
ibm.com/redbooks

Advanced POWER Virtualization
on IBM Eserver p5 Servers:
Architecture and Performance Considerations

Detailed description of the POWER5
architecture

In-depth analysis of Advanced
POWER Virtualization features

Performance analysis
and application tuning

Ben Gibbs, Balaji Atyam,
 Frank Berres, Bruno Blanchard,
 Lancelot Castillo, Pedro Coelho,

 Nicolas Guerin, Lei Liu,
 Cesar Diniz Maciel, Carlos Sosa,

Ravikiran Thirumalai

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Advanced POWER Virtualization on IBM Eserver
p5 Servers: Architecture and Performance
Considerations

November 2005

International Technical Support Organization

SG24-5768-01

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (November 2005)

This edition applies to IBM ̂p5 servers that include the POWER5 microprocessor
architecture and the IBM AIX 5L Version 5.3 operating system.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The specialists who wrote this redbook . xii
Become a published author . xv
Comments welcome. xv

Chapter 1. Introduction . 1
1.1 Performance tuning redefined . 3

1.1.1 Understanding performance . 3
1.1.2 Performance considerations . 6

Chapter 2. IBM POWER5 architecture . 9
2.1 Introduction . 10
2.2 Chip design . 12
2.3 POWER5 enhancements . 13
2.4 POWER5 instruction pipelines . 14

2.4.1 Instruction fetching . 15
2.4.2 Branch prediction . 16
2.4.3 Instruction decoding and preprocessing . 17
2.4.4 Group dispatch . 17
2.4.5 Register renaming. 18
2.4.6 Instruction execution . 19

2.5 Caches . 21
2.5.1 Level 2 (L2) cache. 25
2.5.2 Level 3 (L3) cache. 27
2.5.3 Summary of caches on POWER5. 30
2.5.4 Address translation resources. 30

2.6 Timing facilities . 31
2.7 Dynamic power management . 33
2.8 Processor Utilization Resource Register (PURR) 34
2.9 Large POWER5 SMPs . 36
2.10 Summary . 40

Chapter 3. Simultaneous multithreading . 41
3.1 What is multithreading?. 42
3.2 POWER5 simultaneous multithreading features . 44

3.2.1 Dynamic switching of thread states. 46
© Copyright IBM Corp. 2005. All rights reserved. iii

3.2.2 Snooze and snooze delay. 47
3.3 Controlling priority of threads . 49

3.3.1 Dynamic resource balancing (DRB) . 49
3.3.2 Adjustable thread priorities . 50
3.3.3 Thread priority implementation . 52

3.4 Software considerations . 55
3.4.1 Simultaneous multithreading aware scheduling 55
3.4.2 Thread priorities on AIX 5L V5.3 . 56
3.4.3 Thread priorities on Linux . 58
3.4.4 Cache effects . 58

3.5 Simultaneous multithreading performance . 59
3.5.1 Engineering and scientific applications . 59
3.5.2 Simultaneous multithreading benchmarks . 61

3.6 Summary . 71

Chapter 4. POWER Hypervisor. 73
4.1 POWER Hypervisor implementation . 76

4.1.1 POWER Hypervisor functions . 79
4.1.2 Micro-Partitioning extensions . 85
4.1.3 POWER Hypervisor design. 87

4.2 Performance considerations . 90

Chapter 5. Micro-Partitioning . 93
5.1 Partitioning on the IBM eServer p5 systems . 94
5.2 Micro-Partitioning implementation . 96

5.2.1 Virtual processor dispatching . 104
5.2.2 Phantom interrupts . 112

5.3 Performance considerations . 115
5.3.1 Micro-Partitioning considerations . 116
5.3.2 Locking considerations . 121
5.3.3 Memory affinity considerations . 126
5.3.4 Idle partition consideration . 127
5.3.5 Application considerations in Micro-Partitioning 128
5.3.6 Micro-Partitioning planning guidelines . 133

5.4 Summary . 142

Chapter 6. Virtual I/O. 143
6.1 Introduction . 144
6.2 POWER Hypervisor support for virtual I/O . 145

6.2.1 Virtual I/O infrastructure . 147
6.2.2 Types of connections . 149

6.3 The IBM Virtual I/O Server . 152
6.3.1 Providing high availability support. 156

6.4 Virtual Serial Adapter (VSA) . 163
iv Advanced POWER Virtualization on IBM Eserver p5 Servers

6.5 Virtual Ethernet . 164
6.5.1 Virtual LAN . 164
6.5.2 Virtual Ethernet connections . 169
6.5.3 Benefits of virtual Ethernet . 170
6.5.4 Limitations and considerations . 171
6.5.5 POWER Hypervisor switch implementation 171
6.5.6 Performance considerations . 174
6.5.7 VLAN throughput at different processor entitlements 176
6.5.8 Comparing throughput of VLAN to physical Ethernet 178
6.5.9 Comparing CPU utilization . 180
6.5.10 Comparing transaction rate and latency . 182
6.5.11 VLAN performance . 183
6.5.12 VLAN implementation guidelines . 185

6.6 Shared Ethernet Adapter. 186
6.6.1 Shared Ethernet Adapter performance . 190
6.6.2 Request/response time and latency . 193

6.7 Implementation guidelines. 196
6.7.1 Guidelines for Shared Ethernet Adapter sizing 197
6.7.2 Guidelines for physical Ethernet sizing . 202
6.7.3 Control of threading in the Shared Ethernet Adapter 204

6.8 Virtual SCSI. 205
6.8.1 Client and server interaction . 209
6.8.2 AIX 5L V5.3 device configuration for virtual SCSI. 210
6.8.3 Interpartition communication . 212
6.8.4 Disk considerations . 215
6.8.5 Configuring for redundancy. 217
6.8.6 Performance considerations . 220
6.8.7 Sizing a virtual SCSI server . 226

6.9 Summary . 230

Chapter 7. AIX 5L Version 5.3 operating system support 233
7.1 Introduction . 234

7.1.1 Processors . 234
7.1.2 Dynamic re-configuration . 239
7.1.3 Existing performance commands enhancement 239
7.1.4 New performance commands . 248
7.1.5 Paging space . 251
7.1.6 Logical Volume Manager (LVM) . 252
7.1.7 Virtual local area network (VLAN) . 254
7.1.8 EtherChannel . 255
7.1.9 Partition Load Manager. 255

Chapter 8. POWER5 system performance . 257
 Contents v

8.1 Performance commands . 258
8.1.1 lparstat command . 258
8.1.2 mpstat command. 264
8.1.3 vmstat command. 268
8.1.4 iostat command. 270
8.1.5 sar command . 272
8.1.6 topas command. 275
8.1.7 xmperf command . 278

8.2 Performance tuning approach . 283
8.2.1 Global performance analysis. 283
8.2.2 CPU analysis. 289
8.2.3 Memory analysis . 294
8.2.4 Disk I/O analysis . 296
8.2.5 Network I/O analysis . 304

Chapter 9. Application tuning . 311
9.1 Performance bottlenecks identification . 312

9.1.1 Time commands, time utilities, and time routines 314
9.2 Tuning applications using only the compiler . 317

9.2.1 Compiler brief overview. 317
9.2.2 Most commonly used flags . 321
9.2.3 Compiler directives for performance . 327
9.2.4 POWER5 compiler features . 332

9.3 Profiling applications . 336
9.3.1 Hardware performance monitor . 336
9.3.2 Profiling utilities . 343

9.4 Memory management . 350
9.5 Optimization of critical sections in the code . 351

9.5.1 General rules for optimization strategies. 353
9.5.2 Array optimization . 353
9.5.3 Loop optimization . 355

9.6 Optimized libraries. 360
9.6.1 MASS Library . 361
9.6.2 ESSL library . 368

9.7 Parallel programming general concepts . 370

Chapter 10. Partition Load Manager . 373
10.1 When and how should I use Partition Load Manager? 374

10.1.1 Partition Load Manager and other load-balancing tools 374
10.1.2 When to use Partition Load Manager . 376
10.1.3 How to deploy Partition Load Manager . 382

10.2 More about Partition Load Manager installation and setup 383
10.2.1 Overview of Partition Load Manager behavior 383
vi Advanced POWER Virtualization on IBM Eserver p5 Servers

10.2.2 Management versus monitoring modes . 385
10.2.3 Configuration file and tunables . 386

10.3 Managing and monitoring with Partition Load Manager 390
10.3.1 Managing multiple partitions . 391
10.3.2 Extra tips about the xlplm command . 392
10.3.3 Examples of Partition Load Manager commands output 393

10.4 Partition Load Manager performance impact . 396
10.4.1 Partition Load Manager resource requirements 396
10.4.2 Partition Load Manager impact on managed partitions. 397

Related publications . 401
IBM Redbooks . 401
Other publications . 402
Online resources . 402
How to get IBM Redbooks . 403
Help from IBM . 403

Index . 405
 Contents vii

viii Advanced POWER Virtualization on IBM Eserver p5 Servers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
© Copyright IBM Corp. 2005. All rights reserved. ix

any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
ibm.com®
iSeries™
i5/OS™
pSeries®
zSeries®
AIX 5L™
AIX®
Domino®
DB2®
Electronic Service Agent™

HACMP™
IBM®
Lotus®
Micro-Partitioning™
Perform™
Power Architecture™
PowerPC Architecture™
PowerPC®
POWER™
POWER2™
POWER3™
POWER4™

POWER4+™
POWER5™
PTX®
Redbooks™
Redbooks (logo)™
RS/6000®
Tivoli®
TotalStorage®
Tracer™
WebSphere®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
x Advanced POWER Virtualization on IBM Eserver p5 Servers

Preface

This IBM® Redbook provides an insight into the performance considerations of
Advanced POWERTM Virtualization on the IBM System p5 and IBM ̂p5
servers. It discusses the major hardware, software, benchmarks, and various
tools that are available.

This book is suitable for professionals who want a better understanding of the
IBM POWER5TM architecture and Micro-PartitioningTM that is supported by the
IBM System p5 and Sserver p5 servers. It targets clients, sales and marketing
professionals, technical support professionals, and IBM Business Partners.

The Advanced POWER™ Virtualization feature is a combination of hardware and
software that supports and manages the virtual I/O environment on
POWER5™-based systems. The main technologies are:

� POWER5 microprocessor architecture with simultaneous multithreading
support

� Micro-Partitioning™

� Virtual SCSI Server

� Virtual Ethernet

� Shared Ethernet Adapter

� Partition Load Manager

This redbook is intended as an additional source of information that, together
with existing sources referenced throughout this document, enhances your
knowledge of IBM solutions for the UNIX® marketplace. It does not replace the
latest marketing materials and tools.

While the focus in this publication is IBM Sserver p5 hardware and the AIX®
5LTM operating system, the concepts and methodology can be extended to the
i5/OSTM and Linux® operating systems as well as the IBM System p5 and IBM
Sserver i5 platform.

A basic understanding of logical partitioning is required.
© Copyright IBM Corp. 2005. All rights reserved. xi

The specialists who wrote this redbook
This redbook was the result of two separate residencies and was made up of
specialists from around the world working at the International Technical Support
Organization, Austin Center.

Ben Gibbs is a Senior Consulting Engineer with Technonics, Inc.
(http://www.technonics.com) in Austin, Texas. He has more than 20 years of
experience with UNIX-based operating systems and started working with the AIX
operating system in November 1989. His areas of expertise include performance
analysis and tuning, operating system internals, and device driver development
for the AIX and AIX 5L™ operating systems. He was the project leader for this
IBM Redbook.

Dr. Balaji Atyam has been a Senior Software Engineer in the Systems and
Technology Group of IBM since 2000. His responsibilities are porting,
benchmarking, performance tuning, parallel programming, and technical
consulting services to key Independent Software Vendors in the area of High
Performance Computing on IBM Sserver systems. He received his Ph.D. in
Applied Mathematics from Indian Institute of Technology, Roorkee, India. He was
a Scientist/Engineer for the Indian Space Research Organization (ISRO) prior to
joining IBM.

Frank Berres is a Senior Architect with SerCon GmbH in Germany. SerCon is an
IBM company that is assigned to IBM Business Consulting Services (BCS).
Frank has more than five years of experience in IT consulting and support on
AIX-based systems. He holds a degree in Electrical Engineering from the
University of Applied Sciences in Bingen, Germany.

Bruno Blanchard is a Certified IT Specialist working for IBM France in the IGS
Strategy Design and Authority team in La Gaude. He has been with IBM since
1983, starting as a System Engineer for VM. He started working with AIX in
1988, using AIX 5L on the IBM RT/PC, PS/2, RS/6000®, SP/2, and pSeries®. He
has written many Redbooks™, and is currently working as an Architect in
projects deploying Sserver cluster 1600 and pSeries servers infrastructures for
server consolidation and on demand environments.

Lancelot Castillo is an IBM Certified Advanced Technical Expert – pSeries and
AIX 5L. He works as a pSeries Product Manager at Questronix Corporation, an
IBM Business Partner in the Philippines, and has more than six years of
experience in AIX and pSeries servers. Castillo holds a Bachelor’s degree in
Electronics and Communications Engineering from Mapua Institute of
Technology. His areas of expertise include AIX performance tuning and sizing,
RS/6000 SP, and HACMP™.
xii Advanced POWER Virtualization on IBM Eserver p5 Servers

http://www.technonics.com

Pedro Coelho is an IT Specialist with IBM Global Services in Portugal. He has
five years of experience in AIX, AIX 5L, and Linux in the area of post-sales
support and services. He holds a degree in Computer Science from COCITE,
Lisbon. His areas of expertise include HACMP and performance analysis and
tuning. He is also working with IBM Learning Services teaching beginners and
advanced classes on AIX 5L and Linux.

Nicolas Guerin is an IT Specialist working for IBM France in La Gaude. He has
eight years of experience in the Information Technology field. His areas of
expertise include AIX and AIX 5L, system performance and tuning, HACMP,
pSeries, SP, ESS, and SAN. He has worked for IBM for 10 years and is an IBM
Certified Advanced Technical Expert - pSeries and AIX 5L. This is his second
redbook.

Lei Liu is a Senior IT Specialist working for IBM China at the Technical Sales
Support Center in Beijing, where she is responsible for large-account support for
telecom clients, including both pre-sale and post-sale technical support. She has
more than 13 years of working experience on UNIX systems. She joined IBM in
1998, and her areas of expertise include AIX and AIX 5L, system performance
analysis and tuning, and HACMP. She is an IBM Certified Advanced Technical
Expert - pSeries and AIX 5L.

Cesar Diniz Maciel is a Certified IT Specialist with the pSeries division in IBM
Brazil. He works in pre-sales technical support for pSeries, AIX 5L, and Linux on
pSeries, and is a Regional Designated Specialist for Latin America for High End
systems and Linux on pSeries. He has worked for IBM since 1996. He has nine
years of experience on AIX, AIX 5L, and pSeries systems and holds a degree in
Electrical Engineering from UFMG, Belo Horizonte.

Dr. Carlos Sosa is a Senior Technical Staff Member in the Systems and
Technology Group of IBM, where he has been a member of the Chemistry and
Life Sciences high-performance effort since 2001. For the past 18 years, he has
focused on scientific applications with emphasis in Life Sciences, parallel
programming, benchmarking, and performance tuning. He received a Ph.D.
degree in Physical Chemistry from Wayne State University and completed his
post-doctoral work at the Pacific Northwest National Laboratory. His area of
interest is future POWER architectures and cellular molecular biology.

Ravikiran Thirumalai is a Software Engineer at IBM India Software Labs. He
works for the IBM Linux Technology Center as a kernel developer for the baseOS
team. His main areas of interest in the kernel are SMP scalability, locking
algorithms, lock-free techniques, and the virtual file system. He has worked in the
IT industry for more than 6 years and holds a Bachelor’s degree in Electrical and
Electronics engineering from Bangalore University and an MS in Software
Systems from BITS Pilani.
 Preface xiii

Thanks to the following people for their contributions to this project:

IBM Austin
Bret Olszewski, Dr. Joel Tendler, Larry Brenner, Luke Browning, Herman D.
Dierks, Octavian F. Herescu, Bruce D. Hurley, Harry Mathis, Sujatha Kashyap,
Bob Kovacz, Kiet H. Lam, Stephen Nasypany, Frank O’Connell, Tony Ramirez,
Sergio Reyes, Jorge D Rodriguez, Luc Smolders, Mysore Srinivas, Suresh
Warrier, Erin Burke

IBM Atlanta
Tommy Todd

IBM Brazil
Claudio Garrido, Leonardo Vidal

IBM Dallas
Hari Reddy

IBM Mount Laurel
David Chisholm

IBM Poughkeepsie
David Wootton

IBM Raleigh
Matthew Cali

IBM Somers
Jim McGaughan

IBM Toronto
Robert Enenkel, Arie Tal

IBM Watson
David Klepacki, James B. Shearer

Groupe Bull France
Jez Wain

Technonics, Inc.
Sandra Lopez-Martin
xiv Advanced POWER Virtualization on IBM Eserver p5 Servers

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You will team with IBM technical professionals,
IBM Business Partners, and/or clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

http://www.redbooks.ibm.com/

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 905
11501 Burnet Road
Austin, Texas 78758-3493
 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/contacts.html

xvi Advanced POWER Virtualization on IBM Eserver p5 Servers

Part 1 Virtualization
technology

In this part, we provide an in-depth look at the technology behind the
virtualization capabilities of the IBM ̂p5 systems. Detailed information is
provided about the IBM POWER5 microprocessor architecture, the POWER
Hypervisor, simultaneous multithreading, Micro-Partitioning, and virtual I/O.

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 1. Introduction

This book takes an in-depth look at the performance considerations of the
IBM ̂p5 servers, advancing the concepts and terminology provided in
the redbook entitled Advanced POWER Virtualization on IBM eServer p5
Servers: Introduction and Basic Configuration, SG24-7940. If you are not familiar
with the terminology and concepts of virtualization, we strongly suggest that you
read that book before starting the material in this book, as this book assumes
that you are already familiar with the concepts of virtualization.

As a quick review, the following terms are defined here:

Virtualization The pooling of system resources via the POWER
Hypervisor to access processors, memory, and I/O
devices across logical partitions

POWER Hypervisor Supports partitioning and dynamic resource movement
across multiple operating system environments

Micro-Partitioning Enables you to allocate less than a full physical
processor to a logical partition

Virtual LAN Provides network virtualization capabilities that enable
you to prioritize traffic on shared networks

Virtual I/O Provides the ability to dedicate I/O adapters and devices
to a virtual server, enabling the on demand allocation
and management of I/O devices

1

© Copyright IBM Corp. 2005. All rights reserved. 1

Capacity on Demand Enables inactive processors and memory to be activated
on an as-needed basis

Simultaneous multithreading
Enables applications to increase overall resource
utilization by virtualizing multiple physical CPUs through
the use of multithreading

Why would the information presented in this book be of importance to you?
Some of the reasons are:

� Reduce costs by increasing asset utilization.
� Re-deploy talent to manage your business, not the infrastructure.
� Rapidly provision new servers.
� Drive new levels of IT staff productivity.
� Simplify server management and operations.
� Communicate more securely with virtual Ethernet.

The IBM Sserver p5 family of servers includes powerful new capabilities such
as the partitioning of processors to 1/10th of a processor, sharing processor
resources in a pool to drive up utilization, sharing physical disk storage and
communications adapters between partitions, and taking advantage of
cross-partition workload management, to mention a few.

Upcoming chapters include an in-depth discussion about each component that
makes up the new IBM capabilities available on the POWER5 family of systems,
such as POWER Hypervisor, simultaneous multithreading, Micro-Partitioning,
virtual LAN, and Virtual I/O.

