithreading more that the other two applications. In the 
two-way test, unlike the other two benchmark tests, simultaneous multithreading 
has about a 2% advantage. Trend one is the same, except that for the two-way 
run, BLAST favors the simultaneous multithreading by about 2%.

Figure 3-12   BLAST benchmark test comparison
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Figure 3-13   BLAST results for simultaneous jobs

A more dramatic difference showing the benefit of simultaneous multithreading 
can be seen in Figure 3-14. We see that in the case where we have doubled the 
number of jobs compared to the number of physical processors, simultaneous 
multithreading shows a performance improvement over single-threaded by as 
much as 16% difference.

Figure 3-14   BLAST simultaneous multithreading improvement
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FLUENT benchmark tests
The purpose of these tests was to determine whether the FLUENT application 
would benefit from simultaneous multithreading. The measure of performance 
used in this experiment is FLUENT rating, which is the number of FLUENT jobs 
that can be completed in a 24-hour time period. Higher values of FLUENT rating 
indicate better performance. 

The application is submitted requesting one-way (sequential), and two-way and 
four-way (parallel) when the system is configured in single-threaded mode. To 
ensure that each thread is running on a different physical or logical processor, we 
use the bindprocessor command. When the system was configured in 
simultaneous multithreading mode, the single parallel job is submitted using one, 
two, four, and eight processes. In the experiments where simultaneous 
multithreading was used, one processor was assigned to two processes of the 
parallel job. When the parallel job contained one process, complete resources of 
a processor were assigned to the process under both single-threaded and 
simultaneous multithreading. 

Table 3-3 shows the results of running a single parallel job on the single-threaded 
and simultaneous multithreading configurations. When the parallel job contains 
one process, the results for both single-threaded and simultaneous 
multithreading are almost identical, indicating that running in simultaneous 
multithreading mode does not affect performance. The performance of 
single-threaded and simultaneous multithreading is compared for a given number 
of physical processors. The number processes in the parallel job is equal to the 
number of physical processors in single-threaded and it is double the number of 
physical processors in simultaneous multithreading mode. Based on the results, 
running in simultaneous multithreading mode gives a 33% boost in performance 
using one physical processor. When the system is fully loaded, the improvement 
is slightly less at 23%. This improvement resulted in super-linear speed-up when 
the single process run is used to compute the speed-up.

Table 3-3   Performance of parallel FLUENT test case

Single-thread mode Simultaneous multi-thread mode

Physical 
CPUs

Processes FLUENT 
Rating 

jobs/day
(A)

Speedup Processes FLUENT 
Rating 

jobs/day
(B)

Speedup Simultaneous 
multithreading

vs 
single-threaded

(B)/(A)

1 1 166.6 1.0

1 1 166.8 1.0 2 221.4 1.3 1.33

2 2 334.3 2.0 4 415.4 2.5 1.24

4 4 625.0 3.8 8 768.2 4.6 1.23
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In order to evaluate the performance of single-threaded and simultaneous 
multithreading features on a throughput benchmark, a set of several serial jobs 
was submitted simultaneously and the FLUENT rating for each job was 
measured. The total throughput was computed by multiplying the number of 
processes by the average throughput for the set of jobs. In simultaneous 
multithreading mode, three sets of jobs were used. These sets contained one, 
two, and four jobs, respectively. Each job in each of these sets was assigned to a 
processor. For the simultaneous multithreading configuration, four sets of jobs 
were submitted. These four sets contained one, two, four, and eight jobs. One 
processor was used for the jobs in each these sets.

Table 3-4 shows the results of running several serial jobs on the single-threaded 
and simultaneous multithreading configurations. The performance of 
single-threaded and simultaneous multithreading is compared for a given number 
of physical processors. The number of jobs in the parallel run is equal to the 
number of physical processors in single-threaded mode, and it is double the 
number of physical processors in simultaneous multithreading mode. Based on 
the results, simultaneous multithreading mode gives a 35% boost in performance 
for a single physical processor.

Table 3-4   Throughput performance of serial FLUENT for test case: FL5M3 

3.6  Summary
We have tried to illustrate a series of scenarios where scientific applications can 
take full advantage of simultaneous multithreading. We included the throughput 
benchmarks in order to replicate the workloads that a supercomputing center 
might experience on a day-to-day basis. These throughput benchmarks were 
carried out by running multiple copies of a single application. Of course, if the 
input is identical, all of the particular jobs will be competing for the same 
resources. However, in order to provide a more balanced representation of a real 

Single-thread mode Simultaneous multi-thread mode

Jobs CPUs FLUENT 
Rating 

for 
single 
job (B)

Total 
FLUENT 
Rating 
for all 
jobs 

(A)*(B)

Jobs CPUs FLUENT 
Rating 

for 
Single 
job (E)

Total 
FLUENT 
Rating 
for all 
jobs 

(D)*(E)

SMT vs 
single-threa
ded (D)*(E)/ 

(A)*(B)

1 1 166.6 166.6

1 1 166.8 166.8 2 1 112.2 224.4 1.35

2 2 167.3 334.6 4 2 109.7 436.0 1.31

4 4 163.6 654.4 8 4 108.5 871.2 1.33
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workload, we combined the three applications into one throughput benchmark. 
Figure 3-15 summarizes the results from this benchmark.

With this benchmark we are trying to measure which mode will provide the best 
throughput results. However, prior to discussing the results, it is important to 
define how we ran this benchmark. Here the amount of time that the benchmarks 
were going to run was predefined based on how long the individual runs take. 
Given that constraint, our threshold of 90 minutes was arbitrary. We wrote a 
script that would submit Gaussian03, AMBER7, and BLAST jobs simultaneously. 
When the script reached 90 minutes, all jobs were stopped and the total number 
of completed jobs in this period was used as the measurement of performance.

For these types of benchmarks, we see that the simultaneous multithreading 
benefit is clear. We see performance improvements from 20% to almost 60% 
difference when compared to single-threaded. The largest improvement 
corresponds to AMBER7 with almost 60% in comparison with single-threaded.

Will using simultaneous multithreading benefit your environment? There is no 
straightforward answer to that question and it depends on the application or 
applications in the system. Later in this book, we describe the performance tools 
that can assist you in determining whether simultaneous multithreading is 
desirable.

Figure 3-15   Benchmark comparison of Gaussian03, AMBER7, and BLAST
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Chapter 4. POWER Hypervisor

The technology behind the virtualization of the IBM  ̂p5 systems is 
provided by a piece of firmware known as the POWER Hypervisor, which resides 
in flash memory. This firmware performs the initialization and configuration of the 
POWER5 processor, as well as the virtualization support required to run up to 
254 partitions concurrently on the IBM Sserver p5 servers.

The POWER Hypervisor supports many advanced functions when compared to 
the previous version found in POWER4 processor–based systems. This includes 
sharing of processors, virtual I/O, and high-speed communications among 
partitions using a virtual LAN, and it enables multiple operating systems to run on 
the single system. Currently, the AIX 5L, Linux, and i5/OS™ operating systems 
are supported, as shown in Figure 4-1 on page 74.

With support for dynamic resource movement across multiple environments, 
clients can move processors, memory, and I/O between partitions on the system 
as workloads are moved between the partitions.

4

© Copyright IBM Corp. 2005. All rights reserved. 73



Figure 4-1   Virtualization technologies implemented on POWER5 servers

The POWER Hypervisor is the underlying control mechanism that resides below 
the operating systems but above the hardware layer (Figure 4-2). It owns all 
system resources and creates partitions by allocating and sharing them.

Figure 4-2   IBM eServer p5 system layers
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The layers above the POWER Hypervisor are different for each supported 
operating system. For the AIX 5L and Linux operating systems, the layers above 
the POWER Hypervisor are similar but the contents are characterized by each 
operating system. The layers of code supporting AIX 5L and Linux consist of 
system firmware and Run-Time Abstraction Services (RTAS).

System firmware is composed of low-level firmware (code) that performs server 
unique input/output (I/O) configurations and the Open Firmware that contains the 
boot-time drivers, boot manager, and the device drivers required to initialize the 
PCI adapters and attached devices. RTAS consists of code that supplies 
platform-dependent accesses and can be called from the operating system. 
These calls are passed to the POWER Hypervisor that handles all I/O interrupts.

The distinction between RTAS and Open Firmware is important. Open Firmware 
and RTAS are both platform-specific firmware and both are tailored by the 
platform developer to manipulate the specific platform hardware. RTAS 
encapsulates some of the machine-dependent operations of the IBM Sserver 
p5 systems into a machine-independent package. The operating system can call 
RTAS to do things such as start and stop processors in an SMP configuration, 
display status indicators (such as LEDs), and read/write NVRAM without having 
to know the intricate details of how the low-level functions are implemented on 
particular platforms. Open Firmware, on the other hand, does not have not be 
present when the operating system is running. Open Firmware is defined by the 
IEEE 1275 standard and is a specification for machine-independent BIOS that is 
capable of probing and initializing devices that have IEEE-1275 compliant Forth 
code in their ROMs. The device tree produced by Open Firmware can then be 
passed to the operating system when control is passed to the operating system 
during boot. Read more about the IEEE 1275 Open Firmware standard at:

http://www.openfirmware.org

For i5/OS, Technology Independent Machine Interface (TIMI) and the layers 
above the POWER Hypervisor are still in place. System Licensed Internal Code 
(SLIC), however, is changed and enabled for interfacing with the POWER 
Hypervisor. The POWER Hypervisor code is based on the iSeries™ Partition 
Licensed Internal Code (PLIC) code that is enhanced for use with the 
IBM Sserver i5 hardware. The PLIC is now part of the POWER Hypervisor.

Attention: The POWER Hypervisor is mandatory on all POWER5 
processor–based systems. This includes any single-LPAR system.
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4.1  POWER Hypervisor implementation
The POWER4 processor introduced support for logical partitioning with a new 
privileged processor state called POWER Hypervisor mode. It is accessed using 
POWER Hypervisor calls, which are generated by the operating system’s kernel 
running in a partition. POWER Hypervisor mode allows for a secure mode of 
operation that is required for various system functions where logical partition 
integrity and security are required. The POWER Hypervisor validates that the 
partition has ownership of the resources it is attempting to access, such as 
processor, memory, and I/O, then completes the function. This mechanism 
allows for complete isolation of partition resources.

In the POWER5 processor, further design enhancements are introduced that 
enable the sharing of processors by multiple partitions. The POWER Hypervisor 
Decrementer (HDEC) is a new hardware facility in the POWER5 design that is 
programmed to provide the POWER Hypervisor with a timed interrupt 
independent of partition activity. The HDEC is described in “POWER Hypervisor 
Decrementer” on page 33. HDEC interrupts are routed directly to the POWER 
Hypervisor, and use only POWER Hypervisor resources to capture state 
information from the partition. The HDEC is used for fine-grained dispatching of 
multiple partitions on shared processors. It also provides a means for the 
POWER Hypervisor to dispatch physical processor resources for its own 
execution.

The POWER5 processor supports special machine instructions and are 
exclusively used by the POWER Hypervisor. If an operating system instance in a 
partition requires access to hardware, it first invokes the POWER Hypervisor by 
using POWER Hypervisor calls. The POWER Hypervisor allows privileged 
access to the operating system for dedicated hardware facilities and includes 
protection for those facilities in the processor and memory locations.

The primary POWER Hypervisor calls used by the operating system in the 
dispatch of a virtual processor are:

H_CEDE Used when a virtual processor or thread becomes idle, 
enabling the POWER Hypervisor to dispatch other work.

H_CONFER Used to grant the remaining cycles in a dispatch interval 
to another virtual processor in the partition. It may be 
used when one virtual processor cannot make forward 
progress because it is waiting on an event to complete on 
another virtual processor, such as a lock miss.

H_PROD Used to activate a virtual processor that has ceded or 
conferred processor cycles.
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A virtual processor will always be in one of four logical states. These states are:

Runnable Ready to run, waiting for dispatch

Running Currently dispatched on a physical processor

Not-runnable Has ceded or conferred its cycles

Expired Consumed its full entitled cycles for the current dispatch 
window

Architecturally, the POWER Hypervisor, a component of global firmware, owns 
the partitioning model and the resource abstractions that are required to support 
that model. Each partition is presented with the resource abstraction for its 
partition and other required information through the Open Firmware device tree, 
which is created by firmware and copied into the partition before the operating 
system is started. In this way, operating systems receive resource abstractions. 
They also participate in the partitioning model by making POWER Hypervisor 
calls at key points in their execution as defined by the model.

The introduction of shared processors did not fundamentally change this model. 
New virtual processor objects and POWER Hypervisor calls have been added to 
support shared processor partitions. Actually, the existing physical processor 
objects have just been refined to not include physical characteristics of the 
processor, because there is not a fixed relationship between a virtual processor 
and the physical processor that actualizes it. These new POWER Hypervisor 
calls are intended to support the scheduling heuristic for minimizing idle time.

The POWER Hypervisor is entered by the way of three interrupts:

� System reset interrupt

A non-maskable, asynchronous interrupt that is caused by a command for 
soft reset invoked from the service processor. The POWER Hypervisor code 
saves all processor state by saving the contents of the processor’s registers 
(multiplexing the use of this resource with the operating system). The 
processor’s stack and data are found by processing the Processor 
Identification Register (PIR). The PIR is a read-only register. During power-on 
reset, it is set to a unique value for each processor in a multi-processor 
system.

� Machine Check Interrupt

The following causes of machine check interrupts are precise and 
synchronous with the instruction that caused the operation that encountered 
the error:

– The detection of a parity error in the L1 data cache, the data 
effective-to-real (D_ERAT), the translation lookaside buffer, or the segment 
lookaside buffer during the execution of a load or store instruction. If the 
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interrupt is caused by a soft error, executing the appropriate sequence of 
instructions in the Machine Check Handler program will clear the error 
condition without causing any loss of state.

– The detection of an uncorrectable error-correcting code (ECC) error in the 
L2 cache when a Load instruction is executed.

– The detection of an uncorrectable ECC error in the L2 cache while the 
Page Table is being searched in the process of translating an address.

– The detection of corrupt data that is being returned to satisfy a Load 
instruction for which the effective address specified a location in caching 
inhibited memory.

The POWER Hypervisor code saves all processor state by saving the 
contents of the processor’s registers (multiplexing the use of this resource 
with the operating system). The processor’s stack and data are found by 
processing the Processor Identification Register (PIR).

The POWER Hypervisor investigates the cause of the machine check. The 
cause may be either a recoverable event on the current processor or one of 
the other processors in the logical partition. Also the POWER Hypervisor 
must determine whether the machine check has corrupted its own internal 
state (by looking at the footprints, if any, that were left in the per processor 
data area of the errant processor.

� System (Hypervisor) call interrupt

The POWER Hypervisor call interrupt is a special variety of the sc (system 
call) instruction. The parameters to a POWER Hypervisor call are passed in 
registers using the PowerPC Application Binary Interface (ABI) definitions. 
This ABI specifies an interface for compiled application programs to system 
software. A copy of the ABI specification can be found at:

http://www.linuxbase.org/spec/ELF/ppc64

In contrast to the PowerPC ABI, passing parameters by reference are avoided 
in POWER Hypervisor calls. This minimizes the address translation problem 
that parameters passed by reference would cause because address 
translation is disabled automatically when interrupts are invoked. Input 
parameters may be indexes. Output parameters may be passed in the 
registers and require special in-line assembler code on the part of the caller. 
The first parameter in the POWER Hypervisor call function table to POWER 
Hypervisor call is the function token. The assignment of function token is 
designed such that a single mask operation can be used to validate the value 
to be within the range of a reasonable-size branch table. Entries within the 
branch table can handle unimplemented code points. Some of the POWER 
Hypervisor calls indicate whether the system is in LPAR mode and which 
ones are available. The Open Firmware property is provided in the /rtas node 
of the partition’s device tree. The property is present if the system is in LPAR 
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mode while its value specifies which function sets are implemented by a given 
implementation. If the system implements any POWER Hypervisor call of a 
function set, it implements the entire function set. Additionally, certain values 
of the Open Firmware property indicate that the system supports a given 
architecture extension to a standard POWER Hypervisor call.

The POWER Hypervisor routines are optimized for execution speed. In some 
rare cases, locks will have to be taken, and short wait loops will be required due 
to specific hardware designs. However, if a needed resource is truly busy, or 
processing is required by an agent, the POWER Hypervisor returns to the caller, 
either to have the function retried or continued later. 

4.1.1  POWER Hypervisor functions
The POWER Hypervisor provides the following functions. Table 4-1 on page 81 
shows the list of POWER Hypervisor calls.

� Page frame table

The page frame table describes the pages of memory. The access functions 
to the page frame table carefully update a Page Table Entry (PTE) with at 
least 64-bit store operations because an invalid update sequence could result 
in machine check. The POWER Hypervisor protects the system from a 
checkstop condition (a condition where the processor becomes architecturally 
frozen) by allocating bits associated with PTE locks and reserved by the 
operating system to indicate that the PTE is in use.

For logical addressing, an additional level of virtual addresses translation is 
managed by the POWER Hypervisor. The operating system is not allowed to 
use the physical address for its memory; this includes main storage, 
memory-mapped I/O (MMIO) space, and NVRAM. The operating system 
sees main storage as regions of contiguous logical memory. Each logical 
region is mapped by the POWER Hypervisor into a corresponding block of 
contiguous physical memory on a specific node. All regions on a specific 
system are the same size, though different systems with different amounts of 
memory may have different region sizes because they are the amount of 
memory allocation to partitions. That is, partitions are granted memory in 
region-size chunks, and if a partition’s operating system gives up memory, it is 
in units of a full region.

Attention: This information is not intended to be a programming reference 
and these calls may change in future levels of firmware. However, these 
definitions may provide a better understanding of the mechanics within the 
POWER Hypervisor.
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� Translation control entry

Translation control entry (TCE) access is provided by a POWER Hypervisor 
call and take as a parameter, the Logical I/O Bus Number (LIOBN), which is 
the logical bus number value derived from the property that is associated with 
the particular I/O adapter. TCE is responsible for the I/O address to memory 
address translation in order to perform direct memory access (DMA) transfers 
between memory and PCI adapters. The TCE tables are allocated in the 
physical memory.

� Debugger support

Debugger support provides the capability for the real mode debugger to be 
able to get to its serial port and beyond the real mode limit register without 
turning on virtual address translation.

� Virtual Terminal support

The POWER Hypervisor provides console access to every logical partition 
without a physical device assigned. The console emulates a vt320 terminal 
that can be used to access the partition system using the Hardware 
Management Console (HMC). A partition’s device tree that contains one or 
more nodes notifies that is has been assigned to one or more virtual terminal 
(vterm) client adapters. The unit address of the node is used by the partition 
to map the virtual device (or devices) to the operating system’s corresponding 
logical representations and notify the partition that the virtual adapter is a 
vterm client adapter. The node’s interrupts property specifies the interrupt 
source number that has been assigned to the client vterm I/O adapter for 
receive data.

� Dump support

This enables the operating system to dump POWER Hypervisor data areas in 
support of field problem diagnostics. The dump function set contains the 
POWER Hypervisor call H_HYPERVISOR_DATA. This call is enabled or disabled 
(default disabled) via the Hardware Management Console.

� Memory Migration Support

The Memory Migration Support POWER Hypervisor call was provided to 
assist the operating system in the memory migration process. It is the 
responsibility of the operating system not to change the DMA mappings 
referenced by the translation buffer. Failure of the operating system to 
serialize relative to the logical bus numbers may result in DMA data corruption 
within the caller’s partition.

� Performance Monitor Support

The performance registers will be saved when a virtual processor yields or is 
preempted. They will be restored when the state of the virtual processor is 
restored on the hardware. A bit in one of the performance monitor registers 
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enables the partition to specify whether the performance monitor registers 
count when a POWER Hypervisor call (except yield) is made. When a virtual 
processor yields or is preempted, the performance monitor registers will not 
count, enabling a partition to query the POWER Hypervisor for appropriate 
information regarding POWER Hypervisor code and data addresses.

Table 4-1   POWER Hypervisor calls

Hypervisor call Definition

H_REGISTER_VPA Provides a data area registered with the Hypervisor 
by the operating system for each virtual processor. 
The VPA is the control area that holds information 
used by the POWER Hypervisor and the OS in 
cooperation with each other.

H_CEDE Has the virtual processor, which has no useful work to 
do, enter a wait state, ceding its processor capacity to 
other virtual processors until some useful work 
appears, signaled either through an interrupt or an 
H_PROD call.

H_CONFER Enables a virtual processor to give its cycles to one or 
all other virtual processors in its partition.

H_PROD Makes the specific virtual processor runnable.

H_ENTER Adds an entry into the page frame table. PTE high and 
low order bytes of the page table contain the new 
entry.

H_PUT_TCE Provides mapping of a single 4096-byte page into the 
specified TCE.

H_READ Returns the contents of a specific PTE into GPR4 and 
GPR5.

H_REMOVE Invalidates an entry in the page table.

H_BULK_REMOVE Invalidates up to four entries in the page frame table.

H_GET_PPP Returns the partition’s performance parameters.

H_SET_PPP Enables the partition to modify its entitled processor 
capacity percentage and variable processor capacity 
weight within limits.

H_CLEAR_MODE Clears the modified bit in the specific PTE. The 
second double word of the old PTE is returned in 
GPR4.
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H_CLEAR_REF Clears the reference bit in the specific PTE from the 
partition’s node page frame table.

H_PROTECT Sets the page protects bits in the specific PTE.

H_EOI Incorporates the interrupt reset function when 
specifying an interrupt source number associated with 
an interpartition logical I/O adapter.

H_IPI Generates an interprocessor interrupt.

H_CPPR Sets the processor’s current interrupt priority.

H_MIGRATE_DMA This call is extended to serialize the sending of a 
logical LAN message to allow for migration of TCE 
mapped DMA pages.

H_PUT_RTCE Maps the number of contiguous TCEs in an RTCE to 
the same number of contiguous I/O adapter TCEs.

H_PAGE_INIT Initializes pages in real mode either to zero or to the 
copied contents of another page.

H_GET_TCE This standard call is used to manage the interpartition 
logical LAN adapters’s I/O translations.

H_COPY_RDMA Copies data from an RTCE table mapped buffer in 
one partition to an RTCE table mapped buffer in 
another partition, with the length of the transfer being 
specified by the transfer length parameter in the call.

H_SEND_CRQ Sends one 16-byte message to the partner partition’s 
registered Command / Response Queue (CRQ). The 
CRQ facility provides ordered delivery of messages 
between authorized partitions.

H_SEND_LOGICAL_LAN Sends a logical LAN message.

H_ADD_LOGICAL_LAN_BUF Adds receive buffers to the logical LAN receive buffer 
pool.

H_PIC Returns the summation of the physical processor 
pool’s idle cycles.

H_XIRR This call is extended to report the source number 
associated with virtual interrupts from an interpartition 
logical LAN I/O adapter.

Hypervisor call Definition
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Monitoring POWER Hypervisor calls
In AIX 5L Version 5.3, the lparstat command using the -h and -H flags displays 
Hypervisor statistical data about many POWER Hypervisor calls, including cede, 
confer, and prod. Using the -h flag adds summary POWER Hypervisor statistics 
to the default lparstat output. The following shows an example of this command, 
collecting statistics for one five-second interval.

Example 4-1   lparstat -h command

# lparstat -h 5 1

System configuration: type=Dedicated mode=Capped smt=On lcpu=4 mem=3808

%user  %sys  %wait  %idle  %hypv hcalls
-----  ----  -----  -----  ----- ------
  0.0   0.1    0.0   99.8   61.2 2440007
#

Using the -H flag displays detailed POWER Hypervisor information, including 
statistics for many POWER Hypervisor call functions. The output in Example 4-2 
on page 84 shows the following for each of these POWER Hypervisor calls:

Number of calls Number of POWER Hypervisor calls made

Total Time Spent Percentage of total time spent for this type of call

H_POLL_PENDING Provides the operating system with the ability to 
perform background administrative functions and the 
implementation with indication of pending work so 
that it may more intelligently manage the use of 
hardware resources.

H_PURRa This call is a new resource provided for 
Micro-Partitioning and simultaneous multithreading. It 
provides an actual count of ticks that the shared 
resource has used on a per virtual processor or per 
thread basis. In the case of Micro-Partitioning, the 
virtual processor’s Processor Utilization Resource 
Register begins incrementing when the virtual 
processor is dispatched onto a physical processor. 
Therefore, comparisons of elapsed PURR with 
elapsed Time_Base provides an indication of how 
much of the physical processor a virtual processor is 
getting. The PURR will also count Hypervisor calls 
made by the partition.

a. See “Processor Utilization Resource Register (PURR)” on page 34.

Hypervisor call Definition
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Hypervisor Time Spent Percentage of POWER Hypervisor time spent for this 
type of call

Average Call Time Average call time for this type of call in nanoseconds

Maximum Call Time Maximum call time for this type of call in nanoseconds

Example 4-2   lparstat -H command

# lparstat -H 5 1

System configuration: type=Dedicated mode=Capped smt=On lcpu=4 mem=3808

           Detailed information on Hypervisor Calls

Hypervisor        Number of    %Total Time   %Hypervisor   Avg Call    Max Call
  Call              Calls         Spent      Time Spent    Time(ns)    Time(ns)

remove                    0            0.0           0.0          1         714
read                      0            0.0           0.0          1         193
nclear_mod                0            0.0           0.0          1           0
page_init                 3            0.0           0.0        624        2212
clear_ref                 0            0.0           0.0          1           0
protect                   0            0.0           0.0          1           0
put_tce                   0            0.0           0.0          1         613
xirr                      8            0.0           0.0        598        1535
eoi                       8            0.0           0.0        601         932
ipi                       0            0.0           0.0          1           0
cppr                      0            0.0           0.0          1           0
asr                       0            0.0           0.0          1           0
others                    0            0.0           0.0          1           0
enter                     2            0.0           0.0        335         521
cede               12236005           61.5         100.0        499       83573
migrate_dma               0            0.0           0.0          1           0
put_rtce                  0            0.0           0.0          1           0
confer                    0            0.0           0.0          1           0
prod                     31            0.0           0.0        446        1081
get_ppp                   1            0.0           0.0       1477        2550
set_ppp                   0            0.0           0.0          1           0
purr                      0            0.0           0.0          1           0
pic                       1            0.0           0.0        386         690
bulk_remove               0            0.0           0.0          1           0
send_crq                  0            0.0           0.0          1           0
copy_rdma                 0            0.0           0.0          1           0
get_tce                   0            0.0           0.0          1           0
send_logical_lan          0            0.0           0.0          1           0
add_logicl_lan_buf        0            0.0           0.0          1           0
-------------------------------------------------------------------------------
#
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4.1.2  Micro-Partitioning extensions
A new virtual processor is dispatched on a physical processor when one of the 
following conditions happens:

� The physical processor is idle and a virtual processor was made ready to run 
(interrupt or process).

� The old virtual processor exhausted its time slice (HDEC interrupt).

� The old virtual processor ceded or conferred its cycles.

When one of these conditions occurs, the POWER Hypervisor, by default, 
records all the virtual processor architected state including the Time Base and 
Decrementer values and sets the POWER Hypervisor timer services to wake the 
virtual processor per the setting of the decrementer. The virtual processor’s 
Processor Utilization Resource Register (PURR) value for this dispatch is 
computed. The Virtual Processor Area (VPA) dispatch count is incremented 
(such that the result is odd). Then the POWER Hypervisor selects a new virtual 
processor to dispatch on the physical processor using an implementation- 
dependent algorithm having the following characteristics given in priority order:

1. The virtual processor is “ready to run” (has not ceded or conferred its cycles 
or exhausted its time slice).

2. Ready-to-run virtual processors are dispatched prior to waiting in excess of 
their maximum specified latency.

3. Of the non-latency critical virtual processors ready to run, select the virtual 
processor that is most likely to have its working set in the physical processor’s 
cache or for other reasons will run most efficiently on the physical processor.

If no virtual processor is ready to run at this time, start accumulating the Pool Idle 
Count (PIC) of the total number of idle processor cycles in the physical processor 
pool.

Virtual I/O
Virtual input/output (I/O) support is one of the advanced features of the new 
POWER Hypervisor. Virtual I/O provides a given partition with the appearance of 
I/O adapters that do not necessarily have direct correspondence with a physical 
adapter. Virtual I/O is covered in detail in Chapter 6, “Virtual I/O” on page 143.

Memory considerations
POWER5 processors use memory to temporarily hold information. Memory 
requirements for partitions depend on partition configuration, I/O resources 
assigned, and applications used. Memory can be assigned in increments of 
16 MB.
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Depending on the overall memory in your system and the maximum memory 
values you choose for each partition, the server firmware must have enough 
memory to perform logical partition tasks. Each partition has a Hardware Page 
Table (HPT); its size is based on an HPT ratio and determined by the maximum 
memory values you establish for each partition. The HPT ratio is 1/64.

When selecting the maximum memory values for each partition, consider the 
following:

� Maximum values affect the HPT size for each partition.
� The logical memory map size of each partition.

When you create a logical partition on your managed system, the managed 
system reserved an amount of memory to manage the logical partition. Some of 
this physical partition is used for POWER Hypervisor page table translation 
support. The current memory available for partition usage as displayed by the 
HMC is the amount of memory that is available to the logical partitions on the 
managed system (Figure 4-3). This is the amount of active memory on your 
managed system minus the estimated memory needed by the managed system 
to manage the logical partitions defined on your system. Therefore, the amount 
in this field decreases for each additional logical partition you create.

Figure 4-3   Current memory available for partition usage using HMC

When you assess changing performance conditions across system reboots, it is 
important to know that memory allocations might change based on the 
availability of the underlying resources. Memory is allocated by the system 
across the system. Applications in partitions cannot determine where memory 
has been physically allocated.
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4.1.3  POWER Hypervisor design
The POWER Hypervisor is primarily responsible for affinity in a Micro-Partitioning 
system. The physical processors in the shared processor pool are grouped within 
natural hardware boundaries, such that all processors within the pool have the 
same affinity characteristics and the partition is guaranteed to only execute on 
that pool of processors, barring events such as a processor being GUARD’ed off 
due to predictive failures, and possibly replaced with a spare processor from 
another affinity domain. See Figure 5-12 on page 119 for the relationship 
between virtual and physical processors.

The POWER Hypervisor will continue to provide affinity domain information in the 
device tree for processors, which are actually virtual processors in a 
Micro-Partitioning configuration. The side effect of Micro-Partitioning might be 
limits to the depth of hierarchy of affinity domain information that can be 
provided—that is, instead of going down to the physical processor it might stop at 
the lowest common layer of all processors in the shared pool. The POWER 
Hypervisor attempts to maintain physical processor affinity when dispatching 
virtual processors. It will always try first to dispatch the virtual processor on the 
same physical processor as it last ran on, and depending on resource utilization 
will broaden its search out to the other processor on the POWER5 chip, then to 
another chip on the same MCM, then to a chip on another MCM.

Save and restore registers
The POWER Hypervisor will save the following registers when a state is saved 
for a virtual processor: GPRs, FPRs, CR, XER, LR, CTR, ACCR, SPRG0, 
SPRG1, SPRG2, SPRG3, ASR, SLB state, DAR, DEC, DSISR, SRR0, SRR1, 
PMCs, MMCR0/1/A, SDAR, DABR and SDR1.

Preemption of a virtual processor
The POWER Hypervisor is responsible for time slicing and managing the 
dispatching of the partitions across the physical processors. One of the features 
of the POWER4+™ and POWER5 that makes this possible is the POWER 
Hypervisor Decrementer (HDEC). This is a clock interrupt source utilized by the 
POWER Hypervisor to preempt a dispatched partition and regain control of the 
physical processors. This interrupt occurs even if external interrupts are disabled 
and cannot be masked by the partition. The POWER Hypervisor utilizes this 
HDEC to drive its partition dispatcher, so in reality, the POWER Hypervisor is 
managing the execution of multiple partition images across the same physical 
resources, just as an operating system manages the execution of multiple 
processes / threads within its partition instance.

The POWER4+ processor does not have support for the POWER Hypervisor 
decrementer. The SRR0 and SRR1 registers are used to present an HDEC 
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interrupt to the processor. To avoid loss of partition state, a pending HDEC 
interrupt will be held off for N (programmable hardware value) cycles if 
MSR[RI]=0. The number of cycles (N) has to be large enough to enable a 
partition to safely execute instructions until SRR0 and SRR1 are saved and 
indicated by the setting of MSR[RI]=1. If not, taking the HDEC interrupt would 
result in the corresponding loss of state because these registers are updated 
when an interrupt or exception occurs.

This places the requirement on the operating system to use the MSR[RI] bit to 
avoid fatal failures that could occur because of POWER Hypervisor preemption 
of a virtual processor.

A POWER5-based server provides complete HDEC support that enables 
preemption with an unsaved SRR0 and SRR1.

The POWER Hypervisor issues a sync instruction on the processor when it 
preempts a virtual processor. This ensures that a storage access sequence (in 
particular, a Memory Mapped I/O sequence) by the preempted virtual processor 
is seen by the devices on the system in the order it was intended. The POWER 
Hypervisor will also do the equivalent of a dummy stwcx instruction to cancel a 
reservation that may be held by the yielding or preempted virtual processor.

Cache invalidations
The segment lookaside buffer (SLB) that was saved when the virtual processor 
yielded or was preempted is restored on each dispatch of a virtual processor. 
There is one SLB per thread (two per processor core). Information derived from 
the SLB may also be cached in the instruction, possibly with Data Effective to 
Real Address Translation (D_ERAT), along with information from the translation 
lookaside buffer (TLB).

Note: For those not familiar with the POWER and PowerPC architecture, at 
the time of an exception or interrupt, SRR0 is loaded with either the address of 
the instruction that caused the exception, or the address of the instruction that 
would have been dispatched had the interrupt not occurred. SRR1 contains 
the Machine State Register (MSR) contents at the time of the exception or 
interrupt. For example, the thread being preempted may have been in user 
mode (MSR[PR]=1). For the interrupt to be serviced, the processor must be in 
supervisory (system) mode and this bit has to be cleared (0). If interrupts are 
not masked or held off, then the processor automatically saves off the current 
MSR into SRR1 and produces a new MSR value with appropriate bit settings, 
which is placed into the MSR. Therefore, if these registers are not saved, 
recovery may be impossible. The MSR[RI] bit is not affected by exceptions or 
interrupts and can be used by the operating system to indicate recovery.
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The TLB of a processor is invalidated every time the partition ID of a virtual 
processor switched in on a processor is different from the partition ID of the 
virtual processor that last ran on it. The POWER4 family of processors provides 
an instruction to flush the TLB of a processor, avoiding the need for a broadcast 
of TLB invalidations.

Since the number of partitions exceeds the number of hardware partition IDs, 
shared processor partitions may share a hardware partition ID. This can lead to 
false invalidations of TLB entries. Since the TLB is flushed in many instances on 
a dispatch of a virtual processor dispatch, the false invalidations are not a 
concern.

When a partition is IPLed (rebooted) in the shared pool, all processors in the pool 
flush their instruction cache prior to switching in a virtual processor from the 
partition being IPLed.

POWER Hypervisor dispatching algorithm
Each shared pool has its own instantiation of the POWER Hypervisor dispatcher. 
The POWER Hypervisor uses the POWER5 HDEC, which is programmed to 
generate an interrupt every 10 ms (1/100 second), as a timing mechanism for 
controlling the dispatch of physical processors to system partitions. Each virtual 
processor is guaranteed to get its entitled share of processor cycles during each 
10 ms dispatch window. Each shared processor partition is configured with a 
specific processor entitlement, based on a quantity of processing units, which is 
referred to as the partition’s entitled capacity. The entitled capacity, along with a 
defined number of virtual processors, defines the physical processor resource 
that will be allotted to the partition. If a partition does not use its allocation of 
cycles in a scheduling window, it will lose the unused cycles. The minimum 
allocation of resource is 1 ms per processor; the POWER Hypervisor calculates 
number of ms using the capacity entitlement and the number of virtual 
processors for each shared pool. When a capped shared processor has received 
its capacity entitlement within a dispatch interval, it becomes not-runnable. An 
uncapped partition may get more than its allocation of cycles in a scheduling 
window. Virtual processors are time-sliced through the use of the Hypervisor 
Decrementer much like the operating system time slices threads. The POWER 
Hypervisor HDEC and time base will be used by the POWER Hypervisor 
dispatcher for virtual processor accounting.

The physical processor resource in a shared pool may become overcommitted 
(with respect to uncapped partitions). A suitable variation of the Time Function 
History Scheduling (TFHS) algorithm will be used for making dispatch decisions 
when the pool is overcommitted. The algorithm requires some notion of priority 
when making scheduling decisions.
 Chapter 4. POWER Hypervisor 89



4.2  Performance considerations
The POWER Hypervisor uses some system processor and memory resources (a 
small percentage). These resources are associated with virtual memory 
management (VMM), the POWER Hypervisor dispatcher, virtual processor data 
structures (including save areas for virtual processor), and for queuing of 
interrupts. The impact on performance should be minor for most workloads, but 
the impact increases with extensive amounts of page-mapping activity. 
Partitioning may actually help performance in some cases for applications that do 
not scale well on large SMP systems by enforcing strong separation between 
workloads running in the separate partitions.

Other areas where performance can be affected by the POWER Hypervisor are:

� Increasing path length
� Dispatching of virtual processors (saving and restoring state)
� TLB flush when a virtual processor is dispatched
� Increased misses in a shared processor’s caches

Dispatching and interrupt latencies
Virtual processors have dispatch latency, because they are scheduled. When a 
virtual processor is made runnable, it is placed on a run queue by the POWER 
Hypervisor, where it sits until it is dispatched. The time between these two events 
is referred to as dispatch latency.

The dispatch latency of a virtual processor is a function of the partition 
entitlement and the number of virtual processors that are online in the partition. 
Entitlement is equally divided among these online virtual processors, so the 
number of online virtual processors affects the length of each virtual processor’s 
dispatch. The smaller the dispatch cycle, the greater the dispatch latency.

Timers also have latency issues. The POWER5 Decrementer is virtualized by the 
POWER Hypervisor at the virtual processor level, so that timers will interrupt the 
initiating virtual processor at the designated time. If a virtual processor is not 
running, then the timer interrupt has to be queued with the virtual processor, as it 
is delivered in the context of the running virtual processor.

External interrupts have latency issues as well. External interrupts are routed 
directly to a partition. When the operating system makes the accept pending 
interrupt POWER Hypervisor call, the POWER Hypervisor, if necessary, 
dispatches a virtual processor of the target partition to process the interrupt. The 
POWER Hypervisor provides a mechanism for queuing up external interrupts 
that is also associated with virtual processors. Whenever this queuing 
mechanism is used, latencies are introduced.
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These latency issues are not expected to cause functional problems, but they 
may present performance problems for real-time applications. To quantify 
matters, the worst case virtual processor dispatch latency is 18 ms, since the 
minimum dispatch cycle that is supported at the virtual processor level is 1 ms. 
This figure is based on the POWER Hypervisor dispatch wheel. It can be 
visualized by imagining that a virtual processor is scheduled in the first and last 
portions of two 10-ms intervals. In general, if these latencies are too great, then 
clients may increase entitlement, minimize the number of online virtual 
processors without reducing entitlement, or use dedicated processor partitions.

The output of lparstat with the -h flag displays the percentage spent in POWER 
Hypervisor (%hypv) and the number of POWER Hypervisor calls. Note from the 
example output shown in Example 4-3 that the %hypv is around 61% on this idle 
system. As was shown in Example 4-2 on page 84, this is the result of the 
H_CEDE call being made to place the virtual processor into a wait state because 
there is no meaningful work to do after servicing interrupts, and so on.

Example 4-3   lparstat -h output

# lparstat -h 1 16
System configuration: type=Dedicated mode=Capped smt=On lcpu=4 mem=3808

%user  %sys  %wait  %idle  %hypv hcalls
-----  ----  -----  -----  ----- ------
  0.1   0.6    0.0   99.4   61.2 2439926
  0.0   0.0    0.0  100.0   60.8 2442449
  0.0   0.0    0.0  100.0   61.2 2442355
  0.0   0.0    0.0  100.0   61.6 2439577
  0.0   0.0    0.0  100.0   60.8 2442471
  0.0   0.2    0.0   99.8   61.7 2436181
  0.0   0.0    0.0  100.0   61.2 2443133
  0.0   0.1    0.0   99.9   61.2 2448492
  0.0   0.0    0.0  100.0   61.2 2447438
  0.0   0.0    0.0  100.0   61.2 2446917
#

To provide input to the capacity planning and quality of service tools, the POWER 
Hypervisor reports certain statistics to an operating system. These include the 
number of virtual processors that are online, minimum processor capacity that 
the operating system can expect (the operating system may cede any unused 
capacity back to the system), the maximum processor capacity that the partition 
will grant to the operating system, the portion of spare capacity (up to the 
maximum) that the operating system will be granted, variable capacity weight, 
and the latency to a dispatch via a POWER Hypervisor call. The output of the 
lparstat command with the -i flag, shown in Example 4-4 on page 92, will report 
the logical partition related information.
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Example 4-4   lparstat -i output

# lparstat -i
Node Name                                  : aix_lpar01
Partition Name                             : AIX 5L Version 5.3 Gold
Partition Number                           : 1
Type                                       : Dedicated-SMT
Mode                                       : Capped
Entitled Capacity                          : 2.00
Partition Group-ID                         : 32769
Shared Pool ID                             : -
Online Virtual CPUs                        : 2
Maximum Virtual CPUs                       : 2
Minimum Virtual CPUs                       : 1
Online Memory                              : 3808 MB
Maximum Memory                             : 4096 MB
Minimum Memory                             : 128 MB
Variable Capacity Weight                   : -
Minimum Capacity                           : 1.00
Maximum Capacity                           : 2.00
Capacity Increment                         : 1.00
Maximum Dispatch Latency                   : -
Maximum Physical CPUs in system            : 2
Active Physical CPUs in system             : 2
Active CPUs in Pool                        : -
Unallocated Capacity                       : -
Physical CPU Percentage                    : 100.00%
Unallocated Weight                         : -
#
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Chapter 5. Micro-Partitioning

In this chapter we discuss the detailed implementation for Micro-Partitioning, 
which is one of the key features provided in the IBM  ̂p5 systems.

The following topics are included:

� Partitioning on POWER5

� Micro-Partitioning implementation

� Performance considerations

� Configuration guidelines
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5.1  Partitioning on the IBM eServer p5 systems
With technology inspired by IBM zSeries® heritage, logical partitioning (LPAR) 
appeared on IBM Sserver pSeries POWER4 processor–based systems 
supporting AIX 5L Version 5.1 in 2001. Logical partitioning of a system allows 
more than one operating system to reside on the same platform simultaneously 
without interfering with each other. With POWER4 technology, the smallest 
granularity of partitioning was the assignment of one processor to a partition. All 
partitions were considered dedicated, where an entire processor is dedicated to 
the partition and not allowed to be shared among other partitions. This means a 
32-way IBM Sserver pSeries 690 can host up to 32 independent partitions for 
running a combination of AIX 5L and Linux.

Continuing the evolution of partitioning technology, the IBM Sserver p5 systems 
extends its capabilities by further improving the flexibility of LPARs. There are two 
types of partitions in the IBM Sserver p5 systems, and both types of partitions 
can coexist in the same system at any given time.

� Dedicated processor partitions
� Shared processor partitions or micro-partitions

In addition to sharing the processor, the IBM Sserver p5 systems provide 
sharing of devices through virtual I/O, virtual terminals, and virtual Ethernet. 
These topics will be covered later in this book.

Dedicated processor partitions
A dedicated processor partition, like the partitions used on servers based on the 
POWER4 processor–based servers, cannot share the processor with other 
partitions. These processors are owned by the partition where they are running. 
The amount of processing capacity on the partition is limited by the total 
processing capacity of the processors configured in that partition, and it cannot 
go over this capacity (unless you add more processors inside the partition using 
a dynamic LPAR operation). By default, a powered-off logical partition using 
dedicated processors will have its processors available for use by other partitions 
in the system.

Micro-Partitioning
Shared processor partitions or Micro-Partitioning1 provides the ability to share 
processors among other partitions in the system. This allows a system to perform 
more efficiently than would be required with dedicated processor partitions.

1  Some publications refer to this technology as shared processor partitions, but the terms 
micro-partitions and Micro-Partitioning in used this book.
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Micro-Partitioning is the mapping of virtual processors to physical processors. 
The virtual processors are assigned to the partitions, not physical ones. With the 
assistance of the POWER Hypervisor, an entitlement or percentage of processor 
usage is granted to the shared partitions. The minimum processor entitlement is 
1/10 of a processor for a partition. By dividing up processor usage in this manner, 
a system can have multiple partitions sharing the same physical processor, and 
dividing the processing capacity among themselves, as shown in Figure 5-1.

Figure 5-1   System with dedicated and shared partitions

With fractional processor allocations, more partitions can be created on a given 
platform, which enables clients to maximize the number of workloads that can be 
supported on a server simultaneously. Micro-Partitioning enables both optimized 
use of processing capacity while preserving the isolation between applications 
provided by separate operating system images.

There are several scenarios where the use of Micro-Partitioning can bring 
advantages such as optimal resource utilization, rapid deployment of new 
servers and application isolation:

Server consolidation Consolidating small systems onto a large and robust 
server brings advantages in management and 
performance, usually together with reduced total cost 
of ownership. Micro-Partitioning enables the 
consolidation from small and large systems without the 
burden of dedicating very powerful processors to a 
small partition. You can divide the processing power 
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between several partitions with the adequate 
processing capacity for each one.

Server provisioning With Micro-Partitioning and virtual I/O, a new partition 
can be deployed rapidly, to accommodate unplanned 
demands, or to be used as a test environment.

Virtual server farms In environments where applications scale with the 
addition of new servers, the ability to create several 
partitions sharing processing resources is very useful 
and contributes to better use of processing resources 
by the applications deployed on the server farm.

5.2  Micro-Partitioning implementation
Micro-Partitioning enables several operating system images to share the physical 
processor resources in a time-sliced manner. From an operating system 
perspective, a virtual processor is indistinguishable from a physical processor. 
The key benefit of implementing partitioning in the POWER Hypervisor firmware 
and POWER5 chip architecture is to provide a transparent interface to the 
operating system.

Optionally, for increased resource flexibility, the operating system can be 
enhanced to exploit Micro-Partitioning. For instance, an operating system may 
voluntarily relinquish processor cycles to the Hypervisor when they are not 
needed. AIX 5L V5.3 is the first version of AIX 5L to support Micro-Partitioning. 
SUSE LINUX Enterprise Server 9 for POWER systems and Red Hat Enterprise 
Linux AS 3 for POWER Update 3 also include such optimizations.

The virtualization of physical processors on POWER5-based servers requires a 
new partitioning model because it is fundamentally different from the partitioning 
model used on POWER4-based servers. Several new terminologies and 
concepts are introduced in Micro-Partitioning.

Layers of Processor Abstraction
The following terminology represents the three types of processors used in 
Micro-Partitioning:

Logical Processor A hardware thread; an operating system view of a 
managed processor unit. In the AIX 5L V5.3 operating 
system, each hardware thread appears as a unique 
processor (for example, bindprocessor -q). The number 
of logical processors will be double the number of virtual 
processors with simultaneous multithreading enabled. 
Both hardware threads on one virtual processor must be 
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in the same partition at the same time. Currently, 128 
logical processors per partition is the maximum.

Virtual Processor Defines the way that a partition’s entitlement may be 
spread over physical processor. The virtual processor is 
the unit of POWER Hypervisor dispatch and the 
granularity of processor dynamic reconfiguration. 
Currently, the maximum number of virtual processors is 
64 per partition.

Physical Processor The actual physical hardware resource. Currently, the 
maximum number of physical processors in the POWER5 
systems is 64. This definition is the number of unique 
processor cores, not the number of processor chips (each 
of which contains two processing cores).

Virtual processors
Virtual processors are the whole number of concurrent operations that the 
operating system can use. The processing power that is available to the 
operating system on the partition can be conceptualized as being spread equally 
across these virtual processors. 

In Micro-Partitioning, the partitions are defined using the Hardware Maintenance 
Console (HMC). When you create a partition, you have to choose between a 
shared processor partition and a dedicated processor partition. You cannot mix 
shared processors and dedicated processors in one partition. Using the HMC 
menu shown in Figure 5-2 on page 98, selecting the optimal number of virtual 
processors depends on the workload in the partition.

To enable sharing of physical processors in Micro-Partitioning, you have to 
configure these additional options:

� Minimum, desired, and maximum processing units of capacity
� The processing sharing mode, either capped or uncapped 
� Minimum, desired, and maximum virtual processors
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Figure 5-2   HMC console for virtual processor management

You also can use the Advanced tab in your partitions profile to change the default 
configuration and to assign more virtual processors. At the time of publication, 
the maximum number of virtual processors per partition is 64.

Processing capacity is specified in terms of processing units. Processing units 
can be configured in fractions of 1/100 of a processor. The minimum capacity of 
1/10 of a processor is specified as 0.1 processing units. To assign a processing 
capacity representing 50% of a processor, 0.50 processing units are specified on 
the HMC.
98 Advanced POWER Virtualization on IBM Eserver p5 Servers



On a system with two processors, a maximum of 2.0 processing units can be 
assigned to a partition. After a partition is activated, processing capacity is 
usually referred to as capacity entitlement or entitled capacity. Figure 5-3 shows 
a graphical view of the definitions of processor capacity.

Figure 5-3   Processing units of capacity

By default, the number of processing units that you specify is rounded up to the 
minimum number of virtual processors needed to satisfy the assigned number of 
processing units. The default settings maintain a balance of virtual processors to 
processor units. For example:

� If you specify 0.50 processing units, one virtual processor will be assigned. 
� If you specify 2.25 processing units, three virtual processors will be assigned.

A logical partition will have at least as many virtual processors as its assigned 
processing capacity. By making the number of virtual processors too small, you 
limit the processing capacity of an uncapped partition. If you have a partition with 
0.50 processing units and one virtual processor, the partition cannot exceed 1.00 
processing units because it can run only one job at a time, which cannot exceed 
1.00 processing units. However, if the same partition with 0.50 processing units 
was assigned two virtual processors and processing resources were available, 
the partition could use an additional 1.50 processing units.

Figure 5-4 on page 100 shows the relationship between two partitions using a 
shared processor pool of a single physical CPU. One partition has two virtual 
processors and the other a single one. The figure also shows how the capacity 
entitlement is evenly divided over the number of virtual processors.

Minimum Requirement
0.1 Processing Units

Processing Capacity
1 Physical Processor
1.0 Processing Units

0.5 Processing Units
0.4 Processing Units
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Figure 5-4   Distribution of capacity entitlement on virtual processors

When a partition is started, preference is given to the desired value, but this value 
cannot always be used because there may not be enough unassigned capacity 
in the system. In that case, a different value is chosen, which must be greater 
than or equal to the minimum capacity attribute. The value that is chosen 
represents a commitment of capacity that is reserved for the partition. This 
capacity cannot be used to start another shared partition; otherwise, capacity 
could be overcommitted.

The entitled processor capacity is distributed to the partitions in the sequence in 
which the partitions are started. For example, consider a shared pool that has 2.0 
processing units available. Partitions 1, 2, and 3 are activated in sequence:

� Partition 1 activated
Min. = 1.0, max = 2.0, desired = 1.5
Allocated capacity entitlement: 1.5 

� Partition 2 activated
Min. = 1.0, max = 2.0, desired = 1.0
Partition 2 cannot be activated because the minimum capacity is not met.

� Partition 3 activated
Min. = 0.1, max = 1.0, desired = 0.8
Allocated capacity entitlement: 0.5

The maximum value is used only as an upper limit for dynamic operations.

1 Physical Processor
1.0 Processing Units

0.5 Processing Units
0.4 Processing Units

LPAR 1 Capacity Entitlement 50

Virtual
Processor 1

25 25

Virtual
Processor 2

LPAR 2 Capacity Entitlement 40

Virtual
Processor 1

40
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Capped and uncapped mode
In the configuration of Micro-Partitioning, two types are available, capped and 
uncapped. The difference is in defining the ability of a partition to use extra 
capacity available in the system. If a processor donates unused cycles back to 
the shared pool, or if the system has idle capacity (because there is not enough 
workload running), the extra cycles may be used by other partitions, depending 
on their type and configuration.

Capped mode The processing capacity never exceeds the assigned 
processing capacity.

Uncapped mode The processing capacity may be exceeded when the 
shared processing pool has available resources.

A capped partition is defined with a hard maximum limit of processing capacity. 
That means that it cannot go over its defined maximum capacity in any situation, 
unless you change the configuration for that partition (either by modifying the 
partition profile or by executing a dynamic LPAR operation). Even if the system is 
otherwise idle, the capped partition cannot exceed its entitled capacity. 

With an uncapped partition, you must specify the uncapped weight of that 
partition. If multiple uncapped logical partitions require idle processing units, the 
managed system distributes idle processing units to the logical partitions in 
proportion to each logical partition's uncapped weight. The higher the uncapped 
weight of a logical partition, the more processing units the logical partition gets.

Figure 5-5 on page 102 shows the usage of a capped partition of the shared 
processor pool. Partitions using the capped mode are not able to assign more 
processing capacity from the shared processor pool than the capacity 
entitlement will allow.
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Figure 5-5   Capped shared processor partitions

Figure 5-6 on page 103 shows the usage of the shared processor pool by an 
uncapped partition. The uncapped partition can assign idle processing capacity if 
it needs more than the entitled capacity.

In general, the value of the minimum, desired, and maximum virtual processor 
attributes should parallel those of the minimum, desired, and maximum capacity 
attributes in some fashion. A special allowance should be made for uncapped 
partitions, as they are allowed to consume more than their entitlement. 

If the partition is uncapped, then the administrator may want to define the desired 
and maximum virtual processor attributes x% above the corresponding 
entitlement attributes. The exact percentage is installation-specific, but 25% to 
50% is a reasonable number. 

Maximum Processor Capacity

Entitled Processor CapacityProcessor
Capacity
Utilization LPAR Capacity Utilization

Pool Idle Capacity Available

Time

Minimum Processor Capacity

Ceded Capacity

Utilized Capacity
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Figure 5-6   Uncapped shared processor partition

Table 5-1 shows several reasonable settings for number of virtual processors, 
processing units, and the capped and uncapped mode.

Table 5-1   Reasonable settings for shared processor partitions

a - Virtual processors, b - Processing units

Operating systems and applications running in shared partitions need not be 
aware that they are sharing processors. However, overall system performance 
can be significantly improved by minor operating system changes. AIX 5L V5.3 
provides support for optimizing overall system performance of shared processor 
partitions.

Min 
VPsa

Desired 
VPs

Max VPs Min PUb Desired 
PU

Max. PU Capped

1 2 4 0.1 2.0 4.0 Y

1 3 or 4 6 or 8 0.1 2.0 4.0 N

2 2 6 2.0 2.0 6.0 Y

2 3 or 4 8 or 10 2.0 2.0 6.0 N

Maximum Processor Capacity

Processor
Capacity
Utilization

Pool Idle Capacity Available

Time

Entitled Processor Capacity

Minimum Processor Capacity

Utilized Capacity

Ceded Capacity
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Weight for uncapped partitions
You can determine how the POWER Hypervisor should distribute the extra 
cycles between different uncapped partitions. When configuring an uncapped 
partition on the HMC, you are presented with an option to set the variable 
capacity weight. It is a number between 0 and 255 that represents the relative 
share of extra capacity that the partition is eligible to receive. For any uncapped 
partition, its eligible share is calculated by dividing its own variable capacity 
weight by the sum of the variable capacity weights for all uncapped partitions.

The default uncapped weight for uncapped logical partitions is 128. A partition's 
share is computed by dividing its variable capacity weight by the sum of the 
variable capacity weights for all uncapped partitions. Setting the uncapped 
weight to 0 will result in the logical partition being treated as capped. A logical 
partition with an uncapped weight of 0 cannot use more processing units than 
those that are committed to the logical partition.

5.2.1  Virtual processor dispatching
There are four logical states that a virtual processor could be in: 

Running Currently dispatched onto a physical processor.

Runnable Currently not running, but ready to run. The queue of 
runnable virtual processors represents a first-in, first out 
(FIFO) queue for selecting the next virtual processor to be 
dispatched to a physical processor.

Not-runnable The state of a virtual processor that has released its 
cycles either by calling H_CEDE or H_CONFER POWER 
Hypervisor calls. In the cede case, either an interrupt or 
an H_PROD call from another virtual processor makes 
this virtual processor runnable again. In the confer case, a 
H_PROD call or a dispatch cycle granted to the conferred 
targets will make the virtual processor runnable again.

Entitlement expired The state of all virtual processors that have received full 
entitlement for the current dispatch window.

The POWER Hypervisor schedules virtual processors from a set of physical 
processors that is called the pool. There are up to three pools of physical 
processors on a system: one is for dedicated processor partitions, one is for 
shared processor pool, and the other is for unallocated processors. 

Each partition is presented with the resource abstraction for its partition and 
other required information through the Open Firmware device tree. The device 
tree is created by firmware and copied into the partition before the operating 
system is started. Operating systems receive resource abstractions and 
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participate in the partitioning model by making POWER Hypervisor calls at key 
points in their execution as defined by the model.

For Micro-Partitioning, the POWER Hypervisor schedules virtual processors from 
a set of physical processors in the shared processor pool. By definition, these 
processors are not associated with dedicated partitions.

In Micro-Partitioning there is no fixed relationship between virtual processors and 
physical processors. The POWER Hypervisor can use any physical processor in 
the shared processor pool when it schedules a virtual processor. By default, it 
attempts to use the same physical processor that was last used by the partition, 
but this cannot always be guaranteed. The POWER Hypervisor uses the concept 
of a home node for virtual processors, enabling it to select the best available 
physical processor from a processor affinity perspective for the virtual processor 
that is to be scheduled.

Processor affinity As an application runs, the instruction cache fills with the 
instructions and the data cache fills with the data 
associated with the application. If the application is 
momentarily preempted by another higher priority task 
that only executes for a short period of time, the caches 
may still have instructions and data related to the 
application that was preempted when it is redispatched, 
and it would be optimal for that application to be 
dispatched back onto that processor.

Affinity is actively managed by the POWER Hypervisor because each partition 
has a completely different context. Currently, there is one shared processor pool, 
so all virtual processors are implicitly associated with the same pool.

Operating systems use their virtual processors by being dispatched in time-sliced 
manner onto physical processors under the control of the POWER Hypervisor, 
much like the operating system time slices software threads. 

The POWER Hypervisor utilizes the HDEC register to drive its partition 
dispatcher. HDEC is a clock interrupt source utilized by the POWER Hypervisor 
to preempt a dispatched partition and regain control of the physical processor. 
For the details of HDEC, refer to “POWER Hypervisor Decrementer” on page 33.

Dispatch wheel
The POWER Hypervisor uses the architectural metaphor of a dispatch wheel 
with a fixed timeslice of 10 milliseconds (1/100 seconds) to guarantee that each 
virtual processor receives its share of the entitlement in a timely fashion. This 
means that the entitled processing unit of each partition is distributed to one or 
more virtual processors, which will then be dispatched onto physical processors 
in a time-slice manner during every 10 ms dispatch wheel. The time that each 
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virtual processor gets dispatched depends on the number of virtual processors 
and the entitled processing capacity that has been assigned to that partition from 
HMC by the system administrator. When a partition is completely busy, the 
partition entitlement is evenly distributed among its online virtual processors. 

The POWER Hypervisor manages a dispatch wheel for each physical processor 
in the shared pool. Figure 5-7 illustrates the assignment of virtual processors to a 
physical processor.