We hope that by the end of this book you will have a more complete
understanding of virtualization as it applies to the POWER5 architecture and the
Sserver p5 systems.
2 Advanced POWER Virtualization on IBM Eserver p5 Servers

1.1 Performance tuning redefined
With the advent of this new technology and functionality, our traditional concepts
and methods of system and applications performance tuning must accommodate
the virtual dimension. In addition to defining and explaining these concepts and
methods, this book also covers traditional performance issues as well as
performance as a function of a system environment with virtual capabilities.

1.1.1 Understanding performance
Technological improvements in microprocessors, disks, and networking
equipment have dramatically changed the landscape of server computing. While
those improvements have more often than not reduced the incidence of
performance problems in client environments, they have also increased the
capabilities of systems such that more complex problems may be solved. Thus,
performance tuning has tended to change in nature from simple hardware and
software bottleneck analysis toward evaluation of more complex interactions.
Performance evaluation and tuning of complex systems requires discipline and
exactness. Frequently, the solution to a problem is not obvious. Often the steps
along the journey toward the solution may seem inconclusive or even
counterproductive. But, with a systematic rigor, nearly every bottleneck can be
alleviated in some way. To help the reader achieve the goal of making system
tuning rewarding and beneficial, we have dedicated one chapter to provide you
with tools to help in the effort.

In addition, it is important to note that performance tuning can be subdivided into
system tuning and application tuning. The objectives of these two tuning areas
are very different. System tuning relies on the ability to modify system
parameters in order to provide faster throughput measurements. This throughput
consists of the amount of work performed over a period of time and normally
corresponds to a series of identical or different jobs running simultaneously and
competing for the same system resources. Application tuning looks at the source
code for a particular application and requires tailoring or optimizing the code to a
particular architecture or common architectural features.

An IBM Sserver p5 system is subjected to various types of loads. The load can
vary widely depending on the number of applications used and the type of
applications being run. Obviously the number of loads and type of applications
will vary widely over the period of the server’s working life. Consequently,
changes have to be made to the server’s hardware and software setup to
accommodate these changing conditions. Applications require tuning as well.

System administrators often refer to any degradation of service as a bottleneck in
the server system. Bottlenecks must be understood and compensated for if the
 Chapter 1. Introduction 3

system administrators are to keep the users satisfied with performance. Similarly,
programmers must identify bottlenecks within the source code of certain
applications that form part of the system load.

System tuning
Within a server there are limited resources that can affect the performance of a
given system. Each of these resources work together hand-in-hand and are
capable of influencing the behavior of one another. If performance modifications
are not carefully administered, the overall effect could be a deterioration of server
performance.

Here we distinguish between three types of resources:

� Logical resources

The resources as seen by the operating system. For example, a central
processing unit (CPU) may be available to the operating system as cpu0, but
it may not be the first CPU installed in the system. The operating system
could be installed in the third partition of the system and using the third
physical CPU in the system as cpu0.

� Virtual resources

The resources that appear to be available for the operating system to use. For
example, virtual storage provides the appearance that there is more memory
available than is actually installed in the system. With the use of paging
space, the operating system no longer has to be limited by the amount of
physical memory installed in the system.

� Physical resources

The actual hardware resources found in the system, such as processors,
memory, disk drives, and network adapters. The efficiency of the operating
system will maximize the hardware performance.

As server performance is distributed throughout each server component and
type of resource, it is essential to identify the most important factors or
bottlenecks that will affect the performance for a particular activity.

Detecting the bottleneck within a server system depends on a range of factors
such as:

� Configuration of the server hardware
� Software applications workload
� Configuration parameters of the operating system
� Network configuration and topology

File servers need fast network adapters and fast disk subsystems. In contrast,
database server environments typically produce high processor and disk
4 Advanced POWER Virtualization on IBM Eserver p5 Servers

utilization, requiring fast processors or multiple processors and fast disk
subsystems. Both file and database servers require large amounts of memory for
caching by the operating system.

Traditionally there has been a simplified approach to performance tuning: If the
performance bottleneck is the processor, then either a faster processor or more
processors could be installed. An alternative to processor upgrade is to offload
processing requirements by using workload management techniques. If the
bottleneck is memory, then additional memory could be installed. Memory
bottlenecks often result in excessive disk I/O as a result of paging (swapping)
between paging space and memory. If the bottleneck is the disk subsystem, then
either additional disk drives, disk adapters, or both can be installed. In addition, a
specialized high-performance disk subsystem could be used. If the bottleneck is
the network adapter then a faster network interface could be installed. Another
optimization technique that can be employed is to utilize multiple network
adapters in the server increasing throughput onto one or multiple segments.

Before any tuning is actually performed, it is worth understanding the framework
within which performance testing is done. Follow a set of simple guidelines to
assist in any type of performance analysis.

There are many trade-offs related to performance tuning that have to be
considered. In order to chose the best set of options it is vital to ensure that there
is a balance between them. The trade-offs are:

� Cost versus performance. In some situations, the only way performance can
be improved is by using more or faster hardware while keeping in mind, “Does
the additional cost result in a proportional increase in performance?”

� Conflicting performance requirements. When more than one application is
used simultaneously, there may be conflicting performance requirements.

� Speed versus functionality. Here, for example, resources may be increased to
improve a particular section, but serve as an overall detriment to the system.
Using a methodical approach you can obtain improved server performance,
such as by:

– Understanding the factors that can affect server performance, for the
specific server functional requirements and for the characteristics of the
particular system

– Measuring the current performance of the server

– Identifying a performance bottleneck

– Upgrading the component that is causing the bottleneck
 Chapter 1. Introduction 5

– Measuring the new performance of the server to check for improvement

Although we cover this material in this book, additional information may be found
in this redbook: AIX 5L Performance Tools Handbook, SG24-6039.

Application tuning
Application tuning (or application optimization) requires careful analysis of the
source code to tailor it to a particular hardware architecture. In other words, it is
the goal of the programmer to make the application aware of the hardware
features that are accessible to the application. For instance, we shall see in the
applications tuning chapter how to optimize do loops to take advantage of the L2
cache on Sserver p5 architectures.

We shall see that, in general, any tuning that we carry out at the application level
will leverage systems with and without virtual environments. The following
redbooks cover this subject on POWER3™ and POWER4™:

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and
Tuning Guide, SG24-5155

� The POWER4 Processor Introduction and Tuning Guide, SG24-7041

1.1.2 Performance considerations
The goal of virtualization is to allow the deployment of resources in a flexible
manner. This flexibility enables best use of resources and, when correctly used,
should improve performance and the end-user experience. However,
virtualization alters the way we look at system performance. We still follow the
same rules for identifying existing or potential bottlenecks, but the remedy can be
different and difficult to obtain. Virtualization is a flexible resource model for the
on demand world. The focus here is more on increasing resource utilization and
responding to changing workloads. Resources are dynamically allocated,
including fractional, on an as-needed basis. Capacity on Demand (CoD) enables
the allocation of additional resources as needed, and Workload Manager (WLM)
enables the optimization of resources to respond to changing workloads.

This book follows the model of a system consisting of four major subsystems:
processor complex, memory hierarchy, storage model and network topology.
� Beginning with Chapter 2, “IBM POWER5 architecture” on page 9, an

in-depth look at the IBM POWER5 microprocessor architecture is provided.

� Chapter 3, “Simultaneous multithreading” on page 41 takes a detailed look at
the simultaneous multithreading feature of the POWER5 microprocessor.

Application and system programmers will find the information in chapters 2
and 3 useful to their programming efforts.
6 Advanced POWER Virtualization on IBM Eserver p5 Servers

� Chapter 4, “POWER Hypervisor” on page 73 is dedicated to the POWER
HypervisorTM and its role in the system.

� Chapter 5, “Micro-Partitioning” on page 93 provides detailed information
about Micro-Partitioning.

� Chapter 6, “Virtual I/O” on page 143 focuses on virtual input/output, which
includes virtual Ethernet, virtual SCSI, and the Shared Ethernet Adapter.

Part 2 of this book addresses performance tuning and application tuning:

� Chapter 7 looks at the support provided by the AIX 5L Version 5.3 operating
system and the changes to the performance analysis tools.

� Chapter 8 focuses on application tuning with information about compiler
options, profiling, memory management, and optimization techniques. This
chapter will benefit those who are involved in benchmarks and providing
solutions enablement.

� Chapter 9 looks at support provided by the Partition Load Manager and its
implementation into the virtualization model.
 Chapter 1. Introduction 7

8 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 2. IBM POWER5 architecture

The POWER5 system is the next generation of POWER processor–based
microprocessors. It builds on the IBM POWER4 architecture, providing new and
improved functional support designed to meet a variety of client needs and
requirements.

This chapter provides an in-depth overview of the POWER5 design and
discusses various aspects of the functional enhancements that the POWER5
system is designed to support. The chapter is intended to provide you with a look
at the POWER5 microprocessor technology. It includes information about the
instruction pipelines and the L1, L2, and L3 caches.

2

© Copyright IBM Corp. 2005. All rights reserved. 9

2.1 Introduction
The POWER5 processor is the latest 64-bit implementation of the PowerPC® AS
architecture (Version 2.02). This dual core processor with simultaneous
multithreading technology is fabricated using silicon-on-insulator (SOI) devices
and copper interconnects. SOI technology is used to reduce the device
capacitance and increase transistor performance. Wire resistance is lower in
copper interconnects and results in reduced delays in wire-dominated chip timing
paths. The chip is implemented using 130 nm lithography with eight metal layers
and a die that measures 389 mm2. The chip is made up of 276 million transistors.

The primary design objectives of POWER5 technology are:

� Maintain binary and structural compatibility with existing POWER4 systems
� Enhance and extend symmetric multiprocessor (SMP) scalability
� Continue superior performance
� Provide additional server flexibility
� Deliver power-efficient design
� Enhance reliability, availability, and serviceability

The POWER5 microprocessor is downward binary compatible with all PowerPC
and PowerPC AS application-level code. The POWER5 has been designed for
very high frequency operations with operating frequencies of up to 1.9 GHz.
POWER5 consists of a deeply pipelined design with 16 stages for fixed-point
register-to-register operations, 18 stages for most load and store operations (with
L1 data cache hits), and 21 stages for most floating-point operations.

The processor exhibits a speculative superscalar inner core organization with
aggressive branch prediction, out-of-order issues, register renaming, a large
number of instructions in flight, and fast selective flush of incorrect speculative
fetched instructions and results. There has been a specific focus on storage
latency management where the core can issue out-of-order load operations with
support for up to eight outstanding L1 data cache line misses. There is
hardware-initiated or software-initiated instruction prefetching from the L2, L3,
and memory along with hardware-initiated data stream prefetching, and software
instruction prefetching based on branch prediction hints.

The POWER5 architecture is an enhancement over the POWER4 architecture,
but it maintains binary and structural compatibility. The identical pipeline
structure enables complier optimizations targeted for POWER4 to work equally
well on POWER5-based systems.

Each POWER5 processor core is designed to support both simultaneous
multithreading and single-threaded modes. Software (an operating system using
POWER Hypervisor calls) can switch the processor from simultaneous
multithreading mode to single-threaded mode. Chapter 3, “Simultaneous
10 Advanced POWER Virtualization on IBM Eserver p5 Servers

multithreading” on page 41 offers detailed information about simultaneous
multithreading.

Figure 2-1 shows the layout of the POWER5 processor.

Figure 2-1 POWER5 processor chip

FXU - Fixed-Point (Integer) Unit FPU - Floating-Point Unit
ISU - Instruction Sequencing Unit IDU - Instruction Decoding Unit
LSU - Load Store Unit IFU - Instruction Fetch Unit
 L2 - Level 2 Cache L3 - Level 3 Cache Controller
 MC - Memory Controller
 Chapter 2. IBM POWER5 architecture 11

2.2 Chip design
Two identical processor cores are found in a single POWER5 chip. Figure 2-2
shows the high-level layout of a POWER5 processor, including the L3 cache and
memory. Because of the dual-core design and support for simultaneous
multithreading (two hardware threads per core), a single POWER5 chip appears
as a four-way microprocessor system to the operating system.

Figure 2-2 High-level structure of POWER5

Simultaneous multithreading is a hardware multithreading1 technology that can
greatly improve the utilization of the processor’s hardware resources, resulting in
better system performance. Superscalar processors can issue multiple
instructions in a single cycle from a single code path (hardware thread), but
processors using simultaneous multithreading can issue multiple instructions
from multiple code paths (hardware threads) in a single cycle. POWER5 provides
for two hardware threads per processor core. Hence, multiple instructions from

1 The terminology multithreading used here refers to the hardware execution of threads provided on a
processor core as used in the computer architecture community. It is not same as the software use of
the term.

Processor
Core

L1
I-Cache

L1
D-Cache

Processor
Core

L1
I-Cache

L1
D-Cache

1.9 MB L2 Cache

L3 Dir/Control

Memory Controller

Fabric Controller

Memory36MB L3 Cache

POWER5

32B 32B 8B
12 Advanced POWER Virtualization on IBM Eserver p5 Servers

both the hardware threads can be issued in a single processor cycle on the
POWER5.

2.3 POWER5 enhancements
Table 2-1 shows a comparison between the POWER4 architecture and the
POWER5 architecture. Most of the enhancements were made to accommodate
simultaneous multithreading support in the POWER5 processors. (See
Chapter 3, “Simultaneous multithreading” on page 41.)

Table 2-1 Differences between POWER4 and POWER5

Unit POWER4 POWER5

Instruction Fetch Unit (IFU) Direct-mapped 64 KB
Level 1 Instruction Cache

Two-way 64 KB Level 1
Instruction Cache

4-entry direct mapped
prefetch buffer

Split, 2-entry per thread
prefetch buffer

16-entry Branch
Information Queue (BIQ)

Split, 8-entry per thread
BIQ

Branch prediction control Replicated branch
prediction control

Link stack Replicated link stack

Instruction Decode Unit
(IDU)

8-entry Instruction Fetch
Buffer (IFB)

6-entry IFB per thread

Instruction Issue Unit (ISU) 20-entry FIFO Global
Completion Table (GCT)

20-entry linked list GCT

80 General Purpose
Registers (GPR), 72
Floating-point Registers
(FPR) mapper

120 GPR, 120 FPR
mapper

32-entry Condition
Register (CR) mapper

40-entry CR mapper

24-entry Fixed-point
Exception Register (XER)
mapper

32-entry XER mapper

20-entry Floating-point
Issue Queue (FPQ)

24-entry packed FPQ

Fixed-point Unit (FXU) 80-entry GPR 120-entry GPR
 Chapter 2. IBM POWER5 architecture 13

The POWER5 architecture provides for two threads of execution in parallel. To do
this, some of the processor resources had to be replicated. For example, the
16-entry Branch Information Queue (BIQ) in POWER4 has been split into two
8-entry queues, one per each thread.

2.4 POWER5 instruction pipelines
The POWER5 instruction pipeline can be subdivided into a master pipeline and
several different execution pipelines. Figure 2-3 on page 16 depicts the POWER5
instruction master pipeline. Each box in the diagram represents a pipeline stage.
The POWER5 pipeline structure is very similar to the POWER4 pipeline
structure. Even the pipeline latencies including penalties for mispredicted
branches and load-to-use latencies for L1 data cache hits remain the same. This

Floating-point Unit (FPU) 72-entry FPR 120-entry FPR

Load/Store Unit (LSU) 32 K, two-way
set-associative Data
Cache

32 K, four-way
set-associative Data
Cache

128-entry two-way
set-associative Effective to
Real Address Translation
(ERAT)

128-entry fully associative
ERAT

64-entry Segment
Lookaside Buffer (SLB)

Replicated 64-entry SLB
per thread

32-entry Load Reorder
Queue (LRQ)

16-entry real and 16-entry
virtual LRQ per thread

32-entry Store Reorder
Queue (SRQ)

16-entry real and 16-entry
virtual SRQ per thread

8-entry Load Miss Queue
(LMQ)

8-entry LMQ with thread
control

One set of Special
Purpose Registers (SPR)

Replicated Special
Purpose Registers (SPRs)
with thread ID

L2 1.45 MB on chip 1.9 MB on chip

L3 16 MB Cache 36 MB, directory, controller
on-chip

Unit POWER4 POWER5
14 Advanced POWER Virtualization on IBM Eserver p5 Servers

design lets the compiler optimizations designed for POWER4 to work equally well
on POWER5.

The master pipeline presents speculative in-order instructions to the mapping,
sequencing and dispatch functions, and ensures an orderly completion of the
real execution path. The master pipeline (in-order processing) throws away any
potential speculative results associated with mispredicted branches. The
execution pipelines allow out-of-order issuing of speculative and non-speculative
instructions. The execution unit pipelines progress independently from the
master pipeline and each other.

The POWER5 processor consists of the following instruction pipeline features:

� Deeply pipelined design

– 16 stages of execution for most fixed-point (integer) register-to-register
operations. (IF to CP in Figure 2-3 on page 16)

– 18 stages for most load and store operations

– 21 stages for most floating-point operations

� Out of order issue of up to 8 instructions into 8 execution pipelines

– Two load or store instruction pipelines

– Two fixed-point instruction pipelines

– Two floating-point instruction pipelines

– One branch instruction pipeline

– One condition register operation instruction pipeline

2.4.1 Instruction fetching
In simultaneous multithreading, the POWER5 core uses two separate Instruction
Fetch Address Registers (IFAR) to store the program counter for the two threads
from the same program or different programs. Instructions are fetched every
alternate cycle for each hardware thread (see IF - instruction fetch stage in
Figure 2-3 on page 16). In single-threaded mode, instructions are fetched from
the active thread every cycle, and the program counter corresponding to that
hardware thread is used. The POWER5 core can fetch an eight-word (32-byte)
aligned block of eight instructions per cycle. Keep in mind that all instructions in
POWER and PowerPC are 32 bits (one word). The two threads share the
instruction cache and the instruction address translation facility (L1 I-cache and
I-ERAT). POWER5 also provides a four-entry instruction prefetch queue above
the I-cache for hardware initiated prefetching. The first two entries of the
instruction prefetch queue are dedicated for thread 0 and the remaining two
entries for thread 1 regardless of whether the core is running in simultaneous
multithreading or single-threaded mode.
 Chapter 2. IBM POWER5 architecture 15

Figure 2-3 POWER5 instruction pipeline

IF - Instruction Fetch IC - Instruction Cache Access
BP - Branch Prediction IFB - Instruction Fetch Buffers
D0-D3 - Decode Stages GXF - Group Transfer
GD - Group Dispatch MAP - Register Mapping
ISS - Instruction Issue RF - Register File Access
EX - Execution EA - Effective Address Generation
DC - Data Cache Access FMT - Data Formatting
WB - Write Back to Register FP1 - Floating-point Alignment and Multiply
FP2 - Floating-point Multiply FP3 - Floating-point Add
FP4 - Floating-point Add FP5 - Floating-point Normalize Result
FP6 - Floating-point Round Result XMT - Finish and Transmit
CP - Group Completion

2.4.2 Branch prediction
The eight fetched instructions are scanned for branch instructions each cycle (BP
stage in Figure 2-3). If branch instructions are found, the branch direction is
predicted using three Branch History Tables (BHT). The tables are shared by the
two threads, and two of the tables use bimodal and path-correlated branch
prediction mechanisms to predict branches. The third table is used as a selector
designed to predict which of these prediction mechanisms is more likely to
predict the right instruction path. The BP stage can predict all of the branches at
the same time in the fetched instruction group. If the fetched instructions contain

Branch redirection

IF IC BP

D0 D1 D2 D3

IFB0 IFB1

GXF GD

Thread Priority

MAP

MAP

MAP

MAP

ISS RF EX

ISS RF EA DC FMT WB

WB

XMT

XMT

ISS RF EX WB XMT

ISS RF FP1

WB XMT

Load/Store Instructions

Fixedpoint Instructions

Floating-point Instructions

FP2
FP3
FP4
FP5
FP6

CP

Instruction Fetch

Group formation and
instruction decode

Interrupts and flushes

Branch/Condition Register Instructions

In-order Fetch, Decode and Dispatch Out-of-order Execution In-order
Completion
16 Advanced POWER Virtualization on IBM Eserver p5 Servers

multiple branches, the core logic has the capability to track up to eight
outstanding branches per thread in simultaneous multithreading and 16
outstanding branches in single-threaded mode. The core logic also predicts the
target of a taken branch in the current cycle’s eight instruction group. The target
address of most branches is calculated from the instruction’s address plus an
offset as described by the Power Architecture™ and PowerPC Architecture™.
For predicting targets of subroutine returns, the core logic uses a per-thread,
eight-entry Link Stack (return stack). For predicting targets of the bcctr (branch
conditional to address in the Count Register) instruction, a 32-entry target cache
shared by both the threads is used. If a branch is taken, the core logic loads the
program counter with the target address of the branch. If the branch is not
predicted as taken, the address of the next sequential instruction (current
instruction address + 4) is loaded into the program counter.

2.4.3 Instruction decoding and preprocessing
Instructions in the predicted path from BP stage are placed in the per-thread
Instruction Fetch Buffers (IFBs). This happens in the D0 stage (see Figure 2-3
on page 16). The core has two 6-entry IFBs, one for each thread. Each IFB entry
can hold four instructions. Up to eight instructions can be placed in one of the two
IFBs every cycle. Up to five instructions can be taken out from either of the two
IFBs every cycle. Based on the thread priorities, instructions from one of the IFBs
are selected, split into internal instructions in some cases (instruction cracking),
and an instruction group is formed. This corresponds to the D1 to D3 stages.

Because instructions are later executed out of order, it is necessary to remember
the program order of all instructions in flight. Instruction groups are formed to
minimize the logic for tracking large numbers of instructions in flight. Groups of
these instructions are tracked instead. Care is taken during group formation so
that internal instructions that resulted from the cracking of an instruction do not
end up in different groups. All instructions in a group belong to the same thread
and are decoded in parallel. Each group can have a maximum of five instructions.

2.4.4 Group dispatch
The process of moving the instructions belonging to a group formed in the D0 to
D3 stages into the issue queues is known as group dispatch (GD). Before a group
can be dispatched, the processor must ensure that resources required by the
instructions in the group are available:

� Each instruction in the group needs an available entry in an appropriate issue
queue.

� Each load instruction and store instruction needs an entry in the load reorder
queue and store reorder queue respectively to be able to detect out-of-order
execution hazards.
 Chapter 2. IBM POWER5 architecture 17

� Each dispatched group needs an available entry in the Global Completion
Table (GCT). The GCT is used to track the groups of five instructions formed
in the D0-D3 stage. The core logic allocates GCT entries in program order for
each thread.

When all of the necessary resources are available for the group, the group is
dispatched (GD stage). Note in Figure 2-3 on page 16 that the instruction flow
from the IF stage to the GD stage happens in program order.

2.4.5 Register renaming
To facilitate out-of-order and parallel execution of instructions in a group, the
architected registers (the ones specified in the instruction) are renamed by
utilizing a large physical register file provided in the core. Each register that is
renamed must have a corresponding physical register. The Rename Mapper
serves this purpose, and renaming takes place in the MAP stage of the
instruction pipeline. Example 2-1 shows a code example where register
renaming is needed in this parallel execution environment.

Example 2-1 Register renaming example

mulw r4, r5, r8 ; Multiply contents of GPR 5 to GPR8, result in GPR4
addi r5, r6, r7 ; Add contents of GPR6 and GPR7, result in GPR5
lwzx r7, r1, r9 ; Load 32-bit word at address determined by adding

; contents of GPR1 and GPR9 into GPR7

In this code example, the three instructions can execute in parallel. Referring to
Figure 2-3 on page 16, the mulw and addi instructions would be issued to the
fixed-point instruction pipelines (two fixed-point pipelines in each core) and the
lwzx instruction would be issued to the load/store pipeline. If GPR5 was not
remapped in the addi instruction during execution, it could change the source
operand for the mulw instruction if the mulw instruction would stall for some
reason. Rename registers are necessary for other situations in a parallel
execution (superscalar) environment such as supporting precise interrupts.
However, these discussions are beyond the scope of this book.

Table 2-2 on page 19 summarizes the rename resources that are available to the
POWER5 core. For example, the compiler has 32 GPRs that are available for
integer operations in the program. The POWER5 core has a total of 120 registers
for renaming. With simultaneous multithreading, both threads can dynamically
share the physical register files (rename resources). Instruction-level parallelism
exploited for each thread is limited by the physical registers available for each
thread. Certain workloads such as scientific applications exhibit high instruction-
level parallelism. To exploit instruction-level parallelism of such applications, the
18 Advanced POWER Virtualization on IBM Eserver p5 Servers

POWER5 makes all of the physical registers available to a single thread in
single-threaded mode, enabling higher-instruction level parallelism.

Table 2-2 Rename resources in the POWER5 core

2.4.6 Instruction execution
After the MAP stage, instructions enter the issue queues shared by the two
threads. These issue queues feed the execution pipelines.

Each POWER5 processor core contains:

� Two fixed-point (integer) execution pipelines2

– Both capable of basic arithmetic, logical, and shifting operations

– Both capable of multiplies

– One capable of divides and the other capable of Special Purpose Register
(SPR) operations

� Two 6-stage load/store execution pipelines

� Two 9-stage floating-point execution pipeline (6-stage execution)

– Both capable of the full set of floating-point instructions

– All data formats supported in hardware including IEEE 754

Resource type Available to each thread Physically in the core

GPRs 32 (36a)

a. The POWER5 architecture uses four extra scratch registers known as eGPRs
and one additional 4-bit CR field known as eCR for instruction cracking and group-
ing. These are not the architected registers and are not available for the program-
ming environment.

120

FPRs 32 120

XER 4 fieldsb

b. The XER has four mappable fields and one non-mappable field per thread.

32

CTR 2 16

LR 2 16

CR 8 (9c) 4-bit fields

c. Eight CR fields plus one non-architected eCR field for instruction cracking and
grouping.

40

FPSCR 1 20

2 Figure 2-3 on page 16 does not illustrate the number of execution units. See Figure 2-4 on page 21
instead.
 Chapter 2. IBM POWER5 architecture 19

� One branch execution pipeline

� One condition register logical pipeline

The following instruction issue queues are built into the POWER5 core:

� Combined, two 18-entry issue queues to feed the fixed-point and load/store
execution pipelines

� Two 12-entry issue queues to feed the floating-point execution pipelines

� One 12-entry issue queue for branch execution pipeline

� One 10-entry issue queue for condition register logical execution pipeline

In summary, each POWER5 processor core has eight execution units, each of
which can issue instructions out of order, with bias toward the oldest instructions
first. Each execution unit can issue an instruction each cycle and complete an
instruction every cycle. Keep in mind that the total latency of an instruction
depends on the number and nature of each pipeline stage of execution.

Instructions in the issue queue become eligible for issue when all of the input
operands for that instruction become available. The issue logic selects an eligible
instruction from the issue queue and issues it (ISS stage). While in simultaneous
multithreading mode, the issue logic does not differentiate between instructions
from the two threads. Therefore, instructions from either of the threads can be
issued at any given time, simultaneous to the execution units, thus making the
core truly simultaneous multi-threaded. Upon issue of an instruction, the source
operand registers for that instruction are read (RF stage), executed on the proper
execution unit (EX stage), and results written back to the target register (WB
stage). In each load/store unit (LSU), an adder is used to compute the effective
address to read from (load) or write to (store) in the EA stage, and the data cache
is subsequently accessed in the DC stage. For load instructions, when data is
returned from the data cache, a formatter selects the correct bytes from the
cache line (FMT stage) and writes them to the register (WB stage).

When all of the instructions in a group have executed without generating an
exception and the group is the oldest of a given thread, the group is completed
(CP stage). Completion is when the results are moved from the temporary
rename registers into the registers that are specified in the program. The
processor core can complete two groups per cycle, one from each thread. The
GCT entry allocated to the group during the GD stage is deallocated when the
group is committed. Each POWER5 processor core has a 20-entry GCT shared
by the two threads. Figure 2-4 on page 21 provides some additional detail.
20 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 2-4 POWER5 instruction and data flow

2.5 Caches
The POWER5 microprocessor contains up to three levels of cache hierarchy. The
level 1 (L1) cache employs a Harvard cache organization in which instructions
are separate from the data. The L1 instruction cache is 64 KB and the L1 data
cache is 32 KB in size. The L1 caches are private to each processor core. The
cache line size for both caches is 128 bytes. In simultaneous multithreading, the
caches are shared by the two hardware threads running in the core.

Both processor cores in a chip share a 1.9 MB unified level 2 (L2) cache. The
processor chip houses a level 3 (L3) cache controller that provides for an L3
cache directory on the chip. However, the L3 cache itself is on a separate
Merged Logic DRAM (MLD) cache chip. The L3 is a 36 MB victim cache of the L2
cache. The L3 cache is shared by the two processor cores in the POWER5 chip.
Needless to say, the L2 and L3 caches are shared by all of the hardware threads
of both processor cores on the chip. Table 2-3 on page 30 lists the cache
characteristics of the POWER5 processor architecture.

L1 instruction cache
The 64 KB L1 instruction cache is two-way set associative cache for instructions
of programs running in the core. This cache uses a least recently used (LRU)
replacement policy and is indexed using 15 bits of the effective address, as
shown in Figure 2-5 on page 24. The 15 bits consist of a 7-bit byte offset and an
8-bit set number. Two-way set associative refers to the fact that there are two
address comparators per each set. For any address in memory, the item being
 Chapter 2. IBM POWER5 architecture 21

referenced has a predetermined set membership in the cache. Instructions are
not fetched on an individual basis from memory as this would be very inefficient.
An instruction cache line is fetched from memory. The size of a cache line in the
instruction cache is 128 bytes (32 instructions) and is aligned on a 128-byte
boundary. Therefore, as shown in Figure 2-5 on page 24, the right-most seven
bits (bits 25:31) of the effective address represent the byte offset within the cache
block. Based on bits 17 to 24 of the effective address, the line that comes from
memory is placed into one of the two ways for the specified set number based on
the LRU replacement policy.

When instructions are fetched from the cache, the address of the requested
instruction is compared to the addresses in each of the two ways at the specified
set number. If the address matches one of the ways, then it is considered to be a
cache hit and the requested instructions are returned to the fetch unit. If a cache
miss occurs, the instructions have to be obtained from one of the other memories
in the hierarchy.

For both the instruction cache and the data cache the bus width to the L2 cache
is 256 bits (32 bytes). Therefore it takes a minimum of four “beats” or cycles to
transfer the 128-byte cache line. Each 32-byte beat is referred to as a sector.

When a cache miss occurs for instruction fetch, instructions will be returned from
the L2 cache if they are present there; otherwise they will come from L3 or
system memory. When the instructions arrive, they will take a bypass path so that
the instructions will be sent to the fetch unit as quickly as possible. A state
machine is used when the bypass path is being used and writes whatever
sectors that have arrived into the prefetch buffer. If the instructions are arriving
from the L2, then all the sectors will be written. If the data is not from the L2, then
it will arrive at a later time and, after the last sector arrives, the state machine will
be initiated again to write all of the sectors into the instruction cache.

The instruction cache is single ported, enabling either a read or write operation to
occur. Writes to the instruction cache occur in a cycle when the instruction cache
cannot be read. The state machine uses a pattern of fetching to try to reduce the
impact of these cycles. For example, instead of writing on four consecutive
cycles, the state machine spreads the writes out such that each thread does not
miss consecutive fetch opportunities. (Each thread is allocated every other cycle
of the instruction cache so that if a write occurs on cycle n it will not occur on
cycle n+2). Because the instruction cache fetch unit can fetch more instructions
then it can execute, the performance impact of these writes is very small.

L1 data cache
The 32 KB L1 data cache is a four-way set associative cache for data used by
programs running in the core. This cache uses a least-recently used (LRU)
replacement policy and is indexed using 13 bits of the effective address as shown
22 Advanced POWER Virtualization on IBM Eserver p5 Servers

in Figure 2-5 on page 24. The 13 bits consist of a 7-bit byte offset and a 6-bit set
number. Four-way set associative refers to the fact that there are four address
comparators per each set. For any address in memory, the item being referenced
has a predetermined set membership in the cache. Data is not typically fetched
on an individual basis from memory as this would be very inefficient. Instead, a
data cache line is fetched from memory. The size of a data cache line is identical
to an instruction cache line of 128 bytes and is aligned on a 128-byte boundary.
Therefore, as shown in Figure 2-5 on page 24, the rightmost seven bits (bits 25
to 31) of the effective address represent the byte offset within the cache block.
Based on bits 19 to 24 of the effective address, the line that arrives from memory
is placed into one of the four ways for the specified set number based on the LRU
replacement policy.

When data is loaded from or stored into the cache, the address of the data item
is compared to the addresses in each of the four ways at the specified set
number. If the address matches one of the ways, then it is considered to be a
cache hit and the data is either returned from (load operation) or written to (store
operation) the data cache. If a cache miss occurs, the data will have to be
obtained from one of the other memories in the hierarchy.

The data cache is a write-through cache and therefore never holds modified
data. When a store occurs to an existing L1 data cache line, the L1 data cache
line is updated as well as a write to the L2 cache using an independent 8-byte
(64-bit) data bus.

The L1 data cache provides two read ports and one write port to the core. On a
cache miss, data is returned on the L2 cache interface in four 32-byte beats. Like
instruction cache misses, the L2 always returns the “critical sector” (the sector
containing the specific data item address that referenced the cache line) in the
first beat, and the load miss queue (LMQ) forwards these load requests into the
pipeline as quickly as possible. This is called critical data forwarding (CDF). As
each 32-byte beat is received it is written to the cache. When all four 32-byte
beats are received, the data cache directory is updated.
 Chapter 2. IBM POWER5 architecture 23

Figure 2-5 L1 caches

L1 instruction cache Way 0 Way 1
Set 0
Set 1
Set 2
Set 3
Set 4

Set 255
Set 254
Set 253

Set 5

Set 252

.

.

.

.

cache line cache line

128 bytes 128 bytes

The L1 instruction cache is 64 KB in size and is
two way set-associative.

Two way set-associative means there are two
cache lines managed per set.

Number of set in the cache can be determined
by:

64KB / (128 bytes per block* 2 ways) = 256

Effective address determines location in cache.

3125241716

8-bit set number 7-bit byte offset

Way 0 Way 1
Set 0
Set 1
Set 2
Set 3
Set 4

Set 63
Set 62
Set 61

Set 5

Set 60

.

.

.

.

128B

Way 2 Way 3

128B 128B 128B

L1 data cache

The L1 data cache is 32 KB in size and is four
way set-associative.

Four way set-associative means there are four
cache lines managed per set.

Number of set in the cache can be determined
by:

32KB / (128 bytes per block* 4 ways) = 64

Effective address determines location in cache.

3125241918

6-bit set number 7-bit byte offset
24 Advanced POWER Virtualization on IBM Eserver p5 Servers

2.5.1 Level 2 (L2) cache
The L2 is a unified cache (contains both instructions and data) shared by both
cores on the POWER5 chip. In addition, it maintains full hardware memory
coherency within the system and can supply modified data to the cores on other
POWER5 processors and I/O devices. Logically, the L2 is an in-line cache. Unlike
the L1 data cache, which is write-through, it is a copy-back (store-in) cache. A
copy-back cache will not propagate changes to the next levels in the memory
hierarchy such as L3 and system memory. By doing this, bus traffic is kept to a
minimum and avoids bottlenecks due to memory contention. The L2 cache will
respond to other processors and I/O devices requesting any modified data that it
currently has.

The L2 cache is fully inclusive of the L1 instruction and data caches located in
the two processor cores on one POWER5 chip.

The L2 is a total of 1.9 MB and is physically partitioned into three symmetrical
slices with each slice holding 640 KB of instructions or data. As shown in
Figure 2-7 on page 26, each slice is comprised of 512 associative sets. Each set
contains ten 128-byte cache lines. Each of the slices has a separate L2 cache
controller. Either processor core of the chip can independently access each L2
controller. The correct slice is determined by a hashing algorithm involving bits
36 to 55 of the physical address, as shown in Figure 2-6 on page 26.

When the slice has been determined, the indexing of the cache by the L2
controller is performed using the address bits as shown in Figure 2-6 on page 26.
Using the address of either the requested instruction or data, bits 57 through 63
are used to represent the byte offset within the cache line. Address bits 48
through 56 are used to select the congruence class. A physical tag comparison
(that is, real address bits 14 through 47) is used to determine if the desired cache
line is resident within one of the 10 ways for that congruence class.

Each slice has a castout/intervention/push bus (16 bytes wide) to the fabric
controller and operates at half the core frequency. Error Correction Control
(ECC) provides single-bit error recovery. To aid performance, eight 64-byte-wide
store queues are provided per slice supporting simultaneous multithreading. To
minimize bus contention, store gathering is also supported. Store gathering is a
performance enhancement that is used when storing to non-cachable memory
areas such as memory-mapped I/O. When stores are to contiguous memory, the
individual stores by the program are gathered into one bus operation, instead of
a complete bus transaction for each individual store.
 Chapter 2. IBM POWER5 architecture 25

Figure 2-6 Cache indexing bits

Figure 2-7 L2 cache organization

Line Offset

6357564847

CC SelectionInstruction or
Data Address

7 bits9 bits

27 = 128
bytes per
cache line

29 = 512
number of set

Associativity
0

90

511

SLICE A SLICE B SLICE C

51
2
se
ts

128B

640 KB
of

instructions
and data
per slice
26 Advanced POWER Virtualization on IBM Eserver p5 Servers

2.5.2 Level 3 (L3) cache
The L3 cache is a unified 36 MB cache accessed by both cores on the POWER5
processor chip. It maintains full memory coherency with the system and can
supply intervention data to cores on other POWER5 processor chips. The L3 is a
victim cache and is not inclusive of the L2. This means that the same cache line
will never reside in both caches simultaneously and a valid, modified cache line
cast out from the L2 due to being least-recently used is written into the L3 cache
associated by its set number.

This cache is implemented off-chip as a separate Merged Logic DRAM (MLD)
cache chip. However, the L3 cache directory and control is on the POWER5
processor chip itself. Having the L3 directory on the processor chip itself helps
the processor check the directory after an L2 miss without experiencing off-chip
delays. Figure 2-8 shows a high-level diagram of this design.

Figure 2-8 L3 cache high-level design

The cache is split into three identical 12 MB slices on the cache chip. The same
hashing algorithm for selecting the L2 slices is used to select the L3 slices for a
given physical address. A slice is 12-way set-associative. There are 4096 sets
that are two-way sectored (which means that the directory manages two
128-byte cache lines per entry). Each of the 12 MB slices can be accessed
concurrently. Figure 2-9 on page 28 depicts the L3 cache organization
graphically.