Figure 5-7   Dispatch wheel

Initially, if the available physical processor entitlement in the whole system meets 
the requirement defined for the partition, the partition will be started and the 
POWER Hypervisor will begin to dispatch the required virtual processors to each 
physical processor evenly. For every subsequent time slice, the POWER 
Hypervisor does not guarantee that all virtual processors will be dispatched in 

Virtual
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the same order, nor does it guarantee that the virtual processors in a given 
partition are dispatched together. However, it does ensure that every partition 
gets its entitlement if needed.

The dispatch wheel works the same way when simultaneous multithreading is 
enabled for a processor or group of processors. The two logical processors 
(hardware threads) are dispatched together whenever the POWER Hypervisor 
schedules the virtual processor to run. The amount of time that each virtual 
processor runs is split between the two logical processors.

Figure 5-8 shows a diagram for a case when simultaneous multithreading is 
enabled.

Figure 5-8   Dispatch wheel when simultaneous multithreading is enabled
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Processor affinity policy
The POWER Hypervisor attempts to dispatch work in a way that maximizes 
processor affinity. When the POWER Hypervisor is dispatching a virtual 
processor, it first attempts to use the same physical processor this virtual 
processor was previously dispatched on. Otherwise, it will be dispatched to the 
first available processor in the following order, same chip, same multi-chip 
module (MCM), or same node. When a physical processor becomes idle, the 
POWER Hypervisor will look for a virtual processor that requires processing time. 
Priority will be given to virtual processors in this order:

1. Virtual processors that have an affinity for that processor
2. Virtual processors with no affinity to a real processor
3. Virtual processors that are uncapped

In IBM AIX 5L V5.3, the mpstat command using the -d flag displays detailed 
affinity and migration statistics for AIX 5L threads and dispatching statistics for 
logical processors (Example 5-1).

Example 5-1   The mpstat -d command 

# mpstat -d
System configuration: lcpu=4 ent=0.5

cpu     cs    ics  bound  rq push S3pull S3grd  S0rd  S1rd  S2rd  S3rd  S4rd  S5rd   ilcs   vlcs
  0  68598  38824      0   0    0      0     0  95.6   0.0   0.0   4.4   0.0   0.0 174110 237393
  1    291    244      0   0    0      0     0  90.9   7.4   0.0   1.7   0.0   0.0   1092 237759
  2  54514  30174      1   1    0      0     0  94.0   0.1   0.0   6.0   0.0   0.0   2756  71779
  3    751    624      0   0    0      0     0  91.3   2.9   0.0   5.8   0.0   0.0   1192  72971
ALL 124154  69866      1   1    0      0     0  94.8   0.1   0.0   5.1   0.0   0.0  89575 309951

The POWER Hypervisor dispatch affinity domains are defined as follows, and 
statistics for virtual processor dispatch across these domains is given by the 
mpstat command.

cpu Logical CPU (processor) number.

cs The number of context switches.

ics The number of involuntary context switches; typically caused by the 
thread’s time slice expiring.

bound Total number of threads bound to a particular processor.

rq The number of threads on the run queue.

push The number of thread migrations to other processors due to starvation 
load balancing.

S3pull Number of thread migrations outside the S3rd affinity domain due to 
idle stealing.

S3grd Number of dispatches from the global run queue outside the S3rd 
affinity domain.
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S0rd The process redispatch occurs within the same logical processor. This 
happens in the case of simultaneous multithreading enabled systems.

S1rd The process redispatch occurs within the same physical processor, 
among different logical processors. This involves sharing of the L1, L2, 
and L3 cache.

S2rd The process redispatch occurs within the same processor chip, but 
among different physical processors. This involves sharing of the L2 
and L3 cache.

S3rd The process redispatch occurs within the same MCM module, but 
among different processor chips.

S4rd The process redispatch occurs within the same central processing 
complex (CPC) plane, but among different MCM modules. This 
involves access to the main memory or L3-to-L3 transfer.

S5rd The process redispatch occurs outside of the CPC plane.

ilcs Total number of involuntary logical CPU context switches.

vlcs Total number of voluntary logical CPU context switches.

As previously stated, the POWER Hypervisor always tries first to dispatch the 
virtual processor onto the same physical processor that it last ran on and, 
depending on resource utilization, will broaden its search out to the other 
processor on the POWER5 chip, then to another chip on the same MCM, then to 
a chip on another MCM.

Operating system support
In general, operating systems and applications do not have to be aware that they 
are sharing processors in a Micro-Partitioning environment. However, overall 
system performance can be improved significantly by minor operating system 
changes. The main issue here is that the POWER Hypervisor cannot distinguish 
between the operating system doing useful work such as numerical 
computations and non-useful work such as spinning while waiting for a lock to be 
released. The result is that the operating system may waste much of its 
entitlement doing nothing of value. 

AIX 5L V5.3 provides support for optimizing overall system performance of 
Micro-Partitioning. These optimizations are built around the idea that an 
operating system can provide hints to the POWER Hypervisor about scheduling. 
For example, an operating system can signal to the POWER Hypervisor when it 
is no longer able to schedule work and yield the remaining time slice. This results 
in better utilization of the physical processors in the shared processor pool.

The dispatch mechanism may utilize POWER Hypervisor calls to communicate 
between the operating system and the POWER Hypervisor. The major three 
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POWER Hypervisor calls used by operating systems are H_CEDE, H_CONFER, 
and H_PROD. For the definition of POWER Hypervisor calls, refer to Table 4-1 
on page 81. 

When the operating system detects an inability to utilize processor cycles, it may 
cede or confer its cycles back to the POWER Hypervisor, enabling it to schedule 
another virtual processor for the remainder of the dispatch cycle. Reasons for a 
cede or confer may include the operating system entering its idle task or an 
application entering a spin loop to wait for a resource to free. There is no concept 
of credit for cycles that are ceded or conferred. Entitled cycles not used during a 
dispatch interval are lost.

A virtual processor that has ceded cycles back to the POWER Hypervisor can be 
reactivated using a H_PROD POWER Hypervisor call. If the operating system 
running on another virtual processor within the logical partition detects that work 
is available for one of its idle processors, it can use H_PROD to signal the 
POWER Hypervisor to make the virtual processor runnable again. Once 
dispatched, this virtual processor would resume execution at the return from the 
H_CEDE POWER Hypervisor call.

Dispatching example
Table 5-2 shows an example configuration that will be used to illustrate 
dispatching of virtual processors. In this Micro-Partitioning example, three logical 
partitions share two physical processors, and all partitions are capped. 

Table 5-2   Micro-Partitioning definition:

Figure 5-9 on page 111 shows each of these partitions running during two 
POWER Hypervisor dispatch windows.

LPAR Capacity 
entitlement 

Virtual 
processors

Capped or
uncapped?

1 0.8 2 capped

2 0.2 1 capped

3 0.6 3 capped
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Figure 5-9   Dispatching processors in Micro-Partitioning

Logical partition 1 (LPAR1) is defined with an entitlement capacity of 0.8 
processing units and two virtual processors (VP0 and VP1). This means that the 
partition is entitled to 80% of physical processor capacity from the shared 
processor pool for each 10 ms dispatch window. The figure shows that the 
workload is evenly distributed (40% each) between the two physical processors. 
Note that it is possible for a virtual processor (for example, VP1) to be dispatched 
more than once during a dispatch interval. The figure shows LPAR1 with VP1 
running for two cycles on physical processor 0; LPAR3 with VP0 running for the 
next two cycles; then LPAR1 is redispatched. This may happen if the operating 
system confers (H_CONFER) cycles and then is reactivated by the POWER 
Hypervisor call, H_PROD. 

Logical partition 2 (LPAR2) is configured with one virtual processor (VP0) and a 
capacity of 0.2 processing units, entitling it to use 20% of the physical processor 
resources during each dispatch interval. In this example, the virtual processor 
dispatched during the two dispatch wheels is assigned to the same physical 
processor according to the affinity policy.

Logical partition 3 (LPAR3) is configured with three virtual processors (VP0, VP1, 
and VP2) and has an entitled capacity of 0.6 processing units. Each virtual 
processor receives 20% of a physical processor in each dispatch interval, but in 
the case of VP0 and VP2, the physical processor they run on is changed in the 
two dispatch intervals. The POWER Hypervisor does attempt to maintain 
physical processor affinity when dispatching virtual processors. As described 
previously, dispatch logic will always attempt to dispatch the virtual processor 
onto the same physical processor it last ran on. Depending on resource 
utilization, it will broaden its search out to the other processor on the POWER5 
chip, then to another chip on the same MCM, then to a chip on another MCM.
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Tracing virtual processor dispatch
The dispatching of virtual processors by the POWER Hypervisor does not involve 
the operating system running in the partition. The operating system cannot 
directly monitor the rate or characteristics of context switching from the POWER 
Hypervisor. However, there is a communication area that is shared between the 
POWER Hypervisor and each virtual processor in a partition so that an operating 
system such as AIX 5L V5.3 can implement tracing of the virtual processor 
context switching.

The trace facility in AIX 5L V5.3 supports the trace hook value of 419. This trace 
hook represents the information that is available about context switching. 
Example 5-2 shows how a system administrator or systems programmer can 
trace virtual processor dispatching.

Example 5-2   Tracing virtual processor dispatching

# trace -aj 419
# trcstop
# trcrpt
ID PROCESS NAME  CPU PID TID  I SYSTEM CALL ELAPSED_SEC DELTA_MSEC APPL    SYSCALL            KERNEL          INTERRUPT
419 -229498- 3 229498 876731 0.020218416 5.926309 cpu preemption data Preempted vProcIndex=0005
                                                              rtrdelta=0000 enqdelta=17321 exdelta=202DC

start wait=2D33E3B52A87 end wait=2D33E3CE5F7B 
SRR0=000000000017B770
SRR1=8000000000009032

419 -229498- 2 229498 819359 0.020325289 0.101956 cpu preemption data Preempted vProcIndex=0004
rtrdelta=0000 enqdelta=1732A3 exdelta=202DB

start wait=2D33E3B529FC end wait=2D33E3CE5F7A
SRR0=000000000017B74C
SRR1=8000000000009032

The time when a virtual processor is removed from a physical processor is 
encoded in the trace hook as well as in the start wait field. The time that the 
virtual processor is redispatched is encoded as the end wait field. We can see 
the statistics from the following sequence of an AIX trace. 

Some measure of virtual processor to physical processor affinity is possible as 
well. The trace hook shows an index to the physical processor (vProcIndex field). 
The index is fixed over time, and not necessarily an indicator of the physical 
processor number of the system. If a virtual processor number is dispatched to 
the same vProcIndex as the previous dispatch, affinity is maintained.

5.2.2  Phantom interrupts
In order to speed the processing of I/O interrupts, the delivery of interrupts to 
physical processors can happen without direct execution of the POWER 
Hypervisor. Rather, interrupts are delivered by the hardware directly to a physical 
processor running a partition’s virtual processor. In the event an interrupt is 
delivered to a virtual processor for a partition that does not own the hardware, the 
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interrupt is ignored by the currently executing partition and is queued by the 
POWER Hypervisor for servicing by the correct partition. An interrupt that is 
mistakenly delivered to an incorrect partition is termed a phantom interrupt.

Figure 5-10 shows the interrupt servicing logic and can be described as follows. 
If the processor is idle (running in POWER Hypervisor mode), then the POWER 
Hypervisor handles the interrupt and identifies the correct partition to make ready 
to run. The interrupt is queued to be delivered when a virtual processor for the 
correct partition runs. If the physical processor is running a virtual processor for a 
partition, the virtual processor receives the I/O interrupt. The operating system 
running on the virtual processor calls the POWER Hypervisor (via the H_XIRR 
call) to determine the interrupt source. If the interrupt source is not for this 
partition, the interrupt is queued in the POWER Hypervisor for delivery to the 
correct partition. If the interrupt source is for this partition, the correct device 
driver is invoked.

Figure 5-10   Interrupt servicing in POWER5 systems

Device delivers interrupt 
to physical processor

Physical processor idle?

Interrupt is queued 
by Hypervisor

Hypervisor identifies the 
partition owning I/O interrupt 

and makes It runnable

Deliver the interrupt to 
a running partition

Operating System 
determines the source 

via  H_XIRR call

Destined for this 
partition?

Yes

Yes

Invoke Device Driver

Interrupt finished

No

Partition runs

No
 Chapter 5. Micro-Partitioning 113



For dedicated processor partitions, phantom interrupts are extremely rare, as the 
I/O hardware can be relatively certain of which physical processors a partition is 
running on. In Micro-Partitioning, phantom interrupts happen with statistical 
likelihood. The latency for interrupt servicing can become extended, due to 
nuances of partition dispatch. But normally interrupt latency will have an upper 
limit of the duration of the dispatch wheel (10 ms). 

Under normal and even heavy I/O load, the performance degradation of handling 
phantom interrupts is very low. That is because the CPU cost to process a 
phantom interrupt is small. In order to understand the rate of phantom interrupts, 
we allow extraction of their rates by the AIX 5L command mpstat. In 
Example 5-3, the ph field shows the number of phantom interrupts for each 
logical processor.

Example 5-3   mpstat command

(localhost:)  #  mpstat -i 1 100

System configuration: lcpu=8   ent=1.0 
cpu   mpcs   mpcr    dev        soft        dec          ph
-------------------------------------------------------------------------------
  0      0      1     1939        47        183         2735
  1      0      1     1946        1         83          2225
  2      0      1     1815        1         100         2912
  3      0      1     1870        1         89          1510
  4      0      1     2000        11        102         3096
  5      0      1     1951        1         100         1715
  6      0      1     2093        1         112         1942
  7      7      0     2101        0         100         2527
  ALL    7      7     15715       63        869         18662
-------------------------------------------------------------------------------
  0      0      1     1767        49        148          4131
  1      0      1     1809        1         100          1843
  2      0      1     1951        1         101          4062
  3      0      1     1974        1         85           2602
  4      0      1     1918        11        101          2264
  5      0      1     1868        1         101          3492
  6      0      1     1980        1         110          5461
  7      7      0     1971        0         100          1841
  ALL    7      7     15238       65         846         25696

You can trace phantom interrupts in AIX 5L V5.3 using the trace command with 
trace hook values of 492 and 47F. In Example 5-4 on page 115, the tracing of 
hook values 100 and 200 are included to show when the interrupt occurs and 
when the preempted process (in this case, wait) resumes.
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Example 5-4   AIX 5L trace for phantom interrupt

# trace -aj 100,200,492,47F
# trcstop
# trcrpt
ID  PROCESS CPU PID ELAPSED_SEC DELTA_MS APPL SYSCALL KERNEL INTERRUPT
100 wait 0 8197 0.340638 0.337172 I/O INTERRUPT iar=2C514 cpuid=00
492 wait 0 8197 1 0.340638 0.337173 h_call:start H_XIRR iar=3B6B100

p1=1857D50 p2=234E70 p3=9C6B508A638
492 wait 0 8197 1 0.340642 0.337177 h_call:end H_XIRR iar=3B6B100 rc=0000
47F wait 0 8197 1 0.340642 0.337177 phantom interrupt cpuid=00
200 wait 0 8197 1 0.340643 0.337178 resume wait iar=2C514 cpuid=00

5.3  Performance considerations
Micro-Partitioning adds a layer of abstraction by the creation of virtual 
processors. This virtualization promotes greater flexibility and increased 
processor utilization. However, in some cases, improper system configuration 
utilizing Micro-Partitioning can negatively affect performance. The intention of 
this book is to assist system administrators with avoiding those pitfalls.

The impact on performance can be positive or negative and may be defined or 
measured in a number of different ways:

� A decrease in maximum throughput for a fixed entitlement due to workloads in 
other partitions. The impact can be measured in partitions with high CPU 
utilization levels.

� A change in processing time used by a partition to complete a fixed task due 
to workloads in other partitions. This impact may be measured at any 
utilization level.

� A change in processing time for a software thread or process to complete a 
fixed task due to workloads in other partitions. This impact may be measured 
at any utilization level.

With Micro-Partitioning, the impact on performance tends to be isolated to each 
partition. In other words, there is no unmeasured partition or time unaccounted 
for that reflects the impact on performance. Rather, the impact on performance 
appears as changing amounts of CPU time to complete work. The changing 
amounts can be either positive or negative. Better processor utilization through 
load balancing, efficient programs and Micro-Partitioning aware operating 
systems can has a positive impact. However, high CPU utilization by all active 
partitions can be negative. In most cases, the impact on performance only occurs 
when multiple partitions are running on the system. There is very little 
performance impact when running a single partition by itself. 
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For example, in a test using Network File System (NFS), throughput was 
measured on four dedicated processor partitions, each with one physical 
processor. The result was compared to a Micro-Partitioning environment 
implementing four partitions with 1.0 entitlement per partition, each essentially 
running on its own physical processor. The throughput in each partition was the 
same in both cases. Processor usage was about 2% higher in the case of 
Micro-Partitioning.

5.3.1  Micro-Partitioning considerations
In Chapter 3, “Simultaneous multithreading” on page 41, simultaneous 
multithreading was defined by the POWER5 architecture as having two hardware 
threads of execution occurring simultaneously. These hardware threads could be 
from independent programs or programs that are multi-threaded. Each hardware 
thread is considered a unique processor by the operating system. Except for the 
few differences mentioned here, the behavior of simultaneous multithreading is 
independent of whether the partition is configured with dedicated processors or 
Micro-Partitioning.

The purpose of simultaneous multithreading is to increase the number of 
instructions that can execute in a unit to time through the microprocessor. Each 
thread uses microprocessor resources such as registers to execute instructions. 
Under almost all circumstances, there are sufficient resources to have more 
throughput with two threads executing than with a single thread executing. 
However, the simultaneous execution of two threads results in the sharing of 
some microprocessor resources. This implies that the time to execute a fixed 
number of instructions by a single thread may increase when two threads are 
active in the processor core. However, over that same measured interval, the 
total instructions executed by both threads normally will be greater than those 
that could be executed by a single thread. If a partition is executing a 
low-to-medium CPU utilization, there may not be enough software threads or 
software processes to keep all of the hardware threads busy. In this case, it is 
beneficial to be able to apply all of the microprocessor resources to a single 
thread.

AIX 5L V5.3 classifies the two threads on a microprocessor as a primary thread 
and a secondary thread. In a partition with simultaneous multithreading enabled, 

Note: The impact on performance when implementing Micro-Partitioning can 
be both positive and negative.

Note: AIX 5L V5.3 classifies the two hardware threads as primary and 
secondary. Dispatch preference is given to the primary thread.
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threads of a process are dispatched to the primary hardware threads before the 
secondary threads. This helps to optimize performance for single- threaded 
applications running on a microprocessor. Because the secondary threads do 
not get work to execute, they go into a snooze state and the primary thread runs 
at almost single-thread performance.

In dedicated processor partitions, the POWER Hypervisor can dynamically 
transition the processor from simultaneous multithreading to single-threaded 
when requested by the operating system. When a single hardware thread 
running on a processor becomes idle, the processor is changed to 
single-threaded mode, and the running thread benefits from single-threaded 
performance. When the other thread is runnable again, the processor returns to 
simultaneous multithreading mode and runs both threads.

Micro-Partitioning does not support automatic changing between simultaneous 
multithreading and single-threaded; this is controlled by the smtctl command. In 
Micro-Partitioning, if a hardware thread becomes idle, it spins in an idle loop at 
low priority. This enables the other running thread to get a large part of the 
processing capacity to itself.

Effect of simultaneous multithreading on processor usage
For a processor to cede its idle cycles to the POWER Hypervisor in the case of 
Micro-Partitioning, both hardware threads must be idle. If one thread is idle while 
the other is running, some idle capacity remains in the partition and cannot be 
given back to the POWER Hypervisor. This effect is noted by comparing the CPU 
utilization of the partition versus the fraction of its entitlement used.

The behavior is more perceptible when CPU usage within a partition is between 
40% and 70% of processing capacity. You can observe this effect by looking at 
the difference between partition entitlement utilization (processing capacity 
consumed by the partition) and partition processor utilization (processing 
capacity consumed by the threads in the partition). The AIX 5L command vmstat 
shows this information in the ec and pc columns. Figure 5-11 on page 118 
illustrates this effect as observed when running a Java™-based application 
server with WebSphere® and DB2®.
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Figure 5-11   Effects of simultaneous multithreading

As partition utilization increases, this effect decreases because the hardware 
threads get more work to be done so the idle time for each thread decreases. 
Obviously, this effect is not present in partitions running in single-threaded mode.

Micro-Partitioning effects on caching
On POWER5 systems, the two processor cores on the same chip share the L2 
and L3 caches. A system running with dedicated partitions and with each core 
assigned to a different partition, the caches are still shared. This results in the 
two cores competing for cache capacity. Naturally, each core can access only the 
cache lines correspondent to its memory addresses. But, the competition for 
cache capacity has direct impact on the performance each microprocessor can 
achieve.

In Micro-Partitioning, the same situation can occur, with the additional factor that 
during a given interval a physical processor may have executed code from 
several different partitions. When a virtual processor is dispatched onto a 
physical processor, all of the memory addresses are relative to the partition the 
virtual processor is assigned. Cache usage becomes dependent on the memory 
access behavior of different applications running on different partitions. The 
competition for shared caches is a significant factor in Micro-Partitioning 
performance, as the cache hit ratios for a measured partition may change over 
time as other partitions run at varying levels of activity.
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The POWER Hypervisor is responsible for maintaining affinity between virtual 
and physical resources in Micro-Partitioning. When dispatching a virtual 
processor onto a physical processor, the POWER Hypervisor tries to redispatch 
a virtual processor to the same physical processor that it ran on previously. This 
attempts to maximize cache affinity and reduce the need for reloading data from 
main memory.

Nevertheless, in Micro-Partitioning there is the potential of having several 
partitions sharing a processor, resulting in several different memory contexts. 
Moreover, because of dispatching requirements, a physical processor may not be 
available when a virtual processor makes the transition from not-runnable to 
runnable. When a virtual processor is ready to run, the POWER Hypervisor 
checks whether the physical processor that ran this virtual processor for the last 
time is idle. If it is busy, then it starts looking in increasing levels of affinity scope 
for an idle processor (other cores on same chip, other processors within same 
MCM, and any other processor in the system) until one is found. If no processor 
is available, the virtual processor is queued onto the runnable queue. Figure 5-12 
depicts the flow of actions described.

Figure 5-12   Affinity between virtual and physical processors
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Even if the virtual processor is dispatched on the same physical processor from 
its last run, data in cache may have been replaced by previous virtual processors 
dispatched in the same physical processor.

The amount of leftover cache context depends on the amount of data read from 
other applications running on the same processor and the ratio of virtual 
processors to physical processors. If an application running on a virtual 
processor is memory intensive, data in the caches belonging to other virtual 
processors is replaced. The caches are reloaded when other virtual processors 
are later dispatched. Therefore, an application whose performance depends on 
cache efficiency will be affected when running in a micro-partition along with 
other partitions that do intensive memory access. 

Number of virtual processors
When the number of virtual processors is much larger than the number of 
physical processors on the system, the time slice given to each virtual processor 
on the physical processors tends to gets smaller. One way to calculate the size of 
the virtual processor time slice is to divide the partition entitlement by the number 
of virtual processors. Increasing the number of virtual processors increases the 
probability that a cache line will be flushed for a virtual processor that is not 
running, and thus reduces the physical processor’s cache efficiency.

When virtual processor capacity is small, the impact on performance of reading 
data from memory is significantly high, due to the fact that the time to fetch data 
from memory is constant and the time slice is small for small capacity 
entitlements. Therefore, the impact is more significant in virtual processors with 
small capacity.

Keep in mind the purpose of a cache is to hold data that is referenced frequently. 
If applications running on the system are processing data by reading it, modifying 
it, and then writing it back to memory, the virtual processor time slice effects 
mentioned above would be no different than dedicated processor partitions.

The performance impact of increasing cache miss rates in the partition due to 
competition with other partitions depends on the size of the partition, the number 
of virtual processors, the nature of the other partitions, and the type of 
application.

A worst-case scenario is where one partition uses the caches moderately and 
another partition uses the caches extensively. Both partitions run on the same 
processor. For example, application A, which is composed of small but numerous 
tasks, fits well in the cache by itself. Application B uses memory heavily for 
reading and writing large blocks of data. In all cases, each partition has two 
virtual processors, each with 0.1 processor capacity. The partition running 
application A is uncapped, and the partitions running application B are capped.
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Figure 5-13 shows the results of three test cases.

Figure 5-13   Measurements of cache effects in different partitions

Case 1 shows the throughput for application A running without any other 
partitions active, and serves as a reference point. Case 2 shows the throughput 
when application A runs in one partition, and one other partition runs application 
B. Even with the effects of application B reducing caching efficiency, application 
A runs well, with slightly more than a 5% penalty for sharing the same physical 
processor with application B. Case 3 shows the throughput for application A 
while seven other partitions run benchmark B. Due to seven partitions and 14 
virtual processors running memory-intensive workloads, we can see that caching 
efficiency drops to around 76%. This example was an extreme case where the 
workloads were selected so that the effect on cache usage would have the most 
impact on performance. Most applications that will run on these systems, 
including commercial and technical workloads, should observe a smaller impact 
in performance.

In addition to the changes in maximum throughput achieved by a partition for a 
fixed entitlement, changes in the CPU time to perform a task will occur. For 
example, consider a case where a partition requires 100 CPU seconds to 
complete a database sort when it runs on a processor while the other partitions 
on the system are relatively idle. When the exact same sort is run again at a time 
when a number of other partitions are active, the resulting CPU time is 130 
seconds. It is important to understand this phenomenon in environments where 
billing for CPU usage is performed.

5.3.2  Locking considerations
Most operating systems and sophisticated applications use spin locks to serialize 
read/write access to shared memory. The effectiveness of spin locks is based on 
the idea that the locks are not held for long periods of time. In Micro-Partitioning, 
it is possible for a virtual processor holding a lock to be undispatched for several 
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milliseconds. This increases the likelihood of lock contention when a partition is 
spread over several virtual processors.

For example, in AIX 5L V5.3, kernel locks that run with interrupts disabled benefit 
from special handling in Micro-Partitioning. They are handled differently from 
locks that run with interrupts enabled, since having interrupts disabled prohibits 
the undispatching of the blocked software thread and running another.

Consider the case where a virtual processor owning the lock is not running (for 
example, it used up the entitled time slice), and there is another virtual processor 
that needs the same lock to run on the system concurrently. Without optimization, 
a blocked virtual processor will spin waiting until the lock is released by the 
owner. To effectively solve this situation without spending unnecessary cycles, 
the virtual processor waiting for the lock uses the POWER Hypervisor call 
H_CONFER to give its cycles to the virtual processor owning the lock. The 
POWER Hypervisor dispatches the lock owner to continue processing and 
eventually release the lock. Note that in a simultaneous multithreading enabled 
partition, this mechanism is relatively less effective. If there is heavy locking, 
running a partition in single-threaded mode may reduce the impact.

Lock contention can be monitored with the AIX 5L trace facility. Example 5-5 
shows a case where a thread on virtual processor 0 attempts to acquire a lock. 
When it determines that there is lock contention with another thread, it confers its 
processor cycles. After the lock is released, it acquires the lock.

1. Thread on virtual processor 0 attempts to acquire a lock.

Example 5-5   AIX 5L trace of lock contention - step 1

ID PROCESS NAME CPU PID TID I SYSTEM CALL ELAPSED_SEC     DELTA_MSEC   APPL SYSCALL KERNEL  INTERRUPT
112 -229498- 0 229498 1294461 0.033375354 0.000376 lock:    dmiss lock 

addr=F1000600234F0100 lock                        
status=B7060000000000     
requested_mode=LOCK_SWRITE 

 eturn addr=3CCF1EC  
name=00000000.00000000

2. After identifying lock contention with another thread, the lock becomes a spin 
lock.

Example 5-6   AIX 5L trace of lock contention - step 2

112 -229498- 0   229498   700529 0.033376227 0.000019 krlock: cpuid=00 addr=F100060004006B80 action=spin
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3. Instead of actively spinning, it confers its cycles to CPU 2, which is ahead of it 
in the lock queue.

Example 5-7   AIX 5L trace of lock contention - step 3

112  -229498- 0   229498 700529 0.033382946 0.000019 krlock: cpuid=00 addr=F100060004006B80 action=confer (target cpuid=0002)

4. The POWER Hypervisor runs to confer cycles and dispatches the thread on 
CPU 2.

Example 5-8   AIX 5L trace of lock contention - step 4

492 -229498- 0   229498   700529 0.033383307 0.000014 h_call: start H_CONFER iar=17A8F0 p1=0002 p2=52904FF p3=2D33E3F7FA44
419 -229498- 2   229498   819359 0.033598712 0.215405 cpu preemption data Preempted vProcIndex=0004

rtrdelta=0000 enqdelta=4471D exdelta=A66B
start wait=2D33E3F3B790 end wait=2D33E3F8A518 
SRR0=000000000017B770  
SRR1=8000000000009032

5. Virtual CPU 2, which was waiting on the lock, acquires it. After it is no longer 
needed, it is handed off to the thread on CPU 3, which also was waiting for it.

Example 5-9   AIX 5L trace of lock contention - step 5

112 -229498- 2   229498   819359 0.033599436       0.000724 krlock: cpuid=02 addr=F100060004006B80 action=acquire 
112 -229498- 2 229498   819359 0.033600580       0.001144 lock:    dlock lock addr=F1000600234F0100 lock status=B70800000C809F 

requested_mode=LOCK_SWRITE return addr=3CCF1EC 
name=00000000.00000000

112 -229498- 2   229498   819359 0.033601444 0.000864 krlock: cpuid=02 addr=F100060004006B80 
action=handoff (target cpuid=0003)

419 -229498- 3   229498   876731 0.033602912 0.001468 cpu preemption data Preempted vProcIndex=0005
 rtrdelta=0000 enqdelta=446AF exdelta=A670

start wait=2D33E3F3B7FE end wait=2D33E3F8A51D 
SRR0=000000000017B74C SRR1=8000000000009032

6. Virtual CPUs 2 and 3 continue processing. 

Example 5-10   AIX 5L trace of lock contention - step 6

254 -229498- 2   229498   819359 0.033603515 0.000603 MBUF m_copydata mbuf=F100061008250C00 offset=0 len=26  
cpaddr=F100061001480000

254 -229498- 3   229498   819359 0.033604287 0.000763 MBUF return from m_copydata
254 -229498-  2   229498   819359 0.033604697 0.000410 MBUF m_copydata mbuf=F100061008250C00 offset=26 len=8 

cpaddr=F10006100148001A
254 -229498- 2   229498   819359 0.033605015 0.000318 MBUF return from m_copydata

7. On the next pass of the POWER Hypervisor dispatch wheel, virtual CPU 0 is 
dispatched to run again. Note that approximately 7 ms have passed.

Example 5-11   AIX 5L trace of lock contention - step 7

419 -229498- 0 229498   700529 0.040380275 .069589 cpu preemption data Unblocked vProcIndex=0007 
rtrdelta=AA7D enqdelta=12875A exdelta=2E448
start wait=2D33E3F7FC15 end wait=2D33E40E1234 
SRR0=00000000001EB274 SRR1=8000000000009032

492 -229498- 0 229498   700529 0.040381096  0.000821 h_call: end H_CONFER iar=17A8F0 rc=0000
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8. The thread running on virtual CPU 3 hands off the lock to the thread running 
on CPU 0, which resumes and acquires the lock.

Example 5-12   AIX 5L trace of lock contention - step 8

112 -229498- 3  229498   819359 0.033601444 0.000864 krlock: cpuid=03 addr=F100060004006B80 
action=handoff (target cpuid=0000)

419 -229498- 0   229498  819359 0.040382945 0.001207 cpu preemption data Unblocked vProcIndex=0006
rtrdelta=AA2E enqdelta=12882B exdelta=2E447

start wait=2D33E3F7FB93 end wait=2D33E40E1233                                    
SRR0=00000000001EB274 SRR1=8000000000009032

112 -229498- 0 229498  819359 0.040381738 0.000642 krlock: cpuid=00 addr=F100060004006B80 action=acquire
112 -229498- 0 229498  819539 0.040381882 0.000144 lock:      dlock lock addr=F1000600234F0100 lock 

status=B70800000AB071 requested_mode=LOCK_SWRITE
return addr=3CCF1EC name=00000000.00000000

Since lock contention is statistical, reducing the number of virtual processors in a 
partition will usually decrease lock contention just as increasing the number of 
virtual processors in a partition usually increases lock contention. Environments 
that have responsiveness issues without full utilization of entitled capacity should 
be evaluated for possible lock contention issues. AIX 5L kernel lock contention 
can be analyzed with the use of the curt tool.

There are two types of virtual processor context switches, voluntary and 
involuntary. Context switches initiated by H_CEDE, H_CONFER, and H_PROD 
POWER Hypervisor calls are voluntary context switches, while timeslice-related 
context switches are involuntary. The number of voluntary and involuntary 
context switches can be extracted from the output fields vlcs and ilcs by the 
AIX 5L command mpstat.

The number of virtual processor context switches is important because it is one 
measure of POWER Hypervisor activity. In some cases it is best to minimize the 
number of virtual processors in each partition, if there are many partitions 
activated. On the other hand, if more virtual processors are needed to satisfy 
peak load conditions and the capacity requirements vary greatly over time, it may 
be best to take virtual processors offline when they are not needed. In such a 
situation, the Partition Load Manager may be used to automate this process as a 
function of load. The detailed explanation of Partition Load Manager is discussed 
in Chapter 10, “Partition Load Manager” on page 373.

The context switch statistics and the number of POWER Hypervisor calls can 
also be extracted from AIX 5L high-level commands such as lparstat and 
mpstat. The detailed explanation for the commands is discussed in 8.1, 
“Performance commands” on page 258. Example 5-13 on page 125 illustrates 
lparstat, which shows the name of the POWER Hypervisor call and its elapsed 
execution time.
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Example 5-13   lparstat command

# lparstat -H 1 1

System configuration: type=Shared mode=Uncapped smt=On lcpu=4 mem=256 ent=0.20

           Detailed information on Hypervisor Calls

Hypervisor        Number of    %Total Time   %Hypervisor   Avg Call    Max Call
  Call              Calls         Spent      Time Spent    Time(ns)    Time(ns)

remove                    0            0.0           0.0          1         709
read                      0            0.0           0.0          1         376
nclear_mod                0            0.0           0.0          1           0
page_init                 4            0.0           0.1        655        1951
clear_ref                 0            0.0           0.0          1           0
protect                   0            0.0           0.0          1           0
put_tce                   0            0.0           0.0          1        1671
xirr                      6            0.0           0.1        638        1077
eoi                       6            0.0           0.1        447         690
ipi                       0            0.0           0.0          1           0
cppr                      6            0.0           0.1        265         400
asr                       0            0.0           0.0          1           0
others                    0            0.0           0.0          1           0
enter                     4            0.0           0.0        272         763
cede                    357            1.3          98.4       7106      641022
migrate_dma               0            0.0           0.0          1           0
put_rtce                  0            0.0           0.0          1           0
confer                    0            0.0           0.0          1           0
prod                     55            0.0           0.8        391        1168
get_ppp                   1            0.0           0.1       1738        2482
set_ppp                   0            0.0           0.0          1           0
purr                      0            0.0           0.0          1           0
pic                       1            0.0           0.0        260         656
bulk_remove               0            0.0           0.0          1           0
send_crq                  0            0.0           0.0          1        2395
copy_rdma                 0            0.0           0.0          1           0
get_tce                   0            0.0           0.0          1           0
send_logical_lan          1            0.0           0.1       2685        4602
add_logicl_lan_buf        6            0.0           0.2        686         859

From an operating system point of view, there are software context switches to 
make a different thread execute. The AIX 5L and Linux command vmstat can be 
used to check context switches at the operating system level.

The example shown in Figure 5-14 on page 126 represents the relative 
performance of various configurations when executing an NFS benchmark. It 
shows both the SMP scaling effect and the performance considerations when 
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running several virtual processors. When the configuration changes from a 
four-way dedicated processor partition to four 1-way dedicated processor 
partitions, aggregate throughput is increased by a small margin. This is due to 
both decreased data movement between processors and locking.

Figure 5-14   The effect of multiple virtual processors in overall performance

With Micro-Partitioning, four partitions with two virtual processors each see a 
reduction in performance compared to four dedicated processor partitions. 
Micro-Partitioning using two partitions with four virtual processors was tested and 
it was found that using four virtual processors increases the lock contention.

Finally, we have four partitions, each with four virtual processors. This case has 
the lowest performance, due to increasing cache interference and locking 
requirements. As we increase the number of virtual processors, the relative 
performance is more affected because of the SMP scaling inside the partition 
and cache interference due to dispatching the multiple virtual processors in the 
system.

5.3.3  Memory affinity considerations
In the POWER5 processor–based servers, memory is attached to processor 
modules and it has the same access characteristics for any processor within the 
module. This does not differ from POWER4 processor–based servers. Memory 
and processors that are connected directly are said to fall within a single affinity 
domain. A processor can access memory attached to its local memory domain 

Note: It is recommended that you have as few virtual processors configured 
as possible for each partition. It is better to have few virtual processors with 
higher capacity than a large number of virtual processors each with a small 
amount of processing power. If it is necessary for expanding the partition to 
handle more workload, you can add more virtual processors by executing a 
dynamic LPAR operation.
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faster (that is, lower latency) than it can access memory attached to other 
memory domains. AIX 5L V5.3 has optional support for organizing its memory 
management strategies around these affinity domains.

With memory affinity support enabled, AIX 5L attempts to satisfy page faults from 
the memory closest to the processor that generated the page fault. This is of 
benefit to the application because it is now accessing memory that is local to the 
MCM rather than memory scattered among different affinity domains. This is true 
for dedicated processor partitions. When using Micro-Partitioning, however, 
virtual processors may be dispatched on different physical processors during the 
time a partition is running. As a result, there is no way to implement affinity 
domains, so memory affinity has no meaning in Micro-Partitioning. Memory is 
allocated to partitions in a round-robin way, and this tends to reduce processor 
utilization due to variation in memory allocation.

5.3.4  Idle partition consideration
In Micro-Partitioning, the POWER Hypervisor manages virtual processor 
dispatching between different partitions so that each partition gets the deserved 
processing entitlement. In the case of partitions running in the system in the idle 
state (no work being done), the unused processing cycles may be conferred to 
other partitions by the POWER Hypervisor, leading to more efficient usage of the 
CPU resources. There are some activities that consume processor resources 
even when the partition is idle. System activity such as interrupts and daemons 
polling for events are some examples of activities that use processing resources. 
Because of these activities, an idle partition still presents some load to the 
physical processor. Moreover, the POWER Hypervisor also needs some 
processing resources to manage these idle partitions and the virtual processors 
running on them. Normally, a system is not expected to have a large number of 
idle virtual processors. If there are many, you should analyze whether they are 
really needed for the work that has to be done. AIX 5L V5.3 implements some 
timer-management functions to minimize resource utilization by the idle 
partitions. Performance affected by idle partition management should be 
minimal. Figure 5-15 on page 128 shows the impact of adding idle partitions to a 
system running a workload in one uncapped partition.

Important: Applications that benefit from memory affinity should not be 
implemented in Micro-Partitioning environments.
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Figure 5-15   Uncapped partition performance example

Because idle partitions are not doing any productive work, to further reduce the 
performance impact associated with having idle partitions in the system, AIX 5L 
V5.3 introduces the idea of slow ticks. This is an operation mode for idle 
processors with a reduced timer tick rate. In AIX 5L, a clock interrupt has always 
occurred every 10 ms (1/100 of a second). This is still the case for busy 
partitions. For idle partitions, the period of the clock interrupt is changed 
dynamically to 1/10 of a second. Slow ticks are enabled in partitions running 
independently as a function of load average on each processor of a system. Note 
that daemons that run periodically for polling activities, or applications that 
present similar behavior, can prevent the change to slow ticks; because there are 
threads running periodically, the partition is not technically idle.

5.3.5  Application considerations in Micro-Partitioning
Applications do not have to be aware of Micro-Partitioning because it is 
completely transparent from the application perspective. However, there are 
some considerations that should guide a decision about which applications are 
suitable for Micro-Partitioning and which are not.

Applications with response time requirements
The Micro-Partitioning environment is dynamic, especially when capped and 
uncapped partitions are running on the same system.

As stated in 5.2.1, “Virtual processor dispatching” on page 104, the POWER 
Hypervisor attempts to dispatch all virtual processors in an interval of 10 
milliseconds. It does not guarantee, however, that the elapsed time between one 
dispatch and the next one is fixed. Virtual processors can therefore be 
dispatched any time between immediately (smallest latency) and 18 ms (largest 
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latency) after the last dispatch, based on the virtual processor configured 
capacity and the number of virtual processors in the shared pool. Figure 5-16 
illustrates the case for the smallest capacity (10% of a physical processor), 
where the time slice is 1 millisecond.

Figure 5-16   Dispatch latencies for virtual processors

Applications that have strong response time requirements for transactions also 
may not be good candidates for Micro-Partitioning. You can configure the 
processing capacity inside a partition by tuning for the optimal number of virtual 
processors, depending on the specific needs for the partition. If an application 
depends on the individual processing capacity of a processor to run efficiently, it 
will probably have higher response times when running on a partition with 
smaller (but more) virtual processors. In order to meet quality of service 
requirements, care must be taken when configuring the system to support 
response time critical workloads. For planning purposes, if you decide to run 
applications that must have predictable response times, or applications that have 
transactions whose individual performance is a performance factor, you should 
consider configuring the partition with extra capacity (perhaps 2-5% CPU per 
partition), in order to compensate for these effects.

Applications in Micro-Partitioning environments, like those running in dedicated 
processor partitions, see their response times as a function of the CPU 
utilization. In Micro-Partitioning, if an application is run and the CPU utilization 
within the partition becomes very high, response time will suffer. The problem is 
magnified for small virtual processors, since each virtual processor is logically a 
slower CPU. In laboratory tests, it is frequently difficult to drive small virtual 
processor partitions to high utilizations on heavy CPU transactions with 
acceptable quality of service. Applications without strong quality of service 
requirements are good candidates for small-scale Micro-Partitioning.

Applications with polling behavior
Applications that perform polling may or may not be good candidates for 
Micro-Partitioning. Because they need to periodically poll to detect whether the 
resource is available or condition is satisfied, they spend cycles that otherwise 
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would be available for other partitions (because they are not actually doing work). 
If the application needs to periodically wake up a thread to do the polling, that 
means that a virtual processor must be dispatched to run that thread, and spend 
physical processor cycles, even if it is not producing work. This behavior is the 
same regardless of the application being run on a partitioned server or not. What 
might make a differences that in Micro-Partitioning spare cycles can be conferred 
to other partitions with the help of the POWER Hypervisor.

Applications with low average utilization and high peaks
Applications where average usage of processor resources is low with peaks of 
usage during a short period of time are good candidates for Micro-Partitioning. 
More than one application can share the processor resources and run with the 
required performance, exploiting the benefits of sharing otherwise unused 
resources. Applications that perform online transaction processing (OLTP) 
generally fit into this category because they are based on user input, and may 
vary throughout the day depending on user activity. Usually there are distinct but 
independent peaks of utilization and an average use significantly lower than the 
peaks. Examples of such applications are mail servers, Web-based applications, 
and directory servers.

Figure 5-17 shows the user distribution for a system on a real client scenario. You 
can clearly identify the peak times.

Figure 5-17   User distribution on an application server
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For OLTP applications, the processor usage usually follows a similar distribution, 
as shown on Figure 5-18 for the same system.

Figure 5-18   Processor utilization by the application server

The same behavior can be seen on mail servers. An analysis of a Lotus® 
Domino® server rendered a similar shape for number of users and processor 
usage.

If you have several workloads that have peak activity at different times, you can 
have each one running on a separate partition, and all partitions sharing the 
same physical processors. By adjusting each partition entitlement and the 
partition mode (capped or uncapped), you can run the system at a higher 
average utilization while fulfilling the processing requirements for each 
application.

Figure 5-19 on page 132 illustrates a typical scenario in which different 
applications are running in a Micro-Partitioning environment, with different peak 
times, and a mixed of capped and uncapped partitions. The system is running 
with four physical processors, virtualized into 20 virtual processors distributed 
between five partitions. Three partitions run OLTP types of applications, and two 
partitions run batch processing.

0
10
20
30
40

50
60
70
80
90

100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
Time Of Day
 Chapter 5. Micro-Partitioning 131



Figure 5-19   Processor utilization between five partitions

From this chart, we can see that partitions 1 and 2 have peak utilization at 
different times. Therefore, there is no need to duplicate the amount of resources 
to satisfy both partitions at peak processing. Partition 3 is capped and at a low 
utilization, so it remains constant during the time, and cedes the extra cycles not 
needed to other partition. Partitions 4 and 5 also benefit from the shared 
resources, receiving extra cycles whenever there are idle processors. And 
because of the nature of the applications (online and batch), the partition weight 
is a key factor to allocate the extra cycles to the uncapped partitions.

CPU-intensive applications
If an application uses most of its entitled processing capacity during its execution, 
it may not be suitable to run in a Micro-Partitioning environment. Because the 
requirements for the application are high and constant during execution, a 
dedicated processor partition is a better choice for this application. In a dedicated 
processor partition it will receive the processing capacity it needs, and it is less 
susceptible to interference from other workloads running in the system. 

However, if the partition’s entitled processing capacity does not own most of the 
physical processor’s capacity, it will be beneficial to run these applications in an 
uncapped partition as they have the ability to use the extra cycles that may be 
available eventually. In this case, the application can execute more work on a 
system that would otherwise be idle. That would be the case when running online 
applications in a system during daytime and batch applications at night.

Typical applications in this scenario are decision support systems (DSS) and 
high-performance computing applications.
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5.3.6  Micro-Partitioning planning guidelines
When planning for Micro-Partitioning, it is important to identify the application 
requirements and behavior in order to correctly size the partitions and maximize 
the system performance.

Planning for future applications is often a case where estimates are the only 
information available. In these cases, Micro-Partitioning can help, since partitions 
can be adjusted for required capacities in a very flexible way. On the other hand, 
an estimate can always be larger than the actual requirements, or smaller. 
Because of this, you must always consider having reserve capacity to 
accommodate unexpected resource requirements.

When the application environment is already in production or test, the task of 
planning for Micro-Partitioning becomes more direct. You can measure the 
resource utilization by the application on the running system and use this as a 
base for Micro-Partitioning performance requirements. Based on the detailed 
information you measure, you can plan the Micro-Partitioning environment to 
make the most effective use of the physical resources.

When planning for Micro-Partitioning, there are three main strategies for defining 
configurations:

Idle Resource Reallocation
A careful analysis of application resource usage and 
peak processing requirements, in order to deploy 
applications and substantially increase system 
utilization. You should run most of the partitions in 
uncapped mode.

Harvested Capacity The definition of partitions that have quality of service 
requirements, and allowing other partitions to run on the 
system with the resources eventually idle. You may have 
some partitions running uncapped when you use this 
approach so that they can use available resources in the 
system.

Guaranteed Capacity A basic definition, based on the sum of capacities from 
all servers being migrated, or based on sizing estimates 
using any published performance unit. In general, the 
partitions are running in capped mode when using this 
strategy.

Each strategy applies to different situations, depending on the amount of 
information you have for planning.
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Idle Resource Reallocation 
This is the strategy where you make the most efficient use of the processing 
capacity in the system. It is also the strategy that requires the most accurate 
planning and detailed knowledge about the applications behavior. 

Idle Resource Reallocation involves an accurate knowledge of resource 
utilization over time by applications, in order to share resources and deliver 
quality of service. Instead of planning by summing up the peak utilization for each 
application, you plan a processing capacity sufficient for the sum of the usage of 
each application at all times. When one application does not consume resources 
up to the peak, these resources are reallocated to other applications that peak at 
that moment. Under normal circumstances, all partitions have their requirements 
fulfilled. If a few partitions consume resources up to the peak, the system still 
fulfills all partition requirements. However, if most or all of the application peaks 
at the same time in an unplanned manner, then the system is overcommitted and 
partitions will have performance constraints.

With adequate planning, a system can be configured with applications that do not 
overlap their peaks in processing, and therefore never overcommit the system. 
Total system usage will be high, and quality of service will be maintained, with 
maximum efficiency in resource usage. 

Figure 5-20 on page 135 shows the processor usage (in percent over time) for 
three different applications during the same period. From the charts you can see 
that the peaks in processing for each application are not at the same time.
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Figure 5-20   Resource utilization for three different applications

For clarity, the core of this example is simplicity. We hypothetically consider that 
for each of these applications, each percentage of resources is equivalent to 0.1 
rPerf. 

We can therefore show the peak utilization for each partition and the sum of the 
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applications in a dedicated server or dedicated partition environment (Table 5-3 
on page 136): 

Table 5-3   Peak utilization per partition

The workload of these three applications could be fulfilled by three 2-way 
standalone servers, or one 8-way server with three dedicated partitions (two 
processors each) and two inactive processors.

If we consolidate these applications on a server with Micro-Partitioning, we can 
benefit from their behavior and size a system with less capacity than the sum of 
all peaks. First, we need to sum the usage for the three applications, at a given 
time.

Figure 5-21 shows the result of this sum, and we can see that the maximum peak 
processing for the sum is 96 percent (using the same consideration that for each 
application the ratio is 0.1 rPerf for each 1 percent of utilization). We therefore 
reach a requirement of 9.6 rPerf for all three applications.

Figure 5-21   Application resource utilization example
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By adding a 20 percent contingency to accommodate several factors such as 
uncertainties in the exact time of workload peaks, and system effects due to 
Micro-partitioning, we calculate to a requirement of 11.52 rPerf. This is about half 
of the capacity that we would need if we sized for peak capacity of each 
application independently (and also including the contingency).

This workload can be satisfied with one 4-way p5-550 at 1500 MHz, with three 
active processors and one inactive (Cod) processor, when compared to the 
deployment on dedicated partitions or servers that would have required six 
processors.

As previously discussed, this is the most efficient strategy for consolidating 
running systems using Micro-Partitioning. It is important to note that all partitions 
must be uncapped, so they can receive the resources needed for peak 
processing. Also, if for some reason the peaks in processing change, the 
partition entitlements must be recalculated and a new planning effort should be 
made. Otherwise, partitions may not be able to get the resources they need, and 
application performance will not be as optimal as it could be.

Harvested capacity
When you have a mix of partitions that have a response time requirement (such 
as OLTP applications) and partitions that do not have response time 
requirements (such as batch applications or test partitions), and you have some 
knowledge of the applications behavior, Micro-Partitioning is designed to run the 
workloads without providing capacity for the peak processing of each partition. 
You can provide capacity for the partitions that have the response time 
requirements, up to peak capacity. Because they do not normally run at peak 
processing, the extra resources can be used by the partitions that do not have 
response time requirements. For these partitions, instead of specifying a peak 
capacity, you define a minimum capacity for them to run and let them run 
uncapped, using the resources available from the other partitions.

In the case you run both production, test, and development partitions on the 
same server, you can, for example, configure a DB server and application server 
partitions so they have their processing requirements guaranteed. The 
development and test partitions can be configured as uncapped partitions and 
use any available resources on the system.

Another recommended application of this strategy is the case of a server farm 
running an application that receives load from load balancers. Normally the load 
is balanced among the servers executing the application. In case one server 
receives more workload than others, it can use more resources from the 
processor pool, then return to normal behavior when the extra workload finishes. 
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Guaranteed capacity
This is the simplest algorithm of capacity planning for Micro-Partitioning. When 
you are planning a system for new applications, typically no performance data is 
available about the resource utilization by the applications. Therefore, you should 
rely on application sizing and performance requirements estimates to size the 
partitions, and add extra capacity as a contingency for when the application 
needs more than initially planned.

This is also the case where you have the applications running, but cannot identify 
capacity utilization behavior (because of either insufficient metrics or random 
behavior).

For these situations, the simplest approach is to size a system based on the 
required capacities, up to the peak capacity, and add additional capacity for 
contingency. This method offers the smallest risk and is fairly simple to estimate. 
Moreover, since the system was planned based on the peak requirements for 
each application, you do not need a substantial effort in performance 
management, since there is installed capacity for all of the application 
performance requirements.

The drawback of this strategy is that it does not optimize resource usage based 
on application behavior, so a large fraction of the processing resources may be 
unused during hours of less activity, and if also when applications present 
complementary processing requirements (one application has a peak and the 
other has a valley).

An application of this strategy can be a server consolidation environment in an 
outsourcing contract, where each client pays for a guaranteed capacity, and 
there is not a possibility for over-commitment of resources. Another case is the 
consolidation of many applications with very small workloads, requiring less than 
one physical POWER5 processor. Take note that the entry server p5-510 at 
1.65 GHz with only one processor has approximately the same processing power 
as a 12-way 7017-S7A that was considered the top high end enterprise class 
server less than ten years ago. Hence, many applications exist that only need a 
fraction of one POWER5 processor. Using guaranteed capacity algorithms for 
consolidating several of these applications on one processor using 
Micro-Partitioning technology is far more efficient than dedicating even the 
slowest available processor to each of these applications. 

Consider the example of a three-tiered ERP system. Based on the functional 
requirements from the client, a sizing tool generates an estimate for system 
requirements based on peak requirements for each component of the solution.

A typical ERP solution is based on several servers running different functions; a 
database server, one or more application servers, one development system, and 
138 Advanced POWER Virtualization on IBM Eserver p5 Servers



one test system. A hypothetical example of a new system installation would be 
similar to the requirements listed in Table 5-4.

Table 5-4   An example of an ERP system requirements

If we were to use separate systems for each function, we would use five systems, 
with an adequate capacity to provide system usage within the performance 
requirements (Table 5-5).

Table 5-5   Implementation with separate servers

Note: rPerf is an estimate of relative commercial processing performance 
between IBM Sserver p5 systems. It is derived from an IBM analytical model 
that uses characteristics from IBM internal workloads and industry transaction 
processing and Web processing benchmarks. The rPerf model is not meant to 
represent any specific public benchmark result. It is used here as an indication 
of the required performance in IBM systems for this specific scenario.

Function Estimated capacity in rPerf Estimated plus 
contingency in rPerf

DB Server 4.0 4.4

Application Server 1 3.3 3.7

Application Server 2 3.3 3.7

Development 1.8 2.0

Test 1.3 1.5

Total 13.7 15.3

Function Capacity 
requirement in rPerf

Server Capacity 
provided in 
rPerf

DB Server 4.4 p5-510, 1 proc, 1650 MHz 5.24

App Server 1 3.7 p5-510, 1 proc, 1650 MHz 5.24

App Server 2 3.7 p5-510, 1 proc, 1650 MHz 5.24

Development 2.0 p5-510, 1 proc, 1500 MHz 3.25

Test 1.5 p5-510, 1 proc, 1500 MHz 3.25

Total 15.3 5 servers, 5 processors 22.22
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The amount of rPerf required for the application is 15.3. The amount of rPerf 
configured into the systems is 22.22 due to physical constraints. (The number of 
processors must be an integer number.) Although extra capacity is being 
configured, it cannot be allocated wherever it is needed because these systems 
are separate. The DB server application, for example, can request extra 
processing power equivalent to 0.84 rPerf, while the Test partition can get an 
extra 1.75 rPerf.

If we use a more sophisticated approach by configuring a dedicated server, we 
will have more flexibility in moving extra resources among partitions, but still need 
to provide extra capacity that can be utilized. Table 5-6 shows the same example 
using dedicated processor partitioning with a 1.65 GHz server.

Table 5-6   Dedicated processor partitioning with 1.65 GHz mid-range server

Of the servers available at the time of writing, an 8-way p5-570 server matches 
the requirements. By ordering some of the processors as CoD features, it is 
possible to activate only five of the processors to satisfy the workload.

Again in this case, the provided processing power is more than needed (7.7 
rPerf), but this extra processing power cannot be freely reused where it is 
required. For example, the needs of the DB server can only request an extra 0.2 
rPerf equivalent, while the test partition can request up to 3.1 rPerf. When using 
CoD, it is possible to satisfy the DB extra resource needs by activating one of the 
CoD processors.

When using a server with Micro-Partitioning, you can accommodate the different 
functions with more effective utilization. A single IBM Sserver p5 550 can 
deliver up to 19.66 rPerf with four POWER5 processors running at 1.65 GHz. 

Function Required 
capacity in 
rPerf

Server Capacity 
provided 
in rPerf

DB Server 4.4 p5-510, 1 proc, 1650 MHz 4.6

App Server 1 3.7 p5-510, 1 proc, 1650 MHz 4.6

App Server 2 3.7 p5-510, 1 proc, 1650 MHz 4.6

Development 2.0 p5-510, 1 proc, 1650 MHz 4.6

Test 1.5 p5-510, 1 proc, 1650 MHz 4.6

Total 15.3 1 servers, 5 activated 1650 MHz 
processors, 3 offline Cod processors

23.0 
Activated
37.22 total 
available
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Since the behavior of each system is not known, so to accommodate the 
requirements of a single system using Micro-Partitioning, we sum the peak 
performance requirements for each function, and apply a 20 percent sizing 
contingency. This contingency accommodates several factors, including the fact 
that rPerf is only an approximate indicator of performance between systems, 
uncertainties in workload peaks, and system effects due to Micro-partitioning 
technology.

For this workload, we would have the configuration as provided in Table 5-7 using 
a 4-way p5-550 server.

Table 5-7   .Implementation with Micro-Partitioning

The extra resources on the machine can then be allocated to any of the partitions 
whenever they require capacity. Moreover, when a partition is not using its total 
capacity, the remainder of its entitlement is automatically available in the shared 
processing pool. Also, when the applications are running, resource allocation can 
be fine-tuned and allocated according to the partition needs.

This example shows that even when using the guaranteed capacity sizing 
algorithm, and taking a 20 percent contingency for the solution using 
Micro-Partitioning technology over the dedicated server solutions, 
micro-partitioning allows replacing five servers, each with one processor, with 
one 4-way server.

Sizing partitions for a virtualized environment is not fundamentally different than 
sizing for dedicated systems. The ultimate efficiency of sizing depends heavily on 
the knowledge of the workload, degree of risk assumed in sizing, and the 
expected attention to capacity monitoring. Idle resource reallocation provides the 
most optimized environment. However, it requires good knowledge of the 
workload and likely the closest monitoring of system capacity. Harvested 
capacity allows very high system utilizations, if workloads with relaxed response 
time requirements can exploit otherwise idle cycles. Guaranteed capacity, while 

Function Requested 
capacity in 
rPerf

Capacity using 
Micro-Partitioning technology 
with a 20% contingency

% of physical 
processor 
requirement

DB Server 4.4 5.28 1.07

App Server 1 3.7 4.44 0.90

App Server 2 3.7 4.44 0.90

Development 2.0 2.4 0.49

Test 1.5 1.8 0.37

Total 15.3 18.36 3.73
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the least effective at maximizing the overall hardware utilization, works extremely 
well for very small partitions. Guaranteed capacity also generally requires the 
least attention to capacity monitoring, as there are no consequences of 
workloads peaking concurrently.

5.4  Summary
There are some performance considerations to take into account when 
implementing Micro-Partitioning technology. AIX 5L V5.3 and, to a lesser extent, 
Linux do a good job of sharing the computing resources across the workloads 
they are running. With Workload Manager or Partition Load Manager, it is 
possible to make sure that an organization’s priorities are respected when there 
is a conflict. Because of the overhead of scheduling virtual processors, there 
should be an objective of keeping the number of partitions to a minimum.

If organizational policies do not require separate partitions, you must ask, “What 
are the technical and performance reasons for creating a new partition, rather 
than adding a new workload to an existing one and providing it with the same 
amount of additional resources?” A consolidation project should have higher 
objectives than replacing n-machines by n-partitions.