L3 Cache Controller A

12 MB
Directory

Command &
Address Bus

Tag Done
Bus

L3 Cache Controller B

12 MB
Directory

Command &
Address Bus

Tag Done
Bus

L3 Cache Controller C

12 MB
Directory

Command &
Address Bus

Tag Done
Bus

POWER5 CHIP

L3 MLD Cache Chip

L2 Slice A
Read & Write Busses

L2 Slice B
Read & Write Busses

L2 Slice C
Read & Write Busses

Fabric Bus Controller (FBC)

Read Bus Write Bus

Key:
Address
Data
Control

L3
Cache
 Chapter 2. IBM POWER5 architecture 27

Figure 2-9 L3 cache organization

Unlike in the POWER4 microprocessors, the L3 cache is on the processor side
and not on the memory side of the fabric. This is depicted in Figure 2-10 on
page 29. This design lets the POWER5 satisfy L2 cache misses more efficiently
with hits on the off-chip cache, thus avoiding traffic on the interchip fabric.
References to data not on the L2 cause the system to check the L3 cache before
sending requests onto the interchip fabric. The L3 operates as a back door with
separate 128-bit (16-byte) data busses for reads and writes that operate at
one-half the processor speed. Because of higher transistor density of the
POWER5 fabrication technology, the memory controller has now been moved
onto the chip, eliminating the need for a separate memory controller chip as in
POWER4 systems. These architectural changes to the POWER5 processor have
the significant benefits of reducing latency to the L3 and main memory as well as
the number of chips necessary to build a system. The result is a higher level of
SMP scaling. Initial POWER5 systems support 64 physical processors.

L3 is two-way sectored contains two consecutive 128B cache lines per entry

0
110

4095

SLICE A SLICE B SLICE C

40
96
 s
et
s

12 MB
of

instructions
and data
per slice
28 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 2-10 Comparison between POWER4 and POWER5

POWER5 Systems

POWER4 Systems

Core
0

Core
1

L2 Cache

Fab Cntrl

L3 Cache

Mem Cntrl

Memory

Core
0

Core
1

L2 Cache

Fab Cntrl

L3 Cache

Mem Cntrl

Memory

Core
0

Core
1

L2 Cache

Fab Cntrl

Mem Cntrl

Memory

Core
0

Core
1

L2 Cache

Fab Cntrl

Mem Cntrl

Memory

L3
Cache
 Chapter 2. IBM POWER5 architecture 29

2.5.3 Summary of caches on POWER5
Table 2-3 Cache characteristics of the POWER5 processor

2.5.4 Address translation resources
The POWER5 chip supports translation from a 64-bit effective address (EA) to a
65-bit virtual address (VA) and then to a 50-bit real address (RA). The processor
architecture specifies a Translation Lookaside Buffer (TLB) and a Segment
Lookaside Buffer (SLB) to translate the effective address used by software to a
real address (physical address) used by the hardware. Each processor core
contains a unified, 1024 entry, four-way set associative TLB. The TLB is a cache
of recently accessed page table entries that describe the pages of memory.

There are two effective-to-real address translation (ERATs) caches. They are
called the I-ERAT (for instruction address translation) and the D-ERAT (for data
address translation).

Cache
characteristics

L1
instruction

cache

L1
data cache

L2
cache

L3
cache

Contents Instructions
only

Data only Instructions
and data

Instructions
and data

Size 64 KB 32 KB 1.9 MB 36 MB

Associativity two-way Four-way 10-way 12-way

Replacement
Policy

LRU LRU LRU LRU

Line size 128 B 128 B 128 B 256 B

Indexed by Effective
address

Effective
address

Physical
address

Physical
address

Tags Physical
address

Physical
address

Physical
address

Physical
address

Inclusivity N/A N/A Inclusive of L1
instruction
and data
caches

Not inclusive
of L2 cache
(victim cache
of L2)

Hardware
Coherency

Yes Yes Yes (separate
snoop ports)

Yes (separate
snoop ports)

Store policy N/A Write-through
No allocate on
store miss

Copy-back
Allocate on
store miss

Copy-back
30 Advanced POWER Virtualization on IBM Eserver p5 Servers

The I-ERAT is a 128-entry, two-way set associative translation cache that uses a
FIFO-based replacement algorithm. In this algorithm, one bit is kept per
congruence class and is used to indicate which of the two entries was loaded
first. As the name implies, the first entry loaded is the first entry targeted for
replacement when a new entry has to be loaded into that congruence class.

Each entry in the I-ERAT provides translation for a 4 KB block of storage. In the
event that a particular section of storage is actually mapped by a large page TLB
entry (16 MB), each referenced 4 KB block of that large page will occupy an entry
in the I-ERAT (that is, large page translation is not directly supported in the
I-ERAT).

The D-ERAT is a 128-entry, fully associative translation cache that uses a binary
LRU replacement algorithm. As with the I-ERAT, the D-ERAT provides address
translations for 4 KB and 16 MB pages of storage.

2.6 Timing facilities
The Time Base, Decrementer, and the POWER Hypervisor Decrementer provide
timing functions for the system. The mftb instruction is used to read the Time
Base; the mtspr and mfspr instructions are used to write the Time Base and
Decrementers and to read the Decrementers.

Time Base (TB) The Time Base provides a long-period counter driven at
1/8 the processor clock frequency.

Decrementer (DEC) The Decrementer, a counter that is updated at the same
rate as the Time Base, provides a means of signaling an
interrupt after a specified amount of time has elapsed
unless the Decrementer is altered by software in the
interim, or the Time Base update frequency changes.

POWER Hypervisor Decrementer
The POWER Hypervisor Decrementer (HDEC) provides a
means for the POWER Hypervisor to manage timing
functions independently of the Decrementer, which is
managed by virtual partitions. Similar to the Decrementer,
the HDEC is a counter that is updated at the same rate as
the Time Base, and it provides a means of signaling an
interrupt after a specified amount of time has elapsed.
Software must have POWER Hypervisor privilege to
update the HDEC.
 Chapter 2. IBM POWER5 architecture 31

Time Base
The Time Base (TB in Figure 2-11) is a 64-bit register and contains a 64-bit
unsigned integer that is incremented by one every eight processor clock cycles,
as shown in Figure 2-11. Each increment adds 1 to the low-order bit (bit 63). The
Time Base increments until its value becomes 0xFFFF_FFFF_FFFF_FFFF (264 -
1). At the next increment, its value becomes 0x0000_0000_0000_0000. There is
no interrupt or other indication when this occurs.

Figure 2-11 Time Base register

If we consider the IBM Sserver p5 570 model with 1.65 GHz processors, we
can determine the time base, as shown in Example 2-2.

Example 2-2 Calculating the Time Base period

Decrementer
The Decrementer (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a Decrementer interrupt after a programmable delay. The
contents of the Decrementer are treated as a signed integer. The Decrementer is
driven by the same frequency as the Time Base. The period of the Decrementer
depends on the driving frequency, but if the same values are used as given
above for the Time Base and if the Time Base update frequency is constant, the
period would be as shown in Example 2-3.

Example 2-3 Calculating the Decrementer period

Whenever bit 0 (most significant bit) of the Decrementer changes from 0 to 1, an
interrupt request is signaled. If multiple Decrementer interrupt requests are
received before the first can be reported, only one interrupt is reported. The

0 31 63

TBU TBL

Where TBU is the upper 32-bits of the 64-bit Time Base
and TBL is the lower 32-bits of the 64-bit Time Base.

264 x 8

1.65 GHz
TBP = = 8.94 x 1010 seconds or approx. 2,836 years

232 x 8

1.65 GHz
DP = = 20.82 seconds
32 Advanced POWER Virtualization on IBM Eserver p5 Servers

occurrence of a Decrementer interrupt cancels the request. If the Decrementer is
altered by software and the contents of bit 0 are changed from 0 to 1, an interrupt
request is signaled.

POWER Hypervisor Decrementer
The POWER Hypervisor Decrementer (HDEC) is a 32-bit decrementing counter
and POWER Hypervisor resource that provides a mechanism for causing a
POWER Hypervisor decrementer interrupt after a programmable delay. The
contents of the Decrementer are treated as a signed integer.

The HDEC is driven by the same frequency as the Time Base. The period of the
HDEC will depend on the driving frequency, but if the same values are used as
given above for the Time Base and if the Time Base update frequency is
constant, the period would be as shown in Example 2-4.

Example 2-4 Calculating the POWER Hypervisor decrementer

2.7 Dynamic power management
Chip power is a very important and limiting factor in modern processor designs.
A nice side benefit of complementary metal oxide semiconductor (CMOS)
technology is that if the logic is not clocking, there is no switching of the gates,
and if there is no switching, there is negligible power consumption. To reduce
power consumption, POWER5 chips use a fine-grained dynamic clock-gating
mechanism to gate off clocks to a local clock buffer, if the dynamic power
management logic knows that the set of latches driven by that clock buffer will not
be used in the next cycle. For example, if the floating-point registers will not be
read on the next cycle, the dynamic power management logic detects it and turns
off the clocks to the read ports of the floating-point registers. A minimum amount
of logic implements the clock gating function. Special care has been taken to
ensure clock gating logic does not cause performance loss or create a critical
timing path for the chip.

While in simultaneous multithreading mode, the number of instructions executed
per cycle goes up, thus increasing the chip’s total power consumption. In addition
to power consumption, leakage of power has become a performance limiter.
POWER5 uses transistors with low threshold voltage only in critical paths such
as floating-point register read ports. Figure 2-12 on page 34 shows photographs
taken with thermal sensitive cameras on prototype POWER5 chips, with and

232 x 8

1.65 GHz
HDEC = = 20.82 seconds
 Chapter 2. IBM POWER5 architecture 33

without dynamic power management, and single-threaded versus simultaneous
multithreading. From the picture, it is evident that dynamic power management
reduces power consumption below the standard single-threaded level without
power management enabled.

POWER5 also provides for the software environment to control low-power
modes. When the thread priority is set to low priority, the POWER5 dispatches
instructions every 32 cycles, thus saving power. Thread priorities are discussed
in 3.3.2, “Adjustable thread priorities” on page 50.

Figure 2-12 POWER5 photos using thermal-sensitive camera

2.8 Processor Utilization Resource Register (PURR)
Previously, a local timer tick (10 ms in AIX 5L, 1 ms in Linux with HZ=1000) was
charged to the current running process that was preempted by the timer
interrupt. If the process was executing code in the kernel via a system call, the
entire tick was charged to the process’s system time. If the process was

Without Dynamic Power Management With Dynamic Power Management

Single-
Threaded
Mode

Simultaneous
multithreading
Mode
34 Advanced POWER Virtualization on IBM Eserver p5 Servers

executing application code, the entire tick was charged to the process’s user
time. Otherwise, if the current running process was the operating system’s idle
process, the tick was charged in a separate variable. UNIX commands such as
iostat and vmstat show these as %usr, %sys, and %idle. Through the outputs, it
was possible to determine the utilization of the processor. The problem with this
method is that the process receiving the tick most likely has not run for the entire
timer period and, unfortunately, was executing when the timer expired. The issue
becomes more complicated using simultaneous multithreading as threads from
perhaps two different processes share the physical processor resources.

To address these issues and to provide more accurate details of processor
utilization, the POWER5 architecture introduces a Processor Utilization
Resource Register. This is a special-purpose register that can be read or written
by the POWER Hypervisor but is read-only by the operating system (supervisor
mode). There are two registers, one for each hardware thread. As with the
timebase register, it increments by one every eight processor clock cycles when
the processor is in single-threaded mode. When the processor is in simultaneous
multithreading mode, the thread that dispatches a group of instructions in a cycle
will increment the counter by 1/8 in that cycle. In no group dispatch occurs in a
given cycle, both threads increment their PURR by 1/16. Over a period of time,
the sum of the two PURR registers when running in simultaneous multithreading
mode should be very close but not greater than the number of timebase ticks.

AIX 5L Version 5.3 uses the PURR for process accounting. Instead of charging
the entire 10 ms clock tick to the interrupted process as before, processes are
charged based on the PURR delta for the hardware thread since the last interval,
which is an approximation of the computing resource that the thread actually
received. This makes for a more accurate accounting of processor time in the
simultaneous multithreading environment.

For example, in simultaneous multithreading mode, the operating system sees
the two hardware threads as two separate processors, and dispatches two
separate tasks (processes), one on each logical processor. If the old method of
charging the current running thread a tick every 10 ms, each logical processor
reports a utilization of 100%, representing the portion of time that the logical
processor was busy. Using the PURR method, each logical processor reports a
utilization of 50%, representing the proportion of physical processor resources
that it used, assuming equal distribution of physical processor resources to both
the hardware threads.
 Chapter 2. IBM POWER5 architecture 35

2.9 Large POWER5 SMPs
Somewhat like the POWER4, the POWER5 uses Dual Chip Modules (DCMs)3
and Multi-Chip Modules (MCMs) as the basic building blocks for low-/mid-range
and high-end servers respectively.

Figure 2-13 depicts a POWER5 DCM, and an actual POWER5 DCM is shown in
Figure 2-14 on page 37. The chips in POWER5 are designed to support multiple
system configurations ranging from a low-end uniprocessor up through a 64-way
(with MCMs).

Figure 2-13 POWER5 Dual Chip Module (DCM)

3 DCM has one POWER5 chip and one L3 MLD cache chip, hence the name dual chip module. The
DCM has only one POWER5 chip with two cores.

36 MB
L3

Cache

CoreCore

1.9 MB
L2 Cache

L3
 D

ir
Memory

Enhanced Distributed Switch

Dual Chip Module

Me
m

Co
nt

r.

MCM - MCM
Chip - Chip

GX Bus
36 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 2-14 Actual DCM

As with the POWER4, POWER5 exploits the enhanced distributed switch for
interconnects. All chip interconnects operate at half the processor frequency and
scale with processor frequency.

Figure 2-15 on page 38 depicts the logical view of a POWER5 MCM. MCMs are
used as basic building blocks on high-end SMPs. MCMs have four POWER5
chips and four L3 cache chips each. Each MCM is a eight-way building block.
Figure 2-16 on page 38 shows an actual picture of a POWER5 MCM.

L3 Cache Chip
POWER5 Chip
 Chapter 2. IBM POWER5 architecture 37

Figure 2-15 Logical view of the POWER5 multi-chip module

Figure 2-16 POWER5 multi-chip module

M
E
M
O
R
Y

L3

Mem
Ctrl

L3
Dir Shared L2

Chip-Chip Communication

PP Mem
Ctrl

L3
DirShared L2

Chip-Chip Communication

P P

Mem
Ctrl

L3
Dir Shared L2

Chip-Chip Communication

PP Mem
Ctrl

L3
DirShared L2

Chip-Chip Communication

P P

GX Bus

RIO-2
High Performance Switch

InfinlBand

L3

L3 L3

GX Bus

GX Bus GX Bus
MCM to MCM
Book to Book

MCM to MCM
Book to Book

MCM to MCM
Book to Book

M
E
M
O
R
Y

MCM to MCM
Book to Book
38 Advanced POWER Virtualization on IBM Eserver p5 Servers

Two POWER5 MCMs can be tightly coupled to form a book, as shown in
Figure 2-17. These books are interconnected again to form larger SMPs, up to
64-way. The MCMs and books can be interconnected to form eight-way, 16-way,
32-way, 48-way, and 64-way SMPs with one, two, four, six, and eight MCMs
respectively.

Figure 2-17 16-way POWER5 building block

Figure 2-18 64-way POWER5 SMP interconnection

Memory Memory Memory Memory

L3
POWER5

L3
POWER5

L3
POWER5

L3
POWER5

Memory
I/O

Memory
I/O

Memory
I/O

Memory
I/O

MCM

L3
POWER5

L3
POWER5

L3
POWER5

L3
POWER5

I/O I/O I/O I/O

MCM

Book
 Chapter 2. IBM POWER5 architecture 39

2.10 Summary
POWER5 processor–based systems provide excellent flexibility and performance.
Many of the features that enable flexibility and performance challenge existing
notions of how systems look and feel. IBM has already invested in ensuring that
software can exploit the increased performance levels POWER5 systems will be
offering, and is continuing in its pursuit to produce system-level enhancements to
provide even greater performance increases over time.
40 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 3. Simultaneous
multithreading

A very-high-frequency processor can spend more than half of its execution time
waiting for cache and TLB misses. Given the trend for advances in processor
cycle time and performance to increase faster than DRAM performance, it is
expected that memory access delays will make up an increasing proportion of
processor cycles per instruction. This is often referred to as the memory wall.
One technique for tolerating memory latency that has been known for several
years is multithreading. There are several different forms of multithreading. A
traditional form called fine grain multithreading keeps N threads, or states, in the
processor and interleaves the threads on a cycle-by-cycle basis. This eliminates
all pipeline dependencies if N is large enough that instructions from the same
thread are separated by a sufficient number of cycles in the execution pipelines.

The form of multithreading implemented in the POWER5 architecture is called
simultaneous multithreading and is a hardware design enhancement that
enables two separate instruction streams (threads) to execute simultaneously on
the processor. It combines the multiple instruction-issue capabilities of
superscalar processors with the latency-addressing capabilities of
multithreading.

3

© Copyright IBM Corp. 2005. All rights reserved. 41

3.1 What is multithreading?
In general, the evolution of multithreading can be broadly divided into:

� Single threading
� Coarse grain threading
� Fine grain threading
� Simultaneous multithreading

Figure 3-1 provides an overview of these four types of multithreading. Each box
in the diagram represents an execution stage in the respective instruction
pipeline. The acronyms provided on the left of each block represent the
fixed-point execution (FX) units, the load store (LS) units, the float-point (FP)
units, the branch execution (BRX) units, and the condition register logical
execution unit (CRL).

Figure 3-1 multithreading techniques

In single-threaded mode, we see a thread executing two instructions per cycle.
Note that in the single-threaded mode, just two execution units (FX0 and
load/store unit 0 (LS0)) are utilized in the first cycle (vertical column). In this
mode, execution unit utilization is dependent on instruction-level parallelism

FX1
FX0

LS0
LS1
FP0
FP1
BRX
CRL

Processor Cycles

FX1
FX0

LS0
LS1
FP0
FP1
BRX
CRL

Processor Cycles

FX1
FX0

LS0
LS1
FP0
FP1
BRX
CRL

Processor Cycles

FX1
FX0

LS0
LS1
FP0
FP1
BRX
CRL

Processor Cycles

Simultaneous Multi-threading

Coarse Grain Threading

Fine Grain Threading

Single Thread

Thread 0 Executing Thread 1 Executing No Thread Executing
42 Advanced POWER Virtualization on IBM Eserver p5 Servers

produced by the compiler or assembly language programmer to take advantage
of the eight instruction pipelines (FX0 - CRL) in this superscalar processor.

The IBM STAR series of processors utilized in RS/6000 Model S85 servers used
a hardware multithreading technique called course grain threading that, when
enabled, enabled multiple threads to run in parallel. In coarse grain threading,
one thread known as the active thread executes on the processor while the other
threads are dormant. If the active thread experiences a long latency event such
as a cache miss, the processor places the active thread into the dormant state
and switches to one of the other dormant threads waiting on the processor. For
such threading mechanisms to work efficiently, the latency of switching from one
thread to the other must be shorter than the latency of the event (servicing of a
cache miss) that caused the switch. For example in Figure 3-1 on page 42, a
branch instruction (subroutine call) executed in the BRX unit causes an
instruction cache miss. While the instructions are being fetched from memory,
another thread that was dormant is allowed to execute and its instructions start in
the FP1 and CRL execution units. However, as processor pipelines become more
complex, efficiency of thread switching is diminishes.

Fine-grain threading is a hardware multithreading technique in which threads
take turns every processor clock cycle executing their instructions. While fine
grain threaded processors tolerate long latency operations better and utilize the
execution units better, all instruction pipelines may not be utilized. Therefore,
similar to single threaded processors, efficiency of fine grained threaded
processors is also limited by the instruction level parallelism.

In a simultaneous multi-threaded processor, the processor fetches instructions
from more than one thread. Since instructions from any of the threads can be
fetched by the processor in a given cycle, the processor is no longer limited by
the instruction level parallelism of the individual threads. What differentiates this
implementation is its ability to schedule instructions for execution from all threads
concurrently. With simultaneous multithreading, the system dynamically adjusts
to the environment, enabling instructions to execute from each thread if possible,
and allowing instructions from one thread to utilize all of the execution units if the
other thread encounters a long latency event. For instance, when one of the
threads has a cache miss, the second thread can continue to execute.

More information about simultaneous multithreading may be found in the
following references:

� Simultaneous Multi-threading: Maximizing On-Chip Parallelism, 22nd
International Symposium on Computer Architecture

� Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor, 23rd Annual International
Symposium on Computer Architecture
 Chapter 3. Simultaneous multithreading 43

3.2 POWER5 simultaneous multithreading features
The POWER5 simultaneous multithreading implementation is a natural extension
to the eight instruction pipeline superscalar POWER4 design. When in
simultaneous multithreading mode, instructions from either thread can use the
eight instruction pipelines in a given clock cycle. By duplicating portions of logic
in the instruction pipeline and increasing the capacity of the register rename pool,
the POWER5 processor can execute two instruction streams, or threads,
concurrently. The POWER5 also features dynamic resource balancing (DRB)
and adjustable thread priorities for efficient utilization of the resources shared by
both threads. Through hardware and software thread prioritization, greater
utilization of the hardware resources can be realized without an impact to
application performance. Figure 3-2 on page 45 illustrates the increased
processor resource utilization using simultaneous multithreading in POWER5
compared with POWER4. Notice the increased utilization of the instruction
pipelines, shown by the shaded boxes. Processor utilization can also be seen in
Figure 2-12 on page 34, which shows the thermal image comparison.

Each hardware thread is supported as a separate logical processor by AIX 5L
V5.3. So, a dedicated partition that is created with one physical processor is
configured by AIX 5L V5.3 as a logical two-way by default. This is independent of
the partition type, so a shared partition with two virtual processors is configured
by AIX 5L V5.3 as a logical four-way by default. When simultaneous
multithreading is disabled, at least half of the logical processors will be offline.

Characteristics of the POWER5 simultaneous multithreading implementation are
as follows:

� Eight priority levels for each thread that can be raised or lowered by the
POWER Hypervisor, operating system, or application

� Processor resources optimized for best simultaneous multithreading
performance, providing the ability to reduce priority of a thread that is
consuming maximum resources or hold decode of a thread with long latency
events

� Dynamic feedback of shared resources, enabling balanced thread execution

� Software-controlled thread priority

� Dynamic thread switching capabilities

Note: Each POWER5 processor core appears to the operating system as a
two-way symmetric multiprocessor (SMP).
44 Advanced POWER Virtualization on IBM Eserver p5 Servers

IBM has estimated the performance benefit of simultaneous multithreading at
30% for commercial transaction processing workloads. Read more about this at:

http://www.ibm.com/servers/eserver/pseries/hardware/system_perf.html

Figure 3-2 Single-threaded versus simultaneous multithreading

In simultaneous multithreading mode, the POWER5 processor uses two
separate instruction fetch address registers (IFARs) to store the program
counters for the two threads. Instruction fetches (IF stage) alternate between the
two threads. Up to eight instructions can be fetched from the instruction cache
(IC stage) and placed into one of the two instruction fetch buffers every cycle. Up
to five instructions can be taken out of the instruction fetch buffer per cycle for
execution. The two threads share the instruction cache and the instruction
translation facility. In a given cycle, all fetched instructions are unique for each
thread.

Not all applications benefit from simultaneous multithreading. Having two threads
executing on the same processor will not increase the performance of

Important: Not all applications benefit from simultaneous multithreading.

FX1
FX0

LS0
LS1
FP0
FP1
BRX
CRL

Processor Cycles

POWER4
(Single-threaded)

FX1
FX0

LS0
LS1
FP0
FP1
BRX
CRL

Processor Cycles

POWER5
(Simultaneous Multi-threaded)

Legend
Thread0 Active
No Thread Active
Thread1 Active

Processor Cycles

Single-threaded Processor
Memory Wait Idle Cycles

Processor Cycles

Multi-threaded Processor
Fewer Memory Wait Idle Cycles
 Chapter 3. Simultaneous multithreading 45

http://www.ibm.com/servers/eserver/pseries/hardware/system_perf.html

applications with execution-unit-limited performance or applications that
consume all of the processor’s memory bandwidth. For this reason, the
POWER5 supports single-threaded execution mode. In this mode, the POWER5
gives all physical resources to the active thread, enabling it to achieve higher
performance than a POWER4 system at equivalent frequencies. In
single-threaded mode, the POWER5 uses only one instruction fetch address
register and fetches instructions for one thread every cycle.

3.2.1 Dynamic switching of thread states
The POWER5 processor provides for the software to dynamically switch from
simultaneous multithreading mode to single-threaded mode and vice versa.
There are instances when this could be useful, such as real-time applications
where guaranteed latency is more important than overall throughput, or scientific
applications that are limited by execution resources (for example, when sharing
of execution resources will prove counterproductive).

There may also be instances when there are not enough processes ready-to-run
on all available hardware threads. For example, in simultaneous multithreading
mode, one hardware thread of execution is the operating system’s idle process
and the other hardware thread is application code. Because the hardware thread
of the idle process also needs to map registers from the rename register pool,
there may be a performance impact for a task when it is run in simultaneous
multithreading mode compared to when it is run in single-threaded mode. In
single-threaded mode and as designed, the operating system’s idle process
would not execute until there were no other processes in the ready-to-run state.

When the POWER5 processor is operating in single-threaded mode, the inactive
thread will be in one of two possible states, dormant or null, as shown in
Figure 3-3 on page 47. From a hardware perspective, the only difference
between these states is whether the thread awakens on an external or
decrementer interrupt.
46 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 3-3 POWER5 thread states

When the POWER5 processor is powered on, each core is brought up in
single-threaded mode with thread 0 active, and thread 1 is dormant by default. To
define these three states:

Active state Thread is active and running as seen by software and
hardware. Hardware maintains the architected state of the
thread.

Dormant state Thread is inactive in hardware but active in software
(processor structures are maintained by software). The
POWER5 processor does not make any distinction
between dormant and null and behaves the same way.

Null state The hardware thread is inactive in hardware and inactive
in software. This is true single-threaded mode.

As an example, we previously noted that to the AIX 5L V5.3 and Linux operating
systems, each POWER5 processor core appears as a two-way (two logical
processors) system. In the null state, only one logical processor would exist. In the
dormant state, two logical processors would exist to the operating system, but only
one physical hardware thread (Thread 0) would be used. The second hardware
thread would have to be activated in order to use the second logical processor.

3.2.2 Snooze and snooze delay
In the dormant state, the architected register state is not maintained in the
hardware, but the software maintains knowledge of the logical processor, such as
per-processor data. (The term software refers to either the operating system or
the POWER Hypervisor.) The processor is set up so that the dormant thread can
return to the active state by a decrementer or external interrupt.

ACTIVE

DORMANT NULL

software
initiated

software
initiated

hardware
or software
initiated
 Chapter 3. Simultaneous multithreading 47

The process of putting an active thread into a dormant state is known as
snoozing. If there are not enough tasks available to run on both hardware
threads, the operating system’s idle process will be selected to run on the
available hardware thread. It is better for the operating system to snooze the idle
process’ thread and switch to single-threaded mode. Doing so enables all of the
processor resources to be available to the task doing meaningful work.

To snooze a thread, the operating system will invoke the H_CEDE POWER
Hypervisor call (refer to Table 4-1 on page 81). The thread then goes to the
dormant state. A snoozed thread is brought alive when a decrementer, external
interrupt, or an H_PROD POWER Hypervisor call is received. When other tasks
become ready to run, the processor transitions from single-threaded mode to
simultaneous multithreading mode through any of the means mentioned earlier.
This involves the snoozed thread coming to life at the system reset interrupt
vector for the thread and having the POWER Hypervisor restore the operating
system state, and then returning from the original H_CEDE POWER Hypervisor
call made by the thread to snooze. This means several thousand cycles of thread
startup latency.

Therefore, it does not make sense to snooze a thread as soon as the idle
condition is detected. There could be another thread in the ready-to-run state in
the run queue by the time the snooze occurs, resulting in wasted cycles due to
the thread start-up latency. It is good for performance if the operating system
waits for a small amount of time for work to come in before snoozing a thread.
This short idle spinning time is known as simultaneous multithreading snooze
delay. An operating system can optionally make this delay tunable.

Both AIX 5L and Linux incorporate changes to snooze an idle thread. They also
provide snooze delay tunables.

When the system is set to operate in single-threaded mode, by use of the smtctl
AIX 5L command, the inactive thread is put into the null state, and the operating
system is unaware of the hardware thread’s existence. No system resources are
allocated to the second hardware thread. This mode is advantageous if all the
system’s executing tasks perform better in single-threaded mode.

The AIX 5L V5.3 smtctl command, which controls enabling and disabling of
simultaneous multithreading mode, provides privileged users and applications
with a means to enable or disable simultaneous multithreading for all processors
in a partition either immediately or on a subsequent boot of the system.

The two flags associated with smtctl are -m and -w; they are defined as follows:

-m off Sets simultaneous multithreading mode to disabled

-m on Sets simultaneous multithreading mode to enabled
48 Advanced POWER Virtualization on IBM Eserver p5 Servers

-w boot Makes the simultaneous multithreading mode change effective on
the next and subsequent reboots

-w now Makes the mode change effective immediately, but will not persist
across reboot

The smtctl command does not rebuild the boot image. To change the default
simultaneous multithreading mode of AIX 5L and Linux, the bosboot command
must be used to rebuild the boot image. The boot image in AIX 5L V5.3 and
Linux has been extended to include an indicator that controls the default
simultaneous multithreading mode.

3.3 Controlling priority of threads
Because the POWER5 processor core is capable of fetching instructions from
two separate instruction paths, contention arises between the two threads for the
processor’s resources. There are also times when the code executing in the
processor is not doing any meaningful work, such as running the operating
system’s idle process. There is also the case where one thread is currently
holding a lock and another thread wants the lock. If a spin-lock is implemented,
the thread that holds the lock would be forced to contend with the thread asking
for the lock, delaying the release of the lock. In addition, critical sections of code
in the operating system or real-time applications must be able to execute with
some guaranteed latency. To address these issues, the POWER5 processor
provides:

� Dynamic resource balancing (DRB)
� Adjustable thread priorities

In this section, we discuss each of these two features of controlling threads in the
simultaneous multithreading environment.

3.3.1 Dynamic resource balancing (DRB)
The purpose of this resource is to ensure smooth flow of both threads through
the processor. If either of the two hardware threads start dominating the
processor resources and depriving the other thread, the DRB logic throttles down
the dominating thread so that the other thread can flow smoothly without stalling.
For example, if one thread experiences multiple L2 cache misses for loading of
data, the dependant load instructions can block in the issue queue slots,
preventing the other thread from dispatching instructions. (Refer to the processor
pipeline discussion in 2.4, “POWER5 instruction pipelines” on page 14.) To
prevent such stalls, the DRB logic monitors the miss queues, and if a particular
thread reaches a threshold for L2 cache misses, it throttles that thread down so
that the other thread can progress smoothly. Similarly, one thread could start
 Chapter 3. Simultaneous multithreading 49

using too many Global Completion Table (GCT) entries, preventing the other
thread from dispatching instructions. DRB logic then detects this condition and
throttles down the thread dominating the GCT.

POWER5 DRB can throttle down a thread in three different ways, with the choice
of the throttling mechanism depending on the situation:

1. Reducing the thread’s priority.

This is used in situations in which a thread has used more than a
predetermined number of GCT entries.

2. Holding the thread from decoding instructions until resource congestion is
cleared.

This applies to when the number of L2 misses incurred by a thread reaches a
threshold.

3. Flushing all of the dominating thread’s instructions waiting for dispatch and
holding the thread’s decoding unit until congestion clears.

This is used if a long latency instruction such as memory ordering instructions
(for example, sync) causes dominating of the issue queues.

Studies have shown that higher performance is realized when resources are
balanced across the threads using DRB.

3.3.2 Adjustable thread priorities
The DRB logic is built into the hardware to ensure balanced resource utilization
by the threads. However, there are instances when software knows that a
process running on a hardware thread might not be doing any computational
work, such as spinning for a lock or executing the operating system’s idle
process. The operating system might also want to quickly dispatch a process,
such as a process holding a critical spinlock, and needs to elevate its priority. For
better utilization of processor resources under such scenarios, the POWER5
features adjustable thread priorities, where software can specify whether the
hardware thread running the process can have more or fewer execution
resources.

The POWER5 supports the eight levels of thread priorities (0-7) shown in
Table 3-1 on page 51. The thread priority is independent of the AIX 5L and Linux
thread priorities. Each thread has a 64-bit thread status register (TSR)
associated with it.

Important: DRB is done at the processor level and is not tunable by software.
50 Advanced POWER Virtualization on IBM Eserver p5 Servers

Table 3-1 POWER5 thread priority levels

The POWER5 processor supports three processor states:

� POWER Hypervisor mode: All thread priority values can be set.

� Supervisor mode (AIX 5L or Linux kernel code): Only priority levels one
through six can be set.

� User mode (application programs): Restricted to levels two through four.

By default, threads execute at normal priority in both kernel mode and user
mode.

The priority level can be set in two ways. The thread in the correct mode can
execute an mtspr instruction to set the three-bit priority field in the thread status
register to the desired thread priority. The second method uses the equivalent
no-operation (nop) instruction. In the POWER and PowerPC architectures, there
is no actual nop instruction. However, if the or instruction is executed with the two
source registers and the destination register being the same register, it is
considered a nop. The POWER5 architecture takes it one step further by
providing the ability to control thread priority. Which GPR is used with the or

Thread
priority level

Priority level Privilege level for software
to set this prioritya

a. Certain fields in a thread control register (TCR) affect the privilege level. This
column assumes recommended setting and setups, which is usually the case with
well-behaved software.

Equivalent nop
instruction

0 Thread shut-off POWER Hypervisor Modeb

b. The POWER Hypervisor is the highest privilege level followed by supervisor
(usually the O/S) and user applications.

-

1 Very low Supervisor Mode or 31,31,31

2 Low User/Supervisor Mode or 1,1,1

3 Medium low User/Supervisor Mode or 6,6,6

4 Normal User/Supervisor Mode or 2,2,2

5 Medium high Supervisor Mode or 5,5,5

6 High Supervisor Mode or 3,3,3

7 Extra high POWER Hypervisor Mode or 7,7,7

Important: The thread priorities mentioned here are independent of the
operating system’s concept of thread priority.
 Chapter 3. Simultaneous multithreading 51

instruction affects the priority of the thread. The last column in Table 3-1 on
page 51 shows the equivalent nop instructions that set the thread priority.

Thread priority adjustment can be performed in C/C++ code with the use of the
#pragma compiler directives. Example 3-1 shows how an application programmer
can adjust priorities of the application. Keep in mind that the three priorities
shown in the code example are the only priorities available to applications
running in user mode. The other priorities are reserved for kernel code
(supervisor mode) or the POWER Hypervisor.

Example 3-1 C/C++ code example of setting thread priorities

void smt_low_priority(void); /* The three priorities available to */
void smt_mediumlow_priority(void); /* application programs (user mode) */
void smt_normal_priority(void);

#pragma mc_func smt_low_priority { "7c210b78" } /* or r1, r1, r1 */
#pragma mc_func smt_medium_priority{ "7cc63378" } /* or r6, r6, r6 */
#pragma mc_func smt_normal_priority{ "7c421378" } /* or r2, r2, r2 */

int main(int argc, char **argv)
{

.

.
smt_low_priority();
.
.
smt_normal_priority();

}

3.3.3 Thread priority implementation
When the priority of thread execution is manipulated by software, the effect is to
throttle the execution of the lower priority threads. This is done by holding the
instructions of the thread in their instruction fetch buffers. As described in 3.3.1,
“Dynamic resource balancing (DRB)” on page 49, the lower priority thread is kept
from entering the decode stage of the pipeline, thus yielding the decode
resources to the higher priority thread.

Most applications will not be concerned with manipulating their priority. However,
there may be instances where the application programmer might want to use the
priority adjustment for synchronization. For example, your application is either
multi-threaded or multi-tasking. Each thread or task processes its own data, but
the application as a whole cannot proceed until all threads or tasks are complete.
As each thread or task finishes its part of the work, it can lower its priority to
enable the others to catch up.
52 Advanced POWER Virtualization on IBM Eserver p5 Servers

Table 3-2 shows the effect of thread priority on obtaining execution time in the
instruction pipeline. If both threads have a priority of 0, the processor is
essentially stopped and an I/O or decrementer interrupt will be required to
resume execution. If thread 0 has the priority of 0 and thread 1 has a priority of 1
(very low priority), then a group of up to five instructions is started every 32
processor clock cycles for thread 1. Having a priority of 1 is really intended for the
operating system’s idle process and locking mechanism. If one thread holds a
lock and the other thread wants the lock, you want the thread that holds the lock
to use the processor resources and not have to share cycles with the thread that
keeps asking whether the lock is available yet (spin lock). There are other
scenarios for using priority manipulation, but the discussion of these scenarios is
beyond the scope of this book.

Table 3-2 Effect of thread priorities on decode slot usage

When both threads have a priority greater than 1, the following equation is used:

For example, if thread 0 has a priority of 4 and thread 1 has a priority of 2, then
thread 1 gets 1/(2(|4 - 2|) + 1)) = 1/8 cycles or one processor cycle out of every
eight. Thread 0 gets the other seven cycles.

Figure 3-4 on page 54 depicts the effects of thread priorities on instructions
executed per cycle. The x-axis labels with comma separators represent actual
thread priority pairs. For example, 7,0 implies that thread 0 has a priority of 7 and

Thread 0
priority (X)

Thread 1
priority (Y)

Decode slots status

0 0 Both Thread 0 and Thread 1 are stopped.

0 1 Thread 1 begins decoding up to five instructions every 32
processor cycles for power savings. Thread 0 is stopped.

0 >1 Thread 1 uses all processor resources and will be
fetching and executing instructions every clock cycle.

1 1 Every 64 cycles, each thread will start up to five
instructions for power saving.

1 >1 Thread 1 gets all of the execution resources and thread 0
gets any leftover resources. Thread 1 should have the
performance similar to single-threaded mode.

>1 >1 How many cycles each thread gets before yielding to the
other is determined by the equation 1/(2** (x-y+1))

1

2
X Y– 1+()

 Chapter 3. Simultaneous multithreading 53

thread 1 has been stopped. The numbers without comma separators represent
the value of (X - Y) where X is the priority of thread 0 and Y is the priority of
thread 1. A value of 5 on the x-axis indicates either (7,2) or (6,1) for X and Y.

Figure 3-4 Effect of adjusting thread priorities

In
st

ru
ct

io
ns

/c
yc

le

7,0 5 3 1 0 -1 -3 -5 0,7

Thread 1

Thread 0

1,1

Single-threaded mode

Power saving mode
54 Advanced POWER Virtualization on IBM Eserver p5 Servers

3.4 Software considerations
The goal of simultaneous multithreading is to increase overall throughput of the
system by executing two threads that when run individually on the processor in
single-threaded mode may not utilize the processor execution resources to the
desired level. Simultaneous multithreading performance depends on the type of
application; however, for most cases some general rules can be introduced:

� Simultaneous multithreading does not speed up individual threads of
execution, but overall throughput should improve.

� If applications care about real-time responses rather than overall system
performance, they are better off running in single-threaded mode.