Some good reasons for using Micro-Partitioning technology include:

� Tuning the operating system for a given application; for example, 32-bit or 
64-bit kernel, large pages, threaded Ethernet adapters, Linux or AIX 5L.

� A Network Install Manager (NIM) server, which must always be at the latest 
level of AIX to be installed. The partition can be activated when required; 
otherwise its resources can be made available to the shared pool.

� Ad hoc partition creation for an on-off occasion, demo, trial software, training, 
and so on.

� Containing an unpredictable or runaway application that prevents it from 
affecting other applications, although this can also be achieved with WLM.

� Provide application isolation for security or organizational reasons; for 
example, you may want a firewall application to be isolated from your Web 
servers. Isolating development, test, and training activities from production. 

Careful planning should be done to satisfy application resource requirements. 
This enables the system to be utilized efficiently with satisfactory performance 
from the application point of view.

Important: To maximize performance, keep the number of partitions to a 
minimum.
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Chapter 6. Virtual I/O

This chapter provides an introduction to virtual input/output (I/O), as well as a 
close look at how the POWER Hypervisor handles transactions between the 
partitions. This chapter also addresses performance aspects for each of the 
components of the virtual I/O system. With respect to virtual I/O, the components 
covered in this chapter are:

� POWER Hypervisor

� Virtual Serial Adapter

� Virtual Ethernet

� Shared Ethernet Adapter

� Virtual SCSI

The virtual I/O product documentation can be found at:

Using the Virtual I/O Server

http://publib.boulder.ibm.com/infocenter/eserver/v1r3s/index.jsp?lang=en
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6.1  Introduction
Virtual I/O provides the capability for a single I/O adapter to be used by multiple 
logical partitions on the same server, enabling consolidation of I/O resources and 
minimizing the number of required I/O adapters. The driving forces behind virtual 
I/O are:

� The advanced technological capabilities of today’s hardware and operating 
systems such as POWER5 and IBM AIX 5L Version 5.3.

� The value proposition enabling on demand computing and server 
consolidation. Virtual I/O also provides a more economic I/O model by using 
physical resources more efficiently through sharing.

As we write this, the virtualization features of the POWER5 platform support up 
to 254 partitions, while the server hardware provides only up to 160 I/O slots per 
machine. With each partition typically requiring one I/O slot for disk attachment 
and another one for network attachment, this puts a constraint on the number of 
partitions. To overcome these physical limitations, I/O resources have to be 
shared. Virtual SCSI provides the means to do this for SCSI storage devices.

Furthermore, virtual I/O enables attachment of previously unsupported storage 
solutions. As long as the Virtual I/O Server supports the attachment of a storage 
resource, any client partition can access this storage by using virtual SCSI 
adapters.

For example, if there is no native support for EMC storage devices on Linux, 
running Linux in a logical partition of a POWER5 server makes this possible. A 
Linux client partition can access the EMC storage through a virtual SCSI adapter. 
Requests from the virtual adapters are mapped to the physical resources in the 
Virtual I/O Server. Therefore, driver support for the physical resources is needed 
only in the Virtual I/O Server.

Typically, a small operating system instance needs at least one slot for a Network 
Interface Connector (NIC) and one slot for a disk adapter (SCSI, Fibre Channel, 
and so on), but more robust configurations often consist of two redundant NIC 
adapters and two disk adapters.

Virtual I/O devices are intended as a complement to physical I/O adapters (also 
known as dedicated or local I/O devices). A partition can have any combination 
of local and virtual I/O adapters.

Supported levels
Although IBM Sserver p5 servers support AIX 5L Version 5.2, it is not possible 
to run an AIX 5L V5.2 partition with Micro-Partitioning, virtual SCSI, virtual 
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Ethernet, or shared ethernet adapters. However, a mixed environment between 
AIX 5L V5.2 and AIX 5L V5.3 partitions on Sserver p5 servers is supported.

Figure 6-1 shows a sample configuration with mixed operating systems and 
mixed AIX 5L versions. The first five partitions are using dedicated processors. 
The AIX 5L V5.2 partition cannot join the virtual I/O paths, but it provides all 
known LPAR and dynamic LPAR features. It has to be configured with dedicated 
I/O adapters. The AIX 5L V5.3 partitions using shared processors likewise may 
use dedicated storage and dedicated networking.

Figure 6-1   Mixed operating system environment

6.2  POWER Hypervisor support for virtual I/O
As Figure 6-1 illustrates, the POWER Hypervisor provides the interconnection for 
the partitions. To use the functionalities of virtual I/O, a partition uses a virtual 
adapter. The POWER Hypervisor provides the partition with a view of an adapter 
that has the appearance of an I/O adapter, which may or may not correspond to a 
physical I/O adapter. The POWER Hypervisor provides two classifications of 
virtual adapters:

� Hypervisor simulated class. This classification of virtual adapter, shown in 
Figure 6-2 on page 146, is where the POWER Hypervisor simulates an I/O 
adapter. This class is used in virtual Ethernet support (see 6.5, “Virtual 
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Ethernet” on page 164). This technique provides reliable and fast 
communication between partitions using network protocols.

Figure 6-2   POWER Hypervisor simulated class

� Partition managed class. In this class, shown in Figure 6-3 on page 147, a 
server partition provides the services of one of its physical I/O adapters to 
client partition. A server partition provides support to handle I/O requests from 
the client partition and perform those requests on one or more of its devices, 
targeting the client partition’s direct memory access (DMA) buffer areas using 
LRDMA facilities. (See “Logical Remote Direct Memory Access (LRDMA)” on 
page 150.) It then passes I/O responses back to the client partition. This 
classification of virtual adapter is used by virtual SCSI as described in 6.8, 
“Virtual SCSI” on page 205.

LPAR LPAR

POWER Hypervisor

Simulated Class

A A

A – Virtual adapter
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Figure 6-3   POWER Hypervisor partition managed class

6.2.1  Virtual I/O infrastructure
The virtual I/O infrastructure is a complex subject, and it is not the purpose of this 
book to address it extensively. We briefly present some of the components that 
are relevant to understanding the performance issues. 

The Open Firmware device tree 
The virtual I/O adapters and associated inter-partition communication paths are 
defined using the HMC during the creation of the partition’s profile.

When a partition is booted, it receives from the POWER Hypervisor the definition 
of all of its available hardware resources as device nodes in what is called the 
partition Open Firmware device tree.

Depending on the specific virtual device, their device tree node may be found as 
a child of / (the root node) or in the virtual I/O subtree.

LPAR LPAR

POWER Hypervisor

A A

Partition Managed Class

B
C

A – Virtual adapter
B – Physical adapter
C – Remote DMA
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In addition to the virtual I/O devices, the Open Firmware device tree also 
contains the definition of the virtual host bridge and the virtual interrupt source 
controller. These definitions enable the partition to communicate with the virtual 
devices in the same way that it communicates with physical devices. 

Each virtual device node in the Open Firmware device tree contains the 
properties defined in Table 6-1.

Table 6-1   Required attributes of the /vdevice node

Property name Req? Definition

name Yes Standard property name per IEEE 1275 
specifying the virtual device name; the value shall 
be “vdevice”

device_type Yes Standard property name per IEEE 1275 
specifying the virtual device type; the value shall 
be “vdevice”

model No Property not present

compatible Yes Standard property name per IEEE 1275 
specifying the virtual device programming 
models; the value shall include “IBM,vdevice”

used-by-rtas No Property not present

ibm,loc-code No Location code

reg No Property not present

#size-cells Yes Standard property name per IEEE 1275; the 
value shall be 0. No child of this node takes space 
in the address map as seen by the owning 
partition.

#address-cells Yes Standard property name per IEEE 1275; the 
value shall be 1.

#interrupt-cells Yes Standard property name per IEEE 1275; value 
shall be 2. The first cell contains the interrupt# as 
will appear in the XIRR and is used as input to 
interrupt RTAS calls. The second cell contains the 
value 0, indicating a positive edge sense.

interrupt-map-mask No Property not present.

interrupt-ranges Yes Standard property name that defines the interrupt 
number(s) and range(s) handled by this unit.

interrupt map No Property not present
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6.2.2  Types of connections
The virtual I/O infrastructure provides several primitives that are used to build 
connections between partitions for various purposes. These primitives include:

� A Command/Response Queue (CRQ) facility that provides a pipe between 
partitions. A partition can enqueue a command to the target partition’s CRQ 
for processing by that partition. The partition can set up the CRQ to receive 
an interrupt when an entry is placed in the queue.

� An extended Translation Control Entry (TCE) table called the Remote TCE 
(RTCE) table, which enables a partition to provide windows to its memory for 
other partitions to use, while maintaining addressing and access control to its 
memory.

� Remote DMA services that enable a server partition to transfer data to 
another partition’s memory via the RTCE windows. This enables a device 
driver in a server partition to efficiently transfer data to and from another 
partition. This is key to sharing a virtual I/O adapter in the server partition.

The Command/Response Queue
The CRQ facility provides a communications pipeline for ordered delivery of 
messages between authorized partitions. The facility is reliable in the sense that 
the messages are delivered in sequence. The sender is notified if the transport 
facility in the POWER Hypervisor able to deliver the message or was unable to 
provide the data associated with the message, or if the target partition either fails 

interrupt-controller Yes The /vdevice node appears to contain an interrupt 
controller.

ranges No Used by virtual adapters.

ibm,drc-indexes for DR For Dynamic Reconfiguration (DR). Refers to 
the DR slots: the number provided is the 
maximum number of slots that can be configured. 
This is limited by, among other things, the RTCE 
tables allocated by the POWER Hypervisor.

ibm,drc-power-domains for DR Value of -1 to indicate that no power manipulation 
is possible or needed.

ibm,drc-types for DR Value of “SLOT”— any virtual IOA can fit into any 
virtual slot.

ibm,drc-names for DR The virtual location code.

Property name Req? Definition
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or deregisters its half of the transport connection. Optionally, the CRQ owner may 
choose to be notified via an interrupt when a message is added to their queue.

The CRQ facility does not police the contents of the payload portions (after the 
one-byte header) of messages that are exchanged between the communicating 
partitions. The architecture does provide means (via the Format Byte) for self- 
describing messages so that the definitions of the content and protocol between 
the partitions may evolve over time without change to the CRQ architecture or its 
implementation.

Remote Translation Control Entry (RTCE) 
The TCE and RTCE tables are used to translate direct memory access (DMA) 
operations and provide protection against improper operations.

The RTCE table is analogous to the TCE table for dedicated I/O, and Table 6-2 
shows a comparison. The RTCE table has more information in it provided by the 
POWER Hypervisor. This enables the POWER Hypervisor to create links to the 
TCEs on the partition that owns the device. An entry in the RTCE table is never 
accessed directly by the operating system; only though POWER Hypervisor calls 
as described 4.1.1, “POWER Hypervisor functions” on page 79.

Table 6-2   TCE and RTCE comparison

Logical Remote Direct Memory Access (LRDMA)
The virtual I/O infrastructure can take advantage of different types of Direct 
Memory Access (DMA). The virtual SCSI feature only uses Logical Remote 
Direct Memory Access (LRDMA).

LRDMA enables an I/O server to securely target memory pages within an I/O 
client for virtual I/O operations. The I/O server uses the POWER Hypervisor call 
of the Logical Remote DMA facility to manage the movement of commands and 
data associated with the client requests. The server driver may use this service if 

TCE (Translation Control Entry) RTCE (Remote TCE)

In POWER4 processor–based pSeries 
servers

 In POWER5 processor–based pSeries 
servers

Translation table for logical to dedicated 
I/O bus addresses

Needed for Remote DMA

Managed by the POWER Hypervisor Managed by the POWER Hypervisor

Addressed by the operating system Never addressed directly by the operating 
system. Addressed only through POWER 
Hypervisor calls.
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it has a connection established via a Command/Response Queue. Virtual SCSI 
defines two modes of LRDMA:

Copy RDMA The I/O devices target DMA buffers in the I/O 
server’s memory. After the DMA transfer 
completes, the POWER Hypervisor copies the data 
between the DMA buffers and the client’s memory.

Redirected RDMA This mode allows for an I/O device to securely 
perform DMA transfers directly into the client 
partition’s memory.

Example 6-4 shows how data is transferred using redirected RDMA.

Figure 6-4   Logical Remote Direct Memory Access (LRDMA)

Redirected RDMA provides better overall system performance because the data 
is transferred to and from the data buffer by the DMA controller on the adapter 
card. This performance degradation by using copy RDMA may be offset if the I/O 
server’s DMA buffer is being used as cache for multiple virtual I/O operations.
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6.3  The IBM Virtual I/O Server
The IBM Virtual I/O Server is the link between the virtual resources and physical 
resources. It is a specialized partition that owns the physical I/O resources, and 
is supported only on POWER5 processor–based servers. This server runs in a 
special partition that cannot be used for execution of application code.

It mainly provides two functions:

� Serves virtual SCSI devices to client partitions
� Provides a Shared Ethernet Adapter for VLANs

Installation of the Virtual I/O Server partition is performed from a special mksysb 
CD-ROM that is provided to clients who order the Advanced POWER 
Virtualization feature, at an additional charge1. This is dedicated software only for 
the Virtual I/O Server operations, so the Virtual I/O Server software is supported 
only in Virtual I/O Server partitions.

You can install the Virtual I/O Server from CD or using NIM on Linux (NIMoL) 
from the Hardware Maintenance Console (HMC).

The Virtual I/O Server supports the following operating systems as Virtual I/O 
clients:

� IBM AIX 5L V5.3
� SUSE LINUX Enterprise Server 9 for POWER
� Red Hat Enterprise Linux AS 3 for POWER, update 3
� Red Hat Enterprise Linux AS 4 for POWER

The I/O Server operating system is hidden to simplify transitions to further 
versions. No specific operating system skills are required for administration of the 
I/O Server.

Performance considerations for the Virtual I/O Server are addressed in “Virtual 
I/O Server performance results” on page 191.

Command line interface
The Virtual I/O Server provides a restricted scriptable command line interface 
(CLI). All aspects of Virtual I/O Server administration are accomplished through 
the CLI, including:

� Device management (physical, virtual, LVM) 
� Network configuration
� Software installation and update
� Security

1  Included with Sserver p5-590 and Sserver p5-595.
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� User management
� Installation of OEM software
� Maintenance tasks

For the initial logon to the Virtual I/O Server, use the user ID padmin, which is the 
prime administrator. When logging on, you are prompted for a new password, so 
there is no default password to remember.

Upon logging on to the I/O server, you will be placed into a restricted Korn shell. 
The restricted Korn shell works the same way as a regular Korn shell with some 
restrictions. Specifically, users cannot do the following:

� Change the current working directory.

� Set the value of the SHELL, ENV, or PATH variables.

� Specify the path name of the command that contains a redirect output of a 
command with a >, >|, <>, or >>.

As a result of these restrictions, you cannot execute commands that are not 
accessible to your PATH. In addition, these restrictions prevent you from directly 
sending the output of the command to a file, requiring you to pipe the output to 
the tee command instead.

The Virtual I/O Server CLI supports two execution modes: traditional and 
interactive.

The traditional mode is for single command execution. In this mode, you execute 
one command at a time from the shell prompt. For example, to list all virtual 
devices, enter the following: 

#ioscli lsdev -virtual

To reduce the amount of typing required in traditional shell level mode, an alias 
has been created for each subcommand. With the aliases set, you are not 
required to type the ioscli command. For example, to list all devices of type 
adapter, you can enter the following: 

#lsdev -type adapter 

You can type help for an overview of the supported commands, as shown in 
Example 6-1 on page 154.
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Example 6-1   Commands available in Virtual I/O Server environment

$ help                                                                       
                                                                             
Install Commands Physical Volume Commands Security Commands         
 updateios lspv lsgcl
 lssw migratepv cleargcl
 ioslevel lsfailedlogin
 remote_management Logical Volume Command
 oem_setup_env lslv UserID Commands
 oem_platform_level mklv mkuser
 license extendlv rmuser

rmlvcopy lsuser
LAN Commands rmlv passwd
 mktcpip mklvcopy chuser
 hostname                                                                    
 cfglnagg                                                                    
 netstat Volume Group Commands Maintenance Commands
 entstat lsvg chlang
 cfgnamesrv mkvg diagmenu
 traceroute chvg shutdown
 ping extendvg fsck
 optimizenet reducevg backupios
 lsnetsvc mirrorios savevgstruct

unmirrorios restorevgstruct
Device Commands activatevg starttrace
 mkvdev deactivatevg stoptrace
 lsdev importvg cattracerpt
 lsmap exportvg bootlist
 chdev syncvg snap
 rmdev startsysdump
 cfgdev topas
 mkpath mount
 chpath unmount
 lspath showmount
 rmpath startnetsvc

errlog stopnetsvc

In interactive mode, the user is presented with the ioscli command prompt by 
executing the ioscli command without any subcommands or arguments. From 
this point on, ioscli commands are executed one after the other without having 
to retype ioscli. For example, to enter interactive mode, type:

#ioscli 

When in interactive mode, to list all virtual devices, enter:

#lsdev -virtual 
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External commands, such as grep or sed, cannot be executed from the 
interactive mode command prompt. You must first exit interactive mode by 
entering quit or exit. A measurement of virtual I/O in conjunction with the 
Shared Ethernet Adapter functionality is discussed in 6.6, “Shared Ethernet 
Adapter” on page 186.

Limitations and considerations
The Virtual I/O Server software is dedicated software only for the Virtual I/O 
Server operations, and there is no possibility of running other applications in the 
Virtual I/O Server partition.

There is no option to get the Virtual I/O Server partition pre-installed on new 
systems. As this is written, the pre-install manufacturing process does not allow 
the Virtual I/O Server partition to be pre-installed.

Other limitations can occur because of resource shortages. The Virtual I/O 
Server should be properly configured with enough resources. The most 
important are the processor resources. If a Virtual I/O Server has to host a lot of 
resources to other partitions, you must ensure that enough processor power is 
available. In case of high load or high traffic across virtual Ethernet adapters and 
virtual disks, partitions can observe delays in accessing resources.

Logical volume limitation
The Virtual I/O Server software enables you to define up to 1024 logical volumes 
per volume group, but the actual number you can define depends on the total 
amount of physical storage defined for that volume group and the size of the 
logical volumes you configure.

Table 6-3 shows the limitations for logical storage management.

Table 6-3   Limitations for logical storage management

Category Limit

Volume group 4,096 per system

Physical volume 1,024 per volume group

Physical partition 2,097,152 per volume group

Logical volume 4,096 per volume group

Logical partition Based on physical partitions
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6.3.1  Providing high availability support
When we talk about providing high availability for the Virtual I/O Server we are 
talking about incorporating the I/O resources (physical and virtual) on the Virtual 
I/O Server as well as the client partitions into a configuration that is designed to 
eliminate single points of failure.

The Virtual I/O Server is a single point of failure. In case of a crash of the Virtual 
I/O Server, the client partitions will see I/O errors and not be able to access the 
adapters and devices that are hosted by the Virtual I/O Server.

However, redundancy can be built into the configuration of the physical and 
virtual I/O resources at several stages.

Since the Virtual I/O Server is a customized AIX 5L OS-based appliance, 
redundancy for physical devices attached to the Virtual I/O Server can be 
provided by using capabilities such as LVM mirroring, Multipath I/O, and 
EtherChannel.

Figure 6-5 on page 157 shows a single Virtual I/O Server configuration with disk 
and network attachment. The disks are mirrored through LVM. The two physical 
network adapters are configured as a Link Aggregation in Network Interface 
Backup (NIB) mode.

While this kind of configuration protects you from the failure of one of the physical 
components, such as a disk or network adapter, it will still cause the client 
partition to lose access to its devices if the Virtual I/O Server fails.

The Virtual I/O Server itself can be made redundant by running a second 
instance of it in another partition. When running two instances of the Virtual I/O 
Server, you can use LVM mirroring, Multipath I/O, Link Aggregation, or Multipath 
routing with dead gateway detection in the client partition to provide highly 
available access to virtual resources hosted in separate Virtual I/O Server 
partitions. Many configurations are possible; they depend on the available 
hardware resources as well as your requirements.

Note: When activating the EtherChannel you may see some Unsupported 
ioctl in device driver errors if you are using virtual Ethernets in your Link 
Aggregation. These errors can be ignored.
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Figure 6-5   Single Virtual I/O Server configuration

Network interface backup
Figure 6-6 on page 158 shows a configuration using network interface backup.

The client partition has two virtual Ethernet adapters. Each adapter is assigned 
to a different VLAN (using the PVID). Each Virtual I/O Server is configured with a 
Shared Ethernet Adapter that bridges traffic between the virtual Ethernet and the 
external network. Both Shared Ethernet Adapters should be able to connect to 
the same set of hosts in the external network.

Each of the Shared Ethernet Adapters is assigned to a different VLAN (using 
PVID). By using two VLANs, network traffic is separated so that each virtual 
Ethernet adapter in the client partition seems to be connected to a different 
Virtual I/O Server.

The two virtual Ethernet adapters in the client partition are configured as an 
EtherChannel using Network Interface Backup. The Link Aggregation is 
configured with a primary adapter and a backup, and the operation mode is left 
as the default standard mode. Additionally, the EtherChannel is configured with 
an Internet Address to Ping. This address will be pinged periodically by the 
 Chapter 6. Virtual I/O 157



EtherChannel to determine whether connectivity to the external network exists. 
Typically a router that should be always available is used as the ping target.

Figure 6-6   Virtual I/O Server configuration with network interface backup

Even though a Link Aggregation with more than one primary virtual Ethernet 
adapter is not supported, a single virtual Ethernet adapter Link Aggregation is 
possible because a single adapter configured as an EtherChannel in standard 
mode does not require switch support from the POWER Hypervisor.

The IP address of the client partition is configured on the network interface of the 
EtherChannel. If the primary adapter fails, the EtherChannel will automatically 
switch to the backup adapter. The IP address of the client server partition that is 
configured on the EtherChannel network interface will remain available.

Restriction: When using the EtherChannel with two adapters as in this 
example and configuring one adapter as backup, no aggregation resulting in 
higher bandwidth will be provided. No network traffic will go through the 
backup adapter unless there is failure of the primary adapter. 

Also note that gratuitous ARP has to be supported by the network in order for 
adapter failover to work.
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This configuration protects your network interface adapter against:

� Failure of one physical network adapter in one Virtual I/O Server partition

� Failure of one Virtual I/O Server partition

� Failure of one network switch (if adapters are connected to different switches 
as shown in this example)

The physical Ethernet adapters shown in Figure 6-6 on page 158 are connected 
to the network switches on untagged ports. The Virtual I/O Server partition strips 
VLAN tags from packets before delivering them to the switches. The network 
switches see the MAC addresses on the virtual Ethernet adapters in the client 
partition, but will not see the VLAN tags. The Virtual I/O Server partition 
propagates broadcast packets from the switches to the virtual Ethernet adapters 
in the client partition.

If a Virtual I/O Server (or some network component) fails, the Ethernet network 
will see the client partition’s IP address suddenly hop from one switch and MAC 
address to another. Such behavior will be handled acceptably if both of the 
following are true:

� The network supports Gratuitous ARP. 

� The network switches are configured such that both ports (one on each 
switch) can contact the same set of hosts in the rest of the network.

It is recommended that the client partition be configured to detect network 
unreachability by specifying in the Network Interface Backup configuration an IP 
address (or host name) of a router to which connectivity should always be 
available.

For more details about configuring Link Aggregation (EtherChannel) see AIX 
System Management Guide: Communications and Networks, which is available 
with the product documentation.

Multipath routing and dead gateway detection
Figure 6-7 on page 160 shows a configuration using multipath routing and dead 
gateway detection.

The client partition has two virtual Ethernet adapters. Each adapter is assigned 
to a different VLAN (using the PVID). Each Virtual I/O Server is configured with a 
Shared Ethernet Adapter that bridges traffic between the virtual Ethernet and the 
external network. Each of the Shared Ethernet Adapters is assigned to a different 
VLAN (using PVID).
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By using two VLANs, network traffic is separated so that each virtual Ethernet 
adapter in the client partition seems to be connected to a different Virtual I/O 
Server.

Figure 6-7   Configuration with multipath routing and dead gateway detection

In the client partition, two default routes with dead gateway detection are defined: 
One route is going to gateway 9.3.5.10 using virtual Ethernet adapter with 
address 9.3.5.12; the second default route is going to gateway 9.3.5.20 using the 
virtual Ethernet adapter with address 9.3.5.22.

In case of a failure of the primary route, access to the external network is 
provided through the second route. AIX 5L detects route failures and adjusts the 
cost of the route accordingly.

Restriction: It is important to note that multipath routing and dead gateway 
detection do not make an IP address highly available. In the case of failure of 
one path, dead gateway detection will route traffic through an alternate path. 
The network adapters and their IP addresses remain unchanged. Therefore, 
when using multipath routing and dead gateway detection, only your access to 
the network will become redundant, but not the IP addresses.
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This configuration protects your access to the external network against failure of:

� One physical network adapter in one Virtual I/O Server partition
� One Virtual I/O Server partition
� One gateway

LVM mirroring
Figure 6-8 shows a Virtual I/O Server configuration using LVM mirroring on the 
client partition. The client partition is LVM mirroring its logical volumes using the 
two virtual SCSI client adapters. Each of these adapters is assigned to a 
separate Virtual I/O Server partition.

The two physical disks are each attached to a separate Virtual I/O Server 
partition and made available to the client partition through a virtual SCSI server 
adapter.

Figure 6-8   Virtual I/O Server configuration with LVM mirroring
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This configuration protects a virtual disk in a client partition against failure of:

� One physical disk
� One physical adapter
� One Virtual I/O Server partition

Multipath I/O
Figure 6-9 on page 163 shows a configuration using Multipath I/O to access an 
ESS disk. The client partition sees two paths to the physical disk through MPIO. 
Each path is using a different virtual SCSI adapter to access the disk. Each of 
these virtual SCSI adapters is backed by a separate Virtual I/O Server partition.

This configuration protects a virtual disk in a client partition against failure of:

� One physical FC adapter in one Virtual I/O Server partition
� One Virtual I/O Server partition

Depending on your SAN topology, each physical adapter could be connected to a 
separate SAN switch to provide redundancy. At the physical disk level, the ESS 
provides redundancy because it uses RAID technology internally.

Restriction: At we write this book, LVM mirroring using virtual SCSI works 
only when the logical volume on the Virtual I/O Server is configured with the 
following settings:

� Mirror Write Consistency turned off
� Bad Block Relocation turned off
� No striping
� Logical volume must not span several physical volumes

Note: This type of configuration works only when the physical disk is assigned 
as a whole to the client partition. You cannot split up the physical disk into 
logical volumes at the Virtual I/O Server level.
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Figure 6-9   Virtual I/O Server configuration with MPIO

6.4  Virtual Serial Adapter (VSA)
The POWER Hypervisor supports three types of virtual I/O devices:

� Virtual LAN (VLAN; see 6.5, “Virtual Ethernet” on page 164)
� Virtual SCSI (VSCSI; see 6.8, “Virtual SCSI” on page 205)
� Virtual Serial Adapter (VSA). 

The VSA can only be used for providing a virtual console to the partitions. This 
console is visible to the end user in the HMC display.

The virtual serial port cannot be used for any other purpose. For example, it 
cannot be used for HACMP heartbeat monitoring. 

There are no specific performance considerations to address regarding the VSA. 
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6.5  Virtual Ethernet
Virtual Ethernet enables inter-partition communication without the need for 
physical network adapters assigned to each partition. Virtual Ethernet enables 
the administrator to define in-memory point-to-point connections between 
partitions. These connections exhibit characteristics similar to physical 
high-bandwidth Ethernet connections and support multiple protocols (IPv4, IPv6, 
ICMP). Virtual Ethernet requires an Sserver p5 system with either AIX 5L V5.3 
or the appropriate level of Linux and an HMC to define the virtual Ethernet 
devices. Virtual Ethernet does not require the purchase of any additional features 
or software such as the Advanced POWER Virtualization feature.

6.5.1  Virtual LAN
This section discusses the concepts of Virtual LAN (VLAN) technology with 
specific reference to its implementation within AIX 5L V5.3.

Virtual LAN overview
Virtual LAN is a technology used for establishing virtual network segments on top 
of physical switch devices. If configured appropriately, a VLAN definition can 
straddle multiple switches.

In every partition, virtual and dedicated network devices can be used 
simultaneously for communication. Figure 6-10 shows adapters of a partition that 
has one virtual Ethernet adapter (ent0) and two real adapters (ent1 and ent2). 
Up to 256 adapters (sum of virtual and real) are supported per LPAR.

Figure 6-10   Virtual and local adapters on one partition

Typically, a VLAN is a broadcast domain that enables all nodes in the VLAN to 
communicate with each other without any L3 routing or inter-VLAN bridging. In 
Figure 6-11 on page 165, two VLANs (VLAN 1 and 2) are defined on three 
switches (Switch A, B, and C). Although nodes C-1 and C-2 are physically 
connected to the same switch C, traffic between two nodes can be blocked. To 
enable communication between VLAN 1 and 2, L3 routing or inter-VLAN bridging 
should be established between them; typically this is provided by an L3 device.

# lsdev -Cc adapter 
ent0   Available       Virtual I/O Ethernet Adapter (l-lan) 
ent1   Available 01-08 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
ent2   Available 01-09 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
vsa0   Available       LPAR Virtual Serial Adapter 
vscsi0 Available       Virtual SCSI Client Adapter 
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Figure 6-11   Example of a VLAN

The use of VLAN provides increased LAN security and flexible network 
deployment over traditional network devices.

AIX 5L V5.3 VLAN support
Some of the technologies for implementing VLANs include:

� Port-based VLAN
� Layer 2 VLAN
� Policy-based VLAN
� IEEE 802.1Q VLAN

VLAN support in AIX 5L V5.3 is based on the IEEE 802.1Q VLAN 
implementation. The IEEE 802.1Q VLAN is achieved by adding a VLAN ID tag to 
an Ethernet frame. The Ethernet switches restrict the frames to ports that are 
 Chapter 6. Virtual I/O 165



authorized to receive frames with that VLAN ID. Switches also restrict broadcasts 
to the logical network by ensuring that a broadcast packet is delivered to all ports 
that are configured to receive frames with the VLAN ID that the broadcast frame 
was tagged with.

A port on a VLAN-capable switch has a default PVID (Port VLAN ID) that 
indicates the default VLAN the port belongs to. The switch adds the PVID tag to 
untagged packets that are received by that port. In addition to a PVID, a port may 
belong to additional VLANs and have those VLAN IDs assigned to it that indicate 
the additional VLANs that the port belongs to.

A port will only accept untagged packets or packets with a VLAN ID (PVID or 
additional VIDs) tag of the VLANs the port belongs to. A port configured in the 
untagged mode is only allowed to have a PVID and will receive untagged packets 
or packets tagged with the PVID. The untagged port feature helps systems that 
do not understand VLAN tagging communicate with other systems using 
standard Ethernet.

Each VLAN ID is associated with a separate Ethernet interface to the upper 
layers (for example, IP) and creates unique logical Ethernet adapter instances 
per VLAN (for example, ent1 or ent2). 

You can configure multiple VLAN logical devices on a single system. Each VLAN 
logical device constitutes an additional Ethernet adapter instance. These logical 
devices can be used to configure the same Ethernet IP interfaces as are used 
with physical Ethernet adapters.

VLAN communication by example
This section discusses how VLAN communication between partitions and with 
external networks works in more detail, using the sample configuration in 
Figure 6-12 on page 167. The configuration uses four client partitions (Partition 1 
through Partition 4) and one Virtual I/O Server partition. Each of the client 
partitions is defined with one virtual Ethernet adapter. The Virtual I/O Server 
partition has a Shared Ethernet Adapter that bridges traffic to the external 
network. The Shared Ethernet Adapter is discussed in more detail in 6.6, 
“Shared Ethernet Adapter” on page 186.
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Figure 6-12   VLAN configuration

Interpartition communication
Partition 2 and Partition 4 are using only the PVID. This means that:

� Only packets for the VLAN specified as PVID are received.

� Packets that are sent have a VLAN tag added for the VLAN specified as PVID 
by the virtual Ethernet adapter.

In addition to the PVID, the virtual Ethernet adapters in Partition 1 and Partition 3 
are also configured for VLAN 10 using specific network interface (en1) create 
through smitty vlan. This means that:

� Packets sent through network interfaces en1 are added a tag for VLAN 10 by 
the network interface in AIX 5L V5.3.

� Only packets for VLAN 10 are received by the network interfaces en1.

� Packets sent through en0 are automatically tagged for the VLAN specified as 
PVID. 

Only packets for the VLAN specified as PVID are received by the network 
interfaces en0.Table 6-4 on page 168 lists which client partitions can 
communicate with each other through what network interfaces.
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Table 6-4   Interpartition VLAN communication

Communication with external networks
The Shared Ethernet Adapter is configured with PVID 1 and VLAN 10. This 
means that untagged packets that are received by the Shared Ethernet Adapter 
are tagged for VLAN 1. Handling of outgoing traffic depends on the VLAN tag of 
the outgoing packets.

� Packets tagged with the VLAN that matches the PVID of the Shared Ethernet 
Adapter are untagged before being sent out to the external network.

� Packets tagged with a VLAN other than the PVID of the Shared Ethernet 
Adapter are sent out with the VLAN tag unmodified.

In our example, Partition 1 and Partition 2 have access to the external network 
through network interface en0 using VLAN 1. Since these packets are using the 
PVID, the Shared Ethernet Adapter will remove the VLAN tags before sending 
the packets to the external network.

Partition 1 and Partition 3 have access to the external network using network 
interface en1 and VLAN 10. These packets are sent out by the Shared Ethernet 
Adapter with the VLAN tag. Therefore, only VLAN-capable destination devices 
will be able to receive the packets. Table 6-5 lists this relationship.

Table 6-5   VLAN communication to external network

VLAN Partition / network interface

1 Partition 1 / en0
Partition 2 / en0

2 Partition 3 / en0
Partition 4 / en0

10 Partition 1 / en1
Partition 3 / en1

VLAN Partition / Network interface

1 Partition 1 / en0
Partition 2 / en0

10 Partition 1 / en1
Partition 3 / en1
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6.5.2  Virtual Ethernet connections
Virtual Ethernet connections supported in POWER5 processor–based systems 
use VLAN technology to ensure that the partitions can access only data directed 
to them. The POWER Hypervisor provides a virtual Ethernet switch function 
based on the IEEE 802.1Q VLAN standard that enables partition communication 
within the same server. The connections are based on an implementation 
internal to the Hypervisor that moves data between partitions. This section 
describes the various elements of a virtual Ethernet and implications relevant to 
different types of workloads. Figure 6-13 is an example of an inter-partition 
VLAN.

Figure 6-13   logical view of an inter-partition VLAN

Virtual Ethernet concepts
Partitions that communicate through a virtual Ethernet channel must have an 
additional in-memory channel. This requires the creation of an in-memory 
channel between partitions on the HMC. The kernel creates a virtual device for 
each memory channel indicated by the firmware. The AIX 5L V5.3 configuration 
manager creates the device special files. A unique MAC address is also 
generated when the virtual Ethernet device is created. A prefix value can be 
assigned for the system so that the generated MAC addresses in a system 
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consist of a common system prefix plus an algorithmically generated unique part 
per adapter. 

The virtual Ethernet can also be used as a bootable device to enable such tasks 
as operating system installations to be performed using NIM.

MTU Sizes
The virtual Ethernet adapter supports, as Gigabit (Gb) Ethernet, Standard 
MTU-Sizes of 1500 bytes and Jumbo frames with 9000 bytes. Additionally to 
physical Ethernet, the MTU-Size of 65280 bytes is also supported in virtual 
Ethernet. So, the MTU of 65280 bytes can be only used inside a virtual Ethernet. 

IPv6 Support
Virtual Ethernet supports multiple protocols, such as IPv4 and IPv6.

6.5.3  Benefits of virtual Ethernet
Due to the number of possible partitions on many systems being greater than the 
number of I/O slots, virtual Ethernet is a convenient and cost-saving option to 
enable partitions within a single system to communicate with one another 
through a VLAN. The VLAN creates logical Ethernet connections between one or 
more partitions and is designed to help prevent a failed or malfunctioning 
operating system from being able to affect the communication between two 
functioning operating systems. The virtual Ethernet connections may also be 
bridged to an external network to permit partitions without physical network 
adapters to communicate outside of the server.

The transmission speed of virtual Ethernet is in the range of 1 Gb to 3 Gb per 
second, depending on the transmission (MTU) size. A partition can support up to 
256 virtual Ethernet adapters with each virtual Ethernet capable of being 
associated with up to 21 VLANs (20 VID and 1 PVID).

A virtual Ethernet adapter appears to the operating system in the same way as a 
physical adapter. It also can be configured in the same manner. While the MAC 
address of physical Ethernet is coded on the (hardware) adapter, the MAC 
address of the virtual adapter is generated by the HMC.
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6.5.4  Limitations and considerations
Consider the following limitations when implementing a virtual Ethernet:

� A maximum of up to 256 virtual Ethernet adapters are permitted per partition.

� Virtual Ethernet can be used in both shared and dedicated processor 
partitions if the partition is running AIX 5L V5.3 or Linux with the 2.6 kernel or 
a kernel that supports virtualization.

� A mixture of virtual Ethernet connections, real network adapters, or both are 
permitted within a partition.

� Virtual Ethernet requires a POWER5 processor–based system and an HMC 
to define the virtual Ethernet adapters.

� Virtual Ethernet can connect only partitions within a single system.

� Virtual Ethernet connections from AIX 5L or Linux partitions to an i5/OS 
partition may work; however, when this book was being written these 
capabilities were unsupported.

� Virtual Ethernet uses the system processors for all communication functions 
instead of offloading the load to processors on network adapter cards, so an 
increase in system processor load is generated by the use of virtual Ethernet.

6.5.5  POWER Hypervisor switch implementation
The POWER Hypervisor switch is consistent with IEEE 802.1 Q. It works on 
OSI-Layer 2 and supports up to 4096 networks (4096 VLAN IDs). 

When a message arrives at a Logical LAN switch port from a Logical LAN 
adapter, the POWER Hypervisor caches the message’s source MAC address to 
use as a filter for future messages to the adapter. The POWER Hypervisor then 
processes the message differently depending on whether the port is configured 
for IEEE VLAN headers. If the port is configured for VLAN headers, the VLAN 
header is checked against the port’s allowable VLAN list. If the message 
specified VLAN is not in the port’s configuration, the message is dropped. After 
the message passes the VLAN header check, it passes onto destination MAC 
address processing. 

If the port is not configured for VLAN headers, the POWER Hypervisor inserts a 
two-byte VLAN header (based on the port’s configured VLAN number) into the 
message. Next, the destination MAC address is processed by searching the 
table of cached MAC addresses.

If a match for the MAC address is not found and if no trunk adapter is defined for 
the specified VLAN number, the message is dropped; otherwise, if a match for 
the MAC address is not found and if a trunk adapter is defined for the specified 
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VLAN number, the message is passed on to the trunk adapter. If a MAC address 
match is found, then the associated switch port’s configured, allowable VLAN 
number table is scanned for a match to the VLAN number contained in the 
message’s VLAN header. If a match is not found, the message is dropped. 

Next, the VLAN header configuration of the destination switch port is checked. If 
the port is configured for VLAN headers, the message is delivered to the 
destination Logical LAN adapters, including any inserted VLAN header. If the 
port is configured for no VLAN headers, the VLAN header is removed before 
being delivered to the destination Logical LAN adapter.

Figure 6-14 on page 173 shows a graphical representation of the behavior of the 
virtual Ethernet when processing packets.
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Figure 6-14   Flow chart of virtual Ethernet
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6.5.6  Performance considerations
This section presents several experiments that were performed on an 
Sserver p5 server to measure the influence of some parameters that a system 
administrator can set.

General comments about measurements
The operating system that ran on all partitions was AIX 5L V5.3. The results of 
the measurements could vary if they would be repeated at a later time with 
updates to the operating system and firmware. 

The platform that was used for these tests was a four-way 1.65 GHz IBM 
Sserver p5 570. 

Unless otherwise mentioned, the VLAN connections were set up between two 
partitions, each configured with one dedicated processor. Simultaneous 
multithreading was enabled.

The virtual Ethernet and physical Ethernet adapters were tested with their default 
interface specific network options (as defined in the no command) and Object 
Data Manager (ODM) settings. Specifically, these were:

Virtual Ethernet For MTU 1500, tcp_sendspace=131072, 
tcp_recvspace=65536

For MTU 9000, tcp_sendspace=262144, 
tcp_recvspace=131072, rfc1323=1

For MTU 65394, tcp_sendspace=262144, 
tcp_recvspace=131072, rfc1323=1

Physical Ethernet Gigabit Ethernet

For MTU 1500, tcp_sendspace=131072, 
tcp_recvspace=65536

For MTU 9000, tcp_sendspace=262144, 
tcp_recvspace=131072, rfc1323=1

The adapter defaults were used, which include 
large_send (also known as TCP segmentation off load), 
TCP checksum off load, and interrupt coalescing. The 
ODM attributes were: large_send=1, chksum_offload=1 
and intr_rate=10000.

Description of the performance tests and tools
To measure the VLAN performance, the benchmark used was netperf. This 
benchmark can be used to measure various aspects of networking performance. 
Currently, it focuses on bulk data transfer (streaming) and request/response 
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performance using either Transmission Control Protocol (TCP) or User Datagram 
Protocol (UDP), with the Berkeley Sockets interface. 

This benchmark is now part of the public domain and can be found at:

http://www.netperf.org/netperf/NetperfPage.html

IBM has developed a derivative version that is more tightly integrated with the 
capabilities of the AIX 5L V5.3 operating system. All measurements described in 
this book use the IBM-modified version of netperf. 

The experiment results presented later use both operational modes of netperf: 
streaming mode, called TCP_STREAM, and transactional request/response 
mode. called TCP_RR.

TCP_STREAM This benchmark performs the data streaming test between the 
local system and the remote system. TCP_STREAM is used in 
simplex and duplex mode. In simplex mode, one side sends 
and the other end receives data; in duplex mode, both ends 
send and receive at the same time. So the amount of data that 
is transported via the media will increase. The TCP_STREAM 
benchmark can be performed with a different data chunk size. 
The results presented here are for an application that sends 
data chunks between 16 KB and 64 KB to the communication 
sockets (which then split them into IP packets depending on 
the MTU size). 

TCP_RR netperf request/response performance is quoted as 
transactions per second for a given request and response site. 
A transaction is defined as the exchange of a single request 
and a single response. From a transaction rate, one can infer 
round-trip average latency. The TCP_RR benchmarks are 
done with one and 20 sessions. Unlike the one-session test, 
the 20-session test shows how the response time and latency 
is growing with more load.

In each mode, four programs called sessions are used. These sessions send 
traffic over the connection to simulate a real workload with multiple IP sessions 
flowing through the same adapter.

Overview of the following benchmark measurements
The first measurement shows how throughput is growing by adding more 
entitlements to a virtual processor, then a test compares parameters such as 
processor utilization, transaction rate, and latency in both physical and virtual 
networks. The last set of measurements shows the difference in performance of 
the VLAN using single-threaded and simultaneous multithreading modes.
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6.5.7  VLAN throughput at different processor entitlements 
This purpose of this test is to see what throughput might be expected in a VLAN. 
Because the throughput varies with processor entitlements and MTU size, these 
parameters are variable in the measurement.

Figure 6-15   Processor entitlements and MTU sizes

Both LPARs have one VLAN adapter, and there are multiple sessions running 
between adapters. The benchmark used for this test is netperf TCP_STREAM.

LPAR1, with varied processor entitlements, is sending a simplex stream. LPAR2, 
with two dedicated processors, receives it.

The goal of the test was to measure the performance of LPAR1, so resources for 
LPAR 2 are oversized using two dedicated processors, so there is no bottleneck 
on the receiving side that would affect the measurement. This enables the 
throughput of the VLAN interface of LPAR1 to be effectively measured as a 
function of the CPU entitlement of LPAR1.

Figure 6-16 on page 177, Figure 6-17 on page 177, and Figure 6-18 on 
page 178 show the results of the performance measurements that were taken 
using varying processor entitlements and MTU sizes of 1500, 9000, and 65394 
bytes.
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1 VLAN adapter
1 Virtual CPU
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 0.1 to 1.0
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1 VLAN adapter
2 Dedicated CPUs

POWER Hypervisor
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Figure 6-16   Throughput versus CPU entitlements, MTU size=1500

Figure 6-17   Throughput versus CPU entitlements, MTU size=9000
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Figure 6-18   Throughput versus CPU entitlements, MTU size=65394

VLAN performance
The throughput of the VLAN scales nearly linear with the allocated processor 
entitlements. Throughput with MTU=9000 is more than three times the rate with 
MTU=1500, and the throughput with MTU=65394 is more than seven times the 
rate with MTU=1500. This is due to improved efficiency of sending larger packets 
with one call up or down the TCP/IP protocol stack.

6.5.8  Comparing throughput of VLAN to physical Ethernet
In the next set of tests, a performance comparison of the VLAN and the physical 
Ethernet adapter was made. Both LPARs are assigned one dedicated POWER5 
processor, and ran in simultaneous multithreading mode.

Figure 6-19 on page 179 and Figure 6-20 on page 179 show the two different 
types of connections between the LPARs and VLAN through the POWER 
Hypervisor and physical Ethernet using a 1 Gb/s Ethernet switch.

The benchmark TCP_STREAM was running in simplex and duplex mode at 
different MTU sizes on both setups, measuring throughput and processor 
utilization.
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Figure 6-19   VLAN performance configuration

Figure 6-20   Physical Ethernet configuration
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VLAN and physical Ethernet performance
Figure 6-21 shows how throughput varies with different values of MTU size in 
simplex and duplex modes. (The physical Ethernet adapter does not support an 
MTU size of 65394.)

Figure 6-21   VLAN and physical Ethernet using TCP_STREAM

The VLAN adapter has a higher raw throughput at all MTU sizes. With an MTU 
size of 9000 bytes, the throughput difference is very large (four to five times) 
because the physical Ethernet adapter is running at wire speed (989 Mbit/s user 
payload), but the VLAN can run much faster because it is limited only by CPU 
and memory-to-memory transfer speeds.

6.5.9  Comparing CPU utilization
These measurements use the same configurations as shown in Figure 6-19 on 
page 179 and Figure 6-20 on page 179, and with the same TCP_STREAM 
workload. CPU utilization is shown for different MTU sizes, in both simplex and 
duplex mode, in Figure 6-22 on page 181 and Figure 6-23 on page 181.
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Figure 6-22   CPU utilization with TCP_STREAM, simplex mode

Figure 6-23   CPU utilization with TCP_STREAM, duplex mode
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VLAN and physical Ethernet performance
As expected, the CPU utilization of the VLAN is higher than the throughput of 
physical Ethernet. As with most adapter cards, the physical Ethernet adapter has 
a processor on it to perform the memory transfers of the packets to and from the 
adapter card. The VLAN requires the POWER Hypervisor to do the memory 
transfers, resulting in higher CPU utilization. To compare CPU utilization, the 
results are normalized to 1 Gb throughput for both the VLAN and physical 
Ethernet. In addition, another difference in CPU utilization between the virtual 
Ethernet and the physical Ethernet adapter when using MTU 1500 is the effect of 
having the attributes large_send and checksum_offload enabled on the physical 
adapter. These two features reduce the CPU utilization for physical Ethernet, but 
they are not available on virtual Ethernet.

6.5.10  Comparing transaction rate and latency
These measurements were obtained using the configurations shown in 
Figure 6-19 on page 179 and Figure 6-20 on page 179. The TCP_RR workload 
was used to get a value for number of transactions and latency. TCP_RR is used 
with two different parameters for the number of sessions (1 and 20), which is a 
measure for different workloads.

The results are presented in two charts. Figure 6-24 shows the transaction rate 
for MTU size of 1500 and 9000 and for 1 and 20 sessions. Figure 6-25 on 
page 183 shows the latency for the same parameters.

Figure 6-24   Transaction rate at different MTU sizes and 1 and 20 sessions
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Figure 6-25   Latency at different MTU sizes and 1 and 20 sessions

VLAN and physical Ethernet performance
The virtual Ethernet has lower latency for light workloads than the physical 
Ethernet adapter. This is because the Ethernet adapter has interrupt coalescing 
enabled by default (ODM attribute intr_rate=10000). This adds latency to the 
adapter’s single session test, but it helps reduce CPU utilization for higher 
transaction rate workloads (such as the 20-session test), which is why the 
throughput is similar at 20 sessions. The latency can be reduced by disabling 
interrupt coalescing (set the adapters intr_rate=0). The virtual Ethernet does not 
support any method of interrupt coalescing. 

The physical Ethernet has lower latency in heavy workloads because interrupt 
coalescing is enabled by default on the adapter.

6.5.11  VLAN performance
This purpose of this test was to show the performance gain of running the 
processor in simultaneous multithreading mode. The configuration was the same 
as shown in Figure 6-19 on page 179. For this comparison, both TCP_STREAM 
and TCP_RR workloads are used. 

Figure 6-21 on page 180 showed the results of VLAN throughput. The following 
charts show the percent gain in throughput when comparing simultaneous 
multithreading to single-threaded mode. Figure 6-26 on page 184 has results for 
TCP_STREAM, and Figure 6-27 on page 185 illustrates the results for TCP_RR.
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Figure 6-26   Performance gain with simultaneous multithreading, TCP_STREAM

The VLAN benefits from simultaneous multithreading because it is not limited by 
media speed and takes advantage of the extra available processor cycles.

The reason for negative scaling in Figure 6-27 on page 185 when simultaneous 
multithreading is enabled is that at very small workloads (which is the case when 
there is only one TCP_RR session), running in single-threaded mode is more 
efficient. With simultaneous multithreading enabled, the system disables the 
second thread when the load on the system is light but checks periodically to 
determine whether it needs to reactivate it. This checking, disabling, and 
enabling of the second thread tends to affect the latency of the TCP_RR 
transactions, thus reducing throughput.
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Figure 6-27   Performance gain with simultaneous multithreading, TCP_RR

6.5.12  VLAN implementation guidelines 
Because there is little experience with VLANs before now, we offer some 
guidelines for designing VLANs.

1. Know your environment and the network traffic.

2. Choose the MTU size as high as it makes sense for network traffic in the VLAN.

3. Use an MTU size of 65394 if you expect a large amount of data to be copied 
in your VLAN. 

4. Keep the tcp_pmtu_discover attribute set to its default value (active discovery).

5. If the VLAN is to be bridged to a Shared Ethernet Adapter for access to an 
external network, set the MTU size of the VLAN in the client partition to the 
value used for the definition of the Shared Ethernet Adapter on the Virtual I/O 
Server partition.

6. Do not turn off simultaneous multithreading unless the applications demand it.

7. The VLAN throughput scales linearly with processor entitlements, so there is 
no need to dedicate processors to partitions because of VLAN performance.
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6.6  Shared Ethernet Adapter
A Virtual I/O Server partition is not required for implementing a VLAN. Virtual 
Ethernet adapters can communicate with each other via the POWER Hypervisor 
without the functionality of the Virtual I/O Server.

Bridging from the VLAN to the physical LAN can be accomplished in two ways:

� Routing
� Shared Ethernet Adapter

By enabling the AIX 5L V5.3 routing capabilities (ipforwarding network option), 
one partition with a physical Ethernet adapter connected to an external network 
can act as a router. Figure 6-28 shows a sample configuration. In this type of 
configuration the partition that routes the traffic to the external work does not 
necessarily have to be the Virtual I/O Server as in the pictured example. It could 
be any partition with a connection to the outside world. The client partitions 
would have their default route set to the partition that routes traffic to the external 
network.

Figure 6-28   Connection to external network using AIX 5L V5.3 routing

Using a Shared Ethernet Adapter, you can connect internal and external VLANs 
using one physical adapter. The Shared Ethernet Adapter hosted in the Virtual 
I/O Server partition acts as an OSI Layer 2 switch between the internal and 
external network. 
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Figure 6-29 shows the Shared Ethernet Adapter being used as a bridge between 
the virtual Ethernet and physical Ethernet.

Figure 6-29   Shared Ethernet Adapter configuration

The bridge interconnects the logical and physical LAN segments at the network 
interface layer level and forwards frames between them. The bridge performs the 
function of a MAC relay (OSI Layer 2), and is independent of any higher layer 
protocol. Figure 6-30 on page 188 is a close-up view of the Virtual I/O Server 
partition.
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Figure 6-30   Sharing a (physical) Ethernet adapter on OSI layers

The bridge is transparent to the Internet Protocol (IP) layer. For example, when 
an IP host sends an IP datagram to another host on a network connected by a 
bridge, it sends the datagram directly to the host. The datagram “crosses” the 
bridge without the sending IP host being aware of it.

The Virtual I/O Server partition offers broadcast and multicast support. Address 
Resolution Protocol (ARP) and Neighbor Discovery Protocol (NDP) also work 
across the Shared Ethernet Adapter.

The Virtual I/O server does not reserve bandwidth on the physical adapter for 
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client partition of the Virtual I/O Server sends data, it can take advantage of the 
full bandwidth of the adapter, assuming that the other client partitions do not 
send or receive data over the network adapter at the same time.

The following steps enable this connectivity:
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This is to be done on the HMC.
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Virtual I/O Server Partition

OSI Layer 2 Bridge (Shared Ethernet Adapter)

Device Driver Device Driver Device Driver

Virtual Adapter Virtual Adapter Physical Adapter

To client partitions
To external 

Ethernet network
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adapter. Different virtual networks can be separated using 
IEEE802.1Q-compatible VLAN features of the virtual Ethernet adapters.

3. Define the Shared Ethernet Adapter in the Virtual I/O Server partition.

The I/O Server acts as a bridge and forwards the IP packages using the 
virtual Ethernet connections to the AIX 5L V5.3 or Linux partitions.

The implementation of virtual Ethernet adapters on an IBM Sserver p5 system 
within Linux is assigned one IEEE VLAN-aware virtual Ethernet switch in the 
system. All partitions talking on the Ethernet are peers. Up to 4,096 separate 
IEEE VLANs can be defined. Each partition can have up to 65,533 virtual 
Ethernet adapters connected to the virtual switch. Each adapter can be 
connected to 21 IEEE VLANs (20 VID and 1 PVID). 

The enablement and setup of a virtual Ethernet does not require any special 
hardware or software. After a specific virtual Ethernet is enabled for a partition, a 
network device named ethXX is created in the partition. The user can then set up 
TCP/IP configuration appropriately to communicate with other partitions. For 
information about network TCP/IP setup and configuration tools, see your 
AIX 5L V5.3 or Linux distribution documentation.

To define the Shared Ethernet Adapter (SEA) in the Virtual I/O Server partition, 
use the mkvdev command. The syntax is:

mkvdev  -sea TargetDevice -vadapter VirtualEthernetAdapter ...     
               -default DefaultVirtualEthernetAdapter                     
               -defaultid SEADefaultPVID [-attr Attributes=Value ...] 

Using the example in Figure 6-31 on page 190, the target devices are the 
physical adapters (for example, ent0 and ent1). The virtual devices are ent2, 
ent3, and ent4, and the default ID is the default PVID associated with the default 
virtual Ethernet adapter.

The following commands are required to set up the Shared Ethernet Adapter for 
this example:

$ mkvdev –sea ent0 –vadapter ent2 –default ent2 –defaultid 1
$ mkvdev –sea ent1 –vadapter ent3 ent4 –default ent3 –defaultid 2

Important: To set up the Shared Ethernet Adapter, all involved virtual and 
physical Ethernet interfaces have to be unconfigured (down or detached).
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Figure 6-31   Example of Shared Ethernet Adapter bridging

In the second example, the physical Ethernet adapter is ent1. With the mkvdev 
command, we map the virtual Ethernet adapter ent3 and ent4 to the physical 
adapter. Additionally, ent3 is defined as a default adapter with the default VLAN 
ID of 2. This means that untagged packets received by the Shared Ethernet 
Adapter are tagged with the VLAN 2 ID and are send to the virtual Ethernet 
adapter ent3.

After running the mkvdev command, the system will create the Shared Ethernet 
Adapter ent5. You now can configure the ent5 interface with an IP address using 
the mktcpip command.

6.6.1  Shared Ethernet Adapter performance
This test environment was conducted using the same conditions as described in 
“General comments about measurements” on page 174.

Figure 6-32 on page 191 shows the setup of the experiment. The communication 
path starts on a client partition that has a single dedicated processor, and is 
connected via a VLAN adapter, through the POWER Hypervisor to the VLAN 
adapter of the Virtual I/O Server partition, which bridges the virtual Ethernet 
adapter to a physical Ethernet adapter that is connected via a gigabit Ethernet 
network to a two-way POWER4+ processor–based server. The Virtual I/O Server 
runs in a partition with a single dedicated 1.65 GHz POWER5 processor.

The TCP_STREAM workload as described in “Description of the performance 
tests and tools” on page 174 is used to examine the throughput.

Note: The measurements are not done with a Gigabit Ethernet switch. 
Instead, a physical point-to-point connection (crossover cable) was used so 
there is no falsification of the measurement due to the internal behavior of a 
real switch.
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Figure 6-32   Configuration of test environment

Virtual I/O Server performance results
The next two figures show the results measured on the Virtual I/O Server. 
Figure 6-33 on page 192 shows the throughput of the Virtual I/O Server at MTU 
sizes of 1,500 and 9,000 in both modes, simplex and duplex. Note that this test 
maximized the line speed of the Gigabit Ethernet. Therefore, the limitation is the 
physical network media speed (1 Gb simplex or 2 Gb duplex).

Figure 6-34 on page 192 presents the utilization of the processor in the Virtual 
I/O Server partition. To provide a better comparison of processor utilization 
versus MTU size and simplex/duplex modes, the utilization is normalized to 1Gb 
data throughput.

The results show that the Shared Ethernet Adapter enables the adapters to 
stream data at media speed as long as it has enough processor entitlements.

Processor utilization per gigabit of throughput is higher with the Shared Ethernet 
Adapter because it has to use the POWER Hypervisor to move the packets of the 
VLAN between partitions, and because of the SEA’s device driver code.
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Figure 6-33   Throughput of the Virtual I/O Server

Figure 6-34   Processor utilization of the Virtual I/O Server
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6.6.2  Request/response time and latency
In this test, the workload TCP_RR was used to determine the difference in 
transaction rate and the latency between the Shared Ethernet Adapter and a 
physical 1 Gb Ethernet adapter.

The measurements for the Shared Ethernet Adapter (SEA) were taken using the 
configuration that was shown in Figure 6-32 on page 191, with traffic exchanged 
between LPAR1 and the server. 

Figure 6-35 shows the configuration of the physical Ethernet test. The Virtual I/O 
Server is bypassed and the traffic flows directly from the client partition to the 
POWER4+ server through the 1 Gbps physical network.

Figure 6-35   Dedicated connection between a partition and an external server 

Results of request/response time and latency
The next two figures show the results of the TCP_RR benchmark for 1 and 20 
sessions. 

Note that the values shown for tests where there was just one session are limited 
by the default setting of the physical Ethernet adapter’s interrupt coalescing 
value. The physical Ethernet adapter has interrupt coalescing enabled by default 
(intr_rate=10000) because this helps reduce CPU utilization at higher transaction 
rates. However, this adds latency when only a single transaction is running due to 
delaying the interrupt. Some workloads with small packets and light workload 
may benefit from disabling the interrupt coalescing on the physical adapter.