� For workloads that are limited by the processor execution resources, such as
technical workloads that exhibit high instruction level parallelism and
consume large amount of rename resources such as floating-point registers
(FPRs), simultaneous multithreading will not help much.

In general, based on previous work, the following rules can be summarized for
application performance on simultaneous multithreading environments:

� Applications found in commercial environments showed higher simultaneous
multithreading gain than scientific applications.

� Experiments on different workloads have shown varying degrees of
simultaneous multithreading gain ranging from -11% to 43%. On average,
most of the workloads showed a positive gain running in simultaneous
multithreading mode.

Applications that showed a negative simultaneous multithreading gain may be
attributed to L2 cache thrashing and increased local latency under
simultaneous multithreading.

3.4.1 Simultaneous multithreading aware scheduling
A multi-processor kernel can run on a POWER5 simultaneous multithreading
enabled system without modifications, since the kernel will see the two hardware
threads as two separate logical processors. For example, on an IBM Sserver p5
system with two physical processors (four hardware threads) and two
ready-to-run processes, the scheduler could schedule the processes to run on
the two hardware threads of the same processor core, resulting in the other
processor core being idle. If the operating system is not simultaneous

Important: The POWER5 provides facilities for the operating system to
dynamically switch simultaneous multithreading on and off for applications
and workloads that might benefit from simultaneous multithreading.
 Chapter 3. Simultaneous multithreading 55

multithreading aware, there would be no way for the scheduler to distinguish
between threads on the same processor or different processors. Obviously, this
does not lead to efficient utilization of system processing capacity. Given this
background, the most obvious optimization for simultaneous multithreading is to
make sure that work is distributed to all of the primary threads (thread 0) before
work is dispatched to secondary threads (thread 1). Secondary threads can be
snoozed or put at very low priorities if they are idle. The AIX Version 5L V5.3 and
Linux 2.6 kernel are simultaneous multithreading aware.

Another optimization is to consider the two threads of a core as one affinity
(AIX 5L V5.3) or scheduling (Linux) domain, so that the domain reflects sharing
of resources such as the translation look-aside buffer (TLB) used to map virtual
addresses to real addresses, between the two hardware threads. It might be
beneficial for software threads of the same process to run in the same domain so
that the shared processor caches (L1, TLB, and so on.) are effectively utilized by
the software. It also makes sense to maintain the affinity of software tasks to
domains where they ran earlier, so that they get a warmer cache.

The bindprocessor command has been enhanced in AIX 5L V5.3 to accept
command line options to display all primary threads or all secondary threads.
This is to help applications that use binding to bind to one physical processor.

These two optimization techniques are meant to illustrate that simultaneous
multithreading awareness helps the operating system perform better. As both the
AIX 5L and Linux operating systems evolve, more optimization techniques can
be expected.

3.4.2 Thread priorities on AIX 5L V5.3
AIX 5L V5.3 does not lower the priority of the idle thread if simultaneous
multithreading is enabled. It searches for work in its own run queue and other run
queues for threads with normal priorities. This ensures that any information
about available work is current and can be acted on with least latency. If no work
is available and if the snooze delay is not over, it will spin in a loop for a tunable
number of times in a very low priority loop (for power savings only), checking for
work only on its own run queue. After that it returns to top of the idle process and
repeats the search for work until snooze delay expires.

Normally, AIX maintains both hardware threads at the same priority but will boost
or lower thread priorities in a few key places to optimize performance, and lowers
thread priorities when the thread is doing non-productive work such as spinning

Note: Both AIX 5L V5.3 and the Linux 2.6 kernel are simultaneous
multithreading aware.
56 Advanced POWER Virtualization on IBM Eserver p5 Servers

in the idle process or on a kernel lock. When a thread is holding a critical kernel
lock, AIX boosts the thread’s priority. These priority adjustments are made only
with code executing in kernel mode (device drivers, system calls, and so on.).

AIX has tunable options (such as the schedo command) to enable the boosting of
priority for hot locks to medium-high (5) priority. There is code in the first level
interrupt handlers to reset the priority back to normal (4) priority, so the priority
boost for hot locks does not boost interrupt handlers and exception handlers.
There is a tunable to enable the priority boost to be preserved across the
interrupts and to be kept until the job gets dispatched, but that is not the default.

Dedicated partition implementation
For instances where the processor is dedicated to a partition, simultaneous
multithreading is enabled, and if there are no ready-to-run tasks, the idle process
is started and invokes the POWER Hypervisor’s H_CEDE call. AIX will set the
priority of the idle process to low (2) and wait for the simultaneous multithreading
snooze delay to decrement to zero.

If kernel code is waiting for a spinlock, AIX changes the waiting thread’s priority to
low (2). Therefore the spinning thread yields processor resources to the thread
holding the lock. Using the formula mentioned in 3.3.3, “Thread priority
implementation” on page 52, this would result in the idle thread getting one cycle
compared to eight cycles for the thread that holds the lock, assuming normal
priority for the thread that holds the lock.

Micro-Partitioning implementation
For instances where the processor is used in a Micro-Partitioning environment
and a wait on a spinlock occurs, a wait for a tunable spin delay occurs after
setting the priority to low (2). After the spin delay, the POWER Hypervisor’s
H_CONFER call is made only if the task is running with interrupts disabled,
perhaps to serialize with interrupt service routines. Since it has interrupts
disabled, we cannot dispatch another job (or thread) from the run queue on the
processor. The H_CONFER is used to release the hardware thread. If the
second hardware thread were also to H_CONFER later on, then the whole
processor is freed up and POWER Hypervisor can redispatch the physical
processor on another partition. Note that this is a requirement because the
hardware threads are bound and must run in the same partition. If the task is
running with interrupts enabled, the task is placed onto the sleep queue and the
dispatcher is called to dispatch another task. The POWER Hypervisor will control
priority management and redispatch the physical processor if the other hardware
thread also cedes or confers.
 Chapter 3. Simultaneous multithreading 57

3.4.3 Thread priorities on Linux
The Linux 2.6 kernel for POWER lowers the thread priority for the idle process.
For dedicated LPARs, the priority of the idle process is set to low and then waits
for the snooze delay period before snoozing the idle thread by means of the
POWER Hypervisor’s H_CEDE call. For Linux instances in a Micro-Partitioning
environment, Linux always invokes H_CEDE for the idle process.

The Linux kernel also lowers the priority of a thread spinning for a lock to be
released. The priority of the waiting thread is set to low (2) and, assuming the other
hardware thread in the core has a normal (4) priority, like AIX 5L V.53 the waiting
thread will get one processor clock cycle to every eight cycles of the other thread.

3.4.4 Cache effects
With simultaneous multithreading, thread-level parallelism is used to compensate
for low instruction level parallelism by having two possibly different tasks share
the same processor core and caches. This means there could be more
associativity misses in the caches. (See 2.5, “Caches” on page 21.) To
compensate for this, POWER5 has increased POWER4’s associativity of the L1
instruction cache from direct-mapped (one-way) to two-way set associative, and
increased the data cache from two-way to four-way set associative.

The L2 cache on POWER5 is now a 1.9 MB, 10-way set associative cache,
compared to the 1.5 MB eight-way set associative L2 cache on POWER4.

The L3 on the POWER5 is 36 MB 12-way set-associative cache compared to the
32 MB eight-way set-associative on POWER4. The L3 cache on the POWER5 is
now a victim cache of L2, unlike an inline cache in POWER4. On POWER5, the
L3 cache runs at half the processor speed, compared to one-third the processor
speed on POWER4. The L3 cache being a victim cache of L2, it behaves like a
large (albeit a bit slower) L2 extension. These processor enhancements help
offset the cache effects due to simultaneous multithreading, resulting in overall
improved application performance.
58 Advanced POWER Virtualization on IBM Eserver p5 Servers

3.5 Simultaneous multithreading performance
Performance measurements for various standard industrial benchmarks were
made with AIX 5L V5.3 on four-way Sserver p5 570 POWER5 systems to
validate gains from simultaneous multithreading. The measurements were made
with simultaneous multithreading enabled and disabled.

Figure 3-5 illustrates simultaneous multithreading gains for various workloads for
a four-way 1.65 GHz p5 570 POWER5 system. As the chart shows, throughput
improvement varies from 10% to 50% depending on the workload.

Figure 3-5 Simultaneous multithreading gains for various workloads

3.5.1 Engineering and scientific applications
In this section, we present a series of examples that involve applications in the
area of High Performance Computing (HPC). These applications correspond to
the Life Sciences and Computer Aided Engineering (CAE) industry:

� Gaussian03

Gaussian (Gaussian03, Rev.C.01, Gaussian Inc., Wallingford, CT) is a
connected series of programs that can be used for performing a variety of
electronic structure calculations; molecular mechanics, semi-empirical, ab
initio, and density functional theory.
 Chapter 3. Simultaneous multithreading 59

� Assisted Model Building with Energy Refinement (AMBER)

AMBER is a flexible suite of programs for performing molecular mechanics
and molecular dynamics calculations based on force fields. AMBER is the
primary program used for molecular dynamics simulations and is the only
program considered in our current study. The version used for our tests
correspond to AMBER7 for IBM systems, and the test that was selected to
run AMBER is the Joint AMBER-CHARMM (JAC) benchmark.

� Basic Local Alignment Search Tool (BLAST)

BLAST is a set of similarity search programs designed to explore all of the
available sequence databases regardless of whether the query is protein or
nucleic acid. The BLAST programs have been designed for speed, with a
minimal sacrifice of sensitivity to distant sequence relationships. The scores
assigned in a BLAST search have a well-defined statistical interpretation,
making real matches easier to distinguish from random background hits.
BLAST uses a heuristic algorithm that seeks local (as opposed to global)
alignments and is therefore able to detect relationships among sequences
that share only isolated regions of similarity.

� FLUENT

FLUENT V6.1.22 (FLUENT, Inc.) is a leading computational fluid dynamics
(CFD) application program for modeling fluid flow and heat transfer in
complex geometries. FLUENT provides complete mesh flexibility, solving flow
problems with unstructured meshes that can be generated about complex
geometries with relative ease. CFD applications allow for high parallelization.

Although all of these applications are in the same area of High Performance
Computing, the algorithms that are utilized to carry out their simulations are not
necessarily the same. This provides a good test for the performance of
simultaneous multithreading under different conditions or workloads.
60 Advanced POWER Virtualization on IBM Eserver p5 Servers

3.5.2 Simultaneous multithreading benchmarks
We ran two sets of test cases for each of these applications: one set for
single-threaded mode and one set for simultaneous multithreading.

The system used to conduct these tests was an IBM Sserver p5 570
(9117-570) with four 1.65 GHz processors and 16 GB of memory. The operating
system was AIX 5L V5.3. Fortran xlf 9.1 and the xlc 7.0 compilers were installed.

Although this is a benchmarks section, we hope it can also provide basic
information for sizing and capacity planning for this type of application. The
objective of capacity planning is to provide an estimate of future systems
resource requirements based on the present knowledge of the system utilization.

An extensive discussion of sizing and capacity planning independent from
scientific applications can be found in the redbook IBM Eserver pSeries Sizing
and Capacity Planning, SG24-7071.

Gaussian03 benchmark tests
The first benchmark test corresponds to Gaussian03. For both single-threaded
and simultaneous multithreading modes, we ran our test case 1-way (sequential),
and two-way, four-way, and eight-way (parallel). In other words, within the
Gaussian notation we ran with nproc using one, two, four, and eight processors.
It is important to note that the system only had four physical processors.

These benchmarks are important because they show that there is almost no
difference running single-threaded versus simultaneous multithreading when
utilizing parallel jobs with the total number of physical processors or less. We
also show that parallel jobs running two times the number of physical processors,
when running on simultaneous multithreading mode, still show additional
scalability; that does not happen when running in single-threaded mode.

Figure 3-6 on page 62 illustrates the performance of Gaussian03 using multiple
processors under single-threaded and simultaneous multithreading modes. In
this figure we can identify three trends:

� The first trend corresponds to the performance when running with one and
two processors. In this case we see that when running Gaussian03 under any
of these two modes, the performance is basically identical (less than 1%
difference).

� The second trend may be observed when running with four processors. In this
case we see that when running in single-threaded mode there is a slight
advantage in performance as there is no sharing of processor resources with
another hardware thread. The percentage difference is approximately 4%.
 Chapter 3. Simultaneous multithreading 61

� The last trend may be seen when requesting a run with eight processors.
Clearly, this case is requesting more than the physical number of processors
available on this machine. However, in simultaneous multithreading mode
(abbreviated as SMT in the following figures), the two hardware threads
appear as two logical processors. Because of the more efficient use of the
processor, we see more than a 40% improvement in performance when
compared to running in single-threaded mode.

Figure 3-6 Gaussian03 benchmarks

0

100

200

300

400

500

600

700

1-way 2-way 4-way 8-way

Number of Processors

El
ap

se
d

Ti
m

e
in

 S
ec

on
ds ST

SMT
62 Advanced POWER Virtualization on IBM Eserver p5 Servers

Next we look at a performance comparison of the two modes, single-threaded
and simultaneous multithreading, in a series of throughput benchmarks. We ran
the throughput benchmarks by carrying out a single calculation on a standalone
system; this was the only process running. We refer to this scenario as a single
job. When the job was done, we simultaneously submitted two jobs, three jobs,
and on to eight simultaneous jobs. Figure 3-7 shows the performance of
Gaussian03 with a series of throughput benchmarks using single-threaded and
simultaneous multithreading modes.

As in the first set of tests, we can identify two trends. The first trend corresponds
to the throughput benchmarks consisted of one, two, and three simultaneous
jobs, where there is basically no difference in performance (less than 1%)
between single-threaded and simultaneous multithreading.

The second trend begins when the number of processors is the same as the
number of jobs submitted. In our case where there is four physical processors,
we start seeing the benefit of the simultaneous multithreading mode. Clearly the
simultaneous multithreading mode outperforms the single-threaded mode. As the
number of simultaneous jobs is increased the effect becomes more dramatic.

Figure 3-7 Throughput comparison of Gaussian03 tests

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

Number of Simultaneous Jobs

El
ap

se
d

Ti
m

e
in

 S
ec

on
ds ST

SMT
 Chapter 3. Simultaneous multithreading 63

The difference between single-threaded and simultaneous multithreading can be
seen in Figure 3-8. This figure clearly shows that from one to three simultaneous
jobs, there is not much difference between single-threaded and simultaneous
multithreading. However, from four to eight simultaneous jobs, the advantage of
simultaneous multithreading is clear.

The difference that we see in the case of five jobs running simultaneously,
compared to four and six simultaneous jobs, might be caused by the operating
system running daemons and kernel processes in the background; therefore for
a certain period of time they both were competing for resources. Explicitly
binding to processor may alleviate this behavior.

Figure 3-8 Performance advantage of the simultaneous multithreading

-5

0

5

10

15

20

1 2 3 4 5 6 7 8

Number of Simultaneous Jobs

SM
T

pe
rc

en
ta

ge

im
pr

ov
em

en
t o

ve
r S

T ST
SMT
64 Advanced POWER Virtualization on IBM Eserver p5 Servers

AMBER7 benchmark tests
The second application that we tested was AMBER7. Figure 3-9 shows results
similar to the case of the Gaussian03 benchmark tests. Again we observe
exactly the same three trends. For the first trend, we see that there is no
difference between single-threaded mode and simultaneous multithreading
mode. For the second trend, the performance improvement in single-threaded
mode again is only about 4%. Finally, as in the case of Gaussian03, we see a
large performance improvement using simultaneous multithreading when
running with eight logical processors. The gain is of the order of 25%.

Figure 3-9 AMBER7 benchmark test comparison

0

100

200

300

400

500

600

1-way 2-way 4-way 8-way

Number of Processors

El
ap

se
d

Ti
m

e
in

 S
ec

on
ds ST

SMT
 Chapter 3. Simultaneous multithreading 65

Using the same procedure as with the Gaussian03 tests, we ran throughput
benchmarks with one, two, four, and eight processors running simultaneous
copies of the Joint AMBER-CHARMM benchmark input. The results presented in
Figure 3-10 are similar to the results discussed for Gaussian03.

Perhaps the largest qualitative difference between this case and Gaussian03 is
for four simultaneous jobs. AMBER7 does not seem to be taking as much
advantage of simultaneous multithreading as Gaussian did in this case.

Figure 3-10 AMBER7 results for simultaneous jobs

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8

Number of Simultaneous Jobs

El
ap

se
d

Ti
m

e
in

 S
ec

on
ds

ST
SMT
66 Advanced POWER Virtualization on IBM Eserver p5 Servers

In Figure 3-11, AMBER7 takes advantage of simultaneous multithreading as a
function of the number of simultaneous jobs running on the machine. From one
to four simultaneous jobs, we see AMBER7 taking slight advantage of
simultaneous multithreading.

However, as the number of simultaneous jobs increases, so does the advantage
of using simultaneous multithreading. We see that in this case, when running
seven simultaneous jobs, the improvement when compared to single-threaded is
as high as 25%. The behavior of the case with eight simultaneous jobs may be
explained as operating system noise.

Figure 3-11 AMBER7 simultaneous multithreading improvement

-5

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Number of Simultaneous Jobs

SM
T

pe
rc

en
ta

ge

im
pr

ov
em

en
t o

ve
r S

T

ST
SMT
 Chapter 3. Simultaneous multithreading 67

BLAST benchmark tests
Figure 3-12 shows the results of the BLAST benchmark tests, with the same
trends as for Gaussian03 and AMBER7. However, it appears that BLAST tends
to favor simultaneous multithreading more that the other two applications. In the
two-way test, unlike the other two benchmark tests, simultaneous multithreading
has about a 2% advantage. Trend one is the same, except that for the two-way
run, BLAST favors the simultaneous multithreading by about 2%.

Figure 3-12 BLAST benchmark test comparison

Figure 3-13 on page 69 summarizes the results for BLAST. BLAST is different
from the other two applications, Gaussian03 and AMBER7, which are
floating-point intensive applications, while BLAST relies on pattern matching.

Again, BLAST shows behavior similar to the two previous applications. For cases
with one to four jobs running simultaneously, little use is made of simultaneous
multithreading. However, as soon as the number of jobs exceeds the number of
physical processors, the advantage of simultaneous multithreading is clear.

0

100

200

300

400

500

600

700

1-way 2-way 4-way 8-way

Number of Processors

El
ap

se
d

Ti
m

e
in

 S
ec

on
ds ST

SMT
68 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 3-13 BLAST results for simultaneous jobs

A more dramatic difference showing the benefit of simultaneous multithreading
can be seen in Figure 3-14. We see that in the case where we have doubled the
number of jobs compared to the number of physical processors, simultaneous
multithreading shows a performance improvement over single-threaded by as
much as 16% difference.

Figure 3-14 BLAST simultaneous multithreading improvement

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

Number of Simultaneous Jobs

El
ap

se
d

Ti
m

e
in

 S
ec

on
ds ST

SMT

-4
-2
0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8

Number of Simultaneous Jobs

SM
T

pe
rc

en
ta

ge

im
pr

ov
em

en
t o

ve
r S

T ST
SMT
 Chapter 3. Simultaneous multithreading 69

FLUENT benchmark tests
The purpose of these tests was to determine whether the FLUENT application
would benefit from simultaneous multithreading. The measure of performance
used in this experiment is FLUENT rating, which is the number of FLUENT jobs
that can be completed in a 24-hour time period. Higher values of FLUENT rating
indicate better performance.

The application is submitted requesting one-way (sequential), and two-way and
four-way (parallel) when the system is configured in single-threaded mode. To
ensure that each thread is running on a different physical or logical processor, we
use the bindprocessor command. When the system was configured in
simultaneous multithreading mode, the single parallel job is submitted using one,
two, four, and eight processes. In the experiments where simultaneous
multithreading was used, one processor was assigned to two processes of the
parallel job. When the parallel job contained one process, complete resources of
a processor were assigned to the process under both single-threaded and
simultaneous multithreading.

Table 3-3 shows the results of running a single parallel job on the single-threaded
and simultaneous multithreading configurations. When the parallel job contains
one process, the results for both single-threaded and simultaneous
multithreading are almost identical, indicating that running in simultaneous
multithreading mode does not affect performance. The performance of
single-threaded and simultaneous multithreading is compared for a given number
of physical processors. The number processes in the parallel job is equal to the
number of physical processors in single-threaded and it is double the number of
physical processors in simultaneous multithreading mode. Based on the results,
running in simultaneous multithreading mode gives a 33% boost in performance
using one physical processor. When the system is fully loaded, the improvement
is slightly less at 23%. This improvement resulted in super-linear speed-up when
the single process run is used to compute the speed-up.

Table 3-3 Performance of parallel FLUENT test case

Single-thread mode Simultaneous multi-thread mode

Physical
CPUs

Processes FLUENT
Rating

jobs/day
(A)

Speedup Processes FLUENT
Rating

jobs/day
(B)

Speedup Simultaneous
multithreading

vs
single-threaded

(B)/(A)

1 1 166.6 1.0

1 1 166.8 1.0 2 221.4 1.3 1.33

2 2 334.3 2.0 4 415.4 2.5 1.24

4 4 625.0 3.8 8 768.2 4.6 1.23
70 Advanced POWER Virtualization on IBM Eserver p5 Servers

In order to evaluate the performance of single-threaded and simultaneous
multithreading features on a throughput benchmark, a set of several serial jobs
was submitted simultaneously and the FLUENT rating for each job was
measured. The total throughput was computed by multiplying the number of
processes by the average throughput for the set of jobs. In simultaneous
multithreading mode, three sets of jobs were used. These sets contained one,
two, and four jobs, respectively. Each job in each of these sets was assigned to a
processor. For the simultaneous multithreading configuration, four sets of jobs
were submitted. These four sets contained one, two, four, and eight jobs. One
processor was used for the jobs in each these sets.

Table 3-4 shows the results of running several serial jobs on the single-threaded
and simultaneous multithreading configurations. The performance of
single-threaded and simultaneous multithreading is compared for a given number
of physical processors. The number of jobs in the parallel run is equal to the
number of physical processors in single-threaded mode, and it is double the
number of physical processors in simultaneous multithreading mode. Based on
the results, simultaneous multithreading mode gives a 35% boost in performance
for a single physical processor.

Table 3-4 Throughput performance of serial FLUENT for test case: FL5M3

3.6 Summary
We have tried to illustrate a series of scenarios where scientific applications can
take full advantage of simultaneous multithreading. We included the throughput
benchmarks in order to replicate the workloads that a supercomputing center
might experience on a day-to-day basis. These throughput benchmarks were
carried out by running multiple copies of a single application. Of course, if the
input is identical, all of the particular jobs will be competing for the same
resources. However, in order to provide a more balanced representation of a real

Single-thread mode Simultaneous multi-thread mode

Jobs CPUs FLUENT
Rating

for
single
job (B)

Total
FLUENT
Rating
for all
jobs

(A)*(B)

Jobs CPUs FLUENT
Rating

for
Single
job (E)

Total
FLUENT
Rating
for all
jobs

(D)*(E)

SMT vs
single-threa
ded (D)*(E)/

(A)*(B)

1 1 166.6 166.6

1 1 166.8 166.8 2 1 112.2 224.4 1.35

2 2 167.3 334.6 4 2 109.7 436.0 1.31

4 4 163.6 654.4 8 4 108.5 871.2 1.33
 Chapter 3. Simultaneous multithreading 71

workload, we combined the three applications into one throughput benchmark.
Figure 3-15 summarizes the results from this benchmark.

With this benchmark we are trying to measure which mode will provide the best
throughput results. However, prior to discussing the results, it is important to
define how we ran this benchmark. Here the amount of time that the benchmarks
were going to run was predefined based on how long the individual runs take.
Given that constraint, our threshold of 90 minutes was arbitrary. We wrote a
script that would submit Gaussian03, AMBER7, and BLAST jobs simultaneously.
When the script reached 90 minutes, all jobs were stopped and the total number
of completed jobs in this period was used as the measurement of performance.

For these types of benchmarks, we see that the simultaneous multithreading
benefit is clear. We see performance improvements from 20% to almost 60%
difference when compared to single-threaded. The largest improvement
corresponds to AMBER7 with almost 60% in comparison with single-threaded.

Will using simultaneous multithreading benefit your environment? There is no
straightforward answer to that question and it depends on the application or
applications in the system. Later in this book, we describe the performance tools
that can assist you in determining whether simultaneous multithreading is
desirable.

Figure 3-15 Benchmark comparison of Gaussian03, AMBER7, and BLAST

Gaussian03
AMBER7

BLAST

ST

SMT
0
2
4
6
8

10
12
14
16
18

N
um

be
r o

f J
ob

s
Co

m
pl

et
ed
72 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 4. POWER Hypervisor

The technology behind the virtualization of the IBM ̂p5 systems is
provided by a piece of firmware known as the POWER Hypervisor, which resides
in flash memory. This firmware performs the initialization and configuration of the
POWER5 processor, as well as the virtualization support required to run up to
254 partitions concurrently on the IBM Sserver p5 servers.

The POWER Hypervisor supports many advanced functions when compared to
the previous version found in POWER4 processor–based systems. This includes
sharing of processors, virtual I/O, and high-speed communications among
partitions using a virtual LAN, and it enables multiple operating systems to run on
the single system. Currently, the AIX 5L, Linux, and i5/OS™ operating systems
are supported, as shown in Figure 4-1 on page 74.

With support for dynamic resource movement across multiple environments,
clients can move processors, memory, and I/O between partitions on the system
as workloads are moved between the partitions.

4

© Copyright IBM Corp. 2005. All rights reserved. 73

Figure 4-1 Virtualization technologies implemented on POWER5 servers

The POWER Hypervisor is the underlying control mechanism that resides below
the operating systems but above the hardware layer (Figure 4-2). It owns all
system resources and creates partitions by allocating and sharing them.

Figure 4-2 IBM eServer p5 system layers

POWER Hypervisor

Processor
Resources

Memory
Resources

I/O
Resources

Hardware

Active
Pool

CPU

CPUCPU

CPU

CPU

CPUCPU

CPU
CUoD

CPU CPU

CUoD

MEM

MEMMEM

MEM

Service
Processor

Active

IOA IOA

IOA IOA

IOA IOA

IOA IOA

I/O
Server

Partition

AIX
Partitions

Linux
Partitions

i5/OS
Partitions

Active
Pool

Virtual Ethernet Virtual Storage

Virtual
TTY

CPU CPU

MEM

MEM

MEM

MEM

MEM

MEM

MEM

MEM

POWER5 64-bit PROCESSOR

POWER Hypervisor

Programs
AIX 5L

OpenFirmware
RTAS

OpenFirmware
RTAS

Programs
Linux

Programs
i5/OS

SLIC
TIMI
74 Advanced POWER Virtualization on IBM Eserver p5 Servers

The layers above the POWER Hypervisor are different for each supported
operating system. For the AIX 5L and Linux operating systems, the layers above
the POWER Hypervisor are similar but the contents are characterized by each
operating system. The layers of code supporting AIX 5L and Linux consist of
system firmware and Run-Time Abstraction Services (RTAS).

System firmware is composed of low-level firmware (code) that performs server
unique input/output (I/O) configurations and the Open Firmware that contains the
boot-time drivers, boot manager, and the device drivers required to initialize the
PCI adapters and attached devices. RTAS consists of code that supplies
platform-dependent accesses and can be called from the operating system.
These calls are passed to the POWER Hypervisor that handles all I/O interrupts.

The distinction between RTAS and Open Firmware is important. Open Firmware
and RTAS are both platform-specific firmware and both are tailored by the
platform developer to manipulate the specific platform hardware. RTAS
encapsulates some of the machine-dependent operations of the IBM Sserver
p5 systems into a machine-independent package. The operating system can call
RTAS to do things such as start and stop processors in an SMP configuration,
display status indicators (such as LEDs), and read/write NVRAM without having
to know the intricate details of how the low-level functions are implemented on
particular platforms. Open Firmware, on the other hand, does not have not be
present when the operating system is running. Open Firmware is defined by the
IEEE 1275 standard and is a specification for machine-independent BIOS that is
capable of probing and initializing devices that have IEEE-1275 compliant Forth
code in their ROMs. The device tree produced by Open Firmware can then be
passed to the operating system when control is passed to the operating system
during boot. Read more about the IEEE 1275 Open Firmware standard at:

http://www.openfirmware.org

For i5/OS, Technology Independent Machine Interface (TIMI) and the layers
above the POWER Hypervisor are still in place. System Licensed Internal Code
(SLIC), however, is changed and enabled for interfacing with the POWER
Hypervisor. The POWER Hypervisor code is based on the iSeries™ Partition
Licensed Internal Code (PLIC) code that is enhanced for use with the
IBM Sserver i5 hardware. The PLIC is now part of the POWER Hypervisor.

Attention: The POWER Hypervisor is mandatory on all POWER5
processor–based systems. This includes any single-LPAR system.
 Chapter 4. POWER Hypervisor 75

http://www.openfirmware.org

4.1 POWER Hypervisor implementation
The POWER4 processor introduced support for logical partitioning with a new
privileged processor state called POWER Hypervisor mode. It is accessed using
POWER Hypervisor calls, which are generated by the operating system’s kernel
running in a partition. POWER Hypervisor mode allows for a secure mode of
operation that is required for various system functions where logical partition
integrity and security are required. The POWER Hypervisor validates that the
partition has ownership of the resources it is attempting to access, such as
processor, memory, and I/O, then completes the function. This mechanism
allows for complete isolation of partition resources.

In the POWER5 processor, further design enhancements are introduced that
enable the sharing of processors by multiple partitions. The POWER Hypervisor
Decrementer (HDEC) is a new hardware facility in the POWER5 design that is
programmed to provide the POWER Hypervisor with a timed interrupt
independent of partition activity. The HDEC is described in “POWER Hypervisor
Decrementer” on page 33. HDEC interrupts are routed directly to the POWER
Hypervisor, and use only POWER Hypervisor resources to capture state
information from the partition. The HDEC is used for fine-grained dispatching of
multiple partitions on shared processors. It also provides a means for the
POWER Hypervisor to dispatch physical processor resources for its own
execution.

The POWER5 processor supports special machine instructions and are
exclusively used by the POWER Hypervisor. If an operating system instance in a
partition requires access to hardware, it first invokes the POWER Hypervisor by
using POWER Hypervisor calls. The POWER Hypervisor allows privileged
access to the operating system for dedicated hardware facilities and includes
protection for those facilities in the processor and memory locations.

The primary POWER Hypervisor calls used by the operating system in the
dispatch of a virtual processor are:

H_CEDE Used when a virtual processor or thread becomes idle,
enabling the POWER Hypervisor to dispatch other work.

H_CONFER Used to grant the remaining cycles in a dispatch interval
to another virtual processor in the partition. It may be
used when one virtual processor cannot make forward
progress because it is waiting on an event to complete on
another virtual processor, such as a lock miss.

H_PROD Used to activate a virtual processor that has ceded or
conferred processor cycles.
76 Advanced POWER Virtualization on IBM Eserver p5 Servers

A virtual processor will always be in one of four logical states. These states are:

Runnable Ready to run, waiting for dispatch

Running Currently dispatched on a physical processor

Not-runnable Has ceded or conferred its cycles

Expired Consumed its full entitled cycles for the current dispatch
window

Architecturally, the POWER Hypervisor, a component of global firmware, owns
the partitioning model and the resource abstractions that are required to support
that model. Each partition is presented with the resource abstraction for its
partition and other required information through the Open Firmware device tree,
which is created by firmware and copied into the partition before the operating
system is started. In this way, operating systems receive resource abstractions.
They also participate in the partitioning model by making POWER Hypervisor
calls at key points in their execution as defined by the model.

The introduction of shared processors did not fundamentally change this model.
New virtual processor objects and POWER Hypervisor calls have been added to
support shared processor partitions. Actually, the existing physical processor
objects have just been refined to not include physical characteristics of the
processor, because there is not a fixed relationship between a virtual processor
and the physical processor that actualizes it. These new POWER Hypervisor
calls are intended to support the scheduling heuristic for minimizing idle time.

The POWER Hypervisor is entered by the way of three interrupts:

� System reset interrupt

A non-maskable, asynchronous interrupt that is caused by a command for
soft reset invoked from the service processor. The POWER Hypervisor code
saves all processor state by saving the contents of the processor’s registers
(multiplexing the use of this resource with the operating system). The
processor’s stack and data are found by processing the Processor
Identification Register (PIR). The PIR is a read-only register. During power-on
reset, it is set to a unique value for each processor in a multi-processor
system.

� Machine Check Interrupt

The following causes of machine check interrupts are precise and
synchronous with the instruction that caused the operation that encountered
the error:

– The detection of a parity error in the L1 data cache, the data
effective-to-real (D_ERAT), the translation lookaside buffer, or the segment
lookaside buffer during the execution of a load or store instruction. If the
 Chapter 4. POWER Hypervisor 77

interrupt is caused by a soft error, executing the appropriate sequence of
instructions in the Machine Check Handler program will clear the error
condition without causing any loss of state.

– The detection of an uncorrectable error-correcting code (ECC) error in the
L2 cache when a Load instruction is executed.

– The detection of an uncorrectable ECC error in the L2 cache while the
Page Table is being searched in the process of translating an address.

– The detection of corrupt data that is being returned to satisfy a Load
instruction for which the effective address specified a location in caching
inhibited memory.

The POWER Hypervisor code saves all processor state by saving the
contents of the processor’s registers (multiplexing the use of this resource
with the operating system). The processor’s stack and data are found by
processing the Processor Identification Register (PIR).

The POWER Hypervisor investigates the cause of the machine check. The
cause may be either a recoverable event on the current processor or one of
the other processors in the logical partition. Also the POWER Hypervisor
must determine whether the machine check has corrupted its own internal
state (by looking at the footprints, if any, that were left in the per processor
data area of the errant processor.

� System (Hypervisor) call interrupt

The POWER Hypervisor call interrupt is a special variety of the sc (system
call) instruction. The parameters to a POWER Hypervisor call are passed in
registers using the PowerPC Application Binary Interface (ABI) definitions.
This ABI specifies an interface for compiled application programs to system
software. A copy of the ABI specification can be found at:

http://www.linuxbase.org/spec/ELF/ppc64

In contrast to the PowerPC ABI, passing parameters by reference are avoided
in POWER Hypervisor calls. This minimizes the address translation problem
that parameters passed by reference would cause because address
translation is disabled automatically when interrupts are invoked. Input
parameters may be indexes. Output parameters may be passed in the
registers and require special in-line assembler code on the part of the caller.
The first parameter in the POWER Hypervisor call function table to POWER
Hypervisor call is the function token. The assignment of function token is
designed such that a single mask operation can be used to validate the value
to be within the range of a reasonable-size branch table. Entries within the
branch table can handle unimplemented code points. Some of the POWER
Hypervisor calls indicate whether the system is in LPAR mode and which
ones are available. The Open Firmware property is provided in the /rtas node
of the partition’s device tree. The property is present if the system is in LPAR
78 Advanced POWER Virtualization on IBM Eserver p5 Servers

http://www.linuxbase.org/spec/ELF/ppc64

mode while its value specifies which function sets are implemented by a given
implementation. If the system implements any POWER Hypervisor call of a
function set, it implements the entire function set. Additionally, certain values
of the Open Firmware property indicate that the system supports a given
architecture extension to a standard POWER Hypervisor call.

The POWER Hypervisor routines are optimized for execution speed. In some
rare cases, locks will have to be taken, and short wait loops will be required due
to specific hardware designs. However, if a needed resource is truly busy, or
processing is required by an agent, the POWER Hypervisor returns to the caller,
either to have the function retried or continued later.

4.1.1 POWER Hypervisor functions
The POWER Hypervisor provides the following functions. Table 4-1 on page 81
shows the list of POWER Hypervisor calls.

� Page frame table

The page frame table describes the pages of memory. The access functions
to the page frame table carefully update a Page Table Entry (PTE) with at
least 64-bit store operations because an invalid update sequence could result
in machine check. The POWER Hypervisor protects the system from a
checkstop condition (a condition where the processor becomes architecturally
frozen) by allocating bits associated with PTE locks and reserved by the
operating system to indicate that the PTE is in use.

For logical addressing, an additional level of virtual addresses translation is
managed by the POWER Hypervisor. The operating system is not allowed to
use the physical address for its memory; this includes main storage,
memory-mapped I/O (MMIO) space, and NVRAM. The operating system
sees main storage as regions of contiguous logical memory. Each logical
region is mapped by the POWER Hypervisor into a corresponding block of
contiguous physical memory on a specific node. All regions on a specific
system are the same size, though different systems with different amounts of
memory may have different region sizes because they are the amount of
memory allocation to partitions. That is, partitions are granted memory in
region-size chunks, and if a partition’s operating system gives up memory, it is
in units of a full region.

Attention: This information is not intended to be a programming reference
and these calls may change in future levels of firmware. However, these
definitions may provide a better understanding of the mechanics within the
POWER Hypervisor.
 Chapter 4. POWER Hypervisor 79

� Translation control entry

Translation control entry (TCE) access is provided by a POWER Hypervisor
call and take as a parameter, the Logical I/O Bus Number (LIOBN), which is
the logical bus number value derived from the property that is associated with
the particular I/O adapter. TCE is responsible for the I/O address to memory
address translation in order to perform direct memory access (DMA) transfers
between memory and PCI adapters. The TCE tables are allocated in the
physical memory.

� Debugger support

Debugger support provides the capability for the real mode debugger to be
able to get to its serial port and beyond the real mode limit register without
turning on virtual address translation.

� Virtual Terminal support

The POWER Hypervisor provides console access to every logical partition
without a physical device assigned. The console emulates a vt320 terminal
that can be used to access the partition system using the Hardware
Management Console (HMC). A partition’s device tree that contains one or
more nodes notifies that is has been assigned to one or more virtual terminal
(vterm) client adapters. The unit address of the node is used by the partition
to map the virtual device (or devices) to the operating system’s corresponding
logical representations and notify the partition that the virtual adapter is a
vterm client adapter. The node’s interrupts property specifies the interrupt
source number that has been assigned to the client vterm I/O adapter for
receive data.

� Dump support

This enables the operating system to dump POWER Hypervisor data areas in
support of field problem diagnostics. The dump function set contains the
POWER Hypervisor call H_HYPERVISOR_DATA. This call is enabled or disabled
(default disabled) via the Hardware Management Console.

� Memory Migration Support

The Memory Migration Support POWER Hypervisor call was provided to
assist the operating system in the memory migration process. It is the
responsibility of the operating system not to change the DMA mappings
referenced by the translation buffer. Failure of the operating system to
serialize relative to the logical bus numbers may result in DMA data corruption
within the caller’s partition.

� Performance Monitor Support

The performance registers will be saved when a virtual processor yields or is
preempted. They will be restored when the state of the virtual processor is
restored on the hardware. A bit in one of the performance monitor registers
80 Advanced POWER Virtualization on IBM Eserver p5 Servers

enables the partition to specify whether the performance monitor registers
count when a POWER Hypervisor call (except yield) is made. When a virtual
processor yields or is preempted, the performance monitor registers will not
count, enabling a partition to query the POWER Hypervisor for appropriate
information regarding POWER Hypervisor code and data addresses.