Virtual I/O 
Server Partition

1 VLAN adapter
1 Gb Ethernet Adapter

1 dedicated CPU

Gb Ethernet Network

Client Partition

1 Gb Ethernet Adapter
1 dedicated CPU

POWER4+
Server

1 Gb Ethernet Adapter

Gb 
EthernetVLAN Gb 

Ethernet

SEA
Bridge

Gb 
Ethernet
 Chapter 6. Virtual I/O 193



Figure 6-36   Transaction rates, TCP_RR, 1 session

Figure 6-37   Transaction rates, TCP_RR, 20 sessions

Tip: Some workloads with small packets and light workloads may benefit from 
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Latency was measured with the same parameters as the transaction rate. 
Figure 6-38 and Figure 6-39 show the differences between the Shared Ethernet 
Adapter and physical Ethernet and the increasing latency if the load grows to 20 
sessions.

Figure 6-38   Latencies, TCP_RR, 1 session

Figure 6-39   Latency, TCP_RR, 20 sessions
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6.7  Implementation guidelines
Sizing a server can be somewhat complex and time-consuming. Furthermore, it 
can be performed with varying accuracy, depending on the amount of data you 
can collect about the resources requirements of your applications. 

This section offers some guidelines for designing a Virtual I/O Server partition. 
The intent is to give some quick sizing guidelines that may be simple enough for 
initial sizing when very little data about the application requirements is available. 
Later on, the server could have its partition size increased or decreased to adjust 
for variations in the actual workload during peak times of the day. Because of the 
virtualization features of the hardware, the machine resources can be adjusted to 
meet the demands of the Virtual I/O server. See 6.7.1, “Guidelines for Shared 
Ethernet Adapter sizing” on page 197 for a more accurate method to adjust the 
Virtual I/O Server resources.

Guidelines for sizing and configuring the network
The following guidelines are given to assist you in properly sizing your network.

1. Know your environment and the network traffic.

2. For the most demanding network traffic between VLANs and local networks, 
use a dedicated network adapter.

3. For optimal performance, use dedicated processors for the Virtual I/O Server 
partition.

4. Choose 9000 for the MTU size or what makes sense for your network traffic.

Guidelines for optimizing network throughput
Table 6-6 lists guidelines for easy estimating of network throughput. The speed 
numbers are a bit conservative but rounded down for easy estimating. These 
numbers are for POWER5 processor–based systems with PCI-X slots.

Table 6-6   Network streaming rates

Important: The following recommendations provide a reasonable starting 
point for an initial configuration. Further tuning will be required to obtain 
optimal performance.

Adapter speed Throughput (MB/second)

Simplex Full Duplex

10 Mb Ethernet 1 MB/s 2 MB/s 

100 Mb Ethernet 10 MB/s 20 MB/s 
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Guidelines for processor requirements
Because Ethernet running with an MTU size of 1500 bytes consumes more CPU 
cycles than Ethernet running with Jumbo frames (MTU 9000), the guidelines are 
different for each. In round numbers, the CPU utilization for large packet 
workloads on jumbo frames is about half of the CPU required for MTU 1500. 

With configurations where MTU is 1500
A basic general rule is to provide 100% of one POWER5 processor (1.65 GHz) 
per Gigabit Ethernet adapter to drive it to maximum bandwidth. This would 
translate to ten 100-Mbit Ethernet adapters if attached to a 100 Mb LAN. 

For example, if two Gigabit Ethernet adapters will be used, then up to two 
processors should be allocated to the partition. 

With configurations where MTU is 9000 (jumbo frames)
The general rule is 50% of one POWER5 processor (1.65 GHz) per Gigabit 
Ethernet to drive to maximum bandwidth.

The processing power needed to transfer data over a network depends mainly on 
the number of packets to be handled. If your network traffic contains a lot of small 
transactions that do not take advantage of the jumbo frame payload but use 
small packets, then you should plan on one full CPU to drive each Gigabit 
Ethernet adapter. (Jumbo frames do not help the small packet workload case).

6.7.1  Guidelines for Shared Ethernet Adapter sizing
Sizing of the Virtual I/O Server for the Shared Ethernet Adapter component 
involves these steps:

1. Define the target bandwidth or transaction rate requirements.

The idea is to determine the target bandwidth on the physical Ethernet side of 
the Virtual I/O Server partition, as this will determine the rate that data can be 
transferred between the Virtual I/O Server partition and the client partitions. 
When the target rate is known, the proper type and number of network 
adapters can be selected. For example, various speed Ethernet adapters 
could be used, such as 10 Mb, 100 Mb, or Gigabit. One or more adapters 
could be used on individual networks or they could be aggregated using port 
aggregation. 

1000 Mb Ethernet (Gigabit Ethernet) 100 MB/s 150 MB/s (1.5X the simplex rate) 

Adapter speed Throughput (MB/second)

Simplex Full Duplex
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2. Define the type of workload.

The type of workload can be streaming data for workloads such as file 
transfers or data backup, or small transaction workloads such as remote 
procedure calls (RPCs). The streaming workload is mainly dominated by 
large full-size network packets and associated small TCP Acknowledgement 
packets. Transaction workloads typically involve smaller packets or may 
involve small requests, such as a URL, and a larger response, such as a Web 
page. It is common for an I/O server to have to support streaming and small 
packet I/O during various periods of time. In such cases, the sizing should be 
approached from both models and the larger sizing used.

3. Identify the MTU size that will be used.

The standard Internet cell size is 1,500 bytes (1,518 bytes on the wire) and is 
the typical setting on adapter cards. Gigabit Ethernet can support MTU 
9000-byte Jumbo frames and may be desirable for localized networks. The 
larger Jumbo frames can reduce the CPU cycles considerably for the 
streaming types of workloads. However for small workloads, the larger MTU 
size will not help reduce CPU cycles. In many cases, the MTU choice is 
driven by the existing network infrastructure and cannot be freely chosen 
according to the application requirements. 

4. Define the Virtual I/O Server partition configuration. 

This definition includes the number of processors and I/O adapters. Another 
issue that affects the CPU cycles used is whether the Shared Ethernet 
Adapter is configured to run in threaded or non-threaded mode. Threaded 
mode is used mainly when VSCSI will be configured on the same Virtual I/O 
Server partition. Threaded mode helps ensure that VSCSI and the Shared 
Ethernet Adapter share the CPU resource fairly. Threading adds more 
instruction path length, however, thus using more CPU cycles. If the Virtual 
I/O Server partition will be dedicated to running shared Ethernet and 
associated virtual Ethernet only, they should be configured with threading 
disabled in order to run in the most efficient mode. Enabling and disabling of 
threading is covered in 6.7.3, “Control of threading in the Shared Ethernet 
Adapter” on page 204.

When the workload and type of adapters have been chosen, determine how 
many processors are required to move data through the network at the desired 
rate. The networking device drivers are CPU-intensive. Small packets can come 
in at a faster rate and use more CPU cycles than larger packet workloads. Larger 
packet workloads are normally limited by network wire bandwidth and come in at 

Important: The threading concept discussed above is software threading. 
It is not the POWER5 hardware feature that enables running the virtual 
processors in single-threaded or simultaneous multithreading mode. 
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a slower rate, thus requiring less CPU than small-packet workloads for the 
amount of data transferred. 

CPU sizing
CPU sizing for the SEA is divided into two workload types, TCP streaming and 
TCP request/response (transaction), for both MTU 1500 and MTU 9000 
networks. The sizing is provided in terms of number of machine cycles needed 
per byte of throughput or machine cycles needed per transaction.

The upcoming tables were derived with these formulas:

cycles per byte = ( # CPUs *  CPU_Utilization * CPU clock frequency)/ 
Throughput rate in bytes per second

and

cycles per transaction = ( #CPUs *  CPU_Utilization * CPU clock frequency)/ 
Throughput rate in transactions per second 

When sizing, it is necessary to consider the impact of the threading option that is 
available for the device driver of the Shared Ethernet Adapter. The threading 
option increases processor utilization at lower workloads due to the threads 
being started for each packet. At higher workload rates, such as full duplex or the 
request/response workloads, the threads can run longer without waiting and 
being redispatched. The thread option should be disabled if the Shared Ethernet 
Adapter is running in a partition by itself without VSCSI.

The numbers were measured on a single 1.65 GHz POWER5 processor, running 
with the default of simultaneous multithreading enabled. For other CPU 
frequencies, the numbers in these tables can be scaled by the ratio of the CPU 
frequencies for approximate values to be used for sizing.

For example, for a 1.5 GHz processor speed, use 1.65/1.5 * cycles per byte or 
transactions value from the table. This example would result in a value of 1.1 
times the value in the table, thus requiring 10% more cycles to adjust for the 10% 
slower clock rate of the 1.5 GHz processor.

To use these values, multiply your required throughput rate (in bytes or 
transactions) by the number of cycles per byte or transactions in the tables that 
follow. This produces the required machine cycles for the workload for a 1.65 
GHz speed. Then adjust this value by the ratio of the actual machine speed to 
this 1.65 GHz speed. 

Then to find the number of CPUs, divide the result by 1,650,000,000 cycles. You 
would need that many CPUs to drive the workload. In these tables, one MB is 
1,048,576 bytes.
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For example, if the Virtual I/O Server must deliver 200 MB of streaming 
throughput, it would take 200 * 1,048,576 * 11.2 = 2,348,810,240 /1,650,000,000 
cycles per CPU=1.42 CPUs. Thus, in round numbers, it would take 1.5 
processors in the Virtual I/O Server partition to handle this workload. 

This could be handled with either a two-CPU dedicated partition or a 1.5-CPU 
micro-partition.

Table 6-7 provides the figures to use for streaming workloads when the threading 
option is enabled.

Table 6-7   Streaming workload, machine cycles per byte - threading enabled

Table 6-8 provides the figures to use when the threading option is disabled.

Table 6-8   Streaming workload, machine cycles per byte - threading disabled

Table 6-9 on page 201 has figures to use for transaction workloads when the 
threading option is enabled. A transaction is a round-trip request and reply of size 
listed in the first column of the table. Table 6-10 on page 201 has figures for when 
threading is disabled.

Streaming 
type

MTU 1500 
rate and CPU 
utilization

MTU 1500, 
cycles per 
byte

MTU 9000 
rate and CPU 
utilization

MTU 9000, 
cycles per 
byte

Simplex 112.8 MB at 
80.6% CPU

11.2 117.8 MB at 
37.7% CPU

5.0

Duplex 162.2 MB at 
88.8% CPU

8.6 217.0 MB at 
52.5% CPU

3.8

Streaming 
type

MTU 1500 
rate and CPU 
utilization

MTU 1500, 
cycles per 
byte

MTU 9000 
rate and CPU 
utilization

MTU 9000, 
cycles per 
byte

Simplex 112.8 MB at 
66.4% CPU

9.3 117.8 MB at 
26.7% CPU

3.6

Duplex 161.6 MB at 
76.4% CPU

7.4 216.8 MB at 
39.6% CPU

2.9
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Table 6-9   Transaction workload, transactions per second - threading enabled

Table 6-10   Transaction workload, transactions per second - threading disabled

Micro-Partitioning considerations
Creating the Virtual I/O Server partition with Micro-Partitioning can be used when 
interfacing to slower speed networks (for example, 10/100 Mb) since a full, 
dedicated processor is not needed. This probably should be done only if the 
workload is less than 50% CPU utilization or if the workload characteristics are 
burst-type transactions. Configuring the partition as uncapped can also enable it 
to use more processor cycles as needed to handle the bursts.

For example, if the network is used only at night when other processors may be 
idle, the partition may be able to use the unused machine cycles. It could be 
configured with minimal CPU to handle light traffic during the day, but the 
uncapped processor could use more machine cycles during idle periods.

When configuring Micro-Partitioning for the Virtual I/O Server partition, it is 
suggested that you increase the entitlement to accommodate the extra resources 
needed by the POWER Hypervisor.

Memory sizing
The memory requirements for a Virtual I/O Server partition that provides the 
Shared Ethernet Adapter functions only (no VSCSI) are minimal. In general, a 
512 MB partition should work for most configurations.

Enough memory must be allocated for the I/O server data structures. For the 
Ethernet and virtual devices, there are dedicated receive buffers that each device 
will use. These buffers are used to store the incoming packets from the VLAN, 
before delivery to the physical Ethernet adapter, so they are very transient. 

Size of transactions Transactions/second 
and I/O server utilization

MTU 1500 or 9000, cycles 
per transaction

Small packets 
(64 bytes) 

59772 TPS at 83.4% CPU 23022

Large packets 
1024 bytes)

51956 TPS at 80.0% CPU 25406

Size of transactions Transactions/second 
and I/O server utilization

MTU 1500 or 9000, cycles 
per transaction

Small packets 
(64 bytes) 

60249 TPS at 65.6% CPU 17965

Large packets 
1024 bytes)

53104 TPS at 65.0% CPU 20196
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For physical Ethernet network, the system typically uses 4 MB for MTU 1500 or 
16 MB for MTU 9000 for dedicated receive buffers. For virtual Ethernet, the 
system typically uses 6 MB for dedicated receive buffers; however, this number 
can vary based on load. 

Each instance of a physical or virtual Ethernet would need memory for this many 
buffers.

In addition, the system has an mbuf buffer pool per CPU that is used if additional 
buffers are needed. These mbufs typically occupy 40 MB.

6.7.2  Guidelines for physical Ethernet sizing
This section provides information about bandwidth for various Ethernet adapters, 
CPU cycles required for the Virtual I/O Server to handle these packets, and the 
formulas used to compute the server sizings.

Table 6-11 has approximate throughput rates for the various Ethernet adapters 
and MTU sizes in simplex mode. Table 6-12 on page 203 provides approximate 
throughput rates for various Ethernet adapters and MTU sizes in duplex mode. 

Table 6-11   TCP streaming rates, simplex mode

Network type Raw bit rate 
(Mb/s)

Payload rate 
(Mb/s)

Payload 
rate (MB)

10 Mb Ethernet, Half Duplex 10 6 .7

10 Mb Ethernet, Full Duplexa

a. The peak numbers represent best case throughput with multiple TCP ses-
sions running in duplex mode. Other rates are for single TCP sessions.

10 (20 Mbit full 
duplex)

9.48 1.13

100 Mb Ethernet, Half Duplex 100 62 7.3

100 Mb Ethernet, Full Duplex 100 (200 Mbit 
full duplex)

94.8 11.3

1000 Mb Ethernet, Full Duplex, 
MTU 1500 

1000 (2000 Mbit 
full duplex)

948 113

1000 Mb Ethernet, Full Duplex, 
MTU 9000

1000 (2000 Mbit 
full duplex)

989 117.9
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Table 6-12   TCP Streaming rates, duplex mode

These tables provide the maximum network payload speeds. These are user 
payload data rates that can be obtained by sockets-based programs for 
applications that are streaming data (one program doing send() calls and the 
receiver doing recv() calls over a TCP connection). The rates are a function of 
the network bit rate, MTU size, physical level requirements such as Inter-frame 
gap and preamble bits, data link headers, and TCP/IP headers. These are best 
case numbers for a single LAN, and may be lower if going through routers or 
additional network hops or remote links.

Note that the raw bit rate is the physical media bit rate and does not reflect 
physical media data like Inter-frame gaps, preamble bits, cell information (for 
ATM), data link headers, and trailers. These all reduce the effective usable bit 
rate of the wire.

Uni-directional (simplex) TCP streaming rates are rates that can be seen by a 
workload such as File Transfer Protocol (FTP) operations sending data from 
machine A to machine B in a memory-to-memory test. Note that full duplex 
media performs slightly better than half duplex media because the TCP 
acknowledgement packets can flow back without contending for the same wire 
that the data packets are flowing on.

These are user payload data rates that can be obtained by sockets-based 
programs for applications that are streaming data (one program doing send() 
calls and the receiver doing recv() calls) over a TCP connection. The rates are a 
function of the network bit rate, MTU size, physical level requirements such as 

Network type Raw bit rate (Mb/s) Payload 
rate (Mb/s)

Payload 
rate (MB)

10 Mbit Ethernet, half duplex 10 5.8 .7

10 Mbit Ethernet, full duplex 10 (20 Mbit full duplex) 18 2.2

100 Mbit Ethernet, half duplex 100 58 7

100 Mbit Ethernet, full duplex 100 (200 Mb full duplex) 177 21.1

1000 Mbit Ethernet, full 
duplex, MTU 1500a

a. 1000 Mbit Ethernet (Gigabit Ethernet) duplex rates are for the PCI-X adapter in
PCI-X slots.

1000 
(2000 Mbit full duplex)

1470 
(1660 peak)

175 
(198 peak)

1000 Mbit Ethernet, full 
duplex, MTU 9000b

b. Data rates are for TCP/IP using IPV4 protocol. Adapters with MTU 9000 have
RFC1323 enabled.

1000 
(2000 Mbit full duplex)

1680 
(1938 peak)

200 
(231 peak)
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Inter-frame gap and preamble bits, data link headers, and TCP/IP headers. 
These are best-case numbers for a single LAN, and may be lower if going 
through routers or additional network hops or remote links.

Bi-directional (duplex) TCP streaming workloads have streaming data in both 
directions (for example, an FTP from machine A to machine B and another FTP 
running from machine B to machine A, concurrently). Such workloads can take 
advantage of full duplex media that can send and receive concurrently. Some 
media (for example, Ethernet in half duplex mode), cannot send and receive 
concurrently, thus they will not perform any better (usually worse) when running 
duplex workloads. Duplex workloads do not provide twice the throughput as 
simplex workloads. This is because TCP acknowledge packets coming back from 
the receiver have to compete with data packets flowing in the same direction.

6.7.3  Control of threading in the Shared Ethernet Adapter
These steps are necessary to configure the threading mode for the Shared 
Ethernet Adapter:

1. Log on to the Virtual I/O Server partition as the user padmin.

2. Using the lsdev command, list the virtual adapters to find the Shared 
Ethernet Adapter, as shown in Example 6-2.

Example 6-2   Listing virtual devices with lsdev

$ lsdev -virtual
name            status     description

ent2            Available  Virtual I/O Ethernet Adapter (l-lan)
vsa0            Available  LPAR Virtual Serial Adapter
ent3            Available  Shared Ethernet Adapter

3. In this example, the Shared Ethernet Adapter is ent3. Use the lsdev 
command again to find the current settings of the adapter. Example 6-3 
shows that the thread mode is currently disabled (0).

Example 6-3   Displaying attributes of the Shared Ethernet Adapter

$ lsdev -dev ent3 -attr
attribute     value description user_settable

pvid          100   PVID to use for the SEA device True
pvid_adapter  ent2  Default virtual adapter to use for non-VLAN-tagged packets True
real_adapter  ent0  Physical adapter associated with the SEA True
thread        0     Thread mode enabled (1) or disabled (0) True
virt_adapters ent2  List of virtual adapters associated with the SEA (comma 
separated) True
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4. To enable threading, use the chdev command as shown in Example 6-4.

Example 6-4   Enabling threading with chdev

$ chdev -dev ent3 -attr thread=1
ent3 changed

5. You can confirm that the threading mode is enabled, shown in Example 6-5.

Example 6-5   Checking the new threading mode

$ lsdev -dev ent3 -attr
attribute     value description user_settable

pvid          100   PVID to use for the SEA device True
pvid_adapter  ent2  Default virtual adapter to use for non-VLAN-tagged packets  True
real_adapter  ent0  Physical adapter associated with the SEA True
thread        1     Thread mode enabled (1) or disabled (0) True
virt_adapters ent2  List of virtual adapters associated with the SEA (comma 
separated) True
$

6.8  Virtual SCSI
Virtual SCSI is based on a client/server relationship. A Virtual I/O Server partition 
owns the physical resources, and logical client partitions access the virtual SCSI 
resources provided by the Virtual I/O Server partition. The Virtual I/O Server 
partition has physically attached I/O devices and exports one or more of these 
devices to other partitions. The client partition is a partition that has a virtual 
client adapter node defined in its device tree and relies on the Virtual I/O Server 
partition to provide access to one or more block interface devices. Virtual SCSI 
requires POWER5 hardware with the Advanced POWER Virtualization feature 
activated. It provides virtual SCSI support for AIX 5L V5.3 and Linux.

As we write this book, the virtualization features of the POWER5 platform 
support up to 254 partitions, but the server hardware only provides up to 160 I/O 
slots per machine. With each partition typically requiring one I/O slot for disk 
attachment and another one for network attachment, this puts a constraint on the 
number of partitions. To overcome these physical limitations, I/O resources must 
be shared. Virtual SCSI provides the means to do this for SCSI storage devices.

Furthermore, virtual I/O allows attachment of previously unsupported storage 
solutions. As long as the Virtual I/O Server partition supports the attachment of a 
storage resource, any client partition can access this storage by using virtual 
SCSI adapters.
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For example, if there is no native support for EMC storage devices on Linux, 
running Linux in a logical partition of a POWER5 server makes this possible. A 
Linux client partition can access the EMC storage through a Virtual SCSI 
adapter. Requests from the virtual adapters are mapped to the physical 
resources in the Virtual I/O Server partition. Therefore, driver support for the 
physical resources is needed only in the Virtual I/O Server partition.

Virtual SCSI client and server architecture overview
Virtual SCSI is based on a client/server relationship. The Virtual I/O Server 
partition owns the physical resources and acts as server or, in SCSI terms, target 
device. The logical partitions access the virtual SCSI resources provided by the 
Virtual I/O Server partition as clients.

The virtual I/O adapters are configured using an HMC. The provisioning of virtual 
disk resources is provided by the Virtual I/O Server. The virtual SCSI adapter 
driver on the server partition is a dynamically loadable kernel extension and its 
entry points are contained in the device switch table. As a virtual SCSI target 
device, the primary function of the device driver is to convert SCSI Remote DMA 
Protocol (SRP) requests from the initiator driver (client side) into I/O requests 
that are forwarded to the device that is physically attached to the server. Data is 
then transferred directly to the client memory using LRDMA. LRDMA is covered 
in “Logical Remote Direct Memory Access (LRDMA)” on page 150, and SRP is 
covered in “SCSI Remote DMA Protocol” on page 214.

The virtual SCSI client adapter device driver (vscsi_initdd) is a dynamically 
loadable kernel extension and its entry points are contained in the device switch 
table. As a virtual SCSI initiator, the primary function of the initiator driver is to 
convert I/O requests from the peripheral or media device drivers to SRP 
Information Units (IUs), then forward the SRP IUs to the target device for 
LRDMA.

The virtual adapter on the client partition is in many ways similar to a physical 
SCSI adapter. While a typical SCSI adapter has a parallel bus or optical link 

Note: You will see different terms in this publication that refer to the various 
components involved with virtual SCSI. Depending on the context, these 
terms may vary. With SCSI, usually the terms initiator and target are used, so 
you may see terms such as virtual SCSI initiator and virtual SCSI target. On 
the Hardware Management Console, the terms virtual SCSI server adapter 
and virtual SCSI client adapter are used. Basically they refer to the same 
thing. When describing the client/server relationship between the partitions 
involved in virtual SCSI, the terms hosting partition (meaning the Virtual I/O 
Server) and hosted partition (meaning the client partition) are used.
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attached to it, the virtual adapter’s link is the POWER Hypervisor’s Reliable 
Command/Response Transport.

Physical disks owned by the Virtual I/O Server partition either can be exported 
and assigned to a client partition whole, or can be partitioned into several logical 
volumes. The logical volumes can then be assigned to different partitions. 
Therefore, Virtual SCSI enables sharing of adapters as well as disk devices.

For a physical or a logical volume to be available to a client partition, it is 
assigned to a virtual SCSI server adapter in the Virtual I/O Server. The basic 
command to map the Virtual SCSI with the logical volume or physical volume is:

mkvdev  -vdev TargetDevice -vadapter VirtualSCSIServerAdapter
        [-dev DeviceName]

Run the lsdev -virtual command to make sure that your new virtual SCSI 
adapter is available, as shown in Example 6-6.

Example 6-6   Checking for virtual SCSI adapters

$ lsdev -virtual
name            status     description

ent2            Available  Virtual I/O Ethernet Adapter (l-lan)
vhost0          Available  Virtual SCSI Server Adapter
vhost1          Available  Virtual SCSI Server Adapter
vsa0            Available  LPAR Virtual Serial Adapter

The next step is to create a virtual target device, which maps the Virtual SCSI 
server adapter vhost0 to the logical volume rootvg_dbsrv. When you do not use 
the -dev flag, the default name of the virtual target device adapter is vtscsix. Run 
the mkvdev command as shown in Example 6-7 to perform this task. If you want 
to map a physical volume to the virtual SCSI server adapter, use hdiskx instead 
of the logical volume devices for the -vdev flag.

Example 6-7   Using mkdev to create a virtual target device

$ mkvdev -vdev rootvg_dbsrv -vadapter vhost0 -dev vdbsrv
vdbsrv Available

The lsdev command (Example 6-8), shows the newly created virtual target 
device adapter.

Example 6-8   Using lsdev to show the virtual target device

$ lsdev -virtual
name            status     description
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vhost0          Available  Virtual SCSI Server Adapter
vsa0            Available  LPAR Virtual Serial Adapter
vdbsrv          Available  Virtual Target Device - Logical Volume

The lsmap command (Example 6-9), shows the logical connections between 
newly created devices.

Example 6-9   Using lsmap to show logical connections

$ lsmap -vadapter vhost0
SVSA            Physloc                                      Client PartitionID 
--------------- -------------------------------------------- ------------------
vhost0          U9111.520.10DDEEC-V1-C20                     0x00000000

VTD                   vdbsrv
LUN                   0x8100000000000000
Backing device        rootvg_dbsrv
Physloc

Here you also see the physical location being a combination of the slot number 
(in this case 20) and the logical partition ID. At this point the created virtual 
device can be attached from the client partition. You can now activate your 
partition into the SMS menu and install the AIX 5L V5.3 operating system on the 
virtual disk or add an additional virtual disk using the cfgmgr command. The 
Client PartitionID shows up as soon as the client partition is active.

The client partition accesses its assigned disks through a virtual SCSI client 
adapter, which sees standard SCSI devices and LUNs through this virtual 
adapter. Example 6-10 shows commands used to view the disks on an AIX 5L 
V5.3 client partition.

Example 6-10   Viewing virtual SCSI disks

# lsdev -Cc disk -s vscsi
hdisk2 Available  Virtual SCSI Disk Drive
# lscfg -vpl hdisk2
hdisk2 111.520.10DDEDC-V3-C5-T1-L810000000000 Virtual SCSI Disk Drive

Figure 6-40 on page 209 shows an example in which one physical disk is 
partitioned into two logical volumes inside the Virtual I/O Server. Each of the two 
client partitions is assigned one logical volume, which it accesses through a 
virtual I/O adapter (virtual SCSI client adapter). Inside the partition, the disk is 
viewed as normal hdisk.
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Figure 6-40   Virtual SCSI architecture overview

6.8.1  Client and server interaction
An example of a typical interaction between the target and initiator device drivers 
is a file read from a virtual disk device. The client stack considers the initiator 
driver a SCSI-3 device with access to the virtual disk.

A typical I/O read request involves the following steps:
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File System (JFS).
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(LVM). The LVM forms a buffer structure (struct buf) with DMA buffer 
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3. (Client) The buffer structure is passed to the disk device driver, which creates 
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6. (Server) The target driver receives an interrupt indicating that an element has 
been queued on its command queue.

7. (Server) The target driver uses the pointer to the SRP IU in the CRQ 
command element and LRDMA services to copy the SRP IU from the client 
partition to the server partition’s memory.

8. (Server) The target driver uses the information in the SRP IU to create a 
buffer structure.

9. (Server) The target driver passes the buffer structure to the LVM running in 
the server partition. The request ultimately makes its way to the physical 
adapter’s device driver. This driver calls the usual DMA kernel services, which 
have been extended to map the client’s buffers for DMA using LRDMA 
services.

10.(Server) When the transaction is complete, the target driver constructs an 
appropriate SRP response and uses LRDMA services to copy the response 
to the client’s memory. It then builds a CRQ command element containing the 
tag (or correlator field) from the original SRP IU and sends the CRQ element 
through the POWER Hypervisor to the initiator.

11.(Client) The initiator driver receives an interrupt indicating that a CRQ element 
has been queued to its response queue.

12.(Client) The initiator driver uses the information in the SRP response to give 
status back to the vscsi_initdd driver. The driver passes the results back up to 
LVM and through to finish servicing the read() system call.

6.8.2  AIX 5L V5.3 device configuration for virtual SCSI
The virtual I/O adapters are connected to a virtual host bridge, which AIX 5L 
V5.3 treats much like a PCI host bridge. It is represented in the Object Data 
Manager as a bus device whose parent is sysplanar0. The virtual I/O adapters 
are represented as adapter devices with the virtual host bridge as their parent. 
On the Virtual I/O Server, each logical volume or physical volume that is exported 
to a client partition is represented by a virtual target device that is a child of a 
virtual SCSI server adapter.

On the client partition, the exported disks are visible as normal hdisks, but they 
are defined in subclass vscsi. They have a virtual SCSI client adapter as parent. 
Example 6-41 on page 211 shows the relationship of the devices used by AIX 5L 
V5.3 for virtual SCSI and their physical counterparts.
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Figure 6-41   Virtual SCSI device relationship

The client and server adapters operate as a pair, in a point-to-point configuration, 
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The target and initiator virtual adapters are created on the HMC during creation 
(or modification) of the partitions profiles. The target and initiator adapters are 
always connected in a point-to-point configuration. One initiator adapter can 
connect with at most one target adapter.

A target adapter can provide storage services to multiple initiators but not at the 
same time. When initiator virtual adapters of client partitions are created on the 
HMC, they may be assigned to a target adapter of a Virtual I/O Server partition 
that is already assigned to other partition profiles. When a client disconnects 
from an initiator driver, the adapter is put into the defined state, as opposed to the 
available state. At this point, another client can begin communication with the 
Virtual I/O Server. 

The virtual SCSI architecture enables a partition to have instances of both client 
and server drivers. This could be the case when a server partition exports the 
disks it directly manages through its physical adapters, and boots from disks 
exported from another server partition. We strongly recommend not using such 
configurations. This could lead to deadlocks where two Virtual I/O Server 
partitions depend on each being activated before the operating system can boot. 
Cascaded devices (virtual devices that are backed by other virtual devices) are 
not supported. 

6.8.3  Interpartition communication
The interpartition communication that took place in 6.8.1, “Client and server 
interaction” on page 209, involves the client device node in the Open Firmware 
device tree of one partition, the server device node in the Open Firmware device 
tree of another partition, the interpartition communication channel provided by 
the POWER Hypervisor and a communication protocol definition. The 
interpartition communication uses two primitive functions:

� Reliable Command/Response Transport
� SCSI Remote DMA Protocol

Reliable Command Response Transport
The Reliable Command Response Transport facility provides ordered delivery of 
messages between authorized partitions. In order to communicate, a 
client/server partition pair must establish a Command/Response Queue (CRQ). 
(See “The Command/Response Queue” on page 149.)

A CRQ is established during configuration by a virtual SCSI driver, given the 
presence in the Open Firmware device tree of a virtual SCSI device. The initiator 
driver registers a response queue and the target driver registers a command 
queue. Both use the h_reg_crq kernel service to call the POWER Hypervisor. 
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The POWER Hypervisor creates a connection between the two partitions 
through the queues. 

When the queues are established, the virtual SCSI drivers can use the 
h_send_crq kernel service to put queue elements on each other’s queues. The 
initiator driver attempts to queue an element to the target driver’s command 
queue to initiate a transaction. If it is successful, the initiator driver returns, 
waiting for the interrupt indicating that a response has been posted by the target 
driver to the initiator driver’s response queue.

The client partition uses only the Reliable Command/Response Transport. It 
does not use LRDMA. As the server partition’s RTCE tables are not authorized 
for access by the client partition, any attempt by the client partition to modify 
server partition memory would be prevented by the POWER Hypervisor. RTCE 
table access is granted on a connection-by-connection basis (client/server virtual 
device pair). 

The target driver is notified via an interrupt that it has received a message on its 
command queue. The target driver decodes the I/O request and routes it through 
the server partition’s file subsystem for processing. When the request completes, 
the file subsystem calls the target driver and it packages a response into a queue 
element that is then queued to the initiator driver’s response queue.

LRDMA defines an extended type of TCE table, the Remote DMA TCE Table. 
(See “Remote Translation Control Entry (RTCE)” on page 150.) An RTCE is used 
by the POWER Hypervisor to translate a server partition’s Logical Remote DMA 
addresses. RTCE tables have extra data to help manage the use of its mappings 
by server partitions. Note that only the target driver uses the Logical Remote 
DMA primitives, not the initiator driver. The server partition’s RTCE tables are not 
authorized for access by the client driver.

The use of redirected RDMA is completely invisible to the I/O client and has no 
impact on the virtual SCSI architecture defined in this document. It is left entirely 
to the discretion of the I/O server whether it first moves data from a physical 
device into its own memory before moving the data to the I/O client (using DMA), 
or whether the I/O server sets up the I/O request to the physical device in such a 
way that the physical device DMAs directly to the memory of the I/O client. The 
I/O server uses the RDMA mode that best suits its needs for a given virtual I/O 
operation.

The logical remote direct memory service enables the server driver to read and 
write to a well-defined part of the I/O client’s memory. This service is 
unidirectional; that is, the client driver cannot use the service to write to, or read 
from, the I/O server’s memory.
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SCSI Remote DMA Protocol
The SCSI family of standards provides many different transport protocols that 
define the rules for exchanging information between SCSI initiators and targets. 
Virtual SCSI uses the SCSI Remote DMA Protocol (SRP), which defines the 
rules for exchanging SCSI information in an environment where the SCSI 
initiators and targets have the ability to directly transfer information between their 
respective address spaces.

SCSI requests and responses are sent using the virtual SCSI adapters that 
communicate through the POWER Hypervisor. However, the actual data transfer 
is done directly between a data buffer in the client partition and the physical 
adapter in the Virtual I/O Server by using the LRDMA protocol that was 
described in “Logical Remote Direct Memory Access (LRDMA)” on page 150.

SCSI Remote DMA Protocol defines a method of encapsulating SCSI command 
data blocks and is the protocol used for interpartition communication for virtual 
SCSI on IBM Sserver p5 logical partitions. Because virtual SCSI involves 
heterogeneous operating systems (AIX 5L and Linux) it is important to implement 
a common industry standard protocol for communicating I/O operations between 
partitions. SRP has defined the message format and protocol using an RDMA 
communication service. The SCSI RDMA Protocol defines the rules for 
exchanging SCSI information in an environment where SCSI initiators and 
targets have the ability to directly transfer information between their respective 
address spaces.

All SRP communication is accomplished via SRP Informational Units (IUs). An IU 
is an organized collection of data specified by the SRP to be transferred as login 
data, reject data, or a message on an RDMA channel. Thus all SCSI commands 
and their associated data and status are encapsulated in an SRP IU. Note that 
the protocol used for interpartition communication has no bearing on the makeup 
of the destination device. The SRP protocol works the same whether the target 
device is a physical device or a logical device (logical volume).

Memory descriptor mapping
The SRP architecture defines a memory descriptor, which is a 16-byte structure 
that identifies a memory segment on which DMA operations can be performed.

The virtual SCSI architecture is defined such that DMA operations are never 
initiated from the I/O client (from the initiator port). Because the I/O server’s 
RTCE tables are not authorized for access by the I/O client, any attempt by the 
I/O client to modify the I/O server’s memory would be prevented by the POWER 
Hypervisor. RTCE table access is granted on a connection-by-connection basis 
(client/server virtual device pair). If an I/O client happens to be serving some 
other logical device, then the partition is entitled to use Logical Remote DMA for 
the virtual devices that it is serving.
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Memory descriptors sent in IUs that are defined in this architecture always 
reference memory in the initiator and are always used in DMA operations 
initiated by the target.

SRP initiator ports and SRP target ports shall be determined by both their role 
during LRDMA channel establishment and by the adapter types on which the 
messages are sent and received.

6.8.4  Disk considerations
A virtual disk device is exported by the I/O server to the client. It can be mapped 
by the server to either a logical volume, or defined on a slice of a physical volume 
or an entire physical disk. 

It is viewed by the I/O client as a physical disk. There can be many virtual disk 
devices mapped onto a single physical disk. The system administrator creates a 
virtual disk device by choosing a logical volume and binding it to a virtual SCSI 
server adapter. The command adding virtual devices creates an ODM entry for 
the virtual disk device.

It is expected that most of the SCSI commands targeting a virtual disk device will 
be either reads or writes. Reads and writes are serviced by the LVM.

Figure 6-42 on page 216 shows the possible partitioning of a physical disk on the 
Virtual I/O Server where there are two logical volumes that support two virtual 
disk devices, hdx and hdy. In this example, hdx and hdy could be exported to two 
different partitions.
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Figure 6-42   Volume group on Virtual I/O Server

SCSI RESERVE and RELEASE
The virtual SCSI virtual adapter driver emulates the SCSI RESERVE and 
RELEASE commands instead of passing them on to the device. That emulation 
is limited in scope to a single I/O server. When one I/O client wins a reservation 
on a logical volume, the virtual SCSI virtual adapter target driver has to refuse 
access by other I/O clients to the logical volume. When the I/O client holding a 
reservation fails, the virtual SCSI virtual adapter target driver has to break the 
reservation on that logical volume. This enables configurations where one I/O 
server provides storage services for multiple I/O clients. 

However, this does not provide an adequate emulation of RESERVE and 
RELEASE for configurations in which the same physical storage can be 
accessed by multiple AIX 5L instances executing in different physical servers. 
This emulation does not prevent access by the native stack on that I/O server.
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SCSI command tag queueing refers to queuing commands to a SCSI device. 
Command tag queueing requires the SCSI adapter, the SCSI device, the SCSI 
device driver, and the SCSI adapter driver to support this capability. The virtual 
SCSI architecture supports command tag queueing.
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6.8.5  Configuring for redundancy
To minimize the adverse effect that would result from the loss of a Virtual I/O 
Server partition or physical adapter, a system administrator can use either of two 
ways to create redundant configurations. Each of these techniques enables a 
client partition to continue to function while maintenance is being done on the 
server partition.

Logical volume mirroring
AIX 5L Logical Volume Manager supports mirroring of virtual disks. This 
mirroring is configured on the client partition. For every write to a logical volume, 
the LVM generates a write request for every mirrored copy. The system 
administrator can define two virtual disk devices, either served by two distinct I/O 
servers or two devices on the same Virtual I/O Server, and mirror the client 
partition’s data on the two devices. Mirroring makes no requirements on either 
the client or server drivers. It is cost-effective and the system configuration is 
readily understood. Figure 6-43 presents a configuration of mirrored virtual disks 
backed by physical disks.

Figure 6-43   Using LVM mirroring for virtual SCSI

POWER HYPERVISOR

Reliable Command / Response Transport
Logical Remote Direct Memory Access

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

LV1

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

Client Partition

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

LV2

POWER HYPERVISOR

Reliable Command / Response Transport
Logical Remote Direct Memory Access

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

VSCSI
Device Driver

(target)
Device Mapping

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

LV1

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

Client Partition

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

LV2
 Chapter 6. Virtual I/O 217



If mirroring is needed, set the scheduling policy to parallel and allocation policy 
to strict. The parallel scheduling policy enables reading from the disk that has 
the fewest outstanding requests, and strict allocation policy allocates each copy 
on separate physical volumes. 

Physical mirroring
Physical mirroring is provided by the physical adapter rather than the operating 
system. If the physical adapter used in the I/O server to connect to the disk 
provides RAID support, it can be used along with virtual SCSI to provide a more 
reliable storage solution. 

Multi-path I/O
Multi-path I/O (MPIO) offers another possible solution to the redundancy 
requirement. MPIO is a feature of AIX 5L V5.3 that permits a volume accessed 
by multiple physical paths to be seen as a single hdisk. It is therefore logically 
similar to IBM Subsystem Device Driver, which enables a volume on the 
TotalStorage® Enterprise Storage Subsystem that is accessed through multiple 
paths to be seen as a single path disk. However, the Subsystem Device Driver 
logical construct of a virtual path disk is above the level of the hdisk, whereas 
MPIO combines the paths underneath the level of the hdisk. MPIO is intended to 
support additional disk subsystems besides ESS. These disk subsystems are 
themselves capable of supporting multiple physical (parallel or Fibre Channel 
SCSI) attachments.

MPIO has numerous possible configuration parameters, but a detailed 
discussion of them is beyond the scope of this book. However, to gain the 
benefits of high availability and throughput that MPIO offers, it is recommended 
that it be configured with a round-robin algorithm, with health check enabled, and 
a reserve policy of no reserve. This makes the best combination of throughput 
and reliability, because all paths are used for data transfer, and failed paths are 
detected and reacted to in a timely fashion.

Note: The IBM Virtual I/O Server does not support mirroring. Each disk (either 
native or logical volume) exported from the Virtual I/O Server maps to only one 
physical disk. The disk mirroring must be defined in the client I/O partition. In 
the same way, the Virtual I/O Server does not support data striping over 
several disks. If striping is required, it must be defined in the client partition.
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Figure 6-44 shows a configuration using Multipath I/O to access an ESS disk.

Figure 6-44   MPIO example configuration
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6.8.6  Performance considerations
The primary goal of virtualization is to lower the total cost of ownership of 
equipment by improving utilization of the overall system resources and reducing 
the labor requirements to operate and manage many servers.

With virtualization, the IBM Sserver p5 servers can now be used in similar to 
the way mainframes have been used for decades, sharing the hardware between 
many programs, services, applications, or users. Of course, for each of these 
individual users of the hardware, sharing resources may result in lower 
performance than having dedicated hardware, but the overall cost is usually far 
lower than when dedicating hardware to each user. The decision of using 
virtualization is therefore a trade-off between cost and performance. 

The performance considerations that we detail in this section must be balanced 
against the savings made on the overall system cost. For example, the smallest 
physical disk that is available to the IBM Sserver p5 systems is 36 GB. A typical 
operating system requires 4 GB of disk. If one disk is dedicated to the operating 
system (for example, rootvg in AIX 5L), nearly 90% of this physical disk space is 
unused. Furthermore. the system disk I/O rate is often very low. With the help of 
virtual SCSI, it is possible to split the same disk into nine virtual disks of 4 GB 
each. If each of these disks is used for installation of the AIX 5L root volume 
group, you can support nine separate instances of the AIX 5L operating system, 
with nine times fewer disks and perhaps as many physical SCSI adapters. 
Compare these savings with the extra cost of processing power needed to 
handled the virtual disks.

Enabling virtual SCSI results in using extra processing power compared to 
directly attached disks, due to extra POWER Hypervisor activity. Depending on 
the configuration, this may or may not yield the same performance when 
comparing virtual SCSI devices to physically attached SCSI devices. If a partition 
has high performance and disk I/O requirements that justify the cost of dedicated 
hardware, then using virtual SCSI is not recommended. However, partitions with 
non-critical performance and low disk I/O requirements often can be configured 
to use virtual SCSI, which in turn lowers hardware and operating costs. 

Using a logical volume for virtual storage means that the number of partitions is 
no longer limited by hardware. However, the trade-off is that some of the 
partitions may experience slightly less than optimal storage performance.

In the test results that follow, we see that the overhead of virtual SCSI in both 
SCSI and a FAStT implementation is small, and clients should assess the 
benefits of the virtual SCSI implementation for their environment. Simultaneous 
multithreading should be enabled in a virtual SCSI environment. With low I/O 
loads and a small number of partitions, micro-partitioning of the Virtual I/O 
Server partition has little effect on performance. For more efficient virtual SCSI 
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implementation with larger loads, it may be advantageous to keep the Virtual I/O 
Server partition as a dedicated processor.

Virtual storage can still be manipulated using the Logical Volume Manager the 
same as an ordinary physical disk. Some performance considerations from 
dedicated storage are still applicable when using virtual storage, such as 
spreading hot logical volumes across multiple volumes on multiple virtual SCSI 
so that parallel access is possible, the intra-disk policy (from the server’s point of 
view, a virtual drive can be served using an entire drive, or a logical volume of a 
drive). If the entire drive is served to the client, then the rules and procedures 
apply on the client side as if the drive were local. If the server partition provides 
the client with a partition of a drive and a logical volume, then the server decides 
the area of the drive to serve to the client when the logical volume is created and 
sets the inter-policy to maximum. This spreads each logical volume across as 
many virtual storage devices as possible, allowing reads and writes to be shared 
among several physical volumes.

Consider the following general performance issues when using virtual SCSI:

� If not constrained by processor performance, virtual disk I/O throughput is 
comparable to local attached I/O.

� Virtual SCSI is a client/server model, so the combined CPU cycles required 
on the I/O client and the I/O server will always be higher than local I/O.

� If multiple partitions are competing for resources from a virtual SCSI server, 
care must be taken to ensure that enough server resources (processor, 
memory, and disk) are allocated to do the job.

� There is no data caching in memory on the Virtual I/O Server partition. Thus, 
all I/Os that it services are essentially synchronous disk I/Os. As there is no 
caching in memory on the server partition, its memory requirements should 
be modest.

In general, applications are functionally isolated from the exact nature of their 
storage subsystems by the operating system. An application does not have to be 
aware of whether its storage is contained on one type of disk or another when 
performing I/O. But different I/O subsystems have subtly different performance 
qualities, and virtual SCSI is no exception. What differences might an application 
observe using virtual SCSI versus directly attached storage? Broadly, we can 
categorize the possibilities into I/O latency and I/O bandwidth.

We define I/O latency as the time that passes between the initiation of I/O and 
completion as observed by the application. Latency is a very important attribute 
of disk I/O. Consider a program that performs 1000 random disk I/Os, one at a 
time. If the time to complete an average I/O is six milliseconds, the application 
will run no less than 6 seconds. However, if the average I/O response time is 
reduced to three milliseconds, the application’s run time could be reduced by 
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three seconds. Applications that are multi-threaded or use asynchronous I/O may 
be less sensitive to latency, but under most circumstances, less latency is better 
for performance.

We define I/O bandwidth as the maximum data that can be read or written to 
storage in a unit of time. Bandwidth can be measured from a single thread or 
from a set of threads executing concurrently. Though many commercial codes 
are more sensitive to latency than bandwidth, bandwidth is crucial for many 
typical operations such as backup and restore of persistent data.

Because disks are mechanical devices, they tend to be rather slow when 
compared to high-performance microprocessors such as POWER5. As such, we 
will show that virtual SCSI performance is comparable to directly attached 
storage under most workload environments.

Virtual SCSI latency 
Because virtual SCSI is implemented as a client/server model, naturally there is 
some extra latency that does not exist with direct attached storage. We define 
this extra latency as the additional amount of time necessary to complete an I/O 
operation when compared to the same operation on a locally attached device. 
Figure 6-45 on page 223 shows that this additional time varies from 0.03 to 0.06 
ms per I/O operation depending primarily on the block size of the request using a 
dedicated Virtual I/O Server partition. It is comparable for both the physical disk 
and logical volume backed virtual drives. The latency experienced when using a 
Virtual I/O Server partition in a micro-partition may be higher and certainly more 
variable than using a dedicated I/O server partition.
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Figure 6-45   Latency for dedicated disk and logical volumes

For comparison purposes, Figure 6-46 on page 224 shows the average response 
times for locally attached I/O using one FAStT700 RAID0 LUN with five physical 
drives, caching enabled without write-cache mirroring. These measurements 
conduct sequential I/O, enabling the reads to be satisfied from the disk read 
cache and the writes to be cached in the FAStT700 controller. Because of 
caching, the physical I/Os in the test have much lower latency than in typical 
commercial environments, where random reads are not satisfied from cache so 
often. Nonetheless, the additional virtual SCSI latency for these low-latency 
caches is small compared to the actual disk latency. For I/Os with reads that are 
not cached by the controller, the virtual SCSI latency is small enough to be 
inconsequential.

Also observed the average disk response time increases with the block size. The 
latency increases in performing a virtual SCSI operation are relatively greater on 
smaller block sizes because of their shorter response time.
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Figure 6-46   Response times for dedicated I/O

Virtual SCSI bandwidth
Figure 6-47 on page 225 compares virtual SCSI to native I/O performance on 
bandwidth tests. In these tests, a single thread operates sequentially on a 
constant file that is 256 MB in size, again with a dedicated Virtual I/O Server 
partition. More I/O operations are issued when reading or writing to the file using 
a small block size than with a larger block size. This figure shows a comparison 
of measured bandwidth using virtual SCSI and local attachment for reads with 
varying block sizes of operations. The difference between virtual I/O and native 
I/O in these tests is attributable to the increased latency using virtual I/O. 
Because of the larger number of operations, the bandwidth measured with small 
block sizes is much lower than with large block sizes.
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Figure 6-47   Native to virtual SCSI I/O comparison

Figure 6-48 on page 226 shows that virtual SCSI performance using a dedicated 
I/O server partition scales comparably to that of a similar native I/O-attached 
configuration to very high bandwidths. The experiment uses one FAStT disk and 
arrays of seven FAStT disks. Each array is attached to one Fiber Channel 
adapter. All I/Os use a blocksize of 128 KB. The difference in bandwidth between 
reads and writes is due to the cache in the FAStT controller. The experiment 
shows that the difference in bandwidth using virtual SCSI or native disks is not 
significant. 
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Figure 6-48   Native virtual SCSI bandwidth scaling

6.8.7  Sizing a virtual SCSI server
There are considerations to address when designing and implementing a virtual 
SCSI environment. The primary considerations are: 

� Memory requirements
� Micro-Partitioning or dedicated processor partitions

One thing that does not have to be factored into sizing is the processor impact of 
using virtual I/O on the client. The processor cycles executed on the client to 
perform a virtual SCSI I/O are comparable to that of a locally attached I/O. Thus, 
there is no increase or decrease in sizing on the client partition for a known task. 
These sizing techniques do not address a Virtual I/O Server that uses both 
virtual SCSI and virtual Ethernet. If the two are combined, additional resources 
must be anticipated to support virtual Ethernet activity.

Memory requirements
The architecture of virtual SCSI simplifies memory sizing in that there is no 
caching of file data in the memory of the virtual SCSI server, so the memory 
requirements for the virtual SCSI server are fairly modest. With large I/O 
configurations and very high data rates, a 1 GB memory allocation for the virtual 
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SCSI server is more than sufficient. For low I/O rate cases with a small number of 
attached disks, 512 MB is a sufficient memory allocation.

Dedicated processor partitions
The amount of processor entitlement required for a virtual SCSI server is based 
on the maximum I/O rates required of it. Most virtual SCSI servers will not run at 
maximum I/O rates all the time, so the use of surplus processor time is potentially 
wasted by using dedicated processor partitions. In this section, we propose two 
sizing methodologies. For the first, you need a fair understanding of the I/O rates 
and I/O sizes required of the virtual SCSI server. In the second, we size the 
virtual SCSI server based more on the I/O configuration.

Sizing against expected I/O traffic
Our sizing methodology is based on the observation that processor time required 
to perform an I/O on the virtual SCSI server is fairly constant for a given I/O size. 
It is true that different devices (for example, SCSI and FAStT) have subtly varying 
efficiencies. But under most circumstances, the I/O devices supported by the 
virtual SCSI server are sufficiently similar to provide good recommendations. 
Table 6-13 shows the recommendations for both physical disk and LVM 
operations on a 1.65 GHz POWER5 processor with simultaneous multithreading 
enabled. These numbers are measured at the physical processor. For other I/O 
server CPU frequencies, you can adjust the cycles in Table 6-13 by multiplying 
the cycles per operation by the ratio of the frequencies. For example, to adjust for 
a 1.5 GHz CPU, 1.65 GHz / 1.5 GHz = 1.1, so multiply the CPU cycles in the 
table by 1.1 to get the required cycles per operation.

Table 6-13   I/O CPU cycles required for various block sizes

Figure 6-49 on page 228 shows a comparison of native I/O and virtual SCSI 
cycles per byte (CPB) using both logical volume–backed storage and physical 
disk–backed storage. The virtual SCSI measures are of only the Virtual I/O 
Server partition and do not include the client in the comparison. The processor 
efficiency of I/O improves with larger I/O size. Effectively, there is a fixed latency 
to start and complete an I/O, with some additional cycle time based on the size of 
the I/O.

4K 8K 32K 64K 128K

Physical Disk 45,000 47,000 58,000 81,000 120,000

LVM 49,000 51,000 59,000 74,000 105,000
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Figure 6-49   Comparison of native I/O to virtual SCSI

Configuration example
Consider a Virtual I/O Server partition that supports three client partitions on 
physical disk backed storage. The first client partition requires a maximum of 
7,000 8-KB operations per second. The second client partition requires a 
maximum of 10,000 8-KB operations per second. The third client partition 
requires a maximum of 5,000 128-KB operations per second. The number of 
1.65 GHz processors for this requirement is approximately:

(7,000*47,000+10,000*47,000+5,000*120,000)/1,650,000,000) = 0.85 processors

We round up this total to one processor, as we are not using Micro-Partitioning.

Sizing against installed storage
An alternative approach, if you do not know the I/O rates of the client partitions, is 
to size the virtual SCSI server to the maximum I/O rate of the attached storage 
subsystem. The sizing could be biased to small I/Os or large I/Os. Sizing to 
maximum capacity for large I/Os balances the processor capacity of the virtual 
SCSI server to the potential I/O bandwidth of the attached I/O. The negative facet 
of this sizing methodology is that, in nearly every case, we will assign more 
processor entitlement to the virtual SCSI server than it typically consumes.

Consider a case where an I/O server manages 32 physical SCSI disks. We can 
arrive at an upper bound of processors required based on assumptions about the 
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I/O rates that the disks can achieve. If it is known that the workload is dominated 
by 8 KB operations that are random, we could assume that each disk is capable 
of approximately 200 disk I/Os per second (15 K rpm drives). At peak, the I/O 
server would have to service approximately 32 disks * 200 I/Os per second * 
120,000 cycles per operation, resulting in a requirement for approximately 19% 
of one processor performance. Viewed another way, an I/O server running on a 
single processor should be capable of supporting more than 150 disks serving 
8 KB random I/Os for other partitions’ CPUs.

Alternatively, if the server is sized for maximum bandwidth, the calculation will 
result in a much higher processor requirement. The difference is that maximum 
bandwidth assumes sequential I/O. Because disks are much more efficient when 
performing large sequential I/Os than small random I/Os, we can drive a much 
higher number of I/Os per second. Assume that the disks are capable of 50 MB 
per second when doing 128 KB I/Os. That implies that each disk could average 
390 disk I/Os per second. Thus, the entitlement necessary to support 32 disks, 
each doing 390 I/Os per second with an operation cost of 120,000 cycles 
(32*390*120,000/1,650,000,000), is approximately 0.91 processors. Simply put, 
an I/O server running on a single processor should be capable of driving 
approximately 32 fast disks to maximum throughput. 

This sizing method can be very wasteful of processor entitlement when using 
dedicated processor partitions, but will guarantee peak performance. It is most 
effective if the average I/O size can be estimated so that peak bandwidth does 
not have to be assumed.

Sizing when using Micro-Partitioning
Defining virtual SCSI servers in micro-partitions enables much better granularity 
of processor resource sizing and potential recovery of unused processor time by 
uncapped partitions. Tempering those benefits, use of micro-partitions for virtual 
SCSI servers slightly increases I/O response time and creates somewhat more 
complex processor entitlement sizings.

The sizing methodology should be based on the same operation costs as for 
Virtual I/O Server partition. However, additional entitlement should be added for 
running in micro-partitions. We recommend that the Virtual I/O Server partition 
be configured as uncapped so that if it is undersized, it is possible to get more 
processor time to service I/O.

Because I/O latency with virtual SCSI varies with the machine utilization and 
Virtual I/O Server topology, consider the following:

1. For the most demanding I/O traffic (high bandwidth or very low latency), try to 
use native I/O.
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2. If native I/O is not an option and the system contains enough processors, 
consider putting the Virtual I/O Server in a dedicated processor partition.

3. If using a Micro-Partitioning Virtual I/O Server, use as few virtual processors 
as possible.

6.9  Summary
Virtualization is an innovative technology that redefines the utilization and 
economics of managing an on demand operating environment. The POWER5 
architecture provides new opportunities for clients to take advantage of 
virtualization capabilities. Virtual I/O provides the capability for a single physical 
I/O adapter to be used by multiple logical partitions of the same server, enabling 
consolidation of I/O resources.

Overhead of virtual SCSI in both a SCSI and a FAStT implementation is small, 
and clients should assess the benefits of the virtual SCSI implementation for their 
environment. Simultaneous multithreading should be enabled in a virtual SCSI 
environment. With low I/O loads and a small number of partitions, 
Micro-Partitioning of the Virtual I/O Server partition has little effect on 
performance. For a more efficient virtual SCSI implementation with larger loads, 
it may be advantageous to keep the I/O server as a dedicated processor. LVM 
mirroring should be used for redundancy. 

Virtual SCSI implementation is an excellent solution for clients looking to 
consolidate I/O resources with a modest amount of processor overhead. The 
new POWER5 virtual SCSI capability creates new opportunities for 
consolidation, and demonstrates strong performance and manageability.
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Part 2 Virtualization 
support and 
tuning

In this part we look at the changes to performance tools in the AIX 5L Version 5.3 
operating system, POWER5 processor–based system performance, application 
tuning, and the Partition Load Manager.

Part 2
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Chapter 7. AIX 5L Version 5.3 operating 
system support

In this chapter we discuss what is new in AIX 5L V5.3 from a performance and 
POWER5 point of view in the following sections:

� Physical and virtual processors

� Simultaneous multithreading

� Metrics problems

� Updated and new performance commands

� Logical Volume Manager

� Paging space

� Physical and virtual networks

7
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7.1  Introduction
The appropriate version of AIX 5L for POWER5 is AIX 5L Version 5.3 for 
virtualization, which has modifications for the new functionalities of the POWER5 
processor. AIX 5L Version 5.2 is also supported but cannot use the new features 
of POWER5. Versions prior to AIX 5L V5.2 are not supported.

The implementation of the logical processor abstraction is provided by the 
POWER5 architecture and the POWER Hypervisor firmware. From an operating 
system perspective, a logical processor is indistinguishable from a physical 
processor.

7.1.1  Processors
Before AIX 5L V5.3, physical processors were dedicated to partitions. With the 
virtualization capabilities of the POWER5 architecture, the concept of a logical 
processor can be used by the operating system.

Logical processors
A logical processor is seen by the operating system as being a single physical 
processor. In reality, it is just a single hardware thread on the processor. 
Changes to ODM have been made to reflect the new type of processors, 
Example 7-1 shows attributes of a POWER4 processor and Example 7-2 shows 
two new attributes for a POWER5 processor. The attributes of processors are 
exactly the same whether the operating system is running with a dedicated 
processor or in Micro-Partitioning.

Example 7-1   Attributes of POWER4 processor

lsattr -El proc3
frequency 1499960128     Processor Speed False
state     enable         Processor state False
type      PowerPC_POWER4 Processor type  False

Example 7-2   Attributes of POWER5 processor

# lsattr -El proc0
frequency   1656424000     Processor Speed       False
smt_enabled false          Processor SMT enabled False
smt_threads 2              Processor SMT threads False
state       enable         Processor state       False
type        PowerPC_POWER5 Processor type        False
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Optimizations
For the most part, AIX 5L V5.3 should be able to run and function on a 
Micro-Partitioning system with no changes. However, to optimize OS 
performance as well as the collective performance of all shared partitions, it is 
important for the OS to add some specific Micro-Partitioning optimizations. 
These optimizations involve giving up the processor in the idle process so that 
another logical processor in our partition or so even another partition could use it.

We can call two POWER Hypervisor calls to control those optimizations:

H_CEDE Used to give processor cycles to the pool.

H_PROD Used to restore processor cycles to the processor that 
has ceded them.

Simultaneous multithreading
On AIX 5L V5.3 with simultaneous multithreading enabled, each hardware thread 
is supported as a separate logical processor. A dedicated partition with one 
physical processor is seen under AIX 5L V5.3 as a partition with two logical 
processors, as shown in Figure 7-1. The same applies to Micro-Partitioning: A 
logical processor partition is configured by AIX 5L V5.3 as a logical six-way 
partition. The two hardware threads are also called sibling threads.

Figure 7-1   Logical versus physical processors

Simultaneous multithreading can be enabled or disabled dynamically with the 
smtctl command. The change can also be made at next boot and persists 
across system boots. By default, simultaneous multithreading is enabled.

The syntax of the smtctl command is:

smtctl [ -m off | on [ -w boot | now]]

Logical 
CPU1

Logical 
CPU0

Physical CPU

AIX 5L V5.3 layer

Physical layerThread1Thread0
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When you enter the command without any flags, it returns information about the 
status of simultaneous multithreading on your system as shown in Example 7-3.

Example 7-3   smtctl command example

# smtctl

This system is SMT capable.

SMT is currently enabled.

SMT boot mode is not set.

Processor 0 has 2 SMT threads
SMT thread 0 is bound with processor 0
SMT thread 1 is bound with processor 0

The boot image includes an option for simultaneous multithreading. If the 
simultaneous multithreading mode is changed, the boot image must be 
recreated; otherwise at the next reboot the simultaneous multithreading mode 
will be the same as the previous boot.

Normally, AIX 5L V5.3 maintains sibling threads at the same priority but will boost 
or lower thread priorities in a few key places to optimize performance. AIX 5L 
V5.3 lowers thread priorities when the thread is doing non-productive work 
spinning in the idle loop or on a kernel lock. When a thread is holding a critical 
kernel lock, AIX 5L V5.3 boosts the thread priorities. These priority adjustments 
do not persist into user mode. AIX 5L V5.3 does not consider a software thread a 
dispatching priority when choosing its hardware thread priority.

Several scheduling enhancements were made to exploit simultaneous 
multithreading. For example, work will be distributed across all primary threads 
before being dispatched to secondary threads, because the performance of a 
thread is best when its sibling thread is idle. AIX 5L also considers thread affinity 
in idle stealing and periodic run queue load balancing.

For detailed information about simultaneous multithreading, refer to Chapter 3, 
“Simultaneous multithreading” on page 41.

Metrics problems
A dedicated partition that is created with one real processor is configured by 
AIX 5L V5.3 as a logical two-way by default. This is independent of the partition 
type, so a shared partition with two logical processors is configured by AIX 5L 
V5.3 as a logical four-way by default. Logically, the only supported kernel in a 
simultaneous multithreading environment is the multiprocessor.
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In traditional processor utilization, data collection is sample-based. There are 
100 samples per second sorted into four categories:

user Interrupted code outside AIX 5L V5.3 kernel.

sys Interrupted code inside AIX 5L V5.3 kernel and current 
running thread is not waitproc.

iowait Current running thread is waitproc and there is an I/O 
pending.

idle Current running thread is waitproc and there is no I/O 
pending.

Each sample corresponds to a 10 ms (1/100 sec.) clock tick. These are recorded 
in the sysinfo (system-wide) and cpuinfo (per-processor) kernel data structures. 
To preserve binary compatibility, this stayed unchanged with AIX 5L V5.3.

Of course, this greatly affects the metrics. Traditional utilization metrics are 
misleading because the tools believe that there are two physical processors 
when in fact we only have one. As an example, one thread 100% busy and one 
thread idle would result in 50% utilization, but the physical processor is really 
100% busy. This is similar to what happened with hardware multithreading, and 
the same problem exists with hyperthreading.

New metrics
The displayed %user, %sys, %idle, %wait are now calculated using the 
PURR-based metrics. Using the example in which one thread is 100% busy and 
the other is idle, reported utilization would no longer be 50% but the correct 
100%. This is because one thread would receive (almost) all of the PURR 
increments and the other (practically) none, meaning 100% of PURR increments 
would go into the %user and %sys buckets. This is a more reasonable indicator 
of the division of work between the two threads. Unfortunately, this hides the 
simultaneous multithreading gain.

We now show the new metrics on AIX 5L V5.3 with simultaneous multithreading. 
We measure two different times: the thread’s processor time and the elapsed 
time. For the first, we use the thread’s PURRs, which are now virtualized. To 
measure the elapsed time we use the Timebase register (TB).

Note: Performance tools such as vmstat, iostat, and sar convert tick counts 
from the sysinfo structure into utilization percentages for the machine or 
partition. For other tools, such as sar -P ALL and the topas “hot cpu” section, 
there is a conversion of tick counts from cpuinfo into utilization percentages 
for a processor or thread.
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For the physical resource utilization metric for a logical processor, we use (delta 
PURR/delta TB), which represents the fraction of the physical processor 
consumed by a logical processor, and ((delta PURR/delta TB)*100) over an 
interval to represent the percentage of dispatch cycles given to a logical 
processor.

Using PURR-based samples and entitlement, we calculate the “physical” 
processor utilization metrics. As an example we have:

%sys = (delta PURR in system mode/entitled PURR)*100 

entitled PURR equals (ENT*delta TB) and ENT is entitlement in number of 
processors (entitlement/100).

When we need to know how much physical processor is being consumed (PPC) 
we use sum(delta PURR/delta TB) for each logical processor in a partition. The 
result is in decimal number of processors.

We also may need the percentage of entitlement consumed: (PPC/ENT)*100.

Another useful metric is the available pool of processors. Taking the pool idle 
count (PIC), which represents clock ticks where the POWER Hypervisor was idle 
(that is, all partition entitlements are satisfied and there is no partition to 
dispatch), then we have (delta PIC/delta TB).

This also results in decimal number of processors.

Logical processor utilization is useful for figuring out whether to add more logical 
processors to a partition. We calculate it by summing the old 10 ms tick-based 
%sys and %user.

There are two other usages for the PURR. The first is the measurement of 
relative simultaneous multithreading split between threads and is simply the ratio 
purr0/purr1. To know the fraction of time partition1 ran on a physical processor 
(the relative amount of processing units consumed), use 
(purr0+purr1)/timebase0.

Binary compatibility
As with every release of AIX 5L, the maintenance of the binary compatibility is a 
requirement. In a Micro-Partitioning LPAR, commands such as the 
bindprocessor continue to work, albeit binding to the logical processor and not a 
physical processor. This aspect could possibly cause problems for an application 
or kernel extension, which is dependent on executing on a specific physical 
processor. For example, the AIX 5L V5.3 Floating-Point Diagnostic Test unit 
relied on the ability to bind itself to and execute the FP test unit to completion on 
each physical processor in the system.
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Another example is the bindintcpu command, which enables an administrator to 
bind bus interrupt levels to specific processors. In Micro-Partitioning, AIX 5L V5.3 
supports it, and will bind interrupts to logical processors. However, it will have no 
effect on the original intent of this command, which was to control the physical 
distribution of interrupts. The impact will be no absolute control over the routing 
of interrupts to physical processors when running in Micro-Partitioning mode. We 
do not expect this to be a significant risk because that type of physical resource 
management does not make sense in a Micro-Partitioning environment, and 
workloads that require specific distribution of interrupts probably would not be 
candidates for running in a Micro-Partitioning environment.

There could also be an impact on third-party performance tools due to resulting 
inconsistent or erroneous statistics, unless those tools become Micro-Partitioning 
aware. 

7.1.2  Dynamic re-configuration
Dynamic operations enable the addition or removal of resources from a logical 
partition without rebooting. 

A dynamic remove operation on a CPU may fail for various reasons; the most 
common reason for a removal failure is because a process is bound to a 
processor. To provide more information to the user, the cpupstat command was 
added. It helps to identify processes bound to logical processors. Example 7-4 
shows that the cpupstat command first checks WLM classes, then rset 
attachments, and finally the logical processor number 2. If a process is bound to 
a processor, it can be unbound with the bindprocessor command. The highest 
bind ID is removed if the processor dynamic removal operation succeeds. 

Example 7-4   cpupstat output

# cpupstat -i 2
0 WLM classes have single CPU rsets with CPU ID 2.
0 processes have single CPU rset attachments with CPU ID 2.
0 processes are bound to bind ID 2.

7.1.3  Existing performance commands enhancement
Due to simultaneous multithreading, Micro-Partitioning, and the ability to 
dynamically change some parameters, it was necessary to make some changes 
to the old tools. (See 8.1, “Performance commands” on page 258.)

If simultaneous multithreading is enabled or in a Micro-Partitioning environment, 
the vmstat, iostat, and sar commands automatically use the new PURR-based 
data and formula for %user, %sys, %wait, and %idle.
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In Micro-Partitioning mode, new metrics are displayed, Example 7-5 shows the 
traditional output of vmstat command run on a dedicated partition.

Example 7-5   vmstat on a dedicated partition

# vmstat 2

System configuration: lcpu=2 mem=1024MB

kthr    memory              page              faults        cpu
----- ------------ ------------------------ ------------ -----------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa
 0  0 56057 196194   0   0   0   0    0   0   3   68 191  0  0 99  0
 0  0 56058 196192   0   0   0   0    0   0   2    6 183  0  0 99  0

Example 7-6 shows the same vmstat command run on a micro-partition, adding 
the columns pc (physical processor consumed) and ec (entitled capacity 
consumed).

Example 7-6   vmstat on micro-partition

# vmstat 2

System configuration: lcpu=6 mem=512MB ent=0.3

kthr    memory              page              faults              cpu
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 0  0 46569 73370   0   0   0   0    0   0   1   73 149  0  1 99  0  0.00   1.5
 0  0 46577 73360   0   0   0   0    0   0   0    7 147  0  0 99  1  0.00   1.1

The following list gives the new metrics for each command:

� vmstat
– Number of physical processors consumed.
– Percentage of entitled capacity consumed.

� iostat
– Percentage of entitled capacity consumed.
– Percentage of physical processor consumed.

� sar
– Number of physical processors consumed.
– Percentage of entitled capacity consumed.

� topas
– Number of physical processors consumed.
– Percentage entitlement consumed.
– New display dedicated to logical processors.
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All of these tools have a new feature called dynamic configuration support. They 
need it because we no longer work in a static environment with a fixed number of 
processors and memory. This way the tools start by a new pre-header with the 
configuration but if the configuration changes, there is a warning. The tool then 
prints the current iteration line, followed by the summary line (in a sar case). The 
tool shows a new configuration pre-header and the regular header for the tool 
and continues. Obviously, each tool is monitoring a different set of configuration 
parameters, but when running in a shared partition, they all monitor the 
entitlement. In Example 7-7, while vmstat is running on a one logical processor 
partition, a configuration change occurred. The warning message is displayed, 
then the new configuration shows that a processor has been added.

Example 7-7   vmstat pre-header

# vmstat 2

System configuration: lcpu=1 mem=1024MB

kthr    memory              page              faults        cpu
----- ----------- ------------------------ ------------ -----------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa
 0  0 59481 193172   0   0   0   0    0   0   3   67  95  0  0 99  0
 0  0 59481 193172   0   0   0   0    0   0   4   12  94  0  0 99  0
1  0 59481 193172   0   0   0   0    0   0   3   17  97  0  0 99  0
System configuration changed. The current iteration values may be inaccurate.
 8  0 59741 192881   0   0   0   0    0   0   2  443  83  0 30 69  0

System configuration: lcpu=2 mem=1024MB

kthr    memory              page              faults        cpu
----- ----------- ------------------------ ------------ -----------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa
 0  0 59773 192849   0   0   0   0    0   0   1   16  87  0  0 99  0
 0  0 59773 192849   0   0   0   0    0   0   0    7  90  0  0 99  0

The trace base tools filemon, netpmon, curt, and splat commands have been 
updated to give accurate information about processor usage.

Another tool that needed modification was trace/trcrpt. In a simultaneous 
multithreading environment, trace can optionally collect PURR register values at 
each trace hook, and trcrpt can display elapsed PURR. The trace tool added 
new trace hooks that enable the tracing of phantom interrupts. All trace-based 
tools will adjust processor times using a preemption hook. In addition, most 
POWER Hypervisor calls are traceable, so they will appear in trcrpt output.

Reporting tools curt and splat can optionally use the PURR values to calculate 
processor times in a simultaneous multithreading environment. For splat the -p 
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option specifies the use of the PURR register. curt shows physical affinity and 
phantom interrupt statistics when in a Micro-Partitioning environment. It also 
shows the POWER Hypervisor call summary reports similar to system calls 
reports, the number of preemptions, and the number of H_CEDE and 
H_CONFER POWER Hypervisor calls for each individual logical processor, as 
shown in Example 7-8.

Example 7-8   curt output - preemptions, H_CEDE and H_CONFER

Processor Summary  processor number 0
              ---------------------------------------
 processing       percent       percent
 total time    total time     busy time
     (msec)  (incl. idle)  (excl. idle)  processing category
===========   ===========   ===========  ===================
       0.02          1.59          1.64  APPLICATION
       0.08          5.26          5.43  SYSCALL
       7.03        471.38        486.24  HCALL
       0.19         12.43         12.82  KPROC (excluding IDLE and NFS)
       0.00          0.00          0.00  NFS
       1.10         73.50         75.81  FLIH
       0.04          2.77          2.86  SLIH
       0.02          1.39          1.44  DISPATCH (all procs. incl. IDLE)
       0.01          0.44          0.45  IDLE DISPATCH (only IDLE proc.)
-----------    ----------       -------
       1.45         96.94        100.00  CPU(s) busy time
       0.05          3.06                IDLE
-----------    ----------
       1.49                              TOTAL

Avg. Thread Affinity = 1.00

Total number of process dispatches = 5
Total number of idle dispatches     = 5

Total Physical CPU time (msec) = 8.64
Physical CPU percentage        = 0.60
Physical processor affinity    =  0.997590
Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).
    PHYSICAL   CPU 0 : 415

Total number of preemptions = 415
Total number of H_CEDE      = 415      with preeemption = 414
Total number of H_CONFER    = 0      with preeemption = 0

Processor Summary  processor number 1
              ---------------------------------------
 processing       percent       percent
 total time    total time     busy time
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     (msec)  (incl. idle)  (excl. idle)  processing category
===========   ===========   ===========  ===================
     243.43         98.65         98.65  APPLICATION
       2.26          0.91          0.91  SYSCALL
       0.03          0.01          0.01  HCALL
       0.00          0.00          0.00  KPROC (excluding IDLE and NFS)
       0.00          0.00          0.00  NFS
       1.07          0.43          0.43  FLIH
       0.00          0.00          0.00  SLIH
       0.01          0.00          0.00  DISPATCH (all procs. incl. IDLE)
       0.01          0.00          0.00  IDLE DISPATCH (only IDLE proc.)
-----------    ----------       -------
     246.77        100.00        100.00  CPU(s) busy time
       0.00          0.00                IDLE
-----------    ----------
     246.77                              TOTAL

Avg. Thread Affinity = 1.00

Total number of process dispatches = 5
Total number of idle dispatches     = 2

Total Physical CPU time (msec) = 246.80
Physical CPU percentage        = 19.74
Physical processor affinity    =  0.997126
Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).
    PHYSICAL   CPU 1 : 348

Total number of preemptions = 348
Total number of H_CEDE      = 2      with preeemption = 2
Total number of H_CONFER    = 0      with preeemption = 0

MAPI
With the new POWER5 processors, it was necessary to update the PMAPI.

There is a new API for POWER5 processor called pm_initialize, which you must 
use instead of the old pm_init API. With the updated PMAPI, there is a new way 
to return event status and characteristics: by bit array instead of char. There is a 
new shared characteristic for processors supporting simultaneous multithreading. 
A shared event is controlled by a signal not specific to a particular thread’s 
activity and sent simultaneously to both sets (one for each thread) of hardware 
counters. There should be an average of counts across sibling threads. The 
added processor features bit array in the pm_initialize has two bits currently 
defined: the POWER Hypervisor mode and runlatch mode. Moreover, 
pm_initialize can also retrieve the event table for another processor instead of the 
old way in which we could only retrieve the tables for the current processor.
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The new PMAPI now supports the M:N threading model, as opposed to the 
previous 1:1 model. This new model enables mapping M user threads to N kernel 
threads, and M is much bigger than N. There is a new set of APIs for third-party 
calls (debugger) generically called pm_*_thread, which differs from the old 
pm_*_thread interfaces in an additional argument to specify ptid. In 1:1 mode, 
there is no need to specify the ptid, but if you specify it, the library will verify that 
the specified pthread runs on the specified kernel thread. On the other hand, to 
use the M:N mode, the ptid must always be specified. If ptid is not specified, then 
there is the assumption that the pthread is currently undispatched. Regarding all 
other APIs, they are unchanged but now work in M:N mode.

With this new API come some new commands, including pmlist and pmcycles. 
pmlist is a utility to dump and search a processor’s event and group tables. It 
currently supports text and spreadsheet output formats.The pmcycles command 
uses the Performance Monitor cycle counter and the processor real-time clock to 
measure the actual processor clock speed in MHz, as shown in Example 7-9.

Example 7-9   pmcycles output

# pmcycles -m
Cpu 0 runs at 1656 MHz
Cpu 1 runs at 1656 MHz
Cpu 2 runs at 1656 MHz
Cpu 3 runs at 1656 MHz
Cpu 4 runs at 1656 MHz
Cpu 5 runs at 1656 MHz

GPROF
The new environment variable GPROF controls the gprof new mode that 
supports multi-threaded applications.

GPROF=[profile:{process|thread}][,][scale:<scaling_factor>][,][file:{one|mu
lti|multithread}] 

Here:

profile Indicates whether it will do thread-level or process-level 
profiling.

scaling_factor Represents the granularity of the collected profiling data.

file Indicates whether it will generate a single or multiple 
gmon.out files.

multi Creates a file for each process (for each fork or exec) 
gmon.out.<progname>.<pid>.

multithread Creates a file for each pthread 
gmon.out.<progname>.<pid>.Pthread<ptid> that can be 
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used to look at one pthread at a time with gprof or 
xprofiler.

The default values for gprof are process for the profile option, a scaling factor of 
2 for process level and 8 for thread level (the thread level profiling consumes 
considerably more memory), and one file for the output. Several flags enable 
optional separate output into multiple files:

-g filename Writes the call graph information to the specified output 
filename. It suppresses the profile information unless -p is 
used.

-p filename Writes flat profile information to the specified output 
filename. It suppresses the call graph information unless -g 
is used.

-i filename Writes the routine index table to the specified output 
filename. If this flag is not used, the index table goes either at 
the end of the standard output or at the bottom of the 
filename (or filenames) specified with -p and -g.

The format of data itself is unchanged but now it can be presented in multiple 
sets in which the first set has cumulative data and the following sets have the 
data per thread.

Graphical tools
As with text-based tools, the processor accounting for graphical tools has to be 
changed to use the new metrics regarding the shared mode environment and 
simultaneous multithreading. Graphics tools such as PTX® 3dmon, PTX xmperf, 
and PTX jtopas have also been updated.

PTX 3dmon and xmperf
The most complete graphical tool, PTX, now uses PURR-based utilization 
metrics and entitlement utilization. An example of a 3dmon display is shown in 
Figure 7-2 on page 246, and xmperf Mini Monitor is shown in Figure 7-3 on 
page 246.
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Figure 7-2   3dmon monitoring two LPARs

Figure 7-3   xmperf Mini Monitor
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PTX jtopas
Shipping with PTX since May 2003, the graphical tool jtopas is a hot-resource 
monitoring tool and a sibling of topas. jtopas starts with a predefined (no setup 
needed) Swing GUI. In the main screen, it shows a set of system metrics and 
hot-resource summaries similar to topas, with access to more detailed 
information for each area. This is a generalization of the P, W, and L commands 
of topas, which provide process, partition, and WLM detail reports. jtopas works 
locally or remotely, and it can generate dynamic reports with up to seven days of 
playback. It keeps data automatically for a week in seven rotating daily files, 
enabling jtopas to generate reports by hour or by day. You can save these 
reports in HTML format or in spreadsheet format. You can have a week-by-days 
report and a day-by-hours report. jtopas is a Swing GUI–enabled application, 
which means that you can minimize or move each window and all resources are 
always available using the scroll bar. jtopas uses the xmtrend daemon. 

Figure 7-4   jtopas default display
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7.1.4  New performance commands
Some new tools have been added for performance tuning in simultaneous 
multithreading or Micro-Partitioning environments.

The following list gives the main features of the lparstat, mpstat, and perfwb 
commands:

� lparstat

– Information and statistics about the partition.

– Details about the configuration of the partition.

– Summary and detailed POWER Hypervisor statistics and information.

– lparstat command output changes depending on the partition mode, as 
shown in Example 7-10 and Example 7-11.

In Micro-Partitioning, the real resource consumed by the user is the 
percentage of CPU user (%user) times percentage of entitlement 
consumed (entc%) times the entitlement (ent). In this case, 18.2% of 
42.4% of 0.30 gives 2.3% of CPU consumed by the user.

The physical processor consumed (physc) is equal to the percentage of 
%entc times ent.

Example 7-10   lparstat output in a dedicated partition

# lparstat

System configuration: type=Dedicated mode=Capped smt=On lcpu=2 mem=1024

%user  %sys  %wait  %idle
-----  ----  -----  -----
 67.6  31.8    0.0    0.6

Example 7-11   lparstat output in Micro-Partitioning

# lparstat

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 ent=0.30

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
 18.2  12.5    0.9   68.4  0.13  42.4    4.3     -  2747     3
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� mpstat

– Basic utilization metrics.

– Logical and physical processor metrics (in simultaneous multithreading 
mode).

– Interrupt metrics.

– Logical processor affinity metrics.

– The mpstat command output changes depending on the partition mode.

� perfwb

– Dynamic process monitoring.

– Partition-wide metrics about processor and memory activity (Figure 7-5).

Figure 7-5   procmon partition-wide metrics
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– Sorted list of processes, as shown in Figure 7-6.

Figure 7-6   procmon: sorted list of processes

– Columns can be added or removed, and sorted in ascending or 
descending order. Actions can be performed on listed processes, such as 
kill, renice, run performance commands, and obtain information.

– Part of the bos.perf.gtools fileset; start Performance Workbench with the 
perfwb command to launch the procmon tool.

For more about performance commands, see 8.1, “Performance commands” on 
page 258.
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7.1.5  Paging space
AIX 5L V5.3 introduces enhanced paging space management algorithms to 
collect paging space as needed. They apply only to deferred page space 
allocation policy. This management may be useful when paging space is almost 
full, for example, due to dynamic memory removal. In that case, if the memory is 
added back to the partition, the paging space will not be freed. This adds some 
constraints on paging space although there is free real memory in the partition.

� Garbage collect paging space on re-pagein

This mechanism applies only to deferred page space allocation policy. A new 
mechanism determines whether to free a disk block after a pagein operation, 
depending on the free space remaining in the paging space.

� Garbage collect paging space scrubbing for in-memory frames

This mechanism tries to reclaim paging space disk blocks for pages that are 
already in memory, if the free space that is available in the paging space 
decreases under a tunable limit.

Tuning parameters for paging space garbage collection
Tuning on paging space parameters is performed with the vmo command. New 
parameters include:

npsrpgmin Low paging space threshold for re-pagein garbage 
collector to start.

npsrpgmax High paging space threshold for re-pagein garbage 
collector to stop.

rpgclean Configures re-pagein garbage collector to be active when 
a page is read or when a page is read or write.

rpgcontrol Enables or disables re-pagein garbage collector.

npssrubmin Low paging space threshold for garbage collector 
scrubbing to start.

npsscrubnax High paging space threshold for garbage collector 
scrubbing to stop.

scrubclean Configures garbage collector scrubbing to be active when 
a page is read or when a page is read or write.

scrub Enables or disables garbage collector scrubbing.
 Chapter 7. AIX 5L Version 5.3 operating system support 251



7.1.6  Logical Volume Manager (LVM)
Several improvements have been made to the AIX 5L V5.3 Logical Volume 
Manager that concern performance.

Scalable volume group
The new scalable volume group supports up to 1024 disks. This expands the 
capacity of the volume groups but needs a substantially larger volume group 
descriptor area (VGDA) and volume group status area (VGSA). Increasing 
maximum logical volumes or maximum physical partitions per volume group from 
the defaults toward the limits increases the amount of metadata (VGDA or VGSA) 
that must be read or written during LVM operations. Every VGDA update 
operation (creating a logical volume, changing a logical volume, adding a 
physical volume, and so on) might take longer to run, as LVM keeps a copy of 
metadata on each physical volume. In previous AIX 5L releases, the maximum 
number of PPs was defined per disk; it is now defined per volume group. The 
limits for each type of volume group are listed in Table 7-1.

Table 7-1   Maximum values for volume groups

Variable logical track group (LTG)
The LVM device driver breaks I/O into LTG-size chunks before passing the I/O to 
the device driver of the underlying disks. LTG size is an attribute of the volume 
group. In the previous release, LTG size was defined at volume group creation or 
update; now it is determined at vary on time and will be dynamically updated if a 
physical volume is added or removed in the volume group. AIX 5L V5.3 enables 
the stripe size of a logical volume to be larger than the LTG size of the volume 
group, which was not allowed previously. Also, AIX 5L V5.3 now supports larger 
LTG sizes and stripe sizes. Valid LTG and stripe sizes are listed in Table 7-2.

Table 7-2   LTG and stripe sizes

VG type PVs LVs PPs PP size

Normal VG 32 256 1016 per disk 1 GB

Big VG 128 512 1016 per disk 1 GB

Scalable VG 1024 4096 2097152 per VG 128 GB

AIX release Valid LTG sizes Valid stripe sizes

AIX 5L V5.2 and 
previous

128 KB, 256 KB, 
512 KB, 1 MB

4 KB, 8 KB, 16 KB, 32 KB, 64 KB, 
128 KB, 256 KB, 512 KB, 1 MB

AIX 5L V5.3 adds support for 2 MB, 
4 MB, 8 MB, 16 MB

adds support for 2 MB, 4 MB, 8 MB, 
16 MB, 32 MB, 64 MB, 128 MB
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Performance improvements
LVM metadata (VGDA and VGSA) must be stored in every single disk in a 
volume group. To improve performance, AIX 5L V5.3 writes all metadata in 
parallel. There is one thread for each disk in the volume group. Previously, some 
commands that would read data, utilize a small piece, then read again, and 
utilize a small piece. They now read the metadata once and keep it accessible 
throughout the life of the command. Special focus was put on these commands: 
extendvg, importvg, mkvg, varyonvg, chlvcopy, mklvcopy, lslv,and lspv.

Striped column
Prior to AIX 5L V5.3, there was no good way to extend a striped logical volume if 
one of the disks was full. The workaround was to back up the data, delete the 
striped logical volume, remake the logical volume with a larger stripe width, then 
restore the data. Now, we can extend a striped logical volume even if one of the 
disks is full. We do this by modifying the maximum number of physical volumes 
for the new allocation, the upper bound. Prior to AIX 5L V5.3, the stripe width and 
upper bound were required to be equal. In AIX 5L V5.3, the upper bound can be 
a multiple of stripe width, where you can think of each stripe as a “column.” You 
can use the extendlv command to extend a striped logical volume into the next 
column. You can use extendlv -u to raise the upper bound and extend the 
logical volume all in one operation (like a combined extendlv and chlv -u).

Volume group pbuf pools
The LVM uses a structure called pbuf to handle disk I/O. In previous versions, 
pbuf pool was a system-wide resource; now each volume group gets its own pbuf 
pool. To manage pbuf, we use the lvmo command, which displays and tunes 
several volume group specific items:

pv_pbuf_count Number of pbufs added when a physical volume is added 
to the volume group. It is tunable with the lvmo command, 
and it takes effect immediately.

total_vg_pbufs Number of pbufs currently available for the volume group. 
It is tunable with the lvmo command, and it takes effect at 
varyonvg time.

max_vg_pbuf_count Maximum number of pbufs for this volume group. It is 
tunable with lvmo command, takes effect at varyonvg 
time.

pervg_blocked_io_count

Number of I/Os that were blocked due to lack of free pbufs 
for this volume group. Can only be displayed; not tunable.
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The lvmo command also displays the following system-wide items:

global_pbuf_count Minimum number of pbufs that are added when a physical 
volume is added to any volume group. It is tunable with 
the ioo command. It takes effect at varyonvg time.

global_blocked_io_count

System-wide number I/Os that were blocked due to lack of 
free pbufs.

For more information about LVM, refer to the redbook AIX 5L Differences Guide 
Version 5.3 Edition, SG24-7463

7.1.7  Virtual local area network (VLAN)
VLAN is a method to logically segment a physical network, which means that 
only adapters belonging to a same VLAN can communicate. AIX 5L V5.3 
supports virtual Ethernet technology, which enables communications between 
logical partitions on the same system using a VLAN.

Shared Ethernet Adapter technology enables the logical partitions to 
communicate with machines that are outside the system without any physical 
Ethernet slots assign to the logical partition. The Shared Ethernet Adapter 
creates a relationship between virtual Ethernet adapters and a real network 
adapter. The Shared Ethernet Adapter is part of the optional Virtual I/O Server.

In a dedicated partition or micro-partition we can configure physical and virtual 
adapters at the same time. Example 7-12 shows two types of adapters, the 
physical ent0 and the virtual ent1. Each has a network address. The Device 
Specific.(YL) field contains in one case (ent0) a real physical location code and 
in the other case (ent1) a logical location code given by the Virtual I/O Server.

Example 7-12   Ethernet adapters

# lsdev -Ccadapter
ent0   Available 02-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent1   Available       Virtual I/O Ethernet Adapter (l-lan)

# lscfg -vl ent0
ent0 U787A.001.DNZ00XY-P1-C2-T1  10/100 Mbps Ethernet PCI Adapter II (1410ff01)

      10/100 Mbps Ethernet PCI Adapter II:
        Part Number.................09P5023
        FRU Number..................09P5023
        EC Level....................H10971A
        Manufacture ID..............YL1021
        Network Address.............000D600A58A4
        ROM Level.(alterable).......SCU015
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        Product Specific.(Z0).......A5204209
        Device Specific.(YL)........U787A.001.DNZ00XY-P1-C2-T1

# lscfg -vl ent1
ent1 U9111.520.10DDEDC-V2-C10-T1  Virtual I/O Ethernet Adapter (l-lan)

        Network Address.............C6BB3000200A
        Displayable Message.........Virtual I/O Ethernet Adapter (l-lan)
        Device Specific.(YL)........U9111.520.10DDEDC-V2-C10-T1

For more about VLAN, refer to 6.5, “Virtual Ethernet” on page 164.

7.1.8  EtherChannel
The EtherChannel technology is based on port aggregation, which means that 
Ethernet adapters are aggregated together and belong to the same network. 
They share the same IP address and the same hardware address. The 
bandwidth of the EtherChannel adapter is increased due to the aggregation of 
physical Ethernet adapters.

Prior to AIX 5L V5.3, addition or removal operations of a physical adapter 
member of an EtherChannel was possible only if the interface was detached or 
not configured. The interface also must be detached in order to modify 
EtherChannel attributes.

With AIX 5L V5.3, the Dynamic Adapter Membership enables addition, removal, 
and update operations at runtime. A failed Ethernet adapter can be replaced 
without IP disruption.

A failover can be manually forced on the condition that the EtherChannel has a 
working backup adapter. This is useful for recovering from a failover caused by a 
failure. The recovery time to primary has been improved.

7.1.9  Partition Load Manager
Partition Load Manager for AIX 5L is a load manager that balances resources 
(processor and memory) between partitions executing within the same physical 
server.

To benefit from Partition Load Manager, the managed partitions must be running 
AIX 5L V5.2 or AIX 5L V5.3. (Linux and i5/OS are not supported.) Partition Load 
Manager works with both dedicated partitions and micro-partitions.

Partition Load Manager allocates resources to partitions according to rules 
defined by the system administrators. In Partition Load Manager terminology, 
 Chapter 7. AIX 5L Version 5.3 operating system support 255



these rules are called policies. The policies define how Partition Load Manager 
assigns unused resources or resources from partitions with low usage to 
partitions with a higher demand, improving the overall resource utilization of the 
system.

Partition Load Manager is implemented using a client/server model. The server 
part of Partition Load Manager is packaged as part of the Advanced Power 
Virtualization feature of Sserver p5 servers. There is no special code to install 
on client partitions that are managed by Partition Load Manager.

The Partition Load Manager client/server model is event-based, not 
polling-based. The PLM server receives events each time one of its managed 
partitions needs extra resources.

When the PLM server starts, it registers several events on each managed 
partition. In order for Partition Load Manager to get system information and 
dynamically reconfigure resources, it requires an SSH network connection from 
the PLM server to the HMC. The Resource Management and Control (RMC) 
services are responsible for gathering all of the status information on the 
managed nodes. The RMC daemon exports system status attributes and 
processes the reconfiguration requests from HMC. With this data and in 
conjunction with the user-defined resource management policy, the PLM server 
decides what to do each time a partition exceeds one of the thresholds defined in 
the Partition Load Manager policies.

Partition Load Manager is presented in more detail in Chapter 10, “Partition Load 
Manager” on page 373.
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Chapter 8. POWER5 system 
performance

This chapter provides information about system performance and how to 
diagnose a problem with a processor, memory, or I/O. We mainly focus on new 
components introduced by the Sserver p5 architecture and virtualization.

The following topics are discussed:

� AIX 5L commands for performance analysis

� Performance and tuning on a system

8
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8.1  Performance commands
Table 8-1 summarizes all of the AIX 5L commands described in this section. 
These commands are used to show typical performance issues in this chapter.

Table 8-1   Commands summary

8.1.1  lparstat command
The lparstat command reports logical partition information and statistics as well 
as POWER Hypervisor statistics. It displays on its first line a summary of the 
partition configuration. Table 8-2 gives a summary for lparstat command (a + 
sign means the command covers this topic).

Table 8-2   lparstat command summary

Command Function Main 
measurement

Page 
number

lparstat Logical partition information and 
statistics

CPU, Hypervisor 258

mpstat Physical and logical processors 
statistics

CPU 264

vmstat CPU and virtual memory monitoring CPU, memory 268

iostat System input/output device monitoring Disk I/O 270

sar Physical, logical processor, and I/O 
monitoring

CPU 272

topas Displays system statistics dynamically. CPU, memory, I/O 275

xmperf Displays a great amount of system 
statistics

CPU, memory, I/O 278

Command name lparstat

Interface type CLI

Updated or new command new

AIX 5L package bos.acct

Measurement
CPU
memory
disk I/O
network
POWER Hypervisor

+

+
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Usage
lparstat { -i | [-H | -h] [Interval [Count]] }

Most important flags
-i Displays information about the configuration of the logical partition.

-h Adds summary POWER Hypervisor information to the default output.

-H Displays detailed POWER Hypervisor information, including statistics 
for each of the POWER Hypervisor calls.

Output examples
In the default mode and on a dedicated partition, the lparstat command shows 
processor utilization in the usual manner (%user, %sys, %idle, %wait), as shown 
in Example 8-1.

Example 8-1   lparstat default mode on a dedicated partition

# lparstat 2

System configuration: type=Dedicated mode=Capped smt=On lcpu=2 mem=1024

%user  %sys  %wait  %idle
-----  ----  -----  -----
 99.2   0.7    0.0    0.0
 99.7   0.3    0.0    0.0
 99.8   0.2    0.0    0.0

In the default mode and on a micro-partition, lparstat adds the following 
information to the output, as shown in Example 8-2 on page 260:

psize Number of online physical processors in the shared pool.

physc Shows the number of physical processor consumed.

%entc Shows the percentage of the entitled capacity consumed.

lbusy Shows the percentage of logical processors utilization that 
occurred while executing at the user and system level.

app Shows the available processing capacity in the shared pool.

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+

Command name lparstat
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vcsw Number of virtual context switches that are the virtual processor 
hardware preemptions.

phint Shows the number of phantom (targeted to another shared 
partition in this pool) interruptions received.

Example 8-2   lparstat default mode on a micro-partition

# lparstat

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=1 
ent=0.30

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
  8.2   3.0    0.2   88.6  0.00   0.2    3.3  0.89 168708  148

An interval and a count can be added to the command to display statistics every 
interval seconds for count iterations. In Example 8-3, the interval is 2 seconds 
and the count is 5.

Example 8-3   lparstat monitoring

# lparstat 2 5

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=1 
ent=0.30

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
 70.2  14.1    0.0   15.6  0.53 175.9   23.4  0.00  2453    31
 62.6  19.8    0.0   17.6  0.49 161.7   18.9  0.08  2611    24
 67.6  16.8    0.0   15.6  0.35 117.9   14.8  0.23  2409    15
 52.6  20.5    0.0   26.8  0.27  88.6   11.4  0.27  2486     8
 61.5  21.2    0.0   17.4  0.32 106.3   11.9  0.22  2829    13

If the partition does not have shared processor pool utilization authority, the app 
column will not be displayed (Example 8-4 on page 261). This option enables the 
logical partition to collect information statistics from the managed system about 
shared processing pool utilization. Shared processors are processors that are 
shared between two or more logical partitions. The processors are held in the 
shared processor pool and are shared among the logical partitions.
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Example 8-4   Logical partition without pool utilization authority

# lparstat 2 5

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=1 
ent=0.30

%user  %sys  %wait  %idle physc %entc  lbusy  vcsw phint
-----  ----  -----  ----- ----- ----- ------  ---- -----
 67.8  16.7    0.0   15.5  0.66 219.6   16.2  3343     3
 60.1  21.6    0.1   18.2  0.47 157.1    7.3  2402     2
 65.6  18.7    0.0   15.6  0.86 287.9   17.3  3714     2
 67.2  16.8    0.0   16.0  0.71 235.6   16.4  3411     2
 67.4  16.5    0.0   16.1  0.66 220.7   17.3  3299     2

To choose this option, connect to the Hardware Management Console (HMC), 
edit the partition properties, click the Hardware tab and the Processor and 
Memory tab, then select the Allow shared processor utilization authority 
check box as in Figure 8-1.

Figure 8-1   Shared processor utilization authority activation
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The -h flag adds the percentage of time spent in POWER Hypervisor (%hypv) 
and the number of POWER Hypervisor calls executed to the default output, as 
shown in Example 8-5.

Example 8-5   lpartsta -h output

# lparstat -h 2

System configuration: type=Shared mode=Capped smt=Off lcpu=2 mem=512 psize=2 
ent=0.30

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint  %hypv hcalls
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----  ----- ------
98.4   1.1    0.0    0.5  0.30  99.7   58.7  0.69   309     3    0.6    153
 98.0   1.1    0.0    0.9  0.30  99.3   55.5  0.69   303     1    0.5    146
 97.9   1.1    0.0    1.0  0.30  99.2   56.9  0.69   304     0    0.6    147
 93.7   1.1    0.0    5.2  0.28  95.0   58.4  0.70   292     0    0.6    143
 72.2   0.9    0.0   26.9  0.22  73.3   59.5  0.77   208     0    0.5     91
95.3   1.0    0.0    3.7  0.29  96.4   53.2  0.70   184     0    0.2     36
 86.9   1.0    0.0   12.2  0.26  88.0   55.9  0.72   258     0    0.4    100
 95.9   1.1    0.0    3.0  0.29  97.2   52.8  0.70   298     0    0.6    146
 98.1   1.0    0.0    0.9  0.30  99.4   56.4  0.69   312     1    0.5    157
 98.4   1.1    0.0    0.5  0.30  99.7   59.8  0.69   314     0    0.6    162
 97.4   1.1    0.0    1.5  0.30  98.7   55.6  0.69   303     0    0.6    157
 98.2   1.1    0.0    0.7  0.30  99.5   56.3  0.69   311     0    0.5    158

For information about the partition, such as minimum and maximum of CPU and 
memory, partition type, and mode use lparstat -i as shown in Example 8-6 on 
page 263. 

The partition type can be one of the following:

Dedicated Processors are dedicated to the partition; simultaneous 
multithreading is disabled.

Dedicated simultaneous multithreading
Processors are dedicated to the partition; simultaneous 
multithreading is enabled.

Shared Partition is configured for Micro-Partitioning; simultaneous 
multithreading is disabled.

Shared simultaneous multithreading
Partition is configured for Micro-Partitioning; simultaneous 
multithreading is enabled.

For more information, see Chapter 3, “Simultaneous multithreading” on page 41.
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The partition mode can be:

Capped Partition is not allowed to consume idle cycles from the 
shared pool. Dedicated LPAR is implicitly capped.

Uncapped Partition may use idle cycles from the shared pool if 
needed.

For more about Micro-Partitioning mode, refer to Chapter 5, “Micro-Partitioning” 
on page 93.

Example 8-6   lparstat -i output

# lparstat -i
Node Name                                  : LPARmicro
Partition Name                             : MicroPartitionAIX53
Partition Number                           : 4
Type                                       : Shared-SMT
Mode                                       : Uncapped
Entitled Capacity                          : 0.30
Partition Group-ID                         : 32772
Shared Pool ID                             : 0
Online Virtual CPUs                        : 3
Maximum Virtual CPUs                       : 5
Minimum Virtual CPUs                       : 2
Online Memory                              : 512 MB
Maximum Memory                             : 1024 MB
Minimum Memory                             : 128 MB
Variable Capacity Weight                   : 128
Minimum Capacity                           : 0.20
Maximum Capacity                           : 0.50
Capacity Increment                         : 0.01
Maximum Dispatch Latency                   : 17995218
Maximum Physical CPUs in system            : 2
Active Physical CPUs in system             : 2
Active CPUs in Pool                        : 1
Unallocated Capacity                       : 0.00
Physical CPU Percentage                    : 10.00%
Unallocated Weight                         : 0

Detailed information about the POWER Hypervisor calls are displayed with the 
lparstat -H command (Example 8-7 on page 264) especially the cede and 
confer values used by the operating system to return processor resources to the 
hardware when it no longer has demand for it or when it is waiting on an event to 
complete. In this example, time spent for cede is 99.2% of the total time spend in 
the POWER Hypervisor.
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Example 8-7   lparstat -H output

# lparstat -H 2 1

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=1 
ent=0.30

           Detailed information on Hypervisor Calls

Hypervisor        Number of    %Total Time   %Hypervisor   Avg Call    Max Call
  Call              Calls         Spent      Time Spent    Time(ns)    Time(ns)

remove                    6            0.0           0.0        268         647
read                      2            0.0           0.0         50         449
nclear_mod                0            0.0           0.0          1           0
page_init                 3            0.0           0.0        405        1989
clear_ref                 0            0.0           0.0          1           0
protect                   0            0.0           0.0          1           0
put_tce                 141            0.0           0.2        689        2100
xirr                     81            0.0           0.2        790        2791
eoi                      80            0.0           0.1        449         927
ipi                       0            0.0           0.0          1           0
cppr                     80            0.0           0.0        221         434
asr                       0            0.0           0.0          1           0
others                    0            0.0           0.0          1           0
enter                    11            0.0           0.0        250         874
cede                    211            6.9          99.2      51344    70485
migrate_dma               0            0.0           0.0          1           0
put_rtce                  0            0.0           0.0          1           0
confer                    0            0.0           0.0          1           0
prod                    151            0.0           0.1        338        1197
get_ppp                   1            0.0           0.0        850        2583
set_ppp                   0            0.0           0.0          1           0
purr                      0            0.0           0.0          1           0
pic                       1            0.0           0.0        125         758
bulk_remove               0            0.0           0.0          1           0
send_crq                 70            0.0           0.1        777        2863
copy_rdma                 0            0.0           0.0          1           0
get_tce                   0            0.0           0.0          1           0
send_logical_lan          3            0.0           0.0       2178        4308
add_logicl_lan_buf        9            0.0           0.0        638        1279
-------------------------------------------------------------------------------

8.1.2  mpstat command
The mpstat command collects and displays performance statistics for all logical 
CPUs in the system. It can show up to 29 new metrics (when using -a option). 
Table 8-3 on page 265 gives a summary of the mpstat command.
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Table 8-3   mpstat command summary

Usage
mpstat [ { -a | -d | -i | -s } ] [ -w ] [ interval [ count ] ]

Most important flags
-d Displays detailed affinity and migration statistics for AIX 5L V5.3 threads.

-i Displays detailed interrupt statistics.

-s Displays simultaneous multithreading utilization report if simultaneous 
multithreading is enabled.

The default mode shows:

� Utilization metrics (%user, %sys, %idle, %wait).

� Major and minor page faults (with and without disk I/O).

� Number of syscalls and interrupts.

� Dispatcher metrics, namely the number of migrations, voluntary and 
involuntary context switches, logical processor affinity (percentage of 
redispatches inside MCM), and run queue size.

� Fraction of processor consumed (simultaneous multithreading or 
Micro-Partitioning only).

� Percentage of entitlement consumed (Micro-Partitioning mode only).

� Number of logical context switches (Micro-Partitioning mode only), meaning 
the hardware preemptions.

Command name mpstat

Interface type CLI

Updated or new command new

AIX 5L package bos.acct

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
++
++
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Output examples
The default mode of the mpstat command shown in Example 8-8 displays the 
following information to show activity for each logical processor:

mpc Total number of interprocessor calls.

cs Total number of logical processor context switches.

ics Total number of involuntary context switches.

mig Total number of thread migrations to another logical processor.

lpa Logical processor affinity. The percentage of logical processor 
redispatches within the scheduling affinity domain 3 (same Multi-chip 
Module).

At the end of the output, the U line displays the unused capacity, and the ALL line 
is the sum of all virtual processors.

Example 8-8   mpstat default output

# mpstat 2 2

System configuration: lcpu=6 ent=0.3

cpu  min  maj  mpc  int   cs  ics   rq  mig lpa sysc us sy wa id   pc  %ec  lcs
  0  135    0    0  688  358  179    0    0 100 3343 38 57  0  4 0.04 12.0  295
  1    0    0    0   46    0    0    0    0   -    0  0 11  0 89 0.01  3.1  290
  2    0    0    0  188  100   50    0    0 100    0  1 51  0 47 0.00  0.9  179
  3    0    0    0   43    0    0    0    0   -    0  0 59  0 41 0.00  0.9  179
  4    0    0    0   56  308  157    0    1 100    9  0 69  0 31 0.00  1.3  215
  5    0    0    0   37    0    0    0    1 100    0  0 30  0 70 0.00  0.7  195
  U    -    -    -    -    -    -    -    -   -    -  -  -  0 81 0.24 81.3    -
ALL  135    0    0 1058  766  386    0    2 100 3352  5  9  0 86 0.06 18.9  676
-------------------------------------------------------------------------------
-
  0   29    0    0  261   34   17    0    0 100  725 43 52  0  4 0.01  3.6   69
  1    0    0    0   14    0    0    0    0   -    0  0 12  0 88 0.00  0.9   69
  2   15    0    0  166  108   53    0    0 100    5  3 59  0 37 0.00  0.8  129
  3    0    0    0   15    0    0    0    0   -    0  0 29  0 71 0.00  0.5  129
  4    0    0    0   23   60   35    0    0 100    0  0 66  0 34 0.00  0.4   61
  5    0    0    0   13    0    0    0    0   -    0  0 20  0 80 0.00  0.2   59
  U    -    -    -    -    -    -    -    -   -    -  -  -  0 94 0.28 93.7    -
ALL   44    0    0  492  202  105    0    0 100  730  2  3  0 96 0.02  6.3  258

In the mpstat -d output shown in Example 8-9 on page 267, the rq column 
shows the run queue size for each logical processor. The columns from S0rd to 
S5rd show the percentage of thread redispatches within a scheduling affinity 
domain. See the definition of “processor affinity” on page 105.
266 Advanced POWER Virtualization on IBM Eserver p5 Servers



Example 8-9   mpstat -d output

# mpstat -d 2 1

System configuration: lcpu=6 ent=0.3

cpu     cs    ics  bound     rq   push S3pull  S3grd  S0rd  S1rd  S2rd  S3rd  S4rd  S5rd   ilcs   vlcs
  0    202    150      0      0      0      0      0  99.1   0.0   0.0   0.9   0.0   0.0    134    285
  1      5      1      0      0      0      0      0   0.0 100.0   0.0   0.0   0.0   0.0      0    411
  2    222    158      0      0      0      0      0  97.1   2.2   0.0   0.7   0.0   0.0    182    330
  3     28     15      0      0      0      0      0  93.3   6.7   0.0   0.0   0.0   0.0      0    520
  4    320    223      0      0      0      0      0  98.9   0.7   0.0   0.4   0.0   0.0     83    370
  5     11      9      0      0      0      0      0  86.7  13.3   0.0   0.0   0.0   0.0      2    452
ALL    788    556      0      0      0      0      0  97.1   2.4   0.0   0.5   0.0   0.0    200   1184

A logical partition receives different kinds of interrupts. Example 8-10 shows for 
each logical processor the following interrupt metrics:

mpcs, mpcr Interrupts used to communicate between processors.

dev Number of hardware interrupts (external interrupts).

soft Number of software interrupts. (When a hardware interrupt takes 
too much time to complete, a software interrupt is created to 
finish the processing.)

dec Number of decrementer interrupts. The decrementer is the 
register used to generate time-based interrupts. AIX 5L loads a 
value in it, the processor decrements the register, and when it 
reaches zero, an interrupt is sent.

ph Number of phantom interrupts (the number of device interrupts 
received by the partition but targeted to another partition in the 
pool). The OS simply returns those to POWER Hypervisor.

Example 8-10   mpstat -i output

# mpstat -i 2 1

System configuration: lcpu=6 ent=0.3

cpu   mpcs   mpcr    dev   soft    dec     ph
  0      0      0     20      5    105      0
  1      0      0     23      0     10      0
  2      0      0     25     48    195      1
  3      0      0     24      0     11      0
  4      0      0     23      0    101      0
  5      0      0     21      0     11      0
ALL      0      0    136     53    433      1
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If simultaneous multithreading is enabled, the mpstat -s command displays 
physical as well as logical processors usage, as shown in Example 8-11. 
Physical processor Proc0 is busy at 17.80%, which is dispatched on logical 
processor cpu0 (14.75%) and on logical processor cpu1 (3.05%). In this case, 
cpu0 and cpu1 are hardware threads for proc0. 

Example 8-11   mpstat -s output

# mpstat -s 2 1

System configuration: lcpu=6 ent=0.3

     Proc0           Proc2           Proc4
     17.80%          16.24%          13.67%
 cpu0    cpu1    cpu2    cpu3    cpu4    cpu5
 14.75%   3.05%  13.51%   2.73%  11.18%   2.49%

8.1.3  vmstat command
The vmstat command reports statistics about kernel threads, virtual memory, 
disks, traps and processor activity. Table 8-4 gives a summary for vmstat.

Table 8-4   vmstat command summary

Usage
vmstat [ -fsviItlw ] [Drives] [ Interval [Count] ]

Command name vmstat

Interface type CLI

Updated or new command update

AIX 5L package bos.acct

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

++
++
+

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
I/O server

+
+
+
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Most important flags
-t Prints the time stamp next to each line of output.

-v Writes to standard output various statistics maintained by the Virtual 
Memory Manager.

Output examples
In Example 8-12, we are running vmstat on an uncapped partition with 0.3 
processing unit. At the beginning the partition is idle, the processor consumed 
(pc) is 0, and the percentage of entitlement consumed (ec) is 1.4%.

As activity begins on the partition, the percentage of CPU usage increases to 
93% because the partition is uncapped and the processor pool is not fully 
utilized. The percentage of entitlement consumed increases to 330% and the 
processor consumed is nearly 1. This means that the partition is running on 
almost a full processor although it has been given only 0.3 processing unit.

Example 8-12   Activity on uncapped partition shown by vmstat command

# lparstat

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=2 
ent=0.30

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
  0.0   0.0    0.2   99.7  0.00   0.1    0.4 1.17 1063520 333

# vmstat 5

System configuration: lcpu=6 mem=512MB ent=0.30

kthr    memory              page              faults              cpu
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 0  0 46863  1408   0   0   0   0    0   0   0   32 139  0  0 99  0  0.00   1.4
 0  0 46865  1406   0   0   0   0    0   0   3   26 177  0  1 99  0  0.00   1.4
 1  0 46903  1368   0   0   0   0    0   0   1 1566 143 93  1  6  0  0.35 118.3
 1  0 46903  1368   0   0   0   0    0   0   1 4323 137 93  0  6  0  0.99 330.8
 1  0 46903  1368   0   0   0   0    0   0   0 4333 137 93  0  6  0  0.99 330.8
 1  0 46903  1368   0   0   0   0    0   0   0 4330 139 93  0  6  0  0.99 330.7
 1  0 46903  1368   0   0   0   0    0   0   0 4259 130 93  0  6  0  0.99 330.5
 1  0 46903  1368   0   0   0   0    0   0   1 4010 130 93  1  6  0  0.91 301.9
 1  0 46903  1368   0   0   0   0    0   0   0 2934 136 93  1  6  0  0.68 225.5
 1  0 46903  1368   0   0   0   0    0   0   0 3578 140 93  1  6  0  0.82 272.6
 1  0 46903  1368   0   0   0   0    0   0   1 2694 134 93  1  7  0  0.63 208.4
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 1  0 46865  1406   0   0   0   0    0   0   0 2311 136 93  1  6  0  0.53 177.6
 0  0 46865  1406   0   0   0   0    0   0   0    8 136  0  0 99  0  0.00   1.1
 0  0 46865  1406   0   0   0   0    0   0   0   10 142  0  0 99  0  0.00   1.2

8.1.4  iostat command
The iostat command is used for monitoring system input/output device loading. 
Table 8-5 gives a summary of the iostat command.

Table 8-5   iostat command summary

Usage
iostat [-astTdmAPqQl] [Drives] [Interval [Count]]

Most important flags
-d Displays drive report only.

-t Displays tty/cpu report only.

-T Prints the time stamp next to each line of output.

Output examples
The iostat output in Example 8-13 on page 271 shows the two new columns:

%physc The percentage of physical processor consumed.

%entc The percentage of entitled capacity consumed.

Command name iostat

Interface type CLI

Updated or new command update

AIX 5L package bos.acct

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+

++

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+
+
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Example 8-13   iostat command

# iostat 2 1

System configuration: lcpu=6 drives=2 ent=0.30

tty: tin tout avg-cpu:  % user  % sys  % idle  % iowait % physc  % entc
0.0 25.0               58.4  22.6   19.1 0.0   0.5  182.4

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0          40.0     440.4     110.6          0       880
cd0              0.0       0.0       0.0          0         0

The iostat command provides a new way to look at asynchronous I/O. You can 
check the statistics of either legacy asynchronous I/O or POSIX asynchronous 
I/O. You can use several flags:

-A Shows processor utilization and asynchronous I/O statistics.

-q Shows adapter individual queues and their request counts.

-Q Shows mounted file systems and their associated adapter queue 
and request counts.

-P Is similar to -A option, but for the POSIX adapter extension data.

When using -A or -P, new columns replace the tty information (Example 8-14):

avgc Average global non-fastpath adapter request count per second for 
the specified interval.

avfc Average fastpath request count per second for the specified interval.

maxg Maximum global non-fastpath adapter request count since the last 
time it fetched this value.

maxf Maximum fastpath request count since the last time it fetched this 
value.

maxr Maximum adapter I/O requests allowed on queue.

Example 8-14   iostat legacy adapter I/O

# iostat -A 3 3

System configuration: lcpu=3 drives=3 ent=2.00

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow physc %entc
        0    0    0    0 4096           42.9 23.4  13.4 20.3   0.0  80.4

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0           0.0       0.0       0.0          0         0
hdisk2          24.3     2293.4     573.4       6972         0
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hdisk1          98.0     32000.0     125.0      48640     48640

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow physc %entc
        0    0    0    0 4096           43.5 23.3  12.6 20.6   0.0  81.3

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0           0.0       0.0       0.0          0         0
hdisk2          21.3     2328.0     582.0       6984         0
hdisk1          99.3     28832.3     127.3      42041     44456

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow physc %entc
        0    0    0    0 4096           43.0 23.5  13.2 20.3   0.0  80.9

Disks:        % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk0           0.0       0.0       0.0          0         0
hdisk2          24.0     2265.3     566.3       6796         0
hdisk1          98.3     28576.3     126.3      41785     43944

8.1.5  sar command
The sar command writes to standard output the contents of selected cumulative 
activity counters in the operating system.

Table 8-6 gives a summary for the sar command.

Table 8-6   sar command summary

Important: Some system resources are consumed in maintaining disk I/O 
history for iostat. Use the sysconfig subroutine or the System Management 
Interface Tool (SMIT) to stop history accounting if it is not needed.

Command name sar

Interface type CLI

Updated or new command update

AIX 5L package bos.acct

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+

+
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Usage
sar [ -Aabcdkmqruvwy ] [ Interval [ Number ]

Most important flags
-t Prints the time stamp next to each line of output.

-v Writes to standard output various statistics maintained by the Virtual 
Memory Manager.

Output examples
The default output of sar in Example 8-15 shows the two new columns:

physc The number of physical processors consumed.

%entc The percentage of entitled capacity consumed.

Example 8-15   Default sar output

# sar 2 5

AIX LPARmicro 3 5 00CDDEDC4C00    10/20/04

System configuration: lcpu=6 ent=0.30

11:28:00    %usr    %sys    %wio   %idle   physc   %entc
11:28:02      70      16       0      15    0.67   224.1
11:28:04      62      20       0      18    0.47   156.0
11:28:06      68      17       0      15    0.78   258.6
11:28:08      66      18       0      16    0.78   258.9
11:28:10      68      16       0      16    0.65   216.9

Average       67      17       0      16    0.67   222.9

The -P ALL output for all logical processors view option of the sar command with 
simultaneous multithreading enabled, or in Micro-Partitioning (Example 8-16 on 
page 274) shows the physical processor consumed physc (delta PURR/delta 
TB). This column shows the relative simultaneous multithreading split between 
processors (the measurement of the fraction of time a logical processor was 
getting physical processor cycles). When running in shared mode, sar displays 

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+

Command name sar
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the percentage of entitlement consumed (%entc), which is ((PPFC/ENT)*100). This 
gives relative entitlement utilization for each logical processor and enables 
system average utilization calculation from logical processor utilization.

Example 8-16   Logical processor usage

# sar -P ALL 2 2

AIX LPARmicro 3 5 00CDDEDC4C00    10/20/04

System configuration: lcpu=6 ent=0.30

11:30:25 cpu    %usr    %sys    %wio   %idle   physc   %entc
11:30:27  0       60      38       0       2    0.09    30.6
          1        0       2       0      98    0.02     7.2
          2       75      24       0       1    0.17    55.3
          3        0       1       0      99    0.03    11.4
          4       78      21       0       1    0.15    49.9
          5        0       2       0      98    0.03     9.5
          -       60      22       0      18    0.49   163.9
11:30:29  0       78      22       0       0    0.23    77.8
          1        0       1       0      99    0.04    14.9
          2       74      25       0       1    0.19    63.6
          3        0       1       0      99    0.03     9.8
          4       84      15       0       1    0.19    63.9
          5        0       1       0      99    0.03     8.9
          -       68      18       0      14    0.72   238.8

Average   0       73      26       0       1    0.16    54.3
          1        0       1       0      99    0.03    11.0
          2       74      25       0       1    0.18    59.5
          3        0       1       0      99    0.03    10.6
          4       82      17       0       1    0.17    56.9
          5        0       1       0      99    0.03     9.2
          -       65      19       0      16    0.60   201.4

Whenever the percentage of entitled capacity consumed is less than 100%, a 
line beginning with U is added to represent the unused capacity (Example 8-17 
on page 275).
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Example 8-17   Unused capacity displayed by sar command

# sar -P ALL 2 1

AIX LPARmicro 3 5 00CDDEDC4C00    10/20/04

System configuration: lcpu=6 ent=0.30

11:31:22 cpu    %usr    %sys    %wio   %idle   physc   %entc
11:31:24  0       21      66       0      13    0.00     0.5
          1        0      11       0      89    0.00     0.1
          2        0      37       0      63    0.00     0.4
          3        0       5       0      95    0.00     0.2
          4        9      48       0      43    0.00     0.3
          5        0       4       0      96    0.00     0.2
          U        -       -       0      98    0.29    98.3
          -        0       1       0      99    0.01     1.7

8.1.6  topas command
The topas command reports selected statistics about the activity on the local 
system. The command displays its output in a format suitable for viewing on an 
80x25 character-based display.

Table 8-3 on page 265 gives a summary for the topas command.

Table 8-7   topas command summary

Command name topas

Interface type CLI

Updated or new command update

AIX 5L package bos.perf.tools

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+
+
+
+

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+
+
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Usage
topas [ -dhimnpwcPLUDW ]

Most important flags
-i Sets the monitoring interval in seconds. The default is 2 seconds.

-L Displays the logical partition display. This display reports data 
similar to what is provided to mpstat and lparstat.

Output examples
The topas output as shown in Example 8-18 has been modified. In addition to 
changes on the main screen, a new one dedicated to virtual processors has 
been added. The new metrics have been applied, so processor utilization is 
calculated using the new PURR-based register and formula when running in 
simultaneous multithreading or Micro-Partitioning mode. When running in 
Micro-Partitioning mode, topas automatically adds new information:

Physc The fractional number of processors consumed.

%Entc The percentage of entitled capacity consumed.

Example 8-18   topas output

Topas Monitor for host:    LPARmicro            EVENTS/QUEUES FILE/TTY
Wed Oct 20 14:20:07 2004   Interval:  2         Cswitch    4080 Readch    46.9M
                                                Syscall   15352 Writech   38.2M
Kernel   28.4   |#########                   |  Reads      3386 Rawin         0
User     56.1   |################            |  Writes     2383 Ttyout      302
Wait      0.4   |#                           |  Forks        68 Igets         0
Idle     15.1   |#####                       |  Execs        56 Namei      1145
Physc =  0.77                     %Entc= 257.2  Runqueue    1.0 Dirblk        0
                                                Waitqueue   0.0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out
en0   39830.3  54316.0  3313.0 78470.1   194.7  PAGING           MEMORY
lo0       0.0      0.0     0.0     0.0     0.0  Faults    15912 Real,MB     511
                                                Steals        0 % Comp     51.1
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  PgspIn        0 % Noncomp  10.4
hdisk0   46.5   6583.3   144.3 12630.0   372.0  PgspOut       0 % Client   12.0
                                                PageIn        9
Name            PID  CPU%  PgSp Owner           PageOut       0 PAGING SPACE
ftpd         200756   8.3   0.9 root            Sios          9 Size,MB     512
ksh          323618   0.0   0.6 root % Used      0.9
topas        290946   0.0   1.1 root            NFS (calls/sec) % Free     99.0
gil           69666   0.0   0.1 root            ServerV2       0
getty        270468   0.0   0.4 root            ClientV2       0   Press:
rpc.lockd    237690   0.0   0.2 root            ServerV3       0   "h" for help
syncd         94344   0.0   0.5 root            ClientV3       0   "q" to quit
netm          65568   0.0   0.0 root
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IBM.CSMAg    274568   0.0   2.1 root
rmcd         262274   0.0   1.4 root
wlmsched      73764   0.0   0.1 root
sendmail      82016   0.0   0.9 root

The new LPAR screen (Example 8-19) is accessible with the -L command line 
flag or by typing L while topas is running. It splits the screen in an upper section, 
which shows a subset of lparstat metrics, and a lower section that shows a 
sorted list of logical processors with mpstat columns. The %hypv and hcalls give 
the percentage of time spent in POWER Hypervisor and the number of calls 
made. The pc value is the fraction of physical processor consumed by a logical 
processor. When in Micro-Partitioning there are additional metrics:

Psize Number of online physical processors in the pool.

physc Number of physical processors consumed.

%entc Percentage of entitlement consumed.

%lbusy Logical processor utilization.

app Available pool processors (the number of physical 
processor available in the shared pool).

lcsw and vcsw Logical and virtual context switches per second over the 
monitoring interval.

phint Number of phantom interrupts.

%hypv Shows the percentage of time spent in POWER 
Hypervisor.

Example 8-19   Logical processors view using topas

Interval:    2    Logic al Partition: MicroPartitionAIAvWed Oct 20 14:23:51 
2004
Psize:       1  Shared SMT  ON           Online Memory:   512.0
Ent: 0.30                      Mode: UnCapped          Online Logical CPUs:  6
Partition CPU Utilization                              Online Virtual CPUs:  3
%usr %sys %wait %idle physc %entc %lbusy   app   vcsw phint %hypv   hcalls
  59   27     0    13   1.0 324.30 47.54 0.01 11807     9   0.0        0
===============================================================================
LCPU  minpf majpf  intr   csw icsw runq lpa scalls usr sys wt idl   pc   lcsw
Cpu0      0     0   824   224  220    1 100  25698  73  25   0   2 0.23   2043
Cpu1      0     0   785  2265 1137    1 100   3270  54  21   0  25 0.17   2089
Cpu2      0     0   985   509  337    0 100   4392  56  30   0  14 0.16   2099
Cpu3      0     0   728   943  568    1 100   3325  56  33   0  11 0.18   2064
Cpu4      0     0   777   230  223    0 100  10586  69  29   0   2 0.19   1725
Cpu5      0     0   635    41   26    1 100     43   0  29   0  70 0.05   1787
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8.1.7  xmperf command
Table 8-3 on page 265 shows a summary for the xmperf command.

Table 8-8   xmperf command summary

Usage
xmperf [-vauxz] [-h hostname]

Most important flags
-h Local host name (host to be the local host).

-o Configuration file, default is /$HOME/xmperf.cf.

Output examples
Figure 8-2 on page 279 shows the standard output of xmperf command, called Local 
System Monitor. This console has eight monitors showing information about CPU 
usage, disk access, network traffic, paging space occupancy, memory, and process 
activity.

Command name xmperf

Interface type GUI

Updated or new command update

AIX package perfmgr.network, which is part of the 
Performance Tool Box

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+
+
+
+

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+
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Figure 8-2   xmperf - Local System Monitor

System activity and processor utilization
In the following example, xmperf is used to show system activity and processor 
usage. One logical uncapped micro-partition is created with three logical 
processors, and the system has a pool size of two processors.

Figure 8-3 on page 281 shows system activity and CPU usage with several CPU 
consuming tasks started in the partition. The first three diagrams show activity on 
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processors cpu0, cpu1, and cpu2. The last part of the figure shows the whole 
system activity (user) and the number of physical processor consumed (physc).

Three tasks are launched one after the other and then a partition is started:

1. The first task starts at 00:30 on cpu1. At this moment the system activity 
increases to 100% and because only one mono thread task is running, only 
one physical processor is consumed.

2. The second task starts at 01:00 on cpu0, the system activity remains at 100% 
(it is obvious that the system cannot consume more), and almost a second 
physical processor is consumed.

3. The third task starts at 01:30 on cpu2, the system activity remains at 100%, 
and physical processor consumed stays around two because only two 
processors were available in the shared pool.

4. At 02:00, a logical partition with one dedicated processor is started in the 
same system. This removes processing units equivalent to one processor 
from the micro-partition. At this point, three tasks are running in the partition, 
each one on a distinct logical processor, and only one physical processor is 
consumed. This means that each task is consuming one-third of a physical 
processor.
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Figure 8-3   Physical and logical processors usage

Redispatch activity
When a process is running on a server, by default it is not bound to a processor, 
which means that it can run on any available processor. The POWER Hypervisor 
dispatches virtual processors on physical processors, so a process may not stay 
on the same processor all its life.

To illustrate this, the following case uses an uncapped micro-partition with three 
virtual processors and one processor available in he shared pool.

A CPU-intensive job is started around 06:32 as shown in Figure 8-4 on 
page 282. It is dispatched on cpu0, the partition activity increases to 100% (user) 
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and it consumes one physical processor (physc). The job is then redispatched on 
cpu1, cpu2, cpu0, cpu1, and cpu0. During all this run, the system is always 100% 
busy and only one physical processor is used although a processor is available in 
the pool, and the job is not running on the same processor all the time.

Figure 8-4   xmperf - process redispatch
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8.2  Performance tuning approach
A system may experience performance problems for many reasons, including 
hardware problems, software problems, or human expectations.

In this section we mainly focus on hardware problems linked to the new 
POWER5 architecture.

Performance analysis and tuning demands great skills, knowledge, experience, 
and methodology. To determine which of the monitored values are high in a 
particular environment, it is a good idea to gather data on the system during an 
optimal performance state. This baseline information is useful for comparison 
during a performance problem. The xmperf command can be used to collect 
data. Screen shots of the topas command also provide a brief overview of all 
major performance information. 

8.2.1  Global performance analysis
To solve performance problems, the investigation to find the root cause will be 
performed for the following categories:

� CPU-bound system on page 289
� Memory-bound system on page 294
� DISK I/O–bound system on page 296
� Network I/O–bound system on page 304

Figure 8-5 on page 284 gives the chronological order to follow when trying to 
identify performance issues: First check the CPU, then the memory, the disk, and 
finally the network.
 Chapter 8. POWER5 system performance 283



Figure 8-5   Global performance diagram
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CPU–bound system
In a system that is CPU-bound, all the processors are 100% busy and some jobs 
are waiting for CPU in the run queue. A system with 100% busy CPU with a large 
run queue compared to the number of CPUs and more context switches than 
usual has a good chance of becoming CPU-bound.

In Example 8-20, the system has two dedicated processors that are 99.8% busy, 
a run queue of 4 (twice the number of processors), and 5984 context switches 
(for everyday work, this system usually has around 500). This system is 
CPU-bound.

Example 8-20   CPU-bound system

Topas Monitor for host:    LPARdedicated        EVENTS/QUEUES    FILE/TTY
Wed Oct 27 15:24:31 2004   Interval:  2         Cswitch 5984 Readch      808
                                                Syscall 12132 Writech 8078.3K
Kernel    0.2   |#                           |  Reads         1 Rawin         0
User     99.8   |############################|  Writes     2035 Ttyout      309
Wait      0.0   |                            |  Forks         0 Igets         0
Idle      0.0   |                            |  Execs         0 Namei         5
                                                Runqueue    4.0 Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.0
en1       0.9     13.0    11.0     0.6     1.2
lo0       0.0      0.0     0.0     0.0     0.0  PAGING  MEMORY
                                                Faults        0 Real,MB    1023
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  Steals        0 % Comp     26.0
hdisk0    0.0      0.0     0.0     0.0     0.0  PgspIn        0 % Noncomp   4.0
                                                PgspOut       0 % Client    4.8
Name            PID  CPU%  PgSp Owner           PageIn        0
vpross       278618  25.0  15.4 root            PageOut       0 PAGING SPACE
yes          291018  25.0   0.1 root            Sios          0 Size,MB     512
ksh          286946  25.0   0.5 root % Used      0.8
ksh          241918  25.0   0.5 root            NFS (calls/sec) % Free     99.1
topas        266278   0.0   1.1 root            ServerV2       0
snmpmibd6    155772   0.0   0.7 root            ClientV2       0   Press:
xmgc          45078   0.0   0.0 root            ServerV3       0   "h" for help
netm          49176   0.0   0.0 root            ClientV3       0   "q" to quit
IBM.CSMAg    262280   0.0   2.2 root
getty        258174   0.0   0.4 root
gil           53274   0.0   0.1 root
aixmibd      139414   0.0   0.6 root
syncd         65710   0.0   0.5 root
rpc.lockd    209122   0.0   0.2 root
nfsd         196776   0.0   0.2 root
lvmbb         86076   0.0   0.0 root
dog           90184   0.0   0.1 root
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Memory-bound system
System memory includes real memory and paging space. AIX 5L uses the 
Virtual Memory Manager (VMM) to control real memory and paging space on the 
system. The VMM maintains a list of free memory pages, and a page 
replacement algorithm is used to determine which pages.

A memory-bound system has high memory occupancy and high paging space 
activity. The activity of the paging space is given by the number of pages read 
from disk to memory (page in) and number of pages written to disk (page out).

The amount of used memory and paging space activity can be obtained with the 
topas command. In Example 8-21, the memory is 100% consumed (Comp, 
Noncomp), paging space is 61% consumed (% Used), a lot of pages are written to 
disk (PgspOut), and the system needs real memory, which is why VMM steals 
pages (Steals). Because the system is using all of the memory and asking for 
more, this partition is memory-bound.

Example 8-21   Memory-bound system

Topas Monitor for host:    LPARdedicated        EVENTS/QUEUES    FILE/TTY
Wed Oct 27 18:19:37 2004   Interval:  2         Cswitch     998 Readch    12122
                                                Syscall     406 Writech     290
Kernel    4.1   |##                          |  Reads        17 Rawin         0
User     64.1  |##################  |  Writes        0 Ttyout      290
Wait      4.0   |##                          |  Forks         0 Igets         0
Idle 27.8  |########  |  Execs         0 Namei        12
                                                Runqueue    1.0 Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   1.0
en1       0.4      3.0     1.0     0.1     0.6
lo0       0.0      0.0     0.0     0.0     0.0  PAGING           MEMORY
                                                Faults     5039 Real,MB    1023
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  Steals     4963 % Comp    100.3
hdisk0   19.8  19863.0   419.9   444.0 39580.0  PgspIn       32 % Noncomp   0.5
                                                PgspOut    4946 % Client    0.6
Name            PID  CPU%  PgSp Owner           PageIn       56
perl         307230  25.0 1102.5 root           PageOut    4946 PAGING SPACE
lrud          20490   0.0   0.1 root            Sios       5016 Size,MB     512
telnetd      245904   0.0   0.2 root % Used     61.5
topas        266340   0.0   1.1 root            NFS (calls/sec) % Free     38.4
rgsr          69756   0.0   0.0 root            ServerV2       0
rmcd         229496   0.0   1.4 root            ClientV2       0   Press:
init              1   0.0   0.6 root            ServerV3       0   "h" for help
netm          49176   0.0   0.0 root            ClientV3       0   "q" to quit
IBM.CSMAg    262280   0.0   2.2 root
getty        258174   0.0   0.4 root
gil           53274   0.0   0.1 root
aixmibd      139414   0.0   0.6 root
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Disk I/O–bound system
This system has at least one busy disk, it cannot fulfill other requests, and 
processes are blocked and waiting for the I/O operation to complete. Limitation 
can be either physical or logical. Physical limitation involves hardware, such as 
bandwidth of disks, adapters, and system bus. Logical limitations involve the 
organization of the logical volumes on disks and LVM tunings and settings, such 
as striping or mirroring. Example 8-22 shows a system with high-wait I/O at 
86.6% (Wait), percentage of time that hdisk0 was active at 98.7% (Busy%) and 
over five processes waiting for paging space operations to complete (Waitqueue). 
This system is waiting for write operations on hdisk0, so it is disk I/O–bound.

Example 8-22   Disk I/O–bound system

Topas Monitor for host:    LPARdedicated        EVENTS/QUEUES    FILE/TTY
Thu Oct 28 11:03:43 2004   Interval:  2         Cswitch     678 Readch        0
                                                Syscall      97 Writech     317
Kernel    1.1   |#                           |  Reads         0 Rawin         0
User     12.4   |####                        |  Writes        0 Ttyout      317
Wait     86.6   |#########################   |  Forks         0 Igets         0
Idle      0.0   |                            |  Execs         0 Namei         0
                                                Runqueue    2.5 Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   5.6
en1       0.5      3.0     1.0     0.3     0.7
lo0       0.0      0.0     0.0     0.0     0.0  PAGING           MEMORY
                                                Faults      826 Real,MB    1023
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  Steals        0 % Comp     99.7
hdisk0   98.7   2645.1   185.3     4.0  5220.0  PgspIn        0 % Noncomp   1.2
                                                PgspOut     652 % Client    0.5
Name            PID  CPU%  PgSp Owner           PageIn        0
perl         291012   0.0 983.2 root            PageOut     652 PAGING SPACE
topas        266340   0.0   1.1 root            Sios        588 Size,MB     512
getty        258174   0.0   0.4 root % Used     47.0
lrud          20490   0.0   0.1 root            NFS (calls/sec) % Free     52.9
netm          49176   0.0   0.0 root            ServerV2       0
vpross       303230   0.0  15.4 root            ClientV2       0   Press:
IBM.CSMAg    262280   0.0   2.2 root            ServerV3       0   "h" for help
gil           53274   0.0   0.1 root            ClientV3       0   "q" to quit
syncd         65710   0.0   0.5 root
aixmibd      139414   0.0   0.6 root
rpc.lockd    209122   0.0   0.2 root
nfsd         196776   0.0   0.2 root
rgsr          69756   0.0   0.0 root
errdemon      73858   0.0   0.5 root
j2pg          77868   0.0   0.2 root
lvmbb         86076   0.0   0.0 root
dog           90184   0.0   0.1 root
hostmibd      94238   0.0   0.4 root
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Network I/O–bound system
In a system that is network I/O–bound, the bandwidth of at least one network 
adapter is totally (or almost totally) used. Processes that need to send or receive 
data must wait for other processes’ I/O to complete.

Example 8-23 shows a system using all of the bandwidth of its network adapter 
and having some wait I/O. The maximum bandwidth of the network adapter 
depends on its type.

Example 8-23   Network I/O–bound system

Topas Monitor for host:    LPARdedicated        EVENTS/QUEUES    FILE/TTY
Fri Oct 29 14:36:34 2004   Interval:  2         Cswitch    1636 Readch    11.6M
                                                Syscall     422 Writech   11.6M
Kernel   11.0   |####                        |  Reads       185 Rawin         0
User      0.1   |#                           |  Writes      186 Ttyout      267
Wait 13.8  |#####  |  Forks         0 Igets         0
Idle     75.1  |####################  |  Execs         0 Namei         0
                                                Runqueue    1.0 Dirblk        0
Network  KBPS   I-Pack  O-Pack   KB-In  KB-Out  Waitqueue   0.0
en1   12285.3  10513.0 16175.0   472.3 23914.1
lo0       0.0      0.0     0.0     0.0     0.0  PAGING           MEMORY
                                                Faults        0 Real,MB    1023
Disk    Busy%     KBPS     TPS KB-Read KB-Writ  Steals        0 % Comp     23.5
hdisk0    0.0      0.0     0.0     0.0     0.0  PgspIn        0 % Noncomp  33.8
                                                PgspOut       0 % Client   34.4
Name            PID  CPU%  PgSp Owner           PageIn        0
ftpd         266380   0.0   0.8 root            PageOut       0 PAGING SPACE
topas        278692   0.0   1.1 root            Sios          0 Size,MB     512
getty        245882   0.0   0.4 root % Used      0.8
aixmibd      204912   0.0   0.6 root            NFS (calls/sec) % Free     99.1
rpc.lockd    159988   0.0   0.2 root            ServerV2       0
nfsd         188590   0.0   0.2 root            ClientV2       0   Press:
xmgc          45078   0.0   0.0 root            ServerV3       0   "h" for help
netm          49176   0.0   0.0 root            ClientV3       0   "q" to quit
IBM.CSMAg    241790   0.0   2.0 root
gil           53274   0.0   0.1 root
ftpd         250008   0.0   0.8 root
syncd         65710   0.0   0.5 root
rgsr          69758   0.0   0.0 root
errdemon      73858   0.0   0.5 root
j2pg          77866   0.0   0.2 root
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8.2.2  CPU analysis
Now that we know how to recognize a CPU-bound system, the flow chart in 
Figure 8-6 helps determine the root cause for this activity.

Figure 8-6   CPU analysis diagram
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Identify CPU consumers
To understand why the partition is CPU-bound, we have to find the processes 
that consume the most CPU using the ps command, as shown in Example 8-24.

The %CPU column gives the percentage of time the process has used the CPU 
since the process started. In this example, three processes are using the CPU: 
./vpross, yes, and ./loop. You must verify whether those processes are running 
correctly and if they are using the usual amount of CPU.

Example 8-24   ps - most CPU consumers

# ps aux|more
USER        PID %CPU %MEM   SZ  RSS    TTY STAT    STIME  TIME COMMAND
root     295058 49.7  5.0 15952 15980  pts/1 A    08:34:25 66:04 ./vpross
root     139278 20.0  0.0  152  156  pts/0 A    09:40:46  0:02 yes
root     262232 14.3  0.0  676  712  pts/0 A    10:12:03  0:04 ./loop
root     241790  0.2  1.0 2856 2548      - A    11:26:34  4:08 /usr/sbin/rsct/b
root     258174  0.0  0.0  464  488      - A    11:26:29  0:16 /usr/sbin/getty
root      53274  0.0  0.0  116  116      - A    11:24:25  0:12 gil
root     155888  0.0  0.0  960  960      - A    11:26:15  0:04 /usr/sbin/aixmib
root      65710  0.0  0.0  500  508      - A    11:25:41  0:04 /usr/sbin/syncd
root     172270  0.0  0.0  200  200      - A    11:26:22  0:02 rpc.lockd
root     209028  0.0  0.0  200  200      - A    11:26:21  0:02 nfsd
root     196726  0.0  0.0  444  464      - A    11:26:03  0:00 /usr/sbin/inetd
root     200844  0.0  0.0 1692 1296      - A    11:25:57  0:00 sendmail: accept
...

Dedicated LPAR
If applications really need processing power, then you may dynamically add a 
processor (if any are available in the system) to the partition. To determine the 
available processors in the system, connect to the HMC, edit the system 
properties, and click the Processor tab. For example, in Figure 8-7 on page 291, 
only 0.3 processors are available. A list of each partition with its amount of 
processors used is given in the bottom of the figure.
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Figure 8-7   System properties: Processors tab

If no processors are available, check the CPU usage of all other partitions in the 
system to see whether you can free an unused processor. Then if all of the 
processor resources are used, upgrade the system with new processors.

Capped LPAR
If an application really needs processing power and there is an available 
processing unit in the system, you can increase the entitlement of the partition. 
Example 8-25 on page 292 shows a capped partition with one logical processor, 
an entitlement of 0.5 (ent) and 1.5 available processor pool size (app). Only one 
process (testp) is requesting processing power and it consumes half a 
processor (pc). In this case we can increase the entitlement up to 1.0, and the 
processes will run faster.
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Example 8-25   Entitlement limited partition

# lparstat 2 2

System configuration: type=Shared mode=Capped smt=Off lcpu=1 mem=512 psize=2 
ent=0.50

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
 99.3   0.7    0.0    0.0  0.50 100.0  100.0  1.49   100     0
 98.6   0.9    0.0    0.5  0.50  99.5  100.0  1.49   100     0

# vmstat 2 3

System configuration: lcpu=1 mem=512MB ent=0.5

kthr    memory              page              faults              cpu
----- ----------- ------------------------ ------------ -----------------------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa    pc    ec
 2  0 49165 72012   0   0   0   0    0   0   2 3079 142 99  1  0  0  0.50 100.2
 2  0 49167 72010   0   0   0   0    0   0   3 3031 142 99  1  0  0  0.50  99.8
 2  0 49167 72010   0   0   0   0    0   0   3 3030 142 99  1  0  0  0.50 100.0

# ps aux|more
USER        PID %CPU %MEM   SZ  RSS    TTY STAT    STIME  TIME COMMAND
root     254108 43.8  0.0  152  156  pts/0 A    14:36:12  1:18 testp
root     172124  0.0  0.0  940  940      - A    14:29:38  0:00 /usr/sbin/aixmib
root     168030  0.0  0.0  532  504      - A    14:29:32  0:00 /usr/sbin/hostmi
root     163920  0.0  1.0 1156 1192      - A    14:29:29  0:00 /usr/sbin/snmpd
root     184422  0.0  0.0  676  700      - A    14:34:17  0:00 telnetd -a
root     180312  0.0  0.0  664  688      - A    14:29:41  0:00 /usr/sbin/muxatm
root     176218  0.0  0.0 1048  916      - A    14:29:35  0:00 /usr/sbin/snmpmi
...

If many processes request processing power, you can increase the number of 
virtual processors (and the entitlement). Example 8-26 on page 293 shows a 
capped partition with one logical processor, an entitlement of 1.0 (ent) and 0.99 
available processor pool size (app). Two processes are requesting processing 
power: testp and loop. They consume one physical processor (physc). Because 
two processes are running on one physical processor, we can increase the 
number of virtual processors in order to run each process on a distinct processor.
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Example 8-26   Logical processor limited partition

# lparstat 2 2

System configuration: type=Shared mode=Capped smt=Off lcpu=1 mem=512 psize=2 
ent=1.00

%user  %sys  %wait  %idle physc %entc  lbusy   app  vcsw phint
-----  ----  -----  ----- ----- ----- ------   ---  ---- -----
 99.4   0.6    0.0    0.0  1.00 100.1  100.0  0.99     0     1
 99.5   0.5    0.0    0.0  1.00 100.0  100.0  0.99     0     0

# ps aux|more
USER        PID %CPU %MEM   SZ  RSS    TTY STAT    STIME  TIME COMMAND
root     229502 48.9  0.0  152  156  pts/0 A    16:21:00  0:23 testp
root     241812 37.4  0.0  152  156  pts/0 A    16:00:07  8:06 loop
root     237690  0.2  1.0 1852 1828      - A    15:55:10  0:01 /usr/sbin/rsct/b
root     172126  0.0  0.0 1048  916      - A    15:54:50  0:00 /usr/sbin/snmpmi
root     188572  0.0  0.0  200  200      - A    15:55:01  0:00 rpc.lockd
root     176216  0.0  0.0  940  940      - A    15:54:54  0:00 /usr/sbin/aixmib
root     180312  0.0  0.0  664  688      - A    15:54:57  0:00 /usr/sbin/muxatm
root     184422  0.0  0.0  676  700      - A    15:59:46  0:00 telnetd -a
root     168030  0.0  0.0  532  504      - A    15:54:47  0:00 /usr/sbin/hostmi
root     147588  0.0  0.0  720  756  pts/0 A    15:59:46  0:00 -ksh
...

Micro-partition
Verify whether other partitions can give some processing units or processors 
back to the shared pool. For example, check whether idle processors are allowed 
to be shared.

To select this option, connect to the HMC, edit the profile properties, click the 
Processor tab, then select the Allow idle processors to be shared check box 
as in Figure 8-8 on page 294. If this option is not selected, the unused 
processors will not be available for other partitions when the partition is stopped, 
but this also means that your partition is guaranteed to have its processor if 
needed.

Check profile properties for capped and dedicated partitions to be sure that no 
CPU resources are allocated but unused.
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Figure 8-8   Allow idle processors to be shared

In all of the previous cases, if many processes need processors, you may enable 
simultaneous multithreading. For more information, refer to Chapter 3, 
“Simultaneous multithreading” on page 41.

8.2.3  Memory analysis
The goal of memory analysis is to determine which processes are making the 
system memory-bound. Use ps or svmon to look for processes that are 
consuming a lot of memory. In Example 8-27 on page 295, perl is the largest 
memory consumer, with a total number of pages in real memory of 218933 
(around 875 MB) and total number of pages reserved or used on paging space of 
97963 (nearly 400 MB). The second application, vpross, uses only 48 MB of 
memory and less than 7 MB of paging space; therefore the perl application is 
the root cause of this memory problem.
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Example 8-27   svmon - process report

# svmon -P|more

-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
  332008 perl            218933     4293    97963   318471      N     N     N

    Vsid      Esid Type Description              LPage  Inuse Pin Pgsp Virtual
    7380         6 work working storage              -  65536 0    0 65536
    1383         3 work working storage              -  47302 0 18215 65515
   15389         7 work working storage              -  44717 0    0  44717
   17388         4 work working storage              -  38021 0 27528 65536
   21393         5 work working storage              -  15031 0 50528 65536
       0         0 work kernel segment               -   6843 4290 1621  8454
   3f8bd         d work loader segment               -   1352 0   71  3062
   29397         f work shared library data          -     83 0    0    83
    d385         2 work process private              -     32 3    0    32
    3362         1 clnt code,/dev/hd2:12435          -     16 0    -     -
   2f374         a work working storage              -      0 0    0     0
   3f37c         9 work working storage              -      0 0    0     0
   3d37d         8 work working storage              -      0 0    0     0

-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
  303122 vpross           12193     4293     1696    15465      N     N     N

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp 
Virtual
       0         0 work kernel segment               -   6843  4290 1621  8454
   17368         2 work process private              -   3913     3    4  3917
   3f8bd         d work loader segment               -   1352     0   71  3062
   1936f         1 pers code,/dev/lv00:83977         -     53     0    -     -
   1136b         f work shared library data          -     32     0    0    32
   1336a         - pers /dev/lv00:83969              -      0     0    -     -

-------------------------------------------------------------------------------
     Pid Command          Inuse      Pin     Pgsp  Virtual 64-bit Mthrd LPage
  299170 IBM.CSMAgentR     8572     4306     1965    12130      N     Y     N

    Vsid      Esid Type Description              LPage  Inuse   Pin Pgsp 
Virtual
       0         0 work kernel segment               -   6843  4290 1621  8454
   3f8bd         d work loader segment               -   1352     0   71  3062
...
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On the Memory tab, determine whether the process is running correctly and 
actually needs this amount of memory.

� If so, increase memory. This can be done by adding physical memory, or with 
a dynamic operation if some memory is available in the system. To determine 
available memory, connect to the HMC, edit the system properties, and click 
the Memory tab. In Figure 8-9, 688 MB of memory is available in the system.

� If not, then check, debug, or tune the application.

Figure 8-9   System properties: Memory tab

8.2.4  Disk I/O analysis
When a system has been identified as having disk I/O performance problems, 
you can find the source of the problem as shown in Figure 8-10 on page 297:

� For a dedicated device:
a. Check the dedicated adapter.
b. Check the dedicated disk.

� For a virtual device:
a. Check CPU on the Virtual I/O Server.
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b. Check adapter on Virtual I/O Server.
c. Check disk on Virtual I/O Server.

Figure 8-10   Disk I/O analysis diagram
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Dedicated or virtual device
First check whether the disk is a physical disk belonging to the partition or a 
virtual SCSI disk using the lscfg command. As shown in Example 8-28, hdisk0, 
hdisk1, and hdisk2 are physical drives, and hdisk3 is a virtual SCSI drive. The 
lsdev command shows the adapter to which the disk is connected.

Example 8-28   Physical and virtual disks

# lsdev -Ccdisk
hdisk0 Available 02-08-00-3,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 02-08-00-4,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 02-08-00-5,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available  Virtual SCSI Disk Drive

# lsdev -Cl hdisk0 -F parent
vscsi0

Dedicated device
If a dedicated device (a physical adapter allocated to the partition) is bound, first 
check the adapter, then the disk.

Dedicated adapter
Use the iostat -a command to show the activity of a disk adapter. In 
Example 8-29, the adapter sisscsia0 has a throughput of 28537 kilobytes per 
second. Because the maximum bandwidth of an adapter depends on its type and 
technology, compare the statistics given by iostat to the theoretical value to find 
out the load percentage of the adapter. If the adapter is overloaded, try to move 
some data to another disk on a distinct adapter, move a physical disk to another 
adapter, or add a disk adapter.

Example 8-29   iostat - adapter statistics

# iostat -a 5

System configuration: lcpu=1 drives=3

tty:      tin         tout   avg-cpu:  % user    % sys     % idle    % iowait
          0.0         36.4               16.5  35.2   26.2      22.1

Adapter:                   Kbps      tps    Kb_read   Kb_wrtn
sisscsia0                28537.3     132.1      72619     70424

Paths/Disk:       % tm_act     Kbps      tps    Kb_read   Kb_wrtn
hdisk2_Path0           9.6     28537.3     132.1      72619     70424
hdisk0_Path0           0.0       0.0       0.0          0         0
hdisk1_Path0           0.0       0.0       0.0          0         0
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Dedicated disk
The disk may be bound simply because the data is not well-organized. Verify the 
placement of logical volumes on the disk with the lspv command. If logical 
volumes are fragmented across the disk as in Example 8-30, reorganize them 
with reorgvg or migratepv.

Example 8-30   Fragmented logical volumes

# lspv -p hdisk0
hdisk0:
PP RANGE  STATE   REGION        LV NAME             TYPE       MOUNT POINT
  1-3     used    outer edge    hd5                 boot       N/A
  4-13    used    outer edge    hd6                 paging     N/A
 14-49    free    outer edge
 50-124   used    outer edge    fslv01              jfs2       /test2
125-125   used    outer edge    hd10opt             jfs2       /opt
126-135   free    outer edge
136-154   used    outer edge    hd10opt             jfs2       /opt
155-165   free    outer middle
166-166   used    outer middle  hd6                 paging     N/A
167-176   free    outer middle
177-189   used    outer middle  hd6                 paging     N/A
190-199   used    outer middle  hd2                 jfs2       /usr
200-210   used    outer middle  hd6                 paging     N/A
211-220   used    outer middle  hd2                 jfs2       /usr
221-282   used    outer middle  hd6                 paging     N/A
283-283   used    outer middle  loglv00             jfslog     N/A
284-287   free    outer middle
288-291   used    outer middle  hd1                 jfs2       /home
292-301   used    outer middle  hd3                 jfs2       /tmp
302-307   used    outer middle  hd9var              jfs2       /var
308-308   used    center        hd8                 jfs2log    N/A
309-316   used    center        hd4                 jfs2       /
317-320   used    center        hd2                 jfs2       /usr
321-330   used    center        hd10opt             jfs2       /opt
331-380   used    center        hd2                 jfs2       /usr
381-390   free    center
391-460   used    center        hd2                 jfs2       /usr
461-590   used    inner middle  hd2                 jfs2       /usr
591-591   free    inner middle
592-601   used    inner middle  hd6                 paging     N/A
602-613   free    inner middle
614-688   used    inner edge    fslv02              jfs2       /test1
689-689   free    inner edge
690-700   used    inner edge    hd6                 paging     N/A
701-712   free    inner edge
713-722   used    inner edge    hd6                 paging     N/A
723-767   free    inner edge
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If logical volumes are well-organized in the disks, the problem may come from 
the file distribution in the file system. The fileplace command displays the file 
organization as shown in Example 8-31. In this case, space efficiency is near 
100%, which means that the file has few fragments and they are contiguous. To 
increase a file system’s contiguous free space by reorganizing allocations to be 
contiguous rather than scattered across the disk, use the defragfs command.

Example 8-31   fileplace output

# fileplace -lv testFile

File: testFile Size: 304998050 bytes  Vol: /dev/fslv00
Blk Size: 4096  Frag Size: 4096  Nfrags: 74463
Inode: 4  Mode: -rw-r--r--  Owner: root  Group: system

  Logical Extent
  --------------
  00000064-00000511            448 frags      1835008 Bytes,   0.6%
  00003328-00028511          25184 frags    103153664 Bytes,  33.8%
  00054176-00077759          23584 frags     96600064 Bytes,  31.7%
  00000048-00000063             16 frags        65536 Bytes,   0.0%
  00003312-00003327             16 frags        65536 Bytes,   0.0%
  00032760-00032767              8 frags        32768 Bytes,   0.0%
  00077760-00077767              8 frags        32768 Bytes,   0.0%
  00000044-00000047              4 frags        16384 Bytes,   0.0%
  00003296-00003308             13 frags        53248 Bytes,   0.0%
  00028512-00032735           4224 frags     17301504 Bytes,   5.7%
  00032768-00053725          20958 frags     85843968 Bytes,  28.1%

  74463 frags over space of 77724 frags:   space efficiency = 95.8%
  11 extents out of 74463 possible:   sequentiality = 100.0%

For more about disk performance, refer to the redbook AIX 5L Performance Tools 
Handbook, SG24-6039.

Virtual device
If the bound device is a virtual SCSI disk, refer to 8.2.2, “CPU analysis” on 
page 289 to check CPU activity on the Virtual I/O Server.

The following steps describe how to find a physical volume hosting a virtual disk 
allocated to a partition:

1. Get the slot number of the virtual SCSI adapter for the partition as shown in 
Example 8-32 on page 301.
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Example 8-32   Virtual SCSI adapter slot number

# lsdev -Cl hdisk0 -F parent
vscsi0

# lscfg -vl vscsi0
  vscsi0           U9111.520.10DDEDC-V4-C20-T1  Virtual SCSI Client Adapter

        Device Specific.(YL)........U9111.520.10DDEDC-V4-C20-T1

2. Check the partition profile on the HMC and collect the slot number of the 
Virtual I/O Server that is associated with the slot number found previously in 
the partition. To do this, connect to the HMC, edit the profile properties, click 
the Virtual I/O tab, select the Client SCSI line, and click (Properties...) as 
shown in Figure 8-11.

Figure 8-11   Virtual I/O adapters
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A new window displays the virtual SCSI adapter properties with slot numbers 
(Figure 8-12).

Figure 8-12   Virtual SCSI Adapter Properties

3. Find the name of the disk that contains the partition’s data as shown in 
Example 8-33 on page 303 by following these steps:

a. Find the virtual SCSI server adapter with the lsdev command.

b. Find the logical volume name with the lsmap command.

c. Find the volume group name with the lslv command.

d. Find the disk name with the lsvg command.
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Example 8-33   Virtual I/O Server commands to find a disk

$ lsdev -vpd|grep vhost.*C20
  vhost2           U9111.520.10DDEDC-V1-C20         Virtual SCSI Server Adapter

$ lsmap -vadapter vhost2
SVSA            Physloc                                      Client Partition 
ID
--------------- -------------------------------------------- ------------------
vhost2          U9111.520.10DDEDC-V1-C20                     0x00000004

VTD                   vMicroPartAIX53
LUN                   0x8100000000000000
Backing device        MicroPartAIX53
Physloc

$ lslv MicroPartAIX53
LOGICAL VOLUME:     MicroPartAIX53         VOLUME GROUP:   rootvg_clients
LV IDENTIFIER:      00cddedc00004c000000000102a1f53e.4 PERMISSION:     
read/write
VG STATE:           active/complete        LV STATE:       opened/syncd
TYPE:               jfs                    WRITE VERIFY:   off
MAX LPs:            32512                  PP SIZE:        32 megabyte(s)
COPIES:             1                      SCHED POLICY:   parallel
LPs:                96                     PPs:            96
STALE PPs:          0                      BB POLICY:      non-relocatable
INTER-POLICY:       minimum                RELOCATABLE:    yes
INTRA-POLICY:       middle                 UPPER BOUND:    1024
MOUNT POINT:        N/A                    LABEL:          None
MIRROR WRITE CONSISTENCY: on/ACTIVE
EACH LP COPY ON A SEPARATE PV ?: yes
Serialize IO ?:     NO
DEVICESUBTYPE : DS_LVZ

$ lsvg -pv rootvg_clients
rootvg_clients:
PV_NAME           PV STATE          TOTAL PPs   FREE PPs    FREE DISTRIBUTION
hdisk1            active            1082        26          00..00..00..00..26

Virtual adapter
If the Virtual I/O Server is not CPU-bound, check the adapter activity. If many 
disks experience performance problems on the same adapter, it may be 
overloaded. In that case, move some of the data to another disk on a different 
adapter (if any are available) or add a physical adapter.
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Virtual disk
If only one disk has a performance problem, verify the placement of logical 
volumes on the disk on both sides on the Virtual I/O Server as shown in 
Example 8-34 and on the partition using this virtual SCSI disk. If logical volumes 
are fragmented across the disk, reorganize them with reorgvg or migratepv. For 
more about virtual disks, refer to 6.8, “Virtual SCSI” on page 205.

Example 8-34   lspv - logical volume placement

$ lspv -pv hdisk1
hdisk1:
PP RANGE  STATE   REGION        LV NAME             TYPE       MOUNT POINT
  1-25    used    outer edge    rootvg_ll           jfs        N/A
 26-121   used    outer edge    MicroPartAIX53      jfs        N/A
122-217   used    outer edge    rootvg_ll           jfs        N/A
218-433   used    outer middle  rootvg_aix53        jfs        N/A
434-537   used    center        rootvg_aix53        jfs        N/A
538-649   used    center        rootvg_sles9        jfs        N/A
650-857   used    inner middle  rootvg_sles9        jfs        N/A
858-865   used    inner middle  fs1_ll              jfs        N/A
866-985   used    inner edge    fs1_ll              jfs        N/A
986-1056  used    inner edge    rootvg_ll           jfs        N/A
1057-1082  free    inner edge

For more about disk performance refer to the redbook AIX 5L Performance Tools 
Handbook, SG24-6039.

8.2.5  Network I/O analysis
When a system has been identified as having network I/O performance 
problems, the next point is to find where the problem comes from. Figure 8-13 on 
page 305 shows the steps to follow on a disk I/O–bound system:

1. For a dedicated adapter, check the dedicated adapter statistics.

2. For a virtual adapter:

a. Virtual Ethernet adapter:

i. Check CPU utilization.

ii. Check physical adapter.

b. For a Shared Ethernet Adapter, check the adapter statistics.
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Figure 8-13   Network I/O analysis diagram

Dedicated adapter
If the system is network I/O–bound because of a dedicated adapter, check it with 
the netstat and entstat commands, and modify the configuration with no and 
chdev. If the partition is using NFS, check the statistics with nfsstat.

For more details about network performance, refer to the redbook AIX 5L 
Performance Tools Handbook, SG24-6039.
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Virtual adapter
A virtual adapter is provided by the Virtual I/O Server. It can be a virtual Ethernet 
adapter or a Shared Ethernet Adapter. For more about the Virtual I/O Server, 
refer to Chapter 6, “Virtual I/O” on page 143.

Virtual Ethernet adapter
If a virtual Ethernet adapter is bound, check the adapter statistics with entstat. 
Check adapter memory use with netstat to validate that there is enough buffer 
allocated to this adapter and confirm that the system is not memory-bound.

Verify the adapter configuration with lsattr as in Example 8-35. If the adapter is 
only for communication between partitions using the same VLAN (no traffic going 
outside the system), then the mtu can be increased to 64000.

Example 8-35   Network adapter parameters

# lsattr -El en1
alias4                    IPv4 Alias including Subnet Mask           True
alias6                    IPv6 Alias including Prefix Length         True
arp           on          Address Resolution Protocol (ARP)          True
authority                 Authorized Users                           True
broadcast                 Broadcast Address                          True
mtu           1500        Maximum IP Packet Size for This Device     True
netaddr       9.3.5.150   Internet Address                           True
netaddr6                  IPv6 Internet Address                      True
netmask       255.255.0.0 Subnet Mask                                True
prefixlen                 Prefix Length for IPv6 Internet Address    True
remmtu        576         Maximum IP Packet Size for REMOTE Networks True
rfc1323                   Enable/Disable TCP RFC 1323 Window Scaling True
security      none        Security Level                             True
state         up          Current Interface Status                   True
tcp_mssdflt               Set TCP Maximum Segment Size               True
tcp_nodelay               Enable/Disable TCP_NODELAY Option          True
tcp_recvspace             Set Socket Buffer Space for Receiving      True
tcp_sendspace             Set Socket Buffer Space for Sending        True

For more about VLAN, refer to 6.5, “Virtual Ethernet” on page 164.

Shared Ethernet Adapter
If the system is network I/O–bound because of a Shared Ethernet Adapter, check 
it on the Virtual I/O Server with netstat, entstat, and modify the configuration 
with chdev. Example 8-36 on page 307 shows Ethernet adapter statistics with 
many errors and collisions reported.
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Example 8-36   entstat - Virtual I/O Server

$ entstat  en3
-------------------------------------------------------------

ETHERNET STATISTICS (en3) :
Device Type: Shared Ethernet Adapter
Hardware Address: 00:09:6b:6b:05:b1
Elapsed Time: 0 days 0 hours 0 minutes 0 seconds

Transmit Statistics:                          Receive Statistics:
--------------------                          -------------------
Packets: 5656592                              Packets: 4189578
Bytes: 7666680307                             Bytes: 365071314
Interrupts: 0                                 Interrupts: 3841545
Transmit Errors: 359712                       Receive Errors: 0
Packets Dropped: 0                            Packets Dropped: 0
                                              Bad Packets: 0

Max Packets on S/W Transmit Queue: 98
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 2

Broadcast Packets: 1615551                    Broadcast Packets: 1610367
Multicast Packets: 622570                     Multicast Packets: 622568
No Carrier Sense: 0                           CRC Errors: 0
DMA Underrun: 0                               DMA Overrun: 0
Lost CTS Errors: 0                            Alignment Errors: 0
Max Collision Errors: 0                       No Resource Errors: 0
Late Collision Errors: 359712                 Receive Collision Errors: 0
Deferred: 207086                              Packet Too Short Errors: 0
SQE Test: 0                                   Packet Too Long Errors: 0
Timeout Errors: 0                             Packets Discarded by Adapter: 0
Single Collision Count: 191677                Receiver Start Count: 0
Multiple Collision Count: 48
Current HW Transmit Queue Length: 2

General Statistics:
-------------------
No mbuf Errors: 0
Adapter Reset Count: 0
Driver Flags: Up Broadcast Running
        Simplex 64BitSupport

Network parameters such as thewall, tcp_sendspace, and tcp_recvspace can be 
tuned with the optimizenet command. Information about available parameters 
such as default, current, and range is shown in Example 8-37 on page 308.
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Example 8-37   Network parameters list

$ optimizenet -list
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
arptab_bsiz               7      7      7      1      32K-1  bucket_size R
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
arptab_nb                 73     73     73     1      32K-1  buckets R
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
clean_partial_conns       0      0      0      0      1      boolean D
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE

DEPENDENCIES
-------------------------------------------------------------------------------
net_malloc_police         0      0      0      0      8E-1   numeric D
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE

DEPENDENCIES
-------------------------------------------------------------------------------
rfc1323                   0      0      0      0      1      boolean C
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
route_expire              1      1      1      0      1      boolean D
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
tcp_pmtu_discover         1      1      1      0      1      boolean D
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
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tcp_recvspace             16K    16K    16K    4K     8E-1   byte C
     sb_max
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
tcp_sendspace             4K     16K    16K    4K     8E-1   byte C
     sb_max
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
thewall                   128K   128K   128K   0      1M     kbyte S
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
udp_recvspace             42080  42080  42080  4K     8E-1   byte C
     sb_max
-------------------------------------------------------------------------------
-------------------------------------------------------------------------------
NAME                      CUR    DEF    BOOT   MIN    MAX    UNIT TYPE
     DEPENDENCIES
-------------------------------------------------------------------------------
udp_sendspace             9K     9K     9K     4K     8E-1   byte C
     sb_max
-------------------------------------------------------------------------------

For more about Shared Ethernet Adapters, refer to 6.8, “Virtual SCSI” on 
page 205.
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Chapter 9. Application tuning

This chapter provides an introduction for Fortran and C/C++ programmers or 
users who are interested in tuning their applications for POWER5. Although this 
chapter assumes that the reader has a working knowledge of these concepts, 
some sections are very well suited for those who are beginning to measure 
applications performance and would like to start improving the performance of a 
particular application. Also, it is important to point out that for POWER3 and 
POWER4 an entire book was dedicated to providing a tuning guide. Here, much 
of that work has been condensed into a single chapter. Therefore, we make 
reference to those books as much as possible to preserve this chapter’s issues 
that are related to POWER5.

In this chapter we cover the following major topics:

� Identification of the type of bottleneck and its location within the code

� Tuning using compiler flags

� Profiling the code to uncover performance bottlenecks

� General tuning for single processor performance

� Making use of highly optimized libraries

� General tuning for parallel performance

9
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9.1  Performance bottlenecks identification
This section gives an overview of the basic steps that are required to localize 
performance bottlenecks. In this chapter we assume that performance limitations 
are not related to hardware but are a function of how an application was coded. 
Our definitions of performance bottlenecks and code optimization terms follow:

Performance bottleneck
Sections of a code that tend to consume most of the user 
time, elapsed time, or both (also referred to as real time or 
wall-clock time) that, after careful analysis, require code 
optimization.

Code optimization A series of steps that are required to modify a section or 
sections of the code, manually or via the compiler, to 
improve performance.

Elapsed time The time that it took the program to run from beginning to 
end. This is the sum of all factors that can delay the 
program, plus the program’s own attributed costs.

User time This is the time used by itself and any library routine that it 
calls while it is attached to a processor.

System time The time used by system calls invoked by the program, 
directly or indirectly.

In this definition, optimization falls into two categories:

� Code optimization using advanced compiler flags

In this type of optimization we simply rely on how much performance we can 
gain by selecting the best combination of compiler flags for a particular 
application.

� Hand-tuning

This type of optimization requires manually modifying the code to improve 
performance. In an extreme case different methodology might be required.

Figure 9-1 on page 313 illustrates the basic steps that are required to localize 
performance bottlenecks.
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Figure 9-1   This flowchart illustrates the first step in applications tuning
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common timing routines can be invoked at run time. Of course, carrying out 
timing of certain routines inside the code requires recompiling and building the 
program. These two techniques are covered in the next section.

9.1.1  Time commands, time utilities, and time routines
In this section we describe commands, utilities, and routines that may be used to 
identify bottlenecks in the application. The set described here is by no means the 
only set of tools available for performing a coarse analysis but we have found 
them to be fairly common and easy to use. The commands described here are:

� time
� timex
� vmstat
� irtc
� rtc

The first and simplest set of commands are time and timex. They both print 
elapsed time, user time, and system time of a command during execution in 
seconds. In their simplest form they can be invoked as follows:

$/usr/bin/timex a.out

or

$/usr/bin/time a.out

A version of time that produces additional information corresponds to the C shell 
built-in command. The following example illustrates the additional information 
obtained with this built-in version:

%time a.out
%5.1u 0.1s 0:05 98% 137+91548k 0+0io 27pf+0w

Table 9-1 shows the meaning of the fields from the time C shell built-in version.

Table 9-1   time description fields

Field Description

5.1 u Number of seconds of user time

0.1 s Number of seconds of user time consumed by system calls invoked by the 
program

0:05 Elapsed time

98% Total user time plus system time, as a percentage of elapsed time

137+9154
8 k

Average amount of shared memory used, plus average amount of 
unshared data space used, in kilobytes
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Prior to providing empirical rules to classify the performance of a particular 
application, we define CPU-bound, memory-bound, and I/O-bound applications:

CPU-bound When sections of the code dominate most of the run time 
by performing processor calculations

Memory-bound When sections of the code dominate most of the run time 
by memory issues or memory limitations

I/O-bound When sections of the code dominate most of the run by 
performing I/O

The output provided by these simple commands can give an initial indication of 
the type of bottleneck in our particular application. The following empirical rules 
should be viewed as guidance for this classification:

� Excessively large user time can be an indication of a CPU-bound application 
that might not be running optimally and requires tuning.

� The ratio between elapsed time and the user time (rWIO = elapsed time / user 
time) may provide an indication of an I/O-bound application. A ratio larger 
than 1 represents an imbalance between elapsed time and user time. For 
certain cases this may be interpreted as a large I/O wait time. A ratio larger 
than 2.5 is for us an empirical threshold in the I/O performance that must be 
considered. In addition, the C shell built-in time function provides information 
about the number of blocks of input and output, which can be an indication of 
the amount of I/O that an application is performing for a particular run.

� In general, user time tends to be larger, by at least an order of magnitude, 
than the system time. A large system time could be attributed to a 
memory-bound program. If page faults plus number of swaps and the average 
amount of shared memory used is large, this may help confirm suspicion of 
memory-bound code.

In this chapter we briefly mention vmstat as an alternative way to get similar 
information as in the case of time or timex. (See 8.1.3, “vmstat command” on 
page 268 for more details.) On a system, vmstat can provide statistics about 
kernel threads, virtual storage, disks, and CPU capacity. These systemwide 
statistics are calculated as averages for values reported as percentages or sums.

0+0 io Number of blocks input and output operations

27pf+0w Page faults plus number of swaps

Attention: vmstat provides systemwide statistics.

Field Description
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Example 9-1 illustrates an example in which a small program that performs a 
matrix multiplication is monitored using vmstat.

Example 9-1   Example invoking vmstat

$ matmul.F2000

$ vmstat 1 10
kthr     memory             page              faults        cpu
----- ----------- ------------------------ ------------ -----------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa
 1  1 2533495 1516953   0   0   0   0    0   0 445 1249 336  0  0 99  0
 0  0 2533499 1516949   0   0   0   0    0   0 447 3397 336  0  0 99  0
 0  0 2533499 1516949   0   0   0   0    0   0 445 3234 329  0  0 99  0
 0  0 2533499 1516949   0   0   0   0    0   0 444 3246 335  0  0 99  0
 1  0 2556989 1493459   0   0   0   0    0   0 449 3301 351 16  3 81  0
 1  0 2556989 1493459   0   0   0   0    0   0 444 3198 338 25  0 75  0
 1  0 2556989 1493459   0   0   0   0    0   0 447 3267 356 25  0 75  0
 7  0 2556989 1493459   0   0   0   0    0   0 446 3227 340 25  0 75  0
 2  0 2556993 1493455   0   0   0   0    0   0 448 3297 347 25  0 75  0
 2  0 2556993 1493455   0   0   0   0    0   0 446 3210 338 25  0 75  0

If fine-grain timing is required, see Example 9-2 and Example 9-3 on page 317 
for templates for the use of irtc() and rtc(). These two functions require code 
modification and recompilation.

IRTC This function returns the number of nanoseconds since the initial 
value of the machine’s real-time clock.

Example 9-2   irtc() template

integer(8) T1, T2, IRTC

T1 = IRTC()

[your section of the code]

T2 = IRTC()
write(*,*)'Untuned loop took', (T2-T1)/1000000, 'msec'

end
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RTC The rtc function returns the number of seconds since the initial 
value of the machine’s real-time clock.

Example 9-3   rtc() template

real*8 T1, T2, RTC

T1 = RTC()

[Your section of the code]

T2 = RTC()
write(*,*)'Untuned loop took', (T2-T1), 'sec'

end

9.2  Tuning applications using only the compiler
In this section we provide an overview of the compiler, selected features of the 
XL Fortran, and XL C and C++ compiler that relates to the optimization of 
applications running on POWER5 processors, and we examine some of the 
compiler flags that are relevant for scientific and engineering applications.

The emphasis in this section is on illustrating the compiler capabilities to carry 
out code optimization. This is what we consider the first step in the process of 
code optimization. However, for many programmers who are not interested in 
optimizing their applications further, this step usually turns out to be the last step. 
In general, this is an important section for all programmers.

9.2.1  Compiler brief overview
Compiler technology represents a formidable challenge, in particular the 
development of an optimizer that can tune any code.
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The Toronto Portable Optimizer (TPO) is designed to operate on many source 
languages for many target platforms. Figure 9-2 shows that TPO is a key 
component in the overall compiler architecture.

Figure 9-2   IBM compiler architecture
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Figure 9-3 delves deeper into the compiler architecture and shows the steps that 
TPO goes through to optimize codes. This compiler is designed to optimize at 
several levels:

� Expression
� Basic block
� Procedure
� Whole program

Some of the TPO strengths are:

� Deep analysis
� High-level program restructuring
� Portability
� Seamless product integration

Figure 9-3   Inside TPO compile time
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Figure 9-4 summarizes the details of loop optimization. Some of the techniques 
that are illustrated are presented in this chapter, in particular, loop fusion and 
loop unrolling.

Figure 9-4   Loop optimization overview in TPO
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9.2.2  Most commonly used flags
In this section we look at the compiler flags that affect the performance of an 
application. For a comprehensive list, visit the IBM AIX compiler information 
center at:

http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp

It is important to always check answers as you increase the level of compiler 
optimization or aggressivity. This is due to the fact that the compiler makes 
certain assumptions about some of the statements in the code that can 
potentially be optimized by rewriting that section of the code.

A typical example is the property of associativity in a product. At low levels of 
compiler optimization (for example, -O2), XL Fortran will always evaluate a*b*c 
starting from a, even if b*c has already being computed. Although more time will 
be consumed, it is safer because the answer might be dependent on the order of 
execution. As the level of optimization increases, some of these restrictions might 
be eliminated.

Optimization level
A few basic rules to remember when using the compiler for optimization:

� Optmization requires additional compilation time.

� Optimization produces faster code; but always check answers, especially 
when using aggressive levels of compiler optimization.

� By default, the compiler chooses -O0 or -qnoopt.

� Enable compiler optimization with -ON; where N is 0, 2, 3, 4, or 5
Example: $xlf -O3

Next, we discuss the different levels of compiler optimization regarding the 
effects of performance flags on scientific and engineering applications.

Level 0: -O0
This option is recommended for debugging. It is the fastest way to compile the 
program. It preserves program semantics. This is also useful to see the effect of 
hand-tuning small kernels or certain loops.

Level 2: -O2
This is the same as -O. At this level, the compiler performs conservative 
optimization. The optimization techniques used at this level are:

� Global assignment of user variables to registers, also known as graph 
coloring register allocation
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� Strength reduction and effective use of addressing modes

� Elimination of redundant instructions, also known as common subexpression 
elimination

� Elimination of instructions whose results are unused or that cannot be 
reached by a specified control flow, also known as dead code elimination

� Value numbering (algebraic simplification)

� Movement of invariant code out of loops

� Compile-time evaluation of constant expressions, also known as constant 
propagation

� Control flow simplification

� Instruction scheduling (reordering) for the target machine

� Loop unrolling and software pipelining

Level 3: -O3
At this level the compiler performs more extensive optimization. This includes:

� Deeper inner-loop unrolling

� Better loop scheduling

� Increased optimization scope, typically to encompass a whole procedure

� Specialized optimizations (those that might not help all programs)

� Optimizations that require large amounts of compile time or space

� Elimination of implicit memory usage limits (equivalent to compiling with 
qmaxmem=-1)

� Implies -qnostrict, which allows some reordering of floating-point 
computations and potential exceptions

Level 4: -O4
At this level the compiler introduces more aggressive optimization and increases 
the optimization scope to the entire program. This option includes:

� Includes -O3

� -qhot

Important: At this level -qnostrict is invoked by default. This implies:

� Reordering of floating-point computations

� Reordering or elimination of possible exceptions (such as division by zero, 
overflow)
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� -qipa

� -qarch=auto

� -qtune=auto

� -qcache=auto

Level 5: -O5
At this level the compiler introduces more aggressive optimization. This option 
includes:

� Includes -O4

� -qipa=level=2

Machine-specific flags
This set of flags is specific to a family architecture. The idea is to provide code 
that is optimized for a particular architecture.

Table 9-2   Machine-specific flags

Important: If -O5 is specified on the compile step, then it should be specified 
on the link step.

Option Description

-q32 For 32-bit execution mode.

-q64 For 64-bit execution mode.

-qarch Selects specific architecture for which instruction is generated

-qtune Biases optimization toward execution on a given processor, without 
implying anything about the instruction set architecture to use as a target

-qcache Defines a specific cache or memory

Important: By default, the compiler generates code that runs on all supported 
systems, but it might not be optimized for a particular system. This default is 
true only for the low level of compiler optimization. As mentioned above, -O4 
implies -qarch=auto, which generates code compatible with the machine used 
for compilation (and not necessarily every supported architecture).
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High-order transformations
-qhot optimization is targeted to improve the performance of loops and array 
language. This may include:

� Loop optimization

– Loop-nest canonization

• Aggressive copy propagation to create more perfect loop nests

• Aggressive loop fusion to create larger loops and loop nests

• Code sinking to create more perfect loop nests

– High-level transformations (outer loops)

• Loop distribution to create more perfect loop nests

• Loop interchange for data locality and outermost parallelization

• Loop unroll-and-jam for data reuse

• Gather/scatter to create more perfect loop nests

• Peeling to eliminate loop-carried dependencies

• Identification and outlining of parallel loops

– Low-level transformations (Inner loops)

• Node splitting, scalar replacement, and automatic vectorization

• Inner loop distribution (sensitive to number of hardware streams)

• Gather/scatter and index set splitting to eliminate branches in inner 
loops

The goals of high-order transformation are:

� Reducing the costs of memory access through the effective use of caches 
and translation look-aside buffers

� Overlapping computation and memory access through effective utilization of 
data-prefetching capabilities provided by the hardware

� Improving the utilization of processor resources through reordering and 
balancing the usage instructions with complementary resource requirements
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Interprocedural analysis
-qipa enables the compiler to perform optimization across different files. In other 
words, it provides analysis for the entire program. The interprocedural analysis 
has the suboptions shown in Table 9-3.

Table 9-3   -qipa suboptions

Suboption Description

level=0 Automatic recognition of standard libraries.

Localization of statistically bound variables and procedures.

Partitioning and layout of procedures according to their calling 
relationships, which is also referred to as their call affinity.

Expansion of scope for some optimizations, especially register 
allocation.

level=1 Procedure inlining.

Partitioning and layout of static data according to reference affinity.

level=2 Whole-program alias analysis. This level includes the 
disambiguation of pointer dereferences and indirect function calls, 
and the refinement of information about the side effects of a 
function call.

Intensive interprocedural optimizations. This can take the form of 
value numbering, code propagation and simplification, code 
motion into conditions or out of loops, elimination of redundancy.

Interprocedural constant propagation, dead code elimination, 
pointer analysis.

Procedure specialization.
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XL Fortran new and changed functionality
Some features have been added or improved in the XL Fortran compiler. We 
provide a brief overview of this new functionality, and Table 9-4 shows some of 
the new options.

Table 9-4   New options and suboptions

In addition, new options and suboptions that affect performance have been 
added with the XL Fortran 9.1 compiler. Table 9-5 summarizes these newly 
added options and suboptions. Some of the options presented in this table are 
discussed in more detail in other sections.

Table 9-5   Changed options and suboptions

Options and suboptions Comments

-qflttrap=nanq Detects all NaN values handled or generated by 
floating-point instructions, including those not 
created by invalid operations.

-qport=nullarg Treats an empty argument, which is delimited by 
a left parenthesis and a comma, two commas, or 
a comma and a right parenthesis, as a null 
argument.

-qmodule=mangle81 Provides compatibility with the V8.1 module 
naming conventions for non-intrinsic modules.

-qsaveopt Saves the command-line options used for 
compiling a source file in the corresponding 
object file. 

-qversion Provides the version and release for the invoking 
compiler.

Option/Suboption Description

-qarch and -qtune These two options now provide support for POWER5 
and PowerPC 970 architectures (pwr5 and ppc970).

-qshowpdf and -qpdf1 Provide additional call and block count profiling 
information to an executable.

showpdf and mergepdf 
utilities

Provide enhanced information about PDF-directed 
compilation; mergepdf merges two or more PDF files.

-qdirecstorage Informs the compiler that a given compilation unit may 
reference write-through-enabled or cache-inhibited 
storage.
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9.2.3  Compiler directives for performance
After the compiler flags have been optimized, the programmer can still use highly 
optimized libraries, compiler directives, or both to improve performance without 
major changes to the code. (We cover highly optimized libraries in 9.6, 
“Optimized libraries” on page 360.) This section concerns compiler directives, in 
particular looking at directives for code tuning and hardware-specific directives 
that potentially can help improve performance.

To identify a sequence of characters called trigger constants, XL Fortran uses the 
-qdirective option:

-qdirective [=directive_list] | -qnodirective [=directive_list]

The compiler recognizes the default trigger constant IBM*. Table 9-6 on 
page 328 provides a list of assertive, loop optimization, and hardware-specific 
directives.

SWDIV and SWDIV_NOCHK 
intrinsics

Provide software floating-point division algorithms.

FRE and FRSQRTES intrinsic Floating-point reciprocal estimate and floating-point 
square root reciprocal.

POPCNT and POPCNTB 
intrinsics

Provide set bit counts in registers for data objects.

POPPAR intrinsic Determines the parity for a data object.

Note: The compiler will use either fdiv or FRE, if computing with -qarch=pwr5, 
and depending on which one it deems better. In particular, single block loops 
will sometimes use fdiv rather than FRE and the expansion, because overall 
latency is sometimes more important than parallelization.

Option/Suboption Description
 Chapter 9. Application tuning 327



Table 9-6   Assertive, loop optimization, and hardware-specific directives

Directive Type Description

ASSERT Assertive Provides characteristics of do loops 
for further optimization;
requires -qsmp or -qhot

CNCALL Declares that no loop-carried 
dependencies exist within any 
procedure called from the loop; 
requires -qsmp or -qhot

INDEPENDENT Must precede a loop, FORALL 
statement; it specifies that the loop 
can be executed and iterations in any 
order without affecting semantics; 
requires -qsmp or -qhot

PERMUTATION Specifies that the elements of each 
array listed in the 
integer_array_name_list have no 
repeated values;
requires -qsmp or -qhot

BLOCK_LOOP Loop 
optimization

Allows blocking inside nested loops; 
requires -qhot or -qsmp

LOOPID Allows the assignment of a unique 
identifier to loop within a scoping unit

STREAM_UNROLL Allows for a combination of software 
prefetch and loop unrolling;
requires -qhot, -qipa=level=2, or 
-qsmp, and -O4

UNROLL Allows loop unrolling where 
applicable

UNROLL_AND_FUSE Allows loop unrolling and fuse where 
applicable
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CACHE_ZERO Hardware-speci
fic

Invokes machine instruction dcbz; 
sets the data cache block 
corresponding to the variable 
specified to zero

ISYNC Enables discarding of any prefetched 
instructions after all preceding 
instructions complete

LIGHT_SYNC Ensures that all stores prior to 
LIGHT_SYNC complete before any 
new instructions can be executed on 
the processor that executed the 
LIGHT_SYNC directive

PREFETCH_BY_STREAM Uses the prefetch engine to 
recognize sequential access to 
adjacent cache lines and then 
requests anticipated lines from 
deeper levels of memory hierarchy

PREFETCH_FOR_LOAD Prefetches data into the cache for 
reading by way of a cache prefetch 
instruction

PREFETCH_FOR_STORE Prefetches data into the cache for 
writing by way of a cache prefetch 
instruction

PROTECTED_UNLIMITED
_STREAM_SET_GO_FOR
WARD

Establishes an unlimited-length 
protected stream that begins with the 
cache line at the specified prefetch 
variable and fetches from increasing 
memory addresses

PROTECTED_UNLIMITED
_STREAM_SET_GO_BAC
KWARD

Fetches from decreasing memory 
addresses

PROTECTED_STREAM_S
ET_GO_FORWARD

Establishes a limited-length 
protected stream that begins with the 
cache line at the specified prefetch 
variable and fetches from increasing 
memory

PROTECTED_STREAM_S
ET_GO_BACKWARD

Fetches from decreasing memory 
addresses

Directive Type Description
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Directives usage
In this section we provide a series of examples that illustrate how to apply some 
of these compiler directives. Some of them are not difficult to implement in the 
code, and others are more involved.

As we previously described, the ASSERT directive provides a way to specify that 
a particular DO loop does not have dependencies. The assertion can take the 
following forms: 

� ITERCNT(n); where n specifies the number of iterations for a given DO loop. 
n must be positive, scalar, and an integer initialization expression.

� NODEPS specifies that no loop dependencies exist within a particular DO 
loop.

Example 9-4   ASSERT directive

c   ASSERT Directive
      program dir1
      implicit none
      integer i,n, fun
      parameter (n = 100000)
      real*8 a(n)
      integer(8)  t0, tfin, irtc

do i = 1,n
a(i) = rand()

end do
c ...   start timer
      t0 = irtc()
!IBM*   ASSERT (NODEPS)

PROTECTED_STREAM_C
OUNT

Sets the number of cache lines for 
the specified limited-length stream

PROTECTED_STREAM_
GO

Starts to prefetch all limited-length 
streams

PROTECTED_STREAM_S
TOP

Stops prefetching the specified 
protected stream

PROTECTED_STREAM_S
TOP_ALL

Stops prefetching all protected 
streams

Important: The ASSERT directive applies only to the DO loop following the 
directive. It does not apply to nested DO loops.

Directive Type Description
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      do i = 1, n
        a(i) = a(i) * fun(i)
      end do
c ...   time
      tfin = (irtc() - t0)/1000000
      write(6,*)'Time: ',tfin, 'msec.'
      stop
      end
C
      function fun(i)
      fun = i * i
      return
      end

In this example we used the idea of loop-carried dependencies (or data 
dependency), because this concept is commonly used throughout this chapter. 

Dependencies Current iteration requires data computed in some 
previous iteration, or computes data for some subsequent 
iteration.

An example in a loop with a(i) = a(i-1)*2 is that computing a(5) requires a(4). 

The loop optimization directive is BLOCK_LOOP. This directive relies on a 
well-known optimization technique called blocking. This directive separates large 
iterations into smaller groups of iterations. The basic idea is to increase the 
utilization of the submemory hierarchy. Note that in Example 9-5, L2_cache_size 
and L3_cache_size must be assigned values corresponding to the cache of the 
particular system where this example will be executed.

Example 9-5   BLOCK_LOOP directive

c   BLOCK_LOOP Directive
      program dir4
      implicit none
      integer i,j,k,n
      integer L3_cache_size, L3_cache_block
      integer L2_cache_size, L2_cache_block
      parameter (n = 100)
      integer a(n,n), b(n,n), c(n,n)
      integer(8)  t0, tfin, irtc
      do j = 1,n
        do i = 1,n
          a(i,j) = rand()
          b(i,j) = rand()
        enddo
      enddo
      do j = 1, n
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        do i = 1, n
          c(i,j)=0.0
        enddo
      enddo
c ...   start timer
      t0 = irtc()
!IBM*  BLOCK_LOOP(L3_cache_size, L3_cache_block)
      do i = 1, n

!IBM*  LOOPID(L3_cache_block)
!IBM*  BLOCK_LOOP(L2_cache_size, L2_cache_block)
        do j = 1, n

!IBM*  LOOPID(L2_cache_block)
          do k = 1, n
            c(i,j) = c(i,j) + a(i,k) * b(k,j)
          enddo
        enddo
      enddO
c ...   time
      tfin = (irtc() - t0)/1000000
      write(6,*)'Time: ',tfin, 'msec.'
      call dummy (c,n)
      stop
      end
c

9.2.4  POWER5 compiler features
Some of the options and suboptions that perform specific optimization for the 
POWER5 processor microarchitecture are:

� -qarch=pwr5
� -qtune=pwr5
� -qcache=auto

Also, the following intrinsics are included:

SWDIV Provides an algorithm to carry out division on POWER5.

SWDIV_NOCHK Similar to SWDIV except that checking for invalid 
arguments is not performed.

FRE(S) Provides an algorithm to estimate the reciprocal of a 
floating-point on POWER5; used for single-precision.

FRSQRTE(S) Provides an algorithm to eliminate the reciprocal of a 
square root operation on POWER5; used for 
single-precision floating point.
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POPCNT Used to count the number of set bits in a data object. The 
resulting value is the number of bits set to ON or 1.

POPCNTB Used to count the number of set bits of each byte in a 
register. The result is an INTEGER(4) in 32-bit mode or 
iNTEGER(8) in 64-bit mode.

POPPAR Used to determine the parity for a data object. The result 
is 1 if there is an odd number of bits set, or 0 if there is an 
even number of bits set.

Compiler directives
XL Fortran 9.1 introduces a few new directives for POWER5. These streams are 
protected from being replaced by any hardware-detected streams. The directives 
correspond to:

� Valid for PowerPC 970 and POWER5:

PROTECTED_UNLIMITED_STREAM_SET_GO_BACKWARD

� Valid for PowerPC 970 and POWER5:

PROTECTED_STREAM_SET_GO_FORWARD

� Valid for POWER5:

PROTECTED_STREAM_SET_GO_BACKWARD
PROTECTED_STREAM_COUNT
PROTECTED_STREAM_GO
PROTECTED_STREAM_STOP
PROTECTED_STREAM_STOP_ALL

Example 9-6 illustrates the use of some of these directives and their performance 
benefits. The performance improvement for n between 10 and 2000 oscillates 
from a value of 2% to as large as 11%. In this four-stream case the prefetch 
directives improve performance of short vector lengths.

Example 9-6   New POWER5 prefetch directives

c   PROTECTED_STREAM_SET_FORWARD Directive
c   PROTECTED_STREAM_COUNT Directive
      program dir8
      implicit none
      integer i,j,k,n,m,nopt2,ndim2,lcount
      parameter (n=2000)
      parameter (m=1000)
      parameter (ndim2 = 1000)
      real*8 x(n,ndim2),a(n,ndim2),b(n,ndim2),c(n,ndim2)
      integer(8) irtc, t0, tfin

do j = 1, ndim2
do i = 1, n
x(i,j) = rand()
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a(i,j) = rand()
b(i,j) = rand()
c(i,J) = rand()
end do

end do
c ...   start timer
      t0 = irtc()
      do k = 1, m
        lcount =  1 + n/16
        do j = ndim2, 1, -1
!IBM*   PROTECTED_STREAM_SET_FORWARD(x(1,j),0)
!IBM*   PROTECTED_STREAM_COUNT(lcount,0)
!IBM*   PROTECTED_STREAM_SET_FORWARD(a(1,j),1)
!IBM*   PROTECTED_STREAM_COUNT(lcount,1)
!IBM*   PROTECTED_STREAM_SET_FORWARD(b(1,j),2)
!IBM*   PROTECTED_STREAM_COUNT(lcount,2)
!IBM*   PROTECTED_STREAM_SET_FORWARD(c(1,j),3)
!IBM*   PROTECTED_STREAM_COUNT(lcount,3)
!IBM*   EIEIO
!IBM*   PROTECTED_STREAM_GO
          do i = 1, n
            x(i,j) = x(i,j) + a(i,j) * b(i,j) + c(i,j)
          enddo
        enddo
        call dummy(x,n)
      enddo
c ...   time
      tfin = (irtc() - t0)/1000000
      write(6,*)'Time: ',tfin, 'msec.'
      stop
      end
c
      subroutine dummy(x,n)
c
      dimension x(n)
c
      return
      end

Recommended compiler flags
In the POWER3 tuning guide, the compiler flags recommended for POWER3 are:

-O3 -qarch=pwr3 -qtune=pwr3 [-qcache=auto] or
-O3 -qstrict -qarch==pwr3 -qtune=pwr3 [-qcache=auto]

For POWER4 the recommendation for starting compiler options is:

-O3 -qarch=pwr4 -qtune=pwr4
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In this POWER5 version, the recommendation is:

-O3 -qarch=auto -qtune=auto -qcache=auto

-O level The -O3 option provides conservative optimization and it is 
currently used on most major scientific and engineering 
applications. In some cases -O2 might be preferable over -O3, 
particularly for very large applications where after extensive 
testing the -O3 does not show better performance. Also, it is a 
good starting point for somebody who is planning to optimize 
the application using higher compiler levels of optimization 
such as -O4 and -O5. When using -O3, the next step should be 
to improve the level of compiler optimization by introducing 
-qhot (also called higher-order transformations). The objective 
of this option is to optimize loops. For very large scientific and 
engineering applications, the use of -O4 or -O5 will most likely 
have to be restricted to a few routines.

-qarch This option and suboptions present several possibilities to 
choose from. The selection of the suboption depends on how 
the binaries will be used. In our recommendation we assume 
that the application will be built on the system where the 
executables will be used. With -qarch=auto, the particular 
architecture where the binaries are built will be recognized. If 
only one architecture will be used, then -qarch=[pwr5] or 
[pwr4], and so on is recommended. On the other hand, if only 
one set of binaries will be used across all platforms, then you 
might consider -qarch=com (or compile for ALL PowerPC 
platforms by specifying -qarch=pwr).

-qtune Instruction selection, scheduling, and other implementation- 
dependent performance enhancements for a specific 
implementation of hardware architecture. We also recommend 
this option as auto. Similar to the previous case, this option is 
specific to the application (or where the executable will run).

Note: When running an application on more than one architecture, but the 
desire is to tune it for a particular architecture, the combination of -qarch and 
-qtune can be used.

Important: -qtune can improve performance but only has an effect when used 
in combination with options that enable optimization.
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-qcache We recommend this option as auto.

Finally, there are other options used by scientific and engineering applications 
that might work for your particular application as well. These correspond to:

� -qstrict
� -qmaxmem
� -qfixed
� -q64

9.3  Profiling applications
In the beginning of this chapter when we introduced the flowchart to identify 
application bottlenecks (Figure 9-1 on page 313), we learned as a first 
approximation how to classify applications as CPU-bound, memory-bound, and 
I/O bound. We now introduce a series of tools to help localize crucial sections in 
the code. These crucial sections correspond to a section or sections of the code 
that tend to dominate CPU utilization, and this is reflected in the user time.

9.3.1  Hardware performance monitor
A key feature of this utility is its ability to provide hardware performance counters 
information. It can provide very fine-grain information about how the application 
that it being monitored takes advantage (or not) of the Power Architecture. This 
utility is part of the IBM High Performance Computing Toolkit. This package 
includes the following new software (and a new installation method):

� Watson Sparse Matrix Library (WSMP)
� Modular I/O Performance Tool (MIO)
� MPI Tracer™
� SHMEM Profiler
� OpenMP Profiler (PompProf)
� Graphical Interface tool with source code traceback (PeekPerf)
� New installation method via RPM modules (Linux)

This set of tools can be classified based on the type of performance that the 
programmer is interested in analyzing. Based on the functionality of the different 
utilities, the following components can be analyzed with this package:

� Hardware performance (HPM Toolkit)

– catch
– hpmcount
– libhpm
– hpmstat
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� Shared memory performance (DPOMP)

– pomprof

� Message-passing performance

– MP_profiler, MP_tracer
– TurboSHMEM, TurboMP

� Memory performance

– Sigma

� Performance visualization

– PeekPerf

� I/O performance

– MIO (modular I/O)

� Mathematics performance

– Watson sparse matrix (WSMP)

This toolkit can be obtain in one of these ways:

� Acquired as part of new procurement
� Acquired as part of ACTC performance tuning workshop
� License purchased directly from IBM Research

In this section we discuss the version of hpmcount that works on the POWER4 
processor. The hpmcount usage for POWER4 is:

$hpmcount [-o <file>] [-n][-g <group>] <a.out>

For help and additional information from hpmcount:

$hpmcount [-h] [-c] [-l]

Table 9-7   hpmcount flags and description

Flag Description

-h Display all available flags and a brief description.

-c List all events from all counters.

-l List all the groups available on POWER4.

-o <file> Create an output file with all collected statistics called <file>.<pid>. 
For parallel runs this flag generates one file for each process.

-n Force hpmcount not to send output to stdout.
Only active in combination with -o <file>.

-g <group> List selected groups
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The groups that are available on POWER4 are extensive, and the valid groups go 
from 0 to 60. Selecting the groups to analyze depends on the type of information 
that is being searched, but the groups that have been recommended for 
applications tuning are listed in Table 9-8. A complete listing of the groups for 
POWER4 may be found in /usr/pmapi/lib/POWER4.gps.

Table 9-8   Selected set of groups for applications tuning

The output obtained from hpmcount can be divided into several sections:

1. This section prints the hpmcount version and the total elapsed time taken to 
perform a particular run.

2. Prints the resource usage statistics.

3. Lists hardware counter information for the ones that hpmcount is following for 
a particular run.

4. Performance of miscellaneous hardware features. On POWER4 this report 
depends on the group that was selected at run time.

We do not describe each of the parameters printed by hpmcount, because most 
are self-explanatory and they are defined in the hpmcount manual. Instead, the 
following two examples illustrate how to use hpmcount for a simple performance 
tuning exercise. Example 9-7 on page 339 shows a simple program in which the 
double-nested loops have not been optimized (blocked) and therefore incurred 
misses in L2, L3, and TLB. In other words, no data can be reused.

Group Information provided

5 pm_lsource, information on data source, counts of loads from L2, 
L3, and memory

53 pm_pe_bench1, information for fp analysis, counts of cycles on 
instructions, fixed-point operations, and FP operations (includes 
divides, SQRT, FMA, and FMOV or FEST)

56 pm_pe_bench4, information for L1 and TLB analysis, counts of 
cycles on instructions, TLB misses, loads, stores, and L1 misses

58 pm_pe_bench6, information for L3 analysis, counts of cycles on 
instructions, loads from L3, and loads from memory

60 pm_hpmcount2, information for computation intensity analysis, 
counts of cycles on instructions on FP operations (including divides, 
FMA, loads, and stores)
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Example 9-7   Double-nested loop without blocking

program reuse
c
        IMPLICIT NONE
        integer ARRAY_SIZE
        parameter(ARRAY_SIZE = 25000)
        integer I, J, II, JJ
        real A(ARRAY_SIZE, ARRAY_SIZE)
        real B(ARRAY_SIZE, ARRAY_SIZE)
        real S, SS
        integer(8) T1, T2, IRTC
C*****************************************************************************
C*                              Untuned Loop                                 *
C*****************************************************************************
        T1 = IRTC()

        DO J=1, ARRAY_SIZE
          DO I=1, ARRAY_SIZE
              S = S + A(I,J)*B(J, I)
          ENDDO
        ENDDO

        T2 = IRTC()
        write(*,*)'Untuned loop took', (T2-T1)/1000000, 'msec'

C       Need to actually use the results of the calculations or else the
C       optimizing compiler may just skip doing them...so we'll just
C       print them.  This will force the optimizer to actually do the work.
        print *, A(ARRAY_SIZE, ARRAY_SIZE), S

999   end
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Example 9-8 shows a double-nested loop that has been optimized by blocking 
both loops. In this case there is data reuse because this example is keeping data 
in the different levels of cache. hpmcount helps show this.

Example 9-8   Tuned version of the reuse program

program reuse
c
        IMPLICIT NONE
        integer ARRAY_SIZE, NB
        parameter(ARRAY_SIZE = 25000, NB = 4)
        integer I, J, II, JJ
        real A(ARRAY_SIZE, ARRAY_SIZE), AA(ARRAY_SIZE, ARRAY_SIZE)
        real B(ARRAY_SIZE, ARRAY_SIZE), BB(ARRAY_SIZE, ARRAY_SIZE)
        real S, SS
        integer(8) T1, T2, IRTC
C*****************************************************************************
C*                              Tuned Loop                                   *
C*****************************************************************************
        T1 = IRTC()

        DO JJ = 1, ARRAY_SIZE, NB
          DO II = 1, ARRAY_SIZE, NB
            DO J = J, JJ, MIN(ARRAY_SIZE,JJ+NB-1)
              DO I = II, MIN(ARRAY_SIZE,II+NB-1)
                SS = SS + AA(I,J)*BB(J,I)
              ENDDO
            ENDDO
          ENDDO
         ENDDO

        T2 = IRTC()
        write(*,*)'Tuned loop took', (T2-T1)/1000000, 'msec'

C       Need to actually use the results of the calculations or else the
C       optimizing compiler may just skip doing them...so we'll just
C       print them.  This will force the optimizer to actually do the work.
        print *, AA(ARRAY_SIZE, ARRAY_SIZE), SS

999   end
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We have selected only part of the hpmcount output in both cases, mainly the 
section that illustrates the performance relating to L2, L3, and TLB using the two 
versions of the code. Example 9-9 shows the hpmcount command for groups 5 
and 56.

Example 9-9   hpmcount output for groups 5 and 56

$ hpmcount -g 5 reuse_u
Execution time (wall clock time): 170.883827 seconds
PM_DATA_FROM_L3 (Data loaded from L3)                   :       464363407
  PM_DATA_FROM_MEM (Data loaded from memory)              :       151160443
  PM_DATA_FROM_L35 (Data loaded from L3.5)                :         7981418
  PM_DATA_FROM_L2 (Data loaded from L2)                   :        29723097
  PM_DATA_FROM_L25_SHR (Data loaded from L2.5 shared)     :               0
  PM_DATA_FROM_L275_SHR (Data loaded from L2.75 shared)   :               4
  PM_DATA_FROM_L275_MOD (Data loaded from L2.75 modified) :              16
  PM_DATA_FROM_L25_MOD (Data loaded from L2.5 modified)   :               0

  Total Loads from L2                              :          29.723 M
  L2 load traffic                                  :        3628.310 MBytes
  L2 load bandwidth per processor                  :          21.233 MBytes/sec
  L2 Load miss rate                                :          95.450 %
  Total Loads from L3                              :         472.345 M
  L3 load traffic                                  :       57659.280 MBytes
  L3 load bandwidth per processor                  :         337.418 MBytes/sec
  L3 Load miss rate                                :          24.244 %
  Memory load traffic                              :       18452.203 MBytes
  Memory load bandwidth per processor              :         107.981 MBytes/sec

$ hpmcount -g 5 reuse_t
Execution time (wall clock time): 1.48904 seconds
PM_DATA_FROM_L3 (Data loaded from L3)                   :              16
  PM_DATA_FROM_MEM (Data loaded from memory)              :              93
  PM_DATA_FROM_L35 (Data loaded from L3.5)                :              10
  PM_DATA_FROM_L2 (Data loaded from L2)                   :            1167
  PM_DATA_FROM_L25_SHR (Data loaded from L2.5 shared)     :               0
  PM_DATA_FROM_L275_SHR (Data loaded from L2.75 shared)   :              10
  PM_DATA_FROM_L275_MOD (Data loaded from L2.75 modified) :              10
  PM_DATA_FROM_L25_MOD (Data loaded from L2.5 modified)   :               0

  Total Loads from L2                              :           0.001 M
  L2 load traffic                                  :           0.145 MBytes
  L2 load bandwidth per processor                  :           0.097 MBytes/sec
  L2 Load miss rate                                :           9.112 %
  Total Loads from L3                              :           0.000 M
  L3 load traffic                                  :           0.003 MBytes
  L3 load bandwidth per processor                  :           0.002 MBytes/sec
  L3 Load miss rate                                :          78.151 %
  Memory load traffic                              :           0.011 MBytes
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  Memory load bandwidth per processor              :           0.008 MBytes/sec

$ hpmcount -g 56 reuse_u
Execution time (wall clock time): 170.550834 seconds
PM_DTLB_MISS (Data TLB misses)                     :       628854887
  PM_ITLB_MISS (Instruction TLB misses)              :          149977
  PM_LD_MISS_L1 (L1 D cache load misses)             :       930603848
  PM_ST_MISS_L1 (L1 D cache store misses)            :       130067750
  PM_CYC (Processor cycles)                          :    231231424980
  PM_INST_CMPL (Instructions completed)              :     20001760251
  PM_ST_REF_L1 (L1 D cache store references)         :      2391568051
  PM_LD_REF_L1 (L1 D cache load references)          :      7406257146

  Utilization rate                                 :          93.272 %
  %% TLB misses per cycle                          :           0.272 %
  number of loads per TLB miss                     :          11.777
  Total l2 data cache accesses                     :        1060.672 M
  %% accesses from L2 per cycle                    :           0.459 %
  L2 traffic                                       :      129476.513 MBytes
  L2 bandwidth per processor                       :         759.167 MBytes/sec
  Total load and store operations                  :        9797.825 M
  number of loads per load miss                    :           7.959
  number of stores per store miss                  :          18.387
  number of load/stores per D1 miss                :           9.237
  L1 cache hit rate                                :          89.174 %
  MIPS                                             :         117.277
  Instructions per cycle                           :           0.087

$ hpmcount -g 56 reuse_t
Execution time (wall clock time): 1.488173 seconds
PM_DTLB_MISS (Data TLB misses)                     :             452
  PM_ITLB_MISS (Instruction TLB misses)              :             106
  PM_LD_MISS_L1 (L1 D cache load misses)             :            1998
  PM_ST_MISS_L1 (L1 D cache store misses)            :            4629
  PM_CYC (Processor cycles)                          :      2156932098
  PM_INST_CMPL (Instructions completed)              :      1172053048
  PM_ST_REF_L1 (L1 D cache store references)         :       237543426
  PM_LD_REF_L1 (L1 D cache load references)          :       377625191

  Utilization rate                                 :          99.710 %
  %% TLB misses per cycle                          :           0.000 %
  number of loads per TLB miss                     :      835453.962
  Total l2 data cache accesses                     :           0.007 M
  %% accesses from L2 per cycle                    :           0.000 %
  L2 traffic                                       :           0.809 MBytes
  L2 bandwidth per processor                       :           0.544 MBytes/sec
  Total load and store operations                  :         615.169 M
  number of loads per load miss                    :      189001.597
  number of stores per store miss                  :       51316.359
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  number of load/stores per D1 miss                :       92827.617
  L1 cache hit rate                                :          99.999 %
  MIPS                                             :         787.578
  Instructions per cycle                           :           0.543

The execution time reported for the program that has the double-nested loop that 
is not optimized (reuse_u) is approximately 180 seconds. The time for reuse_t 
(optimized version) is only approximately 2 seconds. For this trivial example, 
clearly this is an indication that there is a problem with that double-nested loop.

Further analysis of the hpmcount output reveals that the version that is not 
optimized is not taking advantage of the memory hierarchy. A simple inspection 
of some of the counters, such as: PM_DATA_FROM_L3, 
PM_DATA_FROM_MEM, PM_DATA_FROM_L2, PM_LD_MISS_L1, and 
PM_ST_MISS_L1 indicates that the version that is not optimized is not reusing 
data and is incurring misses in a large number of caches.

9.3.2  Profiling utilities
This series of utilities is a set of tools that can help you find bottlenecks at a very 
fine-grained level. Scientific and engineering applications consist of both the 
actual code that performs simulations and system library calls and 
system-specific routines. Normally when an application has not been optimized, 
most of the CPU time is spent executing critical sections of the code, and these 
critical sections are normally localized to a subroutine or a few loops. These 
utilities are essential to finding these bottlenecks and filtering them from system 
or kernel-related software. Although there might be other utilities, this section 
focuses on tprof, gprof, and xprofiler.

tprof
In AIX 5L V3, tprof is part of the AIX Performance Toolbox. This utility reports 
CPU usage for both individual programs and the system as a whole. It is useful to 
identify sections of the code that are using CPU most heavily.

The raw data from tprof is obtained via the trace facility. In the following 
examples, tprof was used in conjunction with a scientific application, namely 
AMBER7. We previously introduced this life sciences application, so we 
recommend reviewing 3.5, “Simultaneous multithreading performance” on 
page 59 for an overview of AMBER7. In this example, we instrumented the 
sander module:

$ tprof -z -u -p PID -x read sander
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Example 9-10   tprof output obtained with the sander module

Process                                FREQ  Total Kernel   User Shared  Other
=======                                ====  ===== ======   ==== ======  =====
/scratch/amber7/exe/sander                1   6978      3   6975      0      0
wait                                      2    957    957      0      0      0
IBM.CSMAgentRMd                           1     87      2      0     85      0
/home/db2inst1/sqllib/adm/db2set          2      2      1      0      1      0
/home/db2as/das/bin/db2fm                 2      2      2      0      0      0
/home/db2inst1/sqllib/bin/db2fm           1      1      1      0      0      0
/usr/sbin/muxatmd                         1      1      1      0      0      0
/usr/bin/sh                               1      1      1      0      0      0
=======                                ====  ===== ======   ==== ======  =====
Total                                    11   8029    968   6975     86      0

Process                   PID      TID  Total Kernel   User Shared  Other
=======                   ===      ===  ===== ======   ==== ======  =====
ch/amber7/exe/sander   348388   774299   6978      3   6975      0      0
wait                     8196     8197    838    838      0      0      0
wait                    12294    12295    119    119      0      0      0
IBM.CSMAgentRMd        163856   544779     87      2      0     85      0
/db2as/das/bin/db2fm   274632   782505      1      1      0      0      0
/db2as/das/bin/db2fm   274620   606215      1      1      0      0      0
/usr/bin/sh            188626   786589      1      1      0      0      0
t1/sqllib/adm/db2set   188620   786583      1      0      0      1      0
/usr/sbin/muxatmd      225408   344283      1      1      0      0      0
t1/sqllib/adm/db2set   188614   733255      1      1      0      0      0
st1/sqllib/bin/db2fm   266376   639199      1      1      0      0      0
=======                   ===      ===  ===== ======   ==== ======  =====
Total                                    8029    968   6975     86      0

        Total Samples = 8029    Total Elapsed Time = 71.74s

  Total Ticks For All Processes (USER) = 6975

User Process                                   Ticks    %    Address  Bytes
=============                                  ===== ======  =======  =====
/scratch/amber7/exe/sander                      6975  86.87 10000150 116478

  Profile: /scratch/amber7/exe/sander

  Total Ticks For All Processes (/scratch/amber7/exe/sander) = 6975

Subroutine                 Ticks    %   Source                Address  Bytes
==========                 ===== ====== ======                =======  =====
._log                       3816  47.53 ib/libm/POWER/logF.c    93490    380
.egb                        2118  26.38 _egb_.f                 d0ad0   4ea0
._exp                        901  11.22 ib/libm/POWER/expF.c    16a70    2d0
.daxpy                        89   1.11 daxpy.f                 9c7c0    230
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.ephi                         18   0.22 _ene_.f                 8bd30   21c0

._sin                         13   0.16 ib/libm/POWER/sinF.c     ac90    200

._acos                         6   0.07 b/libm/POWER/acosF.c    18470    2b0

.shake                         5   0.06 _shake_.f               f42f0    9e0

._cos                          4   0.05 ib/libm/POWER/cosF.c     aa70    220

.angl                          4   0.05 _ene_.f                 8a9b0    e00

.bond                          1   0.01 _ene_.f                 89330    e80

Profiling the sander module means that the trace facility is activated and 
instructed to collect from the trace hook that records the contents of the 
Instruction Address Register when a system-clock interrupt occurs. tprof reports 
the distribution of address occurrences as ticks across the programs involved in 
the workload. 

Example 9-11 shows the output of tprof for the sander module. Note that one 
the three most time-consuming routines correspond to logF.c, egb.f, and 
expF.c. Furthermore, the two C routines are part of the libm, which can be easily 
replaced by the equivalent routine in the Mathematical Acceleration Subsystem 
(MASS) library.

Example 9-11   tprof output obtained with the sander module using MASS libraries 

Process                                FREQ  Total Kernel   User Shared  Other
=======                                ====  ===== ======   ==== ======  =====
/scratch/amber7/exe/sander_mass           1   5956      1   5954      1      0
wait                                      2    764    764      0      0      0
/home/db2inst1/sqllib/adm/db2set          1      1      1      0      0      0
=======                                ====  ===== ======   ==== ======  =====
Total                                     4   6721    766   5954      1      0

Process                   PID      TID  Total Kernel   User Shared  Other
=======                   ===      ===  ===== ======   ==== ======  =====
ber7/exe/sander_mass   356544   753849   5956      1   5954      1      0
wait                     8196     8197    669    669      0      0      0
wait                    12294    12295     95     95      0      0      0
t1/sqllib/adm/db2set   188632   786595      1      1      0      0      0
=======                   ===      ===  ===== ======   ==== ======  =====
Total                                    6721    766   5954      1      0

        Total Samples = 6721    Total Elapsed Time = 64.13s

  Total Ticks For All Processes (USER) = 5954

User Process                                   Ticks    %    Address  Bytes
=============                                  ===== ======  =======  =====
/scratch/amber7/exe/sander_mass                 5954  88.59 10000150 114238

  Profile: /scratch/amber7/exe/sander_mass
 Chapter 9. Application tuning 345



  Total Ticks For All Processes (/scratch/amber7/exe/sander_mass) = 5954

Subroutine                 Ticks    %   Source                Address  Bytes
==========                 ===== ====== ======                =======  =====
._log                       4066  60.50 ib/libm/POWER/logF.c    90590    380
.egb                        1555  23.14 _egb_.f                 cdbd0   4e60
vrsqrt                       148   2.20 vrsqrt_p4.32s           7ef50    7a0
.daxpy                        67   1.00 daxpy.f                 998c0    230
.vexp                         59   0.88 vexp_p4.32s             d2a30    8e8
.ephi                         16   0.24 _ene_.f                 88e30   21c0
._cos                         13   0.19 ib/libm/POWER/cosF.c     aa70    220
._acos                        11   0.16 b/libm/POWER/acosF.c    18470    2b0
.angl                          9   0.13 _ene_.f                 87ab0    e00
._sin                          7   0.10 ib/libm/POWER/sinF.c     ac90    200
.runmd                         3   0.04 _runmd_.f               e9a30   63c0

Here we see that one of the bottlenecks (the one coming from the expF.c routine) 
has totally disappeared. We now show similar information with gprof and 
xprofiler.

gprof
This utility enables you to look at code to identify its critical sections. gprof was 
developed by GNU. The following steps are required to use gprof:

� Compile and link the application with profiling enabled.
� Run the application to generate a profile data file.
� Run gprof to analyze the data.

Rather than illustrating the use of gprof or tprof with a trivial example, we apply 
it to the life sciences application AMBER7. The first step involves modifying the 
script that compiles and builds the sander module. This is seen where we 
included the -pg option.

This corresponds to Machine.ibm_aix modified to invoke either gprof or the 
xprofiler:

########## LOADER/LINKER:
# Use Standard options
setenv LOAD "xlf90 -bmaxdata:0x80000000 -pg "
# Load with the IBM MASS & ESSL libraries
setenv LOADLIB " "
if ( $HAS_MASSLIB == "yes" ) setenv LOADLIB "-L$MASSLIBDIR -lmassvp4 "
if ( $VENDOR_BLAS == "yes" ) setenv LOADLIB "$LOADLIB -lblas "

Tip: Ensure that -pg is also included when the loader is invoked.
346 Advanced POWER Virtualization on IBM Eserver p5 Servers



if ( $VENDOR_LAPACK == "yes" ) setenv LOADLIB "$LOADLIB -lessl "

# little or no optimization:
setenv L0 "xlf90 -qfixed -c -pg"

# modest optimization (local scalar):
setenv L1 "xlf90 -qfixed -O2 -c -pg"

# high scalar optimization (but not vectorization):
setenv L2 "xlf90 -qfixed -O3 -pg -qmaxmem=-1 -qarch=auto -qtune=auto -c"

# high optimization (may be vectorization, not parallelization):
setenv L3 "xlf90 -qfixed -O3 -pg -qmaxmem=-1 -qarch=auto -qtune=auto -c"

Example 9-11 on page 345 shows the output of tprof after replacing expF.c with 
the vectorized version in the MASS library.

Example 9-12   Results of replacing expF.c with vectorized version

ngranularity: Each sample hit covers 4 bytes. Time: 90.27 seconds

                                  called/total       parents
index  %time    self descendents  called+self    name           index
                                  called/total       children

                0.00       80.92       1/1           .__start [2]
[1]     89.6    0.00       80.92       1         .main [1]
                0.00       80.92       1/1           .runmd [3]
                0.00        0.00       1/1           .rdparm2 [26]
-----------------------------------------------
6.6s                                               <spontaneous>
[2]     89.6    0.00       80.92                 .__start [2]
                0.00       80.92       1/1           .main [1]
-----------------------------------------------
                0.00       80.92       1/1           .main [1]
[3]     89.6    0.00       80.92       1         .runmd [3]
                0.01       80.89     100/100         .force [4]
                0.02        0.00     100/100         .shake [20]
                0.00        0.00       1/366954097     ._log [6]
                0.00        0.00     300/1429        .timer_start [37]
-----------------------------------------------
                0.01       80.89     100/100         .runmd [3]
[4]     89.6    0.01       80.89     100         .force [4]
               26.21       54.04     100/100         .egb [5]
                0.20        0.29     200/200         .ephi [11]
                0.04        0.09     200/200         .angl [15]
                0.02        0.00     100/100         .bond [19]
                0.00        0.00    1300/1300        .get_stack [40]
-----------------------------------------------
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               26.21       54.04     100/100         .force [4]
[5]     88.9   26.21       54.04     100         .egb [5]
               43.93        0.00 366954096/366954097     ._log [6]
               10.11        0.00 99723844/99723844     ._exp [7]
                0.00        0.00     225/1429        .timer_start [37]
                0.00        0.00     225/1429        .timer_stop [38]
-----------------------------------------------
                0.00        0.00       1/366954097     .runmd [3]
               43.93        0.00 366954096/366954097     .egb [5]
[6]     48.7   43.93        0.00 366954097         ._log [6]

-----------------------------------------------

               10.11        0.00 99723844/99723844     .egb [5]
[7]     11.2   10.11        0.00 99723844         ._exp [7]
-----------------------------------------------
6.6s                                               <spontaneous>
[8]      8.2    7.42        0.00                 .__mcount [8]
-----------------------------------------------
6.6s                                               <spontaneous>
[9]      0.8    0.70        0.00                 .daxpy [9]
-----------------------------------------------
6.6s                                               <spontaneous>
[10]     0.7    0.62        0.00                 .qincrement [10]
-----------------------------------------------
                0.20        0.29     200/200         .force [4]
[11]     0.5    0.20        0.29     200         .ephi [11]
                0.19        0.00 1618200/2075531     ._sin [14]
                0.06        0.00  809100/1266400     ._acos [17]
                0.05        0.00 1618200/1618231     ._cos [18]
-----------------------------------------------
6.6s                                               <spontaneous>
[12]     0.3    0.25        0.00                 .__stack_pointer [12]

-----------------------------------------------
6.6s                                               <spontaneous>
[13]     0.3    0.25        0.00                 .qincrement1 [13]
-----------------------------------------------
                0.00        0.00      31/2075531     .dihpar [25]
                0.05        0.00  457300/2075531     .angl [15]
                0.19        0.00 1618200/2075531     .ephi [11]
[14]     0.3    0.24        0.00 2075531         ._sin [14]

-----------------------------------------------
..............................
-----------------------------------------------
ngranularity: Each sample hit covers 4 bytes. Time: 90.27 seconds

  %   cumulative   self              self     total
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 time   seconds   seconds    calls  ms/call  ms/call  name
 48.7      43.93    43.93 366954097     0.00     0.00  ._log [6]
 29.0      70.14    26.21      100   262.10   802.50  .egb [5]
 11.2      80.25    10.11 99723844     0.00     0.00  ._exp [7]
  8.2      87.67     7.42                             .__mcount [8]
  0.8      88.37     0.70                             .daxpy [9]
  0.7      88.99     0.62                             .qincrement [10]
  0.3      89.24     0.25                             .__stack_pointer [12]
  0.3      89.49     0.25                             .qincrement1 [13]
  0.3      89.73     0.24  2075531     0.00     0.00  ._sin [14]
  0.2      89.93     0.20      200     1.00     2.47  .ephi [11]
  0.1      90.03     0.10                             .EndIORWFmt [16]
  0.1      90.12     0.09  1266400     0.00     0.00  ._acos [17]
  0.1      90.17     0.05  1618231     0.00     0.00  ._cos [18]
  0.0      90.21     0.04      200     0.20     0.63  .angl [15]
  0.0      90.23     0.02      100     0.20     0.20  .bond [19]
  0.0      90.25     0.02      100     0.20     0.20  .shake [20]
  0.0      90.26     0.01    15149     0.00     0.00  .cvtloop [22]

xprofiler
This utility is a graphical tool that enables you to perform profiling of your code. 
The output is similar to the other two tools, except that xprofiler is more flexible 
and more powerful for analyzing large applications. The procedure to build and 
run the application with xprofiler enabled is similar to gprof. After this is done, 
just invoke xprofiler:

$ xprofiler

When xprofiler has started, all you have to do to start displaying information 
related to your application is to select your executable and the gmon.out file.

xprofiler can also produce a flat profile as part of its functionality. Figure 9-5 on 
page 350 shows the flat profile for the AMBER7 run.
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Figure 9-5   Flat profile produced using xprofiler

Of the tools that can be utilized to analyze the performance of scientific and 
engineering applications, xprofiler provides a powerful utility with a friendly 
interface that can help expedite the localization of critical sections in the code. If 
there is no access to the source code, tprof provides a good alternative for 
obtaining information about a running application by attaching to the process ID.

9.4  Memory management
In this section explore the importance of data locality to code optimization. 
Figure 9-6 on page 351 shows how memory hierarchy is organized on POWER5. 
Previous chapters have provided detailed descriptions of each of the 
components.
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Figure 9-6   Memory hierarchy

The POWER architecture has several layers where your application can access 
data. The important message from Figure 9-6 that we demonstrate throughout 
this chapter is that the closer the data is to the registers, the more efficiently your 
application will perform.

Scientific and engineering applications are floating-point intensive programs. The 
architectural features that are of the highest direct relevance from the figure are:

� All three levels of cache
� Translation lookaside buffer (not shown in Figure 9-6)

Data prefetch streaming and superscalar floating-point units also affect memory 
performance.

9.5  Optimization of critical sections in the code
This is a very extensive topic and we do not attempt to cover all of the possible 
techniques to optimize scientific and engineering applications. Instead we focus 
our attention on certain techniques that tend to benefit the POWER architecture. 
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A good example of this is matrix multiplication. In the past, we managed to 
achieve approximately 60% of peak performance via matrix multiplication 
routines. Now with the advent of POWER5, which has more rename registers, it 
is possible to achieve near-peak performance with a well-optimized routine.

In this section we try to illustrate some simple techniques using standard 
examples and an example of matrix multiplication. We look at matrix 
multiplication from an over-simplistic point of view, which does not show good 
performance, but from this example we provide a Fortran version that compares 
well with a highly optimized version of matrix multiplication routines.

Before doing that, it is important to recall a series of general optimization rules 
that can improve the performance of critical sections of the code within scientific 
and engineering applications. To make better use of memory, keep in mind that 
whenever possible data should be accessed sequentially. In a loop, this is called 
accessing memory with unity stride or stride of 1. In large applications, loops 
usually tend to grow in size as operations are carried out within the loop. If 
possible, try to keep the loop small and manageable—the smaller the loop the 
better. It is important to avoid expensive operations, such as divide, square-root, 
and exponential. If this type of transcendental function is required for the code, 
consider using the MASS library, which is explained in 9.6.1, “MASS Library” on 
page 361. In a loop, if statements and calls to subroutines tend to introduce data 
dependency and usually inhibit optimization. The following are less common 
problems that we only mention here:

� Avoid using EQUIVALENCE for critical variables.

� Avoid implicit type conversions.

� Try to reduce the number of arguments that are passed from the caller to the 
callee.

� If multiple “if” statements are required, evaluate the most likely if statement 
first. In other words, try to reduce the number of if statements that have to be 
evaluated.

In general, the key to performance is to be able to map the application as close 
as possible to the POWER Series architecture. The use of the POWER5 memory 
hierarchy can be cleverly manipulated in an algorithm to gain efficiency. This may 
include prefetching to facilitate accessing memory that is currently not in the 
cache. Prefetching provides a mechanism for hiding memory latency due to 
cache misses. We shall see that loop unrolling is very important to proper use of 
the memory hierarchy. Simulation of higher precision arithmetic helps 
performance, especially when this process is highly repetitive.
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9.5.1  General rules for optimization strategies
Code simplification:

� Eliminate unused or redundant computations.

� Use algebraic identities, when possible, to simplify expressions.

� Eliminate unnecessary branching.

� Move code to less-frequently executed points.

� Eliminate unnecessary procedure calls and pointer indirections.

Data memory cost:

� Eliminate redundant memory loads and stores.

� Data that is constantly used together should be stored in memory as close 
together as possible.

� Reorganize loop structures to exploit data reuse and locality.

� Perform careful mapping of data to avoid cache and TLB interference.

� Overlap memory access and computation through software or hardware 
prefetch.

Instruction memory cost:

� Reduce code size when possible.

� Limit inlining and loop unrolling to avoid excessive code growth.

� Maintain code for loops together and move non-loop code out.

� Move branches and their targets closer together.

Multiple instructions:

� Identify loops whose iterations can profitably run in parallel, and execute them 
concurrently using a run-time schedule.

� Find primitive operations in loops that can be vectorized profitably, such as 
divide and square root, and compute the vectors in a pipeline.

� Balance loop computations through loop unrolling to enable effective software 
pipelining.

9.5.2  Array optimization
To take advantage of the memory hierarchy on POWER architected systems, the 
first step requires understanding the multiple arrays used in the code and how 
their elements will be used. In general, this is particularly true for numerically 
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intensive applications that spend a large amount of CPU performing repetitive 
tasks, such as loading and storing data in arrays.

As in any popular Fortran or C textbook, we start by describing the difference in 
the way elements in a matrix are stored between these two languages. For C 
codes, matrix rows are stored contiguously. For Fortran codes, matrix columns 
are stored contiguously. 

4x4 Matrix with one-dimensional index in square brackets:

C: row-major order; matrix rows are stored contiguously

Fortran: column-major order; matrix columns are stored contiguously

Stride is relevant when addressing the elements of a matrix.

Stride The distance between successively accessed matrix elements in 
successive loop iterations

Example 9-13   Do loop with two different strides

do i = 1, 200
  do j = 1, 500
    a(i,j) = 1.d0     !stride 500
    b(j,i) = 1.d0     !stride 1
  enddo
enddo

Important: Keep this ordering in mind to help the efficiency of your code.

Tip: Stride of 1 ensures sequential access to memory and provides best 
performance.

a 1 1,( ) 1[ ] a 1 2,( ) 2[ ] a 1 3,( ) 3[ ] a 1 4,( ) 4[ ]
a 2 1,( ) 5[ ] a 2 2,( ) 6[ ] a 2 3,( ) 7[ ] a 2 4,( ) 8[ ]
a 3 1,( ) 9[ ] a 3 2,( ) 10[ ] a 3 3,( ) 11[ ] a 3 4,( ) 12[ ]
a 4 1,( ) 13[ ] a 4 2,( ) 14[ ] a 3 4,( ) 15[ ] a 4 4,( ) 16[ ]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
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Stride of 1 is beneficial because it ensures that after a line of cache has been 
loaded, the next set of elements needed will be available in the same cache line. 
This decreases the number of times that is required to go to memory hierarchy to 
load data. On POWER5, the size of a cache line is 128 bytes. The implication of 
this size is that for 32-bit words, strides larger than 32 will reduce performance 
(and 16 for 64-bit words) since only one element can be fetched per cache line. 
In addition, stride 1 will make use of the prefetch engine.

9.5.3  Loop optimization
The technique of loop optimization is basic for taking advantage of memory 
hierarchy. A good example that is commonly used to illustrate multiple 
optimization techniques is matrix multiplication. Optimizing the matrix 
multiplication triple-nested loop has been discussed extensively, so we simply 
summarize how this is done and show results with respect to POWER5.

Example 9-14 shows the typical triple-nested loop of the main kernel in a matrix 
multiplication routine. The triple-nested loop comes from the following 
expression:

Example 9-14   Matrix multiplication triple-nested loop

do i = 1, n
         do j = 1, n
           do k = 1, n
             c(i,j) = c(i,j) + a(j,k)*b(k,i)
           enddo
         enddo
        enddo

This loop has been written without any particular attention to an optimal 
arrangement of the loop indices. In fact, optimizing all three loops for stride 1 may 
not be possible. This makes matrix multiplication a good candidate for loop 
unrolling.

C C A
T

B+=
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Example 9-15 illustrates an implementation of a 2x2 loop unrolling.

Example 9-15   Matrix 2x2 loop unrolling

        do i = 1, l, 2
          do j = 1, m, 2
            s00 = zero
            s21 = zero
            s12 = zero
            s22 = zero
c
            do k = 1, n
              s11 = s11 + a(k,i)*b(k,j)
              s21 = s21 + a(k,i+1)*b(k,j)
              s12 = s12 + a(k,i)*b(k,j+1)
              s22 = s22 + a(k,i+1)*b(k,j+1)
            enddo
            c(i,j) =     c(i,j)     + s11
            c(i+1,j) =   c(i+1,j)   + s21
            c(i,j+1) =   c(i,j+1)   + s12
            c(i+1,j+1) = c(i+1,j+1) + s22
          enddo
        enddo

Table 9-9 shows the level of unrolling that has been reported as optimal for 
different POWER series, including our findings that seem to work well for 
POWER5.

Table 9-9   Optimal unrolling levels for some IBM POWER Series machines

The POWER1 had only a single floating-point unit, the 2x2 unrolling, which 
achieved very good performance. The POWER2 and POWER3 have dual 
floating-point units; for these systems, 4x4 appeared to be favored. The unrolling 
reported for POWER4 is 4x5.

In addition to unrolling, block matrices must be able to make use of registers as 
much as possible.

System Unrolling level

POWER1 2x2

POWER2™ 4x4

POWER3 4x4

POWER4 5x4

POWER5 4x4
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In order to carry out our performance measurements, we used a hand-tuned 
version of DGEMM. This version is not publicly available. Table 9-10 on page 357 
illustrates the performance of the different level of unrolling. Column 1, which is 
used as reference, corresponds to a well-coded DGEMM version without 
unrolling. The next set of columns illustrate the impact of the various unrolling 
levels on POWER5. Note that in all of these cases, the blocking size was kept 
constant at 256. The only variable was unrolling. The main difference between 
4x4 unrolling and Sserver p5-4x4 unrolling is in the use of two extra compiler 
directives in Sserver p5-4x4. One is to further unroll the innermost loop of the 
matrix multiplication and the second one is to enhance prefetching.

A simple inspection of Table 9-10 shows that 4x4 is the technique that is best 
suited for POWER5. Sserver p5-4x4 shows the additional benefit of using 
compiler directives. The recommended version for square matrices is 
Sserver p5-4x4.

Table 9-10   Performance of matrices with different unrolling levels

Dimension No unrolling 2X2 5X4 4X4 4X4 new 

100 1,580 3,080 3,938 4,763 4,902

200 1,786 3,583 4,141 5,340 5,486

500 1,797 3,732 3,906 5,106 5,691

1000 1,848 3,835 3,522 5,166 5,944

2000 1,812 3,754 3,731 5,224 5,837

5000 1,355 3,622 3,809 5,320 6,028
 Chapter 9. Application tuning 357



Figure 9-7 shows the different techniques that were used to unroll the matrix. The 
reference is the peak performance for this POWER5 running at 1.65 GHz. Again, 
it is easy to see that Sserver p5-4x4 shows the best performance and is 
remarkably close to peak performance. This is because POWER5 introduces 
more rename registers.

Figure 9-7   Different techniques against peak performance

Next we examine the effect of blocking and large pages on matrix multiplication. 
We looked at block sizes of 32, 64 96, 128, 160, 192, 224, and 256. Table 9-11 
summarizes the performance of a matrix multiplication for a subset of these 
sizes.

Table 9-11   Blocking and large pages’ effect on matrix multiplication

Dimension 32 64 128 256

100

Small pages 4,560 4,596 3,920 3,795

Large pages 4,588 4,880 4,917 4,902

500

Small pages 4,850 5,080 5,375 5,363

Large pages 5,030 5,232 5,679 5,691

1000

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000

Matrix Dimension

M
Fl

op
/s
no unrolling

2x2

5x4

4x4

p5-4x4

Peak Perf.
358 Advanced POWER Virtualization on IBM Eserver p5 Servers



Figure 9-8 shows the effect of different block sizes for three matrices with three 
different dimensions. The dimensions that we have selected for the three square 
matrices correspond to: 100x100, 1000x1000, and 10000x10000. From this plot 
we have identified that for all of the matrices tested here, block sizes between 
224 and 256 give the best results.

Figure 9-8   Matrix multiplication as a function of block size

Small pages 4,050 4,751 5,396 5,609

Large pages 4,391 5,103 5,843 5,944

2000

Small pages 3,629 4,810 5,249 5,483

Large pages 4,190 5,365 5,702 5,837

5000

Small pages 3,401 4,498 5,143 5,350

Large pages 4,068 5,082 5,906 6,028

10000

Small pages 3,448 4,490 4,923 5,098

Large pages 4,207 5,372 5,546 5,900
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The last figure in this section illustrates the effect of large pages on matrix 
multiplication. Figure 9-9 shows that independent of the block size and 
dimensions of the matrix, the large pages effect is proportional to the dimensions 
of the matrixes. Although not shown in the table nor in the figure, we found that 
the improvement measured in percentage difference (in going from small to large 
pages) for matrixes was: 100x100, 200x200, 500x500, 1000x1000, 2000x200, 
5000x5000, and 10000x10000 are 1%, 2%, 4%, 8%, 15%, 20%, and 22%, 
respectively.

Figure 9-9   Large pages effect on performance for matrix multiplication

9.6  Optimized libraries
IBM provides collections of routines that have been fully optimized to a particular 
architecture, in this case POWER5. As previously mentioned, the advantage of 
using highly tuned libraries is that in many cases the code requires few changes 
to take full advantage of these library functions. In this section, we show how 
scientific applications can be customized to fully utilize these libraries. In this 
section we cover two of them:

� MASS library:

http://www.ibm.com/support/docview.wss?uid=swg24007650

� ESSL library:

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html#essl_42
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9.6.1  MASS Library
Figure 9-1 on page 313 presented a flowchart that illustrates how to analyze 
applications performance. (A section is reproduced in Figure 9-10.) As part of the 
steps in this flowchart, we mentioned that prior to attempting any hand tuning, 
the programmer should rely on compiler flags, compiler directives and highly 
optimized libraries. This chapter starts with the MASS libraries.

Figure 9-10   CPU-bound code might benefit from optimized libraries

MASS is a set of libraries of highly tuned mathematical intrinsic functions for C, 
C++, and Fortran applications that are optimized for specific POWER 
architectures. The MASS library consists of the scalar and vector libraries. The 
MASS scalar library, libmass.a, contains an accelerated set of the most 
frequently used math intrinsic functions in the AIX 5L system library libxlf90.a. 
This library can be used under AIX 5L and Linux on the POWER5 family.

The second set of libraries correspond to the MASS vector library. The general 
vector libraries, libmassv.a, libmassvp3.a (for POWER3), and libmassvp4.a (for 
POWER4) contain functions that have been optimized. Table 9-12 on page 362 
reproduces the vector table presented in:

http://www.ibm.com/support/docview.wss?rs=2021&context=SSVKBV&uid=swg27005374

It includes POWER5 performance.

The vector libraries libmassv.a, libmassvp3.a, and libmassvp4.a can be used 
with either FORTRAN or C applications. When calling the library functions from 
C, only call by reference is supported, even for scalar arguments. As with the 

Important: In some cases MASS is not as accurate as the system library and 
it might handle certain cases differently. We recommend always checking 
answers when using any kind of optimized libraries for the first time.
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scalar functions, the vector functions must be called with the IEEE rounding 
mode set to round-to-nearest and with exceptions masked off. The accuracy of 
the vector functions is comparable to that of the corresponding scalar functions in 
libmass.a, though results may not be bit-wise identical.

The MASS vector Fortran source library enables application developers to write 
portable vector codes. The source library, libmassv.f, includes Fortran versions of 
all vector functions in the MASS vector libraries. The following performance table 
lists estimates of the number of processor cycles per evaluation of a vector 
element for the various MASS vector libraries. The estimates used vectors of 
length 1000 so that the caches contain all the vectors. The columns labeled libm 
give the results from using the functions in the MASS Fortran source code library 
libmassv.f to call the functions in libxlf90.a. The Fortran source code was 
compiled with IBM XLF compiler using the -O option. The columns labeled mass 
show results of the same process, except they use libmass.a instead of libxlf90.a. 
The columns labeled massv and vp4 list the results obtained with the libraries 
libmassv.a and libmassvp4.a, respectively. Times are not given for functions in 
the libmassvp4.a libraries that are identical to the functions in the libmassv 
library. The results were measured on both POWER4 and POWER5 systems.

Results will vary with vector length. Entries in the table where the library function 
does not exist or where the measurement was not done are blank.

Table 9-12   Vector library performance (cycles per evaluation, length 1000 loop)

POWER4 POWER5

Function Range libm mass massv vp4 libm mass massv vp4

vrec D 29* 11 5.1 29* 11 5.1

vsrec D 28* 7.6 3.9 23* 6.4 3.8

vdiv D 28* 14 5.8 29* 13 5.4

vsdiv D 30* 9.4 4.9 23* 8.8 4.8

vsqrt C 36* 17 7.1 36* 17 7.8

vssqrt C 36* 11 5.7 23* 10 5.4

vrsqrt C 64* 18 7.0 36* 17 8.0

vsrsqrt C 64* 11 5.6 23* 9.4 6.1

vexp D 91 42 14 11 168 47 12 11

vsexp D 105 45 10 8.9 192 50 8.9 8.6

vlog C 153 84 9.9 207 86 9.5
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vslog C 157 90 6.7 212 92 6.9

vlog10 C 158 90 10 207 93 9.8

vslog10 C 162 97 6.9 206 95 6.9

vsin B 56 24 7.2 14 66 24 6.8 13

vsin D 75 69 20 15 83 64 19 15

vssin B 57 26 5.5 11 67 25 5.2 10

vssin D 80 72 16 13 86 66 16 12

vcos B 54 23 6.6 15 66 22 6.3 13

vcos D 80 69 20 17 82 64 20 15

vscos B 57 27 5.4 11 66 24 4.9 10

vscos D 81 73 16 12 82 66 16 12

vsincos B 103 51 13 10 122 46 12 9.3

vsincos D 157 135 22 18 166 122 22 18

vssincos B 110 54 9.8 8.3 124 147 9.5 7.2

vssincos D 162 138 18 15 180 124 17 15

vcosisin B 105 50 12 10 123 45 12 9.4

vcosisin D 160 134 21 18 165 119 20 18

vscosisin B 107 51 9.9 8.3 124 47 9.7 7.2

vscosisin D 158 136 18 15 172 125 18 15

vtan D 172 73 19 185 67 18

vstan D 192 76 15 187 68 15

vatan2 D 722 139 59 24 64 136 48 25

vsatan2 D 738 146 48 15 772 142 47 15

vcosh D 195 53 14 242 54 13

vscosh E 176 55 13 244 56 12

vsinh D 275 68 15 372 67 13

vssinh E 293 73 14 359 74 12

POWER4 POWER5
 Chapter 9. Application tuning 363



vtanh F 307 80 19 329 78 18

vstanh E 282 84 17 355 85 15

vpow C 399 185 29 462 189 30

vspow G 396 190 17 462 193 17

vasin B 97 24 108 23

vsasin B 103 14 112 14

vacos B 104 24 108 23

vsacos B 107 14 114 14

vexpm1 D 169 12 197 12

vsexpm1 E 140 10 214 10

vlog1p H 202 13 221 12

vslog1p H 202 9.2 219 8.9

vdint D 40 6.6 46 6.4

vdnint D 39 8.9 43 7.8

* hardware instructions (in simple loop)

Range key:
A =    0,1
B =   -1,1
C =    0,100
D = -100,100
E =  -10,10
F =  -20,20
G =    0,10
H =   -1,100

1500 MHz POWER4 (GQ)

1650 MHz POWER5 (GR)

POWER4 POWER5
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Accuracy data for the scalar and vector libraries
In some cases, MASS is not as accurate as the system library libm.a, and it may 
handle edge cases differently (sqrt(Inf)), for example). Table 9-13 provides 
sample accuracy data for the libm, libmass, libmassv, and libmassvp4 libraries. 
The numbers are based on the results for 10,000 random arguments chosen in 
the specified ranges (except for some of the libmassvp4 functions that were 
tested more extensively; see range F in the table). Real*16 functions were used 
to compute the errors. There may be portions of the valid input argument range 
for which accuracy is not as good as illustrated in the table. Also, accuracies may 
vary from values in the table when argument values are used that are not 
represented in the table.

The entries in the percent correctly rounded (PCR) column were obtained by 
counting the number of correctly rounded results out of 10,000 samples with 
random argument. A result is correctly rounded when the function returns the 
IEEE 64-bit value that is closest to the exact (infinite-precision) result.

Table 9-13   MASS library accuracy (MASS 41)

function range libxlf90 libmass libmassv libmassvp3 libmassvp4

PCR MaxE PCR MaxE PCR MaxE PCR MaxE PCR MaxE

rec D 100.00* .50* 100.00 .50 100.00 .50 99.95 .51

srec D 100.00* .50* 92.47 .66 99.97 .50 99.92 .50

div D 100.00* .50* 74.78 1.32 74.78 1.32 74.77 1.32

sdiv D 100.00* .50* 100.00 .50 .74.49 1.35 74.47 1.35

sqrt A 100.00 .50 96.59 .58 96.42 .60 86.86 .96 86.86 .96

ssqrt A 100.00 .50 100.00 .50 87.64 .79 83.80 1.01 83.80 1.01

rsqrt A 88.52 .98 98.60 .54 97.32 .62 97.84 .55 97.84 .55

srsqrt A 100.00 .50 100.00 .50 86.39 .82 89.66 .86 89.66 .86

exp D 99.95 .50 96.55 .63 96.58 .63 96.58 .63 96.58 .63

sexp D 100.00 .50 100.00 .50 98.87 .52 98.87 .52 98.87 .52

log C 99.99 .50 99.69 .53 99.45 .89 99.45 .89 99.45 .89

slog C 100.00 .50 100.00 .50 99.99 .50 99.99 .50 99.90 .50

log10 C 64.63 1.56 64.58 1.56 99.29 1.03 99.29 1.03 99.29 1.03

slog10 C 100.00 .50 100.00 .50 99.99 .50 99.99 .50 99.99 .50

sin B 81.31 .91 96.88 .80 97.28 .72 97.28 .72 92.87 1.35
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sin D 86.03 .94 83.88 1.36 83.85 1.27 83.85 1.27 83.07 1.33

ssin B 100.00 .50 100.00 .50 99.95 .50 99.95 .50 99.85 .51

ssin D 100.00 .50 100.00 .50 99.73 .51 99.73 .51 99.73 .51

cos B 92.95 1.02 92.20 1.00 93.19 .88 91.19 .88 86.15 1.11

cos D 86.86 .93 84.19 1.33 84.37 1.33 84.37 1.33 83.17 1.33

scos B 100.00 .50 100.00 .50 99.35 .51 99.35 .51 99.57 .51

scos D 100.00 .50 100.00 .50 99.82 .51 99.82 .51 99.82 .51

tan D 99.58 .53 64.51 2.35 54.31 2.71 54.31 2.71 54.31 2.71

stan D 100.00 .50 100.00 .50 98.11 .68 98.11 .68 98.11 .68

atan2 D 74.66 1.59 86.02 1.69 84.01 1.67 84.01 1.67 84.00 1.67

satan2 D 100.00 .50 100.00 .50 100.00 .50 100.00 .50 98.76 .62

cosh D 95.64 .97 92.73 1.04 57.56 2.09 57.56 2.09 57.56 2.09

scosh E 100.00 .50 100.00 .50 99.08 .52 99.08 .52 99.08 .52

sinh D 94.78 1.47 98.54 1.45 82.53 1.58 82.53 1.58 82.53 1.58

ssinh E 100.00 .50 100.00 .50 98.75 .53 98.75 .53 98.75 .53

tanh F 96.97 2.53 91.30 1.85 58.57 2.98 58.57 2.98 58.57 2.98

stanh E 100.00 .50 100.00 .50 89.44 .74 89.44 .74 89.44 .74

pow C 99.95 .50 96.58 .63 97.04 .58 97.04 .58 97.04 .58

spow G 100.00 .50 100.00 .50 99.16 .52 99.16 .52 99.16 .52

acos B 99.44 .59 84.72 1.85 84.72 1.85 84.72 1.85

sacos B 100.00 .50 99.06 .55 99.06 .55 99.06 .55

asin B 98.82 .61 68.52 1.95 68.52 1.95 68.52 1.95

sasin B 100.00 .50 97.66 .56 97.66 .56 97.66 .56

expm1 D 95.58 .98 98.58 .98 98.58 .98 98.58 .98

sexpm1 E 100.00 .50 100.00 .50 100.00 .50 100.00 .50

log1p H 99.91 .97 99.56 1.29 99.56 1.29 99.56 1.29

slog1p H 100.00 .50 100.00 .50 100.00 .50 100.00 .50

dint D 100.00 .00 100.00 .00 100.00 .00 100.00 .00

dnint D 100.00 .00 100.00 .00 100.00 .00 100.00 .00

function range libxlf90 libmass libmassv libmassvp3 libmassvp4
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For information about performance for each of the MASS library functions, visit 
the MASS library page at:

http://www.ibm.com/support/docview.wss?uid=swg24007650

Example 9-16 shows how the vector MASS library can be implemented for a 
scientific application such as AMBER, replacing 1/sqrt with vrsqrt.

Example 9-16   MASS vector library example

icount = 0
        do 25 j=i+1,natom
c
          xij = xi - x(3*j-2)
          yij = yi - x(3*j-1)
          zij = zi - x(3*j  )
          r2 = xij*xij + yij*yij + zij*zij
          if( r2.gt.cut ) go to 25
c
          icount = icount + 1
          jj(icount) = j
          r2x(icount) = r2
c
   25   continue
c
c
#ifdef MASSLIB
        call vrsqrt( vectmp1, r2x, icount )
#else
        do j=1,icount
          vectmp1(j) = 1.d0/sqrt(r2x(j))
        end do
#endif

atan B 99.82 .51 92.58 1.78

atan D 99.98 .50 98.86 1.72

* Indicates hardware instruction was used.
PCR = percentage correctly rounded
MaxE = Maximum observed error in ulps

Range key:
A = 0, 1
B = -1, 1
C = 0, 100

D = -100, 100
E = -10, 10
F = -20, 20
G = 0, 10

function range libxlf90 libmass libmassv libmassvp3 libmassvp4
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Table 9-14 shows the performance improvement from using the MASS libraries. 
The case presented in this table corresponds to the Generalized Born myoglobin 
simulation. This protein has 2,492 atoms and is run with a 20A cutoff and a salt 
concentration of 0.2 M, with nrespa=4 (long-range forces computed every 4 steps.) 

Table 9-14   AMBER7 performance with the sqrt vector MASS routine

In this particular example, the MASS libraries are used in only three locations in 
the routine that is using most of the CPU time, one time for exp() and two for 
sqrt(). The table illustrates that by performing these simple substitutions there is 
an almost 15% improvement in single processor performance.

9.6.2  ESSL library
In this section we look at performance improvements using highly optimized 
library routines, in this case the IBM Engineering and Scientific Subroutine 
Library (ESSL). Find more information at the ESSL Web site at:

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html

Figure 9-11   CPU-bound code might benefit from optimized libraries

This is a state-of-the-art collection of mathematical routines. The ESSL family of 
subroutines for AIX 5L and Linux contains:

� Basic Linear Algebra Subprograms (BLAS)
� Linear Algebraic Equations
� Eigensystem Analysis
� Fourier Transforms

Elapsed time in seconds

Without vector MASS With vector MASS
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To illustrate that ESSL provides the best performance we used ESSL Version 
4.2, which is available for AIX 5L 5.3 for POWER5. This version requires XL 
Fortran Enterprise Edition Version 9.1 for AIX 5L and the XL Fortran Enterprise 
Edition Run-Time Environment Version 9.1 for AIX 5L. For this test we use 
DGEMM, which has been extensively optimized for L1 and L2 caches. The 
results from ESSL are compared against the hand-tuned Fortran version of 
DGEMM presented in previous sections. Table 9-15 summarizes the results for 
DGEMM ESSL and DGEMM Fortran.

Table 9-15   DGEMM routine optimized in the ESSL library

These results are also summarized in Figure 9-12. All benchmarks were carried 
out on an IBM Sserver p5 system with a clock speed of 1.65 GHz. The only 
case in which the Fortran version has a slight advantage over ESSL is for 
small-square matrixes, in this case 100x100. In all other cases, the version of 
DGEMM in ESSL outperforms the Fortran version by as much as 5%.

Figure 9-12   DGEMM optimized routine in ESSL versus Fortran version

Dimension Fortran ESSL

100 4902 4403

200 5486 5494

500 5691 5893

1000 5944 6126

2000 5837 6140

5000 6028 6124

10000 5900 6105
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The ESSL DGEMM routine is consistently higher than 90% of peak performance 
for matrixes with rank higher than 500. Peak performance for this particular 
POWER5 is 6.6 Gigaflops per second.

9.7  Parallel programming general concepts
Parallel computing involves dividing a task into smaller and more manageable 
blocks and distributing these blocks, in our case, among processors (physical or 
logical processors). In parallel computing, scientific and engineering applications 
are very important. They can take full advantage of a system with multiple 
processors, such as the IBM POWER5 server. In order to take full advantage of 
all of the power of a system with many or few processors, it is necessary to 
consider the following issues:

� Parallel algorithms

To be able to make use of all of the processors that are available on 
POWER5, we need algorithms that can be efficiently parallelized.

� Parallel languages

To implement a parallel algorithm, a parallel language is required. AIX 5L and 
Linux on POWER5 support the most common parallel paradigms.

� Parallel programming tools

This may involve evaluating performance of a particular application. As in the 
previous sections, this can answer questions such as how efficiently 
applications are taking advantage of the POWER5 architecture. In addition, 
parallel programming tools may involve interfaces that assist programmers 
debugging and shielding them from any low-level machine characterization.

� Parallel compiler programming

As compilers become more sophisticated and more information regarding the 
behavior of applications is put into the compiler, chances to provide 
programmers with automatic parallelization become greater.

Metrics
Generally for parallel applications, performance is a function of more parameters 
than for serial applications. Performance depends on the characteristics of the 
input, and basic considerations such as number of processors, memory, and 
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processor communication are very important. The optimal combination of all of 
these variables defines good scalability. In this book we define scalability as:

Scalability A measurement of how close an application performs 
proportional to the number of processors. It is expressed 
as parallel speedup.

To measure parallel speedup, we rely on elapsed time. (See 9.1, “Performance 
bottlenecks identification” on page 312.) The parallel time is not just the 
cumulative time for the parallel regions; it is the elapsed time from beginning to 
end of the simulation. In effect, this definition includes sequential and parallel 
regions. In scientific and engineering applications this is the most practical way to 
define it. The parallel speedup is defined as follows:

Parallel speedup A measurement that reflects scalability or the ability of an 
application to reduce the time to solution proportional to 
the number of processors:

Efficiency is simply  where p is the number of processors.

S Tsequential
Tparallel

----------------------------------=

e S
p
----=
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Chapter 10. Partition Load Manager

A general presentation of Partition Load Manager is provided in chapters 3 and 6 
of Advanced POWER Virtualization on IBM eServer p5 Servers Introduction and 
Basic Configuration, SG24-7940. Chapter 3 contains a description of the general 
behavior of Partition Load Manager, and Chapter 6 has a detailed explanation of 
Partition Load Manager installation and configuration.

10
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10.1  When and how should I use Partition Load 
Manager?

Partition Load Manager for AIX 5L is a load manager that provides automated 
processor and memory resource management across dynamic LPAR–capable 
logical partitions running AIX 5L V5.2 or AIX 5L V5.3. Partition Load Manager 
allocates resources to partitions as requested, within the constraints of a 
user-defined policy. It assigns resources from partitions with low usage to 
partitions with a higher demand, improving the overall resource utilization of the 
system. Partition Load Manager works with both dedicated partitions and 
micro-partition environments. 

Partition Load Manager is an optional feature of most IBM Sserver p5 servers. 
(It is standard in p-590 and p-595 models.) In many cases, you can run your 
server satisfactorily without Partition Load Manager. First, this section shows 
how Partition Load Manager relates to other workload management tools 
available. This section then describes the cases where you would want to take 
advantage of Partition Load Manager. Finally, it provides best practices for 
deploying Partition Load Manager.

Although it is possible to manage the resources of a Virtual I/O Server with 
Partition Load Manager, this requires manual setup of Partition Load Manager so 
that the restricted shell (rsh) can be used on this partition. We therefore do not 
recommend that you perform this kind of resource management. 

10.1.1  Partition Load Manager and other load-balancing tools
The POWER Hypervisor provides some built-in features to automatically allocate 
physical CPU resources. AIX 5L also provides load-balancing possibilities using 
Workload Manager (WLM). In this section, we compare these tools with Partition 
Load Manager.

Partition Load Manager versus POWER Hypervisor resource 
allocation

For dedicated partitions and capped micro-partitions, the POWER Hypervisor 
deals with resource allocation only at boot time and during dynamic LPAR 
operations generated from the HMC. At boot time, the POWER Hypervisor 

Note: Partition Load Manager can be used to manage AIX 5L V5.2 and V5.3 
and Virtual I/O Server partitions. Partition Load Manager does not currently 
manage i5/OS or Linux partitions.
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checks for available resources and presents the booting partition with either its 
desired amount of resources, if available, or a smaller amount if not. After the 
partition is booted, the POWER Hypervisor will not modify the resources that are 
allocated to the partition unless a system administrator issues commands from 
the (Hardware Management Console) HMC. 

Furthermore, if dedicated partitions (that are defined on the servers) are not 
booted, their unused processors will be moved by the POWER Hypervisor to the 
free processor pool for use by micro-partitions, and given back to the dedicated 
partitions when they are booted. 

For uncapped micro-partitions, AIX 5L V5.3 provides an additional resource load 
balancing: As shown in Chapter 5, “Micro-Partitioning” on page 93, a partition’s 
unused processor time is given to other partitions when the kernel calls the 
H-cede or H-confer POWER Hypervisor calls. This freed processor time is then 
shared between the uncapped micro-partitions. This resource management is 
limited to processors and does not balance memory. 

After partitions are booted, the POWER Hypervisor makes sure that each 
partition gets its share of resources as defined on the HMC:

� Memory and number of physical processors for dedicated partitions

� Memory, processing units, and number of virtual processors for 
micro-partitions

� Possibly additional processing power for uncapped micro-partitions

But the POWER Hypervisor does not dynamically modify these resource shares 
by itself.

Partition Load Manager adds a level of automation in the allocation of resources. 
It dynamically changes the amount of resources given to each partition.

Partition Load Manager versus Workload Manager
Partition Load Manager and WLM can be used concurrently. There is no overlap 
in their scope:

� The scope of Partition Load Manager is the set of hardware resources 
(processors and memory) that are configured in a physical server. Partition 
Load Manager dynamically allocates these physical resources to partitions. 

� The scope of WLM is the set of resources (processor, memory, and disk I/O) 
within one partition. WLM dynamically allocates these resources among the 
processes running within one partition. 

Because WLM allocates resources according to configuration files that contain 
relative values (percentage or shares) and not absolute values, WLM can work 
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independently of the allocation of resources by Partition Load Manager to a 
partition. 

Consider this (very simplified) example. A partition contains two processes, P1 
and P2, that are managed by WLM, so that P1 gets three shares of CPU and P2 
gets two shares. Initially, the partition is allocated two physical processors, so P1 
is using 60% of two processors (1.2 processor) and P2 is using 40% of two 
processors (0.8 processor). Later on, if processors become unused in the server 
and the partition is given three extra processors by Partition Load Manager, P1 
will get 60% of five processors (three processors), and P2 will get two 
processors. The WLM priorities defined by shares are kept unchanged, and each 
process gets more physical resources thanks to the Partition Load Manager 
action, without any need to modify the WLM settings. In other words, WLM 
manages percentages of available resources given by Partition Load Manager. 

10.1.2  When to use Partition Load Manager
Partition Load Manager provides an automated way to move processing power 
and memory between dynamic LPAR–capable logical partitions. The 
Sserver p5 servers support two types of partitions (dedicated partitions and 
micro-partitions), and Partition Load Manager provides slightly different benefits 
in each case. The following sections presents situations in which Partition Load 
Manager can be used, first for managing dedicated partitions, then to manage 
micro-partitions. 

Partition Load Manager for dedicated partitions
In dedicated partitions, Partition Load Manager is a replacement for the manual 
dynamic LPAR reallocation of resources that a system administrator performs 
using the HMC. Rather than having to monitor partitions for lack or excess of 
computing resources, the system administrator can define, in a configuration file, 
thresholds for the use of these resources by the partitions. Partition Load 
Manager monitors the actual resources utilization against these thresholds, and 
automatically moves some resources from the partition with a low demand for 
these resources to the partition with a high demand.

If your system contains partitions with a fairly constant workload and equal 
relative priority, Partition Load Manager may offer little benefit. However, if you 
manually reconfigure your partitions using the HMC DPLAR feature, or if your 
partitions have a changing resource demand over time, Partition Load Manager 
can help you. Here are a few examples.

Partitions with unpredictable workload peaks
You may decide to consolidate onto a large Sserver p5 server several 
applications that are running on independent servers. Each independent server 
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is sized with enough processors and memory to satisfy the application peak 
loads, but these resources are unused a significant part of the time. Because the 
peaks of all applications are statistically spread over time, you can install a new 
server with fewer overall computing resources. Each application now runs in its 
own partition, for which you define a minimum, a desired, and a maximum 
amount of processing power and memory. When all partitions are booted, they 
are each given their desired amount of resources (assuming the sum of desired 
values is less than the overall server capacity). The amount of resources that are 
allocated to each partition will not change when one partition reaches a peak of 
activity. By activating Partition Load Manager with one configuration file using the 
same minimum/desired/maximum thresholds as those defined in the HMC, the 
partition with a peak of activity automatically takes advantage of the unused 
resources.

Partitions with time-based priorities
Assume that a server has two partitions that must be given different priority over 
time:

� For example, one partition is providing interactive service to end users, and 
we want to give priority to this partition only when the end users are awake. 
The other partition processes batch-type jobs and we want to give it priority at 
night, even though some end users may access the system. 

� Another example of such a scenario is with one application that processes 
weekly reports and will get most of the server resources on Saturdays and 
Sundays, and another application that produces the data during the week.

In these cases, we can define two Partition Load Manager configurations that will 
be activated at different times. Here is an example that uses an eight-way server 
with 32 GB of memory:

1. On the HMC, we defined partitions P1 and P2 with the same amount of 
resources, so they can each use up to seven processors and 28 GB of 
memory, as shown in Table 10-1.

Table 10-1   Partitions resources definition on the HMC

2. We defined two Partition Load Manager configurations for each of the time 
periods (night/day and weekdays/weekends). Table 10-2 on page 378 shows 
the settings of the resources in Partition Load Manager for the time period 
when partition P2 will have priority over P1. 

Minimum Desired Maximum

Processors 1 2 7

Memory 4 8 28
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Table 10-2   Resource allocations for time period 1

The table for the other time period gives the opposite values to each partition. 
With these values, we guarantee that the partition with the highest priority gets at 
least five processors (and as many as seven). The partition with the low priority 
could go to as little as one processor if the other partition has a very high 
resource demand. Furthermore, compared to not using Partition Load Manager, 
this configuration adds some flexibility to the configuration within each time 
period, because the memory and processing resource of each partition can still 
fluctuate. For example, if the high-priority partition does not use all of its 
processing resource, the low-priority partition will be able to use up to three 
processors automatically.

Partition Load Manager does not provide a time-based reconfiguration feature. 
The change of configuration at the boundary between the two time periods is 
implemented using (for example) the cron command to load a new configuration 
file in the PLM manager. 

When you plan to activate several Partition Load Manager policies over time 
using low-minimum and high-maximum values in the partition profiles on the 
HMC, allow for more flexibility with the Partition Load Manager policies because 
these (HMC profile) values bound the values that can be used in the Partition 
Load Manager policy. 

Partitions subsets: multiple clients
In this scenario, a large server is used to host applications belonging to several 
clients. Each client has paid for a fixed amount of resources, and each client 
needs to run several partitions. 

In this case, you can take advantage of the Partition Load Manager concept of 
partition group. 

A group is allocated a number of processors and a chunk of memory. Partition 
Load Manager reallocates these resources among the partitions belonging to 
this group. At least one group must be defined, and the simplest way to use 
Partition Load Manager is to gather all managed partitions within the same 
group.

Minimum Desired Maximum

P1 Processors 1 2 3

Memory 4 8 12

P2 Processors 5 6 7

Memory 20 24 28
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When managing multiple clients, a better way is to define for each client a group 
that is allocated exactly the resources that the clients pays for. For example, the 
server contains 64 processors, and one client pays to use 16 processors. If the 
client needs five partitions, the client can then define the Partition Load Manager 
configuration file with one group owning these 16 processors. All of these client 
partitions belong to this group. The client can then configure the policies 
according to his preferences for allocation of free resources between his own 
partitions. This would have no impact on the allocation of the remaining 48 
processors belonging to other clients. 

Partition Load Manager with micro-partitions
The scenarios described previously for dedicated partitions are also valid for 
micro-partitions. But there are other cases specific to micro-partitioning in which 
you may want to use Partition Load Manager.

Splitting the shared pool
All processors that will be used by micro-partitions belong to only one shared 
pool. By using the Partition Load Manager groups, you can divide the shared 
pool into several subsets, so that processor entitlement and number of virtual 
processors resource balancing by Partition Load Manager is performed only 
within each group. This is similar to “Partitions subsets: multiple clients” on 
page 378.

To be more accurate about the behavior of the system when multiple groups are 
created, each with a maximum entitled capacity: Partition Load Manager 
distributes that capacity among the partitions within that group, but if any of the 
running partitions in the system is uncapped, then unused CPU cycles from any 
Partition Load Manager group can be given to the uncapped partition, whether it 
is within or outside the Partition Load Manager group. If a client creates a 
Partition Load Manager group and defines a maximum of five for the entitlement, 
if any of those partitions is uncapped, that group can (technically) run with more 
than an entitlement of five, because the POWER Hypervisor can assign unused 
cycles from other partitions outside of our group. 

Partition Load Manager does not prevent the POWER Hypervisor from trying to 
optimize overall system throughput. 

Partitions with concurrent peak loads
Several services may have their workload peaks at the same time, with a 
workload profile similar to those presented in Figure 5-17 on page 130 and 
Figure 5-18 on page 131. If these services are running in partitions of the same 
Sserver p5 server, they will compete for resources. The business case for sizing 
the server may have used the planned over-commit strategy described in 5.3.6, 
“Micro-Partitioning planning guidelines” on page 133. This is because some of 
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these services are not business-critical, and there is no justification for affording 
a system that can handle all applications workload peaks during small periods 
but be underutilized for long periods.

Partition Load Manager can help to allocate the systems resources to the 
partitions that have the highest business priority while only providing the other 
partitions with leftover resources. There are two parameters that the system 
administrator can use for this purpose: cpu_guaranteed and cpu_shares (These 
parameters are described in Section 10.2.3, “Configuration file and tunables” on 
page 386). 

� The cpu_guaranteed parameter represents an absolute value of processing 
power that a partition is guaranteed to be allocated only if it needs it. If the 
partition runs below this guaranteed amount, the remaining capacity is 
available for the other partitions. By setting these parameters to a high value 
for all partitions that are considered critical, you ensure them that this 
processing power is available, whatever the workload of the other partitions. 

� The cpu-shares parameter represents a relative value of processing power. It 
is used only to allocate the CPU resources in excess of the sum of the 
guaranteed CPU resources, between the partitions that need extra power. 
Using a higher value of cpu_share for high-priority partition than for lower- 
priority partitions enables prioritizing the distribution of the extra processing 
power that cannot be allocated otherwise. 

Let us take an example of how to use a combination of these parameters. We 
assume that a system runs 10 micro-partitions with 10 CPUs in the free pool 
(total entitlement equal to 1000). Five partitions have high priority and are 
allocated a guaranteed CPU power of 180. The five partitions with low priority are 
assigned only 20 guaranteed CPU power units. If all partitions experience a 
workload peak except one of the high-priority partitions, which is idle, each 
partition is given its guaranteed power, and there are 180 units left to distribute 
among them. It is then the value of each partition’s cpu_share that defines how to 
distribute this remaining power among the nine competing partitions.

Managing the number of virtual processors
The processing power of a micro-partition is defined by two parameters: 

� Its entitlement (or percentage of one physical processor processing capacity) 
� Its number of virtual processors

For an uncapped partition, the maximum processing power is reached when the 
POWER Hypervisor has allocated to this partition an entitlement equivalent to its 
allocated number of virtual processors running at 100%. If there are still some 
idle processors in the server, the micro-partition cannot use them and this 
unused processing power is wasted because the POWER Hypervisor will not 
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automatically add virtual processors to the partition. To take advantage of the 
available processing power, you must:

� Define the uncapped partition with a large maximum number of virtual 
processors.

� Define Partition Load Manager policies that add virtual processors to the 
partition when the entitlement exceeds a threshold (default is 80% of potential 
entitlement). 

Assuming that the uncapped partition has been booted with its desired number 
of processors, when it reaches a peak of activity and if there is free processing 
capacity in the free processor pool, the POWER Hypervisor gives the partition 
extra CPU cycles to the limit of its current number of virtual processors. In 
addition to the POWER Hypervisor action, Partition Load Manager monitors 
several thresholds, and if one is crossed, Partition Load Manager receives a 
message (through RMC), and starts increasing the partition entitled capacity and 
number of virtual processors, up to the maximum number defined in the HMC for 
the partition. AIX 5L automatically takes into account the extra processors. 

In a similar way, you can define the low-utilization threshold that lowers the 
number of virtual processors used by a partition when it has a low processing 
activity. 

No rule is valid for all application profiles, but in general, for the same overall 
CPU entitlement, the performance of a micro-partition is better with a small 
number of virtual processors running with a high CPU utilization, than with a 
large number of virtual processors running at a low CPU utilization.

Many factors can influence this behavior. For example, an application that is not 
programmed to use parallelism or AIX 5L V5.3 software, simultaneous 
multithreading does not benefit from the availability of multiple processors. If this 
application were run on a physical SMP system, it would not take advantage of 
the physical processors. In the same way, when running on a micro-partition, it 
would not take advantage of the multiple virtual processors. On a micro-partition, 
you can improve the throughput by reducing the number of virtual processors: 
the POWER Hypervisor will spend less time dispatching these virtual processors 
and AIX 5L will spend less time trying to allocate processes to the processors.

If your create uncapped partitions on your system and your workload profile is 
such that processing resources could be moved from partition to partition, we 
recommend that you start deploying Partition Load Manager with the default 
values of the processor/entitlement ratios. Then, you can start changing the 
ratios to find the best fit for your applications. 
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Managing the memory
All of the scenarios that we just described were related to reallocation of 
processing power. Partition Load Manager can also reallocate physical memory 
between partitions, and the scenarios we presented can also apply to memory 
resource balancing. 

10.1.3  How to deploy Partition Load Manager
When you have chosen to use Partition Load Manager, decide where to install 
the PLM manager. Here are a few considerations to take into account: 

� Currently, the PLM server can run only on AIX 5L, so you cannot use the HMC 
as the Partition Load Manager. You need to find an AIX 5L server, and it can 
be either a dedicated server or a partition on a POWER4 processor–based or 
POWER5 processor–based system. 

� Partition Load Manager does not require a dedicated AIX 5L instance. It can 
run on a system that is also running other applications. 

� One Partition Load Manager instance manages only partitions within one 
physical server (one central processor complex, or CPC). However, you can 
run multiple Partition Load Manager instances on the same AIX 5L system. If 
you plan to manage partitions in many physical servers, you may want to 
centralize all Partition Load Manager management functions within the same 
AIX 5L instance to provide a single point of control for all Partition Load 
Manager operations in your computer environment. 

� Partition Load Manager uses very few processing resources. It uses 
Resource Management and Control (RMC) to communicate between the 
Partition Load Manager and the managed partitions. When Partition Load 
Manager is activated, it sets up monitoring of threshold values on each 
managed partition. When a threshold is reached, the managed partition 
sends an event through RMC to the management server, which takes the 
appropriate action. The Partition Load Manager does not poll the managed 
partitions. You can find an example of resource requirements for a PLM 
server in 10.4.1, “Partition Load Manager resource requirements” on 
page 396. 

� The Partition Load Manager can run in one of the partitions that it manages. 

With these considerations, we propose a few recommended configurations:

� For a server farm or a large computing center, it is likely that some existing 
AIX 5L servers are dedicated to infrastructure support. These could be the 
control workstation of a PSSP1 cluster, the Management Station of a CSM2 
cluster, a software repository such as a NIM3 server, or a monitoring server 

1  PSSP: Parallel System Support Program
2  CSM: Cluster Systems Management 
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such as Tivoli® TEC or TMR. The Partition Load Manager management 
function requires very few processor cycles, memory, and disk space, so it 
can be implemented on one of these infrastructure servers as long as it has 
IP connectivity to all managed partitions. This solution has the advantage of 
providing a single point of control for all operations related to Partition Load 
Manager.

� For managing partitions in a single physical server, an inexpensive PLM 
server can be instantiated by dedicating a small micro-partition. The 
necessary disk space can be provided by a virtual disk exported from a 
Virtual I/O Server (logical volume). The IP connection with the managed 
partitions can be implemented through virtual Ethernet in memory VLAN, so 
that no hardware Ethernet adapters is required. One Physical Ethernet 
adapter would be needed for communication with the HMC, unless a put 
Shared Ethernet Adapter can provide this connectivity. 

� An even less expensive configuration is to install the Partition Load Manager 
management function on one of the partitions running applications.

The choice then depends on the operations guidelines of each site. 

10.2  More about Partition Load Manager installation and 
setup

Chapter 6 of Advanced POWER Virtualization on IBM  ̂p5 Servers 
Introduction and Basic Configuration, SG24-7940. includes a detailed 
explanation of basic Partition Load Manager installation and configuration.

In this redbook, we present more advanced installation and configuration options. 
First, we briefly describe how Partition Load Manager works before we 
investigate configuration details. 

10.2.1  Overview of Partition Load Manager behavior
Partition Load Manager involves three (types of) entities:

� The PLM server that executes the Partition Load Manager code and decides 
resource reallocation actions.

� The managed partitions, which can request more or fewer resources. 

� The HMC that drives the physical server that hosts the managed partitions. 
The HMC actually performs the resource reallocation actions decided by the 
PLM manager. 

3  NIM: The Network Installation Manager feature of AIX
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The Partition Load Manager resource manager is the server part of this 
client-server model and it runs on AIX 5L V5.2 and AIX 5L V5.3. When it starts, it 
uses RMC services to register several events on every client partition that will be 
managed by Partition Load Manager. For Partition Load Manager to obtain 
system information and dynamically reconfigure resources, it requires an SSH 
network connection from the PLM manager to the HMC, as well as IP 
connectivity between the PLM manager, the HMC, and the managed partitions. 
The RMC services are responsible for gathering all of the status information. The 
RMC daemon exports system status attributes and processes reconfiguration 
requests from the HMC. With this data and in conjunction with the user-defined 
resource management policy, Partition Load Manager decides what to do. Every 
time a partition exceeds a threshold, Partition Load Manager receives an RMC 
event. When a node requests additional resources, Partition Load Manager 
determines whether the node can accept additional resources. If so, Partition 
Load Manager conducts a search for available resources. It then checks the 
policy file in order to see if a partition is more or less deserving of the resources. 
Only then, Partition Load Manager allocates the requested resources.

Partition Load Manager uses a Micro-Partitioning entitlement model with a 
guaranteed or desired amount of resources, amount of shares, and (optional) 
minimum and maximum amounts. (The guaranteed amount of resources is the 
amount guaranteed to a partition when demanded.) It can get the resources from 
the free pool if they are available and the amount does not exceed its maximum, 
take underutilized resources from other partitions, or take utilized resources from 
partitions that are over their guaranteed resource. The allocated resource will 
vary between minimum and maximum values defined in the Partition Load 
Manager configuration file. For a partition to be allocated resources above the 
guaranteed amount, Partition Load Manager must know its share amount 
(relative priority versus other partitions priority). This amount is a factor between 
1 and 255. The formula to calculate the ratio of resources allocated to each 
partition is (shares of the partition) / (sum of shares from competing partitions).

Partition Load Manager manages partitions within groups. Each partition must be 
a member of a group, and at least one group must be defined in the Partition 
Load Manager policy. One PLM server can manage independent groups of 
partitions but it cannot share resources across groups. It cannot take unused 
resources in one group in order to satisfy a demand for resources by another 
group. The partitions belonging to a group must be of the same type: either 
micro-partitions or dedicated partitions. One group may contain both capped and 
uncapped partitions. Partition Load Manager manages the entitled processor 
capacity, memory, and number of virtual processors for both capped and 
uncapped partitions.

System administrators must set up Partition Load Manager partition definitions in 
a way that is compatible with the HMC policy definition. The Partition Load 
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Manager cannot decrease a partition’s minimum below the HMC’s minimum, nor 
can it increase a partition’s maximum over the HMC’s maximum. Partition Load 
Manager will use the HMC partition definition minimum, desired, and maximum 
partition resource values as Partition Load Manager minimum, guaranteed, and 
maximum values if not specified in the Partition Load Manager policy. If the 
Partition Load Manager minimum and maximum values are not within the range 
defined on the HMC, Partition Load Manager will use an effective range defined 
by the intersection of the ranges defined on the HMC and in the Partition Load 
Manager configuration file. 

10.2.2  Management versus monitoring modes
Partition Load Manager can execute in two modes: management and monitoring 
modes, which are analogous to the WLM active and passive modes. 

� In monitoring mode, Partition Load Manager receives through RMC a request 
from partitions for resource reallocation when thresholds are reached. 
Partition Load Manager appends an entry in its log for each received RMC 
message but does not take action.

� In management mode, Partition Load Manager takes action for each RMC 
message, according to the policies defined in the configuration file. 

If you do not have a test environment on which to define the best Partition Load 
Manager settings for your environment, if your production environment is critical, 
or if you do not have a thorough understanding of the partitions workload profile, 
we recommend that you start using Partition Load Manager in monitoring mode 
only, with the default configuration values. You can then run it for a significant 
time duration (one day, for example), and then analyze the log, looking for the 
frequency at which Partition Load Manager would take actions. 

You can also use the xplstat command to recognize workload patterns. When 
you understand the workload profile of the managed partitions, you can decide 
which values to use in the Partition Load Manager configuration files. 

Partition reconfiguration is not an instantaneous action, especially for dedicated 
processor or memory migration between partitions. You may not want to 
generate such an action to respond to a very short activity peak, when you know 
that the resources would no longer be needed in the following seconds. 

Note: Because Partition Load Manager does not take action when in 
monitoring mode, a request for additional resources will not be satisfied, and 
the requesting partition will repeat the request until it no longer needs extra 
resources. When analyzing the log, you should only take into account the 
resource need changes.
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10.2.3  Configuration file and tunables
The system administrator who decides about deploying Partition Load Manager 
has only two ways of defining Partition Load Manager behavior: 

1. The values that are set in the Partition Load Manager configuration file.

2. The arguments that are given to the xlplm command (used to start Partition 
Load Manager). 

The xlplm command is addressed in 10.3, “Managing and monitoring with 
Partition Load Manager” on page 390.

The Partition Load Manager configuration file is also called policy file in the 
Partition Load Manager documentation and on the Web System Management 
panels. You must create at least one policy file for each CPC on which you want 
to manage partitions. Policy files are ASCII files with a formal syntax. The policy 
file can be created (and modified) either through Web System Management 
panels or by using a text editor (vi, emacs).

If you start Partition Load Manager using a policy file with an incorrect syntax, 
Partition Load Manager startup will fail. If Partition Load Manager is already 
running and you try to load a new policy with an incorrect syntax, Partition Load 
Manager will continue executing with the previously loaded policy. 

The policy file contains different variables, called attributes, which are grouped in 
several sections, each with a different scope: global to one CPC, global for a 
group of partitions, or specific to one partition. Tunables, a subset of the 
attributes, define Partition Load Manager behavior. Tunables can be set at a 
system-wide level, and optionally overridden for some groups or partitions. 
Example 10-1 shows a policy for a physical server on which two partitions are 
managed by Partition Load Manager.

Example 10-1   Partition Load Manager policy file

#Example PLM policy file.       
                                
globals:                        
        hmc_host_name = p5hmc1  
        hmc_user_name = hscroot 
        hmc_cec_name = p5Server1
                                
                                
example:                        
        type = group            
        cpu_type = shared       

Note: When you edit the file manually, take care to respect the syntax. 
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        cpu_maximum = 2         
        mem_maximum = 0         
                                
p5_1test1:                      
        type = partition        
        group = example         
        cpu_guaranteed = 0.3    
        cpu_maximum = 0.6       
        cpu_minimum = 0.1       
        cpu_shares = 2          
        cpu_load_high = 0.3     
        cpu_load_low = 0.2      
        cpu_free_unused = yes   
                                
p5_1test3:                      
        type = partition        
        group = example         
        cpu_guaranteed = 0.3    
        cpu_maximum = 0.5       
        cpu_minimum = 0.1       
        cpu_shares = 2 

Partition Load Manager can read the definition of partition on the HMC using 
SSH. When starting managed partitions, Partition Load Manager reads the 
definition of all partitions to extract default values for these attributes. Then 
Partition Load Manager reads the Policy file to override the HMC-defined values. 

We now discuss some of the attributes.

cpu_minimum, cpu_guaranteed, cpu_maximum, 
memory_minimum, memory_guaranteed, memory_maximum

The values are optional. If not present, Partition Load Manager accesses the 
definition of the partition in the HMC and extracts the values of minimum, 
desired, and maximum values for the CPU or memory to set these values. 

You can set these attributes to values different from the HMC values.

For example, the HMC minimum value is defined as the minimum amount of 
resources needed to start a partition. However, you may know that if the partition 
is only given that amount of resources, its performance is degraded. In this case, 
you may want to define a Partition Load Manager cpu_minimum with a higher 
value than the HMC minimum, so that Partition Load Manager will never make 

Note: Partition Load Manager never overwrites a partition profile in the HMC. 
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the partition work with bad performance. In other words, the HMC value is the 
bare minimum of resources needed to run the partition, while the Partition Load 
Manager minimum is the lowest reasonable value for acceptable performance. 

Let us take another example. The HMC desired memory is the size of memory a 
partition will be allocated at boot time, when the system has enough memory 
resources for all partitions to be started. When running, the partition may run 
perfectly well with less memory. For example, an FTP server needs memory to 
load the files requested by FTP clients, but no longer needs this memory when 
the files are sent. Because there is no memory clean-up in AIX 5L, the memory 
used for these files will remain occupied. By setting the memory_guaranteed 
value to the same value as memory_minimum, you enable Partition Load 
Manager to request the partition to release the memory it no longer needs, to 
give it to other partitions with real needs for memory. 

group
This tunable must appear in each partition stanza. One partition can belong to 
only one group. 

cpu_shares
When Partition Load Manager is not managing an uncapped partition, the 
POWER Hypervisor allocates unused processor time to the uncapped partition 
according to the current active weight of the partition, defined by the value of the 
partition weight as defined on the HMC. 

When the uncapped partition is managed by Partition Load Manager, its current 
active weight is overridden by the cpu_shares value defined on the Partition Load 
Manager policy file. 

cpu_shares defines the relative priority of the partitions. Unused resources are 
allocated to partitions that have their guaranteed (desired) amount or more, in 
the ratio of their share value to the number of active shares.

The default value of the HMC-defined weight is 128, and the default of the 
cpu_shares value is 1, so it is important to make sure that all partitions within a 
Partition Load Manager group use a current active weight set from the same 
source: the HMC definition of Partition Load Manager policy file. 

Tip: There is a concept of group in the HMC that can be used when defining 
the partition. If you plan to use Partition Load Manager groups, we 
recommend that you do not use the HMC-defined groups.
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hmc_command_wait
As mentioned before, the reallocation of resources is not immediate. It takes 
some time for the HMC to ask a partition to release a CPU, move it from one 
partition to another, and then tell the target partition to activate the CPU. The 
hmc_command_wait attribute is the delay Partition Load Manager waits when 
asking the HMC to perform an operation, before determining that the HMC failed 
to process the request. If you have already used the dynamic LPAR feature, you 
can set up this attribute to the value of the dynamic reconfiguration timeout used 
for dynamic LPAR operations on your system. 

cpu_load_low, cpu_load_high 
These tunables are the threshold values beyond which Partition Load Manager 
decides that a partition has unneeded CPU or not enough CPU. The difference 
between these two values must be greater than 0.1 (entitlement measured as a 
fraction of one processor capacity). When reaching such a threshold, dedicated 
partitions give or receive one dedicated processor, while a micro-partition gives 
or receives an amount of entitled capacity defined by the ec_delta tunable. When 
adding capacity, ec_delta is a percentage of current capacity, while for removing 
capacity, ec_delta is a percentage of the resulting capacity.

The metric for these two tunables is the average number of runnable threads per 
processor. This is the value you would obtain when dividing the r column of the 
vmstat command (or the runq_sz column of the sar -q command, or the load 
average field of the uptime command) by the number of logical processors of the 
partitions. You can also find this value in the rq field of the new AIX 5L V5.3 
mpstat -d command. 

cpu_free_unused, mem_free_unused 
These tunables define whether unneeded resources are taken from a partition 
when they are detected as unneeded (when set to yes), or only when another 
partition needs them (when set to no). 

Immediately returning unused resources to the free pool improves the time to 
complete resource allocation to another partition. However, it decreases the 
performance of the partition that returns the resources if it needs extra resources 
later on. 

Therefore, these values should be set to yes for partitions that seldom use extra 
resources and to no for partitions that have frequent peaks of resource utilization. 

ec_per_vp_min, ec_per_vp_max
These are the two tunables to use to have Partition Load Manager automatically 
change the number of virtual processors of a micro-partition. Partition Load 
Manager does not directly handle this number because virtual processor addition 
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and removal is triggered by capacity changes. When entitlement must be added 
or removed, if the reallocation of entitled capacity results in crossing the 
ec_per_vp_min or ec_per_vp_max threshold, then virtual processors are also 
added or removed from the partition.

mem_util_low, mem_util_high, mem_pgstl_high
These tunables are the threshold values beyond which Partition Load Manager 
decides a partition has unneeded or insufficient memory. 

To be considered as a memory requester, the partition must reach both 
mem_util_high and mem_pgstl_high. There is no lower limit for the page steal 
rate. 

The unit used to measure mem_util_low and mem_util_high are is a percentage 
of memory. The memory utilization of the partition is defined as:

pct = ((memory pages - free pages) / memory pages) * 100

memory pages and free pages are the values returned by the vmstat -v 
command. 

The unit that is used to measure mem_pgstl_high is a number of page steals per 
second. The value compared to the mem_pgstl_high threshold is the value 
returned in the fr field of the vmstat command. 

10.3  Managing and monitoring with Partition Load 
Manager

There is a single point of control for configuring, managing, and operating 
Partition Load Manager: the PLM manager. The Partition Load Manager policy 
and log files are stored on the PLM server. Partition Load Manager commands 
can only be used on the PLM server. There are no Partition Load Manager 
commands that can be used from the HMC or the Partition Load Manager 
managed partitions. 

Partition Load Manager can be operated in two ways:

1. The UNIX way, using the AIX 5L command line interface to edit the policy 
files, browse the logs, start and stop Partition Load Manager, and so on.

2. The GUI way using Web System Management to access the PLM server. 

Note: There is no SMIT panel to configure and operate Partition Load 
Manager. 
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Operating Partition Load Manager is very simple, as it has only two commands:

xlplm Used to start, stop, modify, or query Partition Load Manager.

xlpstat Used to display statistics about the managed partitions.

Web System Management provides the equivalent functions in a graphical 
environment. 

10.3.1  Managing multiple partitions
We have mentioned that one Partition Load Manager policy file controls 
partitions that must all run on the same CPC, and that one PLM manager can 
manage several partitions executing onto different physical servers. Let us be 
more accurate about how this works. 

We will call: 

PLM server The AIX 5L instance in which the Partition Load 
Manager code has been installed.

PLM server instance The server part of the Partition Load Manager 
client/server relationship: The clients are the managed 
partitions. 

On the PLM server, you can start several PLM server instances by using the 
xlplm command several times, with different policy files. 

One PLM server instance executes only one policy file at a time, and therefore 
manages only partitions within the same CPC. 

The way to start a PLM server instance is to use the xlplm command with the -S 
(Start) argument, and the name of a policy file:

xlplm -S -p policy_file 

This command start a server instance which will be named default. If you want to 
start multiple PLM server instances from the same PLM server, you need to give 
a name to each PLM server instance:

xlplm -S -p policy_file server_instance_name

Each policy file starts with a global stanza containing the host name of the HMC 
that manages a CPC and the name of the CPC as seen from the HMC. For each 
set of managed partitions, you may want to use a different set of Partition Load 

Note: Each PLM server instance executes under AIX 5L as an xlplmd 
daemon.
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Manager policies (for example, to change the Partition Load Manager behavior 
with the time of day). A good practice is therefore to create policy file names and 
PLM server names according to mnemonic naming conventions.

A simple example is:

<Server_Instance_Name> =:: <HMC_shortname><CEC_name>
<Policy_Name> =:: <Server_Instance><Suffix>

If you type two commands in a row, you know that you have applied the third 
policy defined for the second CPC managed by your first HMC, and the fourth 
policy defined for the first CPC managed by the second HMC.

xlplm -S -p hmc1cec2policy3 hmc1cec2 
xlplm -S -p hmc2cec1policy4 hmc2cec1 

In the same way, you should use a meaningful name for the log files. There is one 
log file per PLM server instance. 

You can start two PLM server instances to manage partitions that are hosted on 
the same CPC. This can be useful for examples when two different system 
administration teams manage different sets of partitions on one system. Each 
team can have full control of its own Partition Load Manager policy file. 

Using the xlplm command with -Q (Query) displays the policy used for each PLM 
server controlled from one PLM manager:

xlplm -Q Shows all active instance names.

xlplm -Q server_instance_name Shows all details for one instance.

10.3.2  Extra tips about the xlplm command
The xlplm command has multiple arguments and flags. Refer to the official 
documentation for an extensive explanation of this command. 

Here are a few:

-C The -C (Check) flag is used to verify the syntax of a policy 
file. It is useful when the file has been edited manually 
instead of through Web System Management. The -C flag 
does not check the policy file tunables consistency versus 
the values defined in the HMC.

-M The -M (Modify) flag enables the system administrator to 
dynamically load a new policy, to ask for writing the log in 
a different log file, or to switch from monitoring to 
managing mode. This flag can be used when the xlplm 
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command is called by a crontab, for example, when 
time-based policies must be used. 

The Modify flag can be used to change resources groups. 
For example, if a system is intensively used during 
daytime and all partitions are competing for resources, it 
can be a good practice to define multiple groups and to 
gather partitions by workload type, so that each partition 
is sure to have a fair share of the resources. This 
improves the overall system throughput. However, if the 
system is underused at night, optimizing the throughput is 
no longer a critical issue. It can then be better to gather all 
partitions in one large group, so that if one partition has a 
burst of activity, it can use all available resources. In this 
case, the policy helps improve the response time of one 
partition rather than the overall throughput. 

-Q -f By default, the -Q (query) option displays the intersection 
of the min and max range as defined in the HMC and in 
the Partition Load Manager policy file. When used with 
the -f flag, the command returns the values defined in the 
Partition Load Manager policy file.

-Q -v The -v (verbose) option, when used with the -Q option, 
provides extra information. In particular, this is the option 
to use to see whether the policy is used in management 
or monitoring mode, and to see the thresholds set for 
each partition and group. 

10.3.3  Examples of Partition Load Manager commands output
This section shows some examples of Partition Load Manager command output. 
Example 10-2 displays the output of the xlplm query command when used in 
command line mode. 

Example 10-2   xlplm query

# xlplm -v -Q benchtest
PLM Instance: benchtest

        CEC Name            Server-9117-570-SN105428C
        Mode                manage
        Policy              /etc/plm/policies/testBenchmark
        Log                 /var/test.out
        HMC Host            isvlab064.austin.ibm.com
        HMC User            hscroot

GROUP: Benchmark1
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                   CUR       MAX     AVAIL     RESVD      MNGD
        CPU:      2.77      4.00      1.23      0.00       Yes
        MEM:     14336         0         0         0        No

        CPU TYPE: shared

  basil.austin.ibm.com

    RESOURCES:
                   CUR       MIN      GUAR       MAX       SHR
        CPU:      1.72      0.10      1.00      4.00       128
        MEM:      7168      1024      7168     15360         1

    TUNABLES:
                 INTVL    FRUNSD    LOADLO    LOADHI     DELTA     PGSTL
        CPU:         3         1      0.75      1.00       20%         -
        MEM:         6         0       50%       90%        16         0

                             MIN       MAX
        PER VP CAP:         0.74      0.90

  sage.austin.ibm.com

    RESOURCES:
                   CUR       MIN      GUAR       MAX       SHR
        CPU:      1.04      0.10      1.00      4.00       128
        MEM:      7168      1024      7168     15360         1

    TUNABLES:
                 INTVL    FRUNSD    LOADLO    LOADHI     DELTA     PGSTL
        CPU:         3         1      0.75      1.00       20%         -
        MEM:         6         0       50%       90%        16         0

                             MIN       MAX
        PER VP CAP:         0.74      0.90

#

You can also use Web System Management tool to manage Partition Load 
Manager. Figure 10-1 on page 395 shows where to find Partition Load Manager 
in the Web System Management navigation area.
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Figure 10-1   Partition Load Manager management using Web System Management

Figure 10-2 and Figure 10-3 on page 396 show the partitions processor statistics 
and memory statistics, respectively.

Figure 10-2   Partition Load Manager processor statistics using Web System Management
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Figure 10-3   Partition Load Manager memory statistics using Web System Management

10.4  Partition Load Manager performance impact
The performance aspect of Partition Load Manager is twofold: the resource 
requirement needed to run the PLM server, and the impact of Partition Load 
Manager actions on managed partitions performance.

10.4.1  Partition Load Manager resource requirements
The Partition Load Manager function is provided on the server by the xlplmd 
daemon. Here are some measurements of this daemon’s resource requirements. 

� We set up an environment in which Partition Load Manager manages two 
partitions, and we configure it so that Partition Load Manager receives three 
RMC events every minute. Example 10-3 shows how you can use the tail 
command to monitor the Partition Load Manager log and see these events.

Example 10-3   Checking the Partition Load Manager log

# tail -f test.out
<04/06/70 17:38:40> <PLM_TRC> Event notification of CPUZone low for Benchmark1 .
<04/06/70 17:39:05> <PLM_TRC> Event notification of CPUZone low for Benchmark2 .
<04/06/70 17:39:20> <PLM_TRC> Event notification of CPUZone low for Benchmark1 .
<04/06/70 17:39:34> <PLM_TRC> Event notification of CPUZone low for Benchmark2 .
<04/06/70 17:40:00> <PLM_TRC> Event notification of CPUZone low for Benchmark1 .
<04/06/70 17:40:14> <PLM_TRC> Event notification of CPUZone low for Benchmark2 .
<04/06/70 17:40:40> <PLM_TRC> Event notification of CPUZone low for Benchmark1 .
<04/06/70 17:40:54> <PLM_TRC> Event notification of CPUZone low for Benchmark2 .
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In a stable environment, the frequency of these events would be much lower. 

� Under these conditions, Partition Load Manager uses approximately 1.4 MB 
of memory, as shown in Example 10-4. Column RSS displays the size (in 1 KB 
units) of the real memory used by xlplmd. 

Example 10-4   Memory utilization for the Partition Load Manager daemon

# ps xvg  344232
    PID    TTY STAT  TIME PGIN  SIZE   RSS   LIM  TSIZ   TRS %CPU %MEM COMMAND
 344232      - A     0:00   66  1288  1396    xx    78   120  0.0  0.0 xlplmd 
b 
#

� We also use the ps command to measure the amount of processing 
resources used by the Partition Load Manager daemon. Example 10-5 shows 
that after managing partitions for 1.5 hours, Partition Load Manager has only 
used 11 seconds of CPU time. It also shows that the percentage of memory 
and CPU used by the daemon is not measurable (percentage equal to 0).

Example 10-5   Processing ressources needed by Partition Load Manager

# ps -o uid,pid,pmem,etime,time,pcpu,comm -p 405676
UID    PID  %MEM     ELAPSED        TIME  %CPU COMMAND
  0 405676   0.0    01:29:36    00:00:11   0.0 xlplmd
#

The Partition Load Manager daemon does not generate any significant disk or 
network activity.

Conclusion
The resources that are required to run the Partition Load Manager daemon are 
not a criteria for deciding where to instantiate the PLM server. It can run on any 
existing AIX 5L system with no visible impact on this system performance.

10.4.2  Partition Load Manager impact on managed partitions
Besides the Partition Load Manager commands described in Section 10.3, 
“Managing and monitoring with Partition Load Manager” on page 390, one way of 
visualizing the effect of Partition Load Manager is to use the AIX 5L V5.3 
Performance Toolbox (PTX). 

Figure 10-4 on page 398 shows a PTX window while CPU-intensive programs 
are executing. A four-way p5-570 is split in two uncapped micro-partitions, called 
Basil and Sage. Sage is the partition where a benchmark program is run (the 
benchmark partition). This benchmark consists of many processes running in 
parallel, so that it can take advantage of as many logical processors as are given 
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to the partition. Basil is the monitoring partition. It runs the PLM server and the 
PTX management program (xmperf). It is also loaded with dummy programs to 
show the impact on the benchmark partition of varying workload in the other 
partitions.

Figure 10-4   Partition Load Manager impact on number of virtual processors

A B

AB

Note: To help readers whose copies of this book are printed in black and 
white, we have annotated the figure. The arrow with the circled A points to the 
blue line, and the arrow with the circled B points to the red line. The blue line 
presents many peaks, and the red line looks like stairs.
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The screen has three parts (also called instruments in PTX terminology):

� The top part shows the workload of the monitoring partition. It has two lines: 

– The blue line displays the run queue. 

– The red line displays the number of virtual processors. 

� The middle part shows the workload of the benchmark partition. It also 
displays the run queue size and the number of virtual processors using the 
same graphical conventions as the top part.

� The bottom part shows the CPU utilization of the benchmark partitions. It 
shows the percentage of CPU time spent in user, kernel, wait, or idle mode. 

In each part, the X-axis represents time, with a scale using a 24h base time 
representation. 

The figure demonstrates that Partition Load Manager will adjust the number of 
virtual processors allocated to a partition according to resources needed and the 
amount of available resources in the server. Partition Load Manager also adjusts 
the CPU entitlement, but for the sake of clarity of the diagram, we have chosen to 
plot only two values (run queue size and number of virtual processors): 

� Initially, both partitions have only one processor, because this is the minimum 
as defined in the Partition Load Manager policy, and there is no activity. 

� Shortly before 14h58, the benchmark is started on Sage, and Basil is nearly 
idle. Partition Load Manager notices the need for extra resources of Sage, 
and gradually increases its number of allocated virtual processors up to the 
maximum (4) to use all resources in the server. 

� Around 15h00, the workload on Basil increases (due to starting some 
CPU-intensive programs). 

� Around 15h01, Partition Load Manager notices that Basil’s resource need is 
persistent, and it starts increasing its entitlement and number of virtual 
processors (set to 2). 

� At the same time, because all resources in the system are used, Partition 
Load Manager decreases the entitlement of Sage. Because the ratio of 
entitlement per processor falls below the ec_per_vp_min threshold, Partition 
Load Manager removes one virtual processor from Sage.

� At 15h02, the system is stable. Both partitions are running CPU-intensive 
applications. Since they are defined with the same thresholds, tunables, and 
priority in the policy file, Partition Load Manager allocates two virtual 
processors to each of the partitions. 
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