Table 4-1 POWER Hypervisor calls

Hypervisor call Definition

H_REGISTER_VPA Provides a data area registered with the Hypervisor
by the operating system for each virtual processor.
The VPA is the control area that holds information
used by the POWER Hypervisor and the OS in
cooperation with each other.

H_CEDE Has the virtual processor, which has no useful work to
do, enter a wait state, ceding its processor capacity to
other virtual processors until some useful work
appears, signaled either through an interrupt or an
H_PROD call.

H_CONFER Enables a virtual processor to give its cycles to one or
all other virtual processors in its partition.

H_PROD Makes the specific virtual processor runnable.

H_ENTER Adds an entry into the page frame table. PTE high and
low order bytes of the page table contain the new
entry.

H_PUT_TCE Provides mapping of a single 4096-byte page into the
specified TCE.

H_READ Returns the contents of a specific PTE into GPR4 and
GPR5.

H_REMOVE Invalidates an entry in the page table.

H_BULK_REMOVE Invalidates up to four entries in the page frame table.

H_GET_PPP Returns the partition’s performance parameters.

H_SET_PPP Enables the partition to modify its entitled processor
capacity percentage and variable processor capacity
weight within limits.

H_CLEAR_MODE Clears the modified bit in the specific PTE. The
second double word of the old PTE is returned in
GPR4.
 Chapter 4. POWER Hypervisor 81

H_CLEAR_REF Clears the reference bit in the specific PTE from the
partition’s node page frame table.

H_PROTECT Sets the page protects bits in the specific PTE.

H_EOI Incorporates the interrupt reset function when
specifying an interrupt source number associated with
an interpartition logical I/O adapter.

H_IPI Generates an interprocessor interrupt.

H_CPPR Sets the processor’s current interrupt priority.

H_MIGRATE_DMA This call is extended to serialize the sending of a
logical LAN message to allow for migration of TCE
mapped DMA pages.

H_PUT_RTCE Maps the number of contiguous TCEs in an RTCE to
the same number of contiguous I/O adapter TCEs.

H_PAGE_INIT Initializes pages in real mode either to zero or to the
copied contents of another page.

H_GET_TCE This standard call is used to manage the interpartition
logical LAN adapters’s I/O translations.

H_COPY_RDMA Copies data from an RTCE table mapped buffer in
one partition to an RTCE table mapped buffer in
another partition, with the length of the transfer being
specified by the transfer length parameter in the call.

H_SEND_CRQ Sends one 16-byte message to the partner partition’s
registered Command / Response Queue (CRQ). The
CRQ facility provides ordered delivery of messages
between authorized partitions.

H_SEND_LOGICAL_LAN Sends a logical LAN message.

H_ADD_LOGICAL_LAN_BUF Adds receive buffers to the logical LAN receive buffer
pool.

H_PIC Returns the summation of the physical processor
pool’s idle cycles.

H_XIRR This call is extended to report the source number
associated with virtual interrupts from an interpartition
logical LAN I/O adapter.

Hypervisor call Definition
82 Advanced POWER Virtualization on IBM Eserver p5 Servers

Monitoring POWER Hypervisor calls
In AIX 5L Version 5.3, the lparstat command using the -h and -H flags displays
Hypervisor statistical data about many POWER Hypervisor calls, including cede,
confer, and prod. Using the -h flag adds summary POWER Hypervisor statistics
to the default lparstat output. The following shows an example of this command,
collecting statistics for one five-second interval.

Example 4-1 lparstat -h command

lparstat -h 5 1

System configuration: type=Dedicated mode=Capped smt=On lcpu=4 mem=3808

%user %sys %wait %idle %hypv hcalls
----- ---- ----- ----- ----- ------
 0.0 0.1 0.0 99.8 61.2 2440007
#

Using the -H flag displays detailed POWER Hypervisor information, including
statistics for many POWER Hypervisor call functions. The output in Example 4-2
on page 84 shows the following for each of these POWER Hypervisor calls:

Number of calls Number of POWER Hypervisor calls made

Total Time Spent Percentage of total time spent for this type of call

H_POLL_PENDING Provides the operating system with the ability to
perform background administrative functions and the
implementation with indication of pending work so
that it may more intelligently manage the use of
hardware resources.

H_PURRa This call is a new resource provided for
Micro-Partitioning and simultaneous multithreading. It
provides an actual count of ticks that the shared
resource has used on a per virtual processor or per
thread basis. In the case of Micro-Partitioning, the
virtual processor’s Processor Utilization Resource
Register begins incrementing when the virtual
processor is dispatched onto a physical processor.
Therefore, comparisons of elapsed PURR with
elapsed Time_Base provides an indication of how
much of the physical processor a virtual processor is
getting. The PURR will also count Hypervisor calls
made by the partition.

a. See “Processor Utilization Resource Register (PURR)” on page 34.

Hypervisor call Definition
 Chapter 4. POWER Hypervisor 83

Hypervisor Time Spent Percentage of POWER Hypervisor time spent for this
type of call

Average Call Time Average call time for this type of call in nanoseconds

Maximum Call Time Maximum call time for this type of call in nanoseconds

Example 4-2 lparstat -H command

lparstat -H 5 1

System configuration: type=Dedicated mode=Capped smt=On lcpu=4 mem=3808

 Detailed information on Hypervisor Calls

Hypervisor Number of %Total Time %Hypervisor Avg Call Max Call
 Call Calls Spent Time Spent Time(ns) Time(ns)

remove 0 0.0 0.0 1 714
read 0 0.0 0.0 1 193
nclear_mod 0 0.0 0.0 1 0
page_init 3 0.0 0.0 624 2212
clear_ref 0 0.0 0.0 1 0
protect 0 0.0 0.0 1 0
put_tce 0 0.0 0.0 1 613
xirr 8 0.0 0.0 598 1535
eoi 8 0.0 0.0 601 932
ipi 0 0.0 0.0 1 0
cppr 0 0.0 0.0 1 0
asr 0 0.0 0.0 1 0
others 0 0.0 0.0 1 0
enter 2 0.0 0.0 335 521
cede 12236005 61.5 100.0 499 83573
migrate_dma 0 0.0 0.0 1 0
put_rtce 0 0.0 0.0 1 0
confer 0 0.0 0.0 1 0
prod 31 0.0 0.0 446 1081
get_ppp 1 0.0 0.0 1477 2550
set_ppp 0 0.0 0.0 1 0
purr 0 0.0 0.0 1 0
pic 1 0.0 0.0 386 690
bulk_remove 0 0.0 0.0 1 0
send_crq 0 0.0 0.0 1 0
copy_rdma 0 0.0 0.0 1 0
get_tce 0 0.0 0.0 1 0
send_logical_lan 0 0.0 0.0 1 0
add_logicl_lan_buf 0 0.0 0.0 1 0

#

84 Advanced POWER Virtualization on IBM Eserver p5 Servers

4.1.2 Micro-Partitioning extensions
A new virtual processor is dispatched on a physical processor when one of the
following conditions happens:

� The physical processor is idle and a virtual processor was made ready to run
(interrupt or process).

� The old virtual processor exhausted its time slice (HDEC interrupt).

� The old virtual processor ceded or conferred its cycles.

When one of these conditions occurs, the POWER Hypervisor, by default,
records all the virtual processor architected state including the Time Base and
Decrementer values and sets the POWER Hypervisor timer services to wake the
virtual processor per the setting of the decrementer. The virtual processor’s
Processor Utilization Resource Register (PURR) value for this dispatch is
computed. The Virtual Processor Area (VPA) dispatch count is incremented
(such that the result is odd). Then the POWER Hypervisor selects a new virtual
processor to dispatch on the physical processor using an implementation-
dependent algorithm having the following characteristics given in priority order:

1. The virtual processor is “ready to run” (has not ceded or conferred its cycles
or exhausted its time slice).

2. Ready-to-run virtual processors are dispatched prior to waiting in excess of
their maximum specified latency.

3. Of the non-latency critical virtual processors ready to run, select the virtual
processor that is most likely to have its working set in the physical processor’s
cache or for other reasons will run most efficiently on the physical processor.

If no virtual processor is ready to run at this time, start accumulating the Pool Idle
Count (PIC) of the total number of idle processor cycles in the physical processor
pool.

Virtual I/O
Virtual input/output (I/O) support is one of the advanced features of the new
POWER Hypervisor. Virtual I/O provides a given partition with the appearance of
I/O adapters that do not necessarily have direct correspondence with a physical
adapter. Virtual I/O is covered in detail in Chapter 6, “Virtual I/O” on page 143.

Memory considerations
POWER5 processors use memory to temporarily hold information. Memory
requirements for partitions depend on partition configuration, I/O resources
assigned, and applications used. Memory can be assigned in increments of
16 MB.
 Chapter 4. POWER Hypervisor 85

Depending on the overall memory in your system and the maximum memory
values you choose for each partition, the server firmware must have enough
memory to perform logical partition tasks. Each partition has a Hardware Page
Table (HPT); its size is based on an HPT ratio and determined by the maximum
memory values you establish for each partition. The HPT ratio is 1/64.

When selecting the maximum memory values for each partition, consider the
following:

� Maximum values affect the HPT size for each partition.
� The logical memory map size of each partition.

When you create a logical partition on your managed system, the managed
system reserved an amount of memory to manage the logical partition. Some of
this physical partition is used for POWER Hypervisor page table translation
support. The current memory available for partition usage as displayed by the
HMC is the amount of memory that is available to the logical partitions on the
managed system (Figure 4-3). This is the amount of active memory on your
managed system minus the estimated memory needed by the managed system
to manage the logical partitions defined on your system. Therefore, the amount
in this field decreases for each additional logical partition you create.

Figure 4-3 Current memory available for partition usage using HMC

When you assess changing performance conditions across system reboots, it is
important to know that memory allocations might change based on the
availability of the underlying resources. Memory is allocated by the system
across the system. Applications in partitions cannot determine where memory
has been physically allocated.
86 Advanced POWER Virtualization on IBM Eserver p5 Servers

4.1.3 POWER Hypervisor design
The POWER Hypervisor is primarily responsible for affinity in a Micro-Partitioning
system. The physical processors in the shared processor pool are grouped within
natural hardware boundaries, such that all processors within the pool have the
same affinity characteristics and the partition is guaranteed to only execute on
that pool of processors, barring events such as a processor being GUARD’ed off
due to predictive failures, and possibly replaced with a spare processor from
another affinity domain. See Figure 5-12 on page 119 for the relationship
between virtual and physical processors.

The POWER Hypervisor will continue to provide affinity domain information in the
device tree for processors, which are actually virtual processors in a
Micro-Partitioning configuration. The side effect of Micro-Partitioning might be
limits to the depth of hierarchy of affinity domain information that can be
provided—that is, instead of going down to the physical processor it might stop at
the lowest common layer of all processors in the shared pool. The POWER
Hypervisor attempts to maintain physical processor affinity when dispatching
virtual processors. It will always try first to dispatch the virtual processor on the
same physical processor as it last ran on, and depending on resource utilization
will broaden its search out to the other processor on the POWER5 chip, then to
another chip on the same MCM, then to a chip on another MCM.

Save and restore registers
The POWER Hypervisor will save the following registers when a state is saved
for a virtual processor: GPRs, FPRs, CR, XER, LR, CTR, ACCR, SPRG0,
SPRG1, SPRG2, SPRG3, ASR, SLB state, DAR, DEC, DSISR, SRR0, SRR1,
PMCs, MMCR0/1/A, SDAR, DABR and SDR1.

Preemption of a virtual processor
The POWER Hypervisor is responsible for time slicing and managing the
dispatching of the partitions across the physical processors. One of the features
of the POWER4+™ and POWER5 that makes this possible is the POWER
Hypervisor Decrementer (HDEC). This is a clock interrupt source utilized by the
POWER Hypervisor to preempt a dispatched partition and regain control of the
physical processors. This interrupt occurs even if external interrupts are disabled
and cannot be masked by the partition. The POWER Hypervisor utilizes this
HDEC to drive its partition dispatcher, so in reality, the POWER Hypervisor is
managing the execution of multiple partition images across the same physical
resources, just as an operating system manages the execution of multiple
processes / threads within its partition instance.

The POWER4+ processor does not have support for the POWER Hypervisor
decrementer. The SRR0 and SRR1 registers are used to present an HDEC
 Chapter 4. POWER Hypervisor 87

interrupt to the processor. To avoid loss of partition state, a pending HDEC
interrupt will be held off for N (programmable hardware value) cycles if
MSR[RI]=0. The number of cycles (N) has to be large enough to enable a
partition to safely execute instructions until SRR0 and SRR1 are saved and
indicated by the setting of MSR[RI]=1. If not, taking the HDEC interrupt would
result in the corresponding loss of state because these registers are updated
when an interrupt or exception occurs.

This places the requirement on the operating system to use the MSR[RI] bit to
avoid fatal failures that could occur because of POWER Hypervisor preemption
of a virtual processor.

A POWER5-based server provides complete HDEC support that enables
preemption with an unsaved SRR0 and SRR1.

The POWER Hypervisor issues a sync instruction on the processor when it
preempts a virtual processor. This ensures that a storage access sequence (in
particular, a Memory Mapped I/O sequence) by the preempted virtual processor
is seen by the devices on the system in the order it was intended. The POWER
Hypervisor will also do the equivalent of a dummy stwcx instruction to cancel a
reservation that may be held by the yielding or preempted virtual processor.

Cache invalidations
The segment lookaside buffer (SLB) that was saved when the virtual processor
yielded or was preempted is restored on each dispatch of a virtual processor.
There is one SLB per thread (two per processor core). Information derived from
the SLB may also be cached in the instruction, possibly with Data Effective to
Real Address Translation (D_ERAT), along with information from the translation
lookaside buffer (TLB).

Note: For those not familiar with the POWER and PowerPC architecture, at
the time of an exception or interrupt, SRR0 is loaded with either the address of
the instruction that caused the exception, or the address of the instruction that
would have been dispatched had the interrupt not occurred. SRR1 contains
the Machine State Register (MSR) contents at the time of the exception or
interrupt. For example, the thread being preempted may have been in user
mode (MSR[PR]=1). For the interrupt to be serviced, the processor must be in
supervisory (system) mode and this bit has to be cleared (0). If interrupts are
not masked or held off, then the processor automatically saves off the current
MSR into SRR1 and produces a new MSR value with appropriate bit settings,
which is placed into the MSR. Therefore, if these registers are not saved,
recovery may be impossible. The MSR[RI] bit is not affected by exceptions or
interrupts and can be used by the operating system to indicate recovery.
88 Advanced POWER Virtualization on IBM Eserver p5 Servers

The TLB of a processor is invalidated every time the partition ID of a virtual
processor switched in on a processor is different from the partition ID of the
virtual processor that last ran on it. The POWER4 family of processors provides
an instruction to flush the TLB of a processor, avoiding the need for a broadcast
of TLB invalidations.

Since the number of partitions exceeds the number of hardware partition IDs,
shared processor partitions may share a hardware partition ID. This can lead to
false invalidations of TLB entries. Since the TLB is flushed in many instances on
a dispatch of a virtual processor dispatch, the false invalidations are not a
concern.

When a partition is IPLed (rebooted) in the shared pool, all processors in the pool
flush their instruction cache prior to switching in a virtual processor from the
partition being IPLed.

POWER Hypervisor dispatching algorithm
Each shared pool has its own instantiation of the POWER Hypervisor dispatcher.
The POWER Hypervisor uses the POWER5 HDEC, which is programmed to
generate an interrupt every 10 ms (1/100 second), as a timing mechanism for
controlling the dispatch of physical processors to system partitions. Each virtual
processor is guaranteed to get its entitled share of processor cycles during each
10 ms dispatch window. Each shared processor partition is configured with a
specific processor entitlement, based on a quantity of processing units, which is
referred to as the partition’s entitled capacity. The entitled capacity, along with a
defined number of virtual processors, defines the physical processor resource
that will be allotted to the partition. If a partition does not use its allocation of
cycles in a scheduling window, it will lose the unused cycles. The minimum
allocation of resource is 1 ms per processor; the POWER Hypervisor calculates
number of ms using the capacity entitlement and the number of virtual
processors for each shared pool. When a capped shared processor has received
its capacity entitlement within a dispatch interval, it becomes not-runnable. An
uncapped partition may get more than its allocation of cycles in a scheduling
window. Virtual processors are time-sliced through the use of the Hypervisor
Decrementer much like the operating system time slices threads. The POWER
Hypervisor HDEC and time base will be used by the POWER Hypervisor
dispatcher for virtual processor accounting.

The physical processor resource in a shared pool may become overcommitted
(with respect to uncapped partitions). A suitable variation of the Time Function
History Scheduling (TFHS) algorithm will be used for making dispatch decisions
when the pool is overcommitted. The algorithm requires some notion of priority
when making scheduling decisions.
 Chapter 4. POWER Hypervisor 89

4.2 Performance considerations
The POWER Hypervisor uses some system processor and memory resources (a
small percentage). These resources are associated with virtual memory
management (VMM), the POWER Hypervisor dispatcher, virtual processor data
structures (including save areas for virtual processor), and for queuing of
interrupts. The impact on performance should be minor for most workloads, but
the impact increases with extensive amounts of page-mapping activity.
Partitioning may actually help performance in some cases for applications that do
not scale well on large SMP systems by enforcing strong separation between
workloads running in the separate partitions.

Other areas where performance can be affected by the POWER Hypervisor are:

� Increasing path length
� Dispatching of virtual processors (saving and restoring state)
� TLB flush when a virtual processor is dispatched
� Increased misses in a shared processor’s caches

Dispatching and interrupt latencies
Virtual processors have dispatch latency, because they are scheduled. When a
virtual processor is made runnable, it is placed on a run queue by the POWER
Hypervisor, where it sits until it is dispatched. The time between these two events
is referred to as dispatch latency.

The dispatch latency of a virtual processor is a function of the partition
entitlement and the number of virtual processors that are online in the partition.
Entitlement is equally divided among these online virtual processors, so the
number of online virtual processors affects the length of each virtual processor’s
dispatch. The smaller the dispatch cycle, the greater the dispatch latency.

Timers also have latency issues. The POWER5 Decrementer is virtualized by the
POWER Hypervisor at the virtual processor level, so that timers will interrupt the
initiating virtual processor at the designated time. If a virtual processor is not
running, then the timer interrupt has to be queued with the virtual processor, as it
is delivered in the context of the running virtual processor.

External interrupts have latency issues as well. External interrupts are routed
directly to a partition. When the operating system makes the accept pending
interrupt POWER Hypervisor call, the POWER Hypervisor, if necessary,
dispatches a virtual processor of the target partition to process the interrupt. The
POWER Hypervisor provides a mechanism for queuing up external interrupts
that is also associated with virtual processors. Whenever this queuing
mechanism is used, latencies are introduced.
90 Advanced POWER Virtualization on IBM Eserver p5 Servers

These latency issues are not expected to cause functional problems, but they
may present performance problems for real-time applications. To quantify
matters, the worst case virtual processor dispatch latency is 18 ms, since the
minimum dispatch cycle that is supported at the virtual processor level is 1 ms.
This figure is based on the POWER Hypervisor dispatch wheel. It can be
visualized by imagining that a virtual processor is scheduled in the first and last
portions of two 10-ms intervals. In general, if these latencies are too great, then
clients may increase entitlement, minimize the number of online virtual
processors without reducing entitlement, or use dedicated processor partitions.

The output of lparstat with the -h flag displays the percentage spent in POWER
Hypervisor (%hypv) and the number of POWER Hypervisor calls. Note from the
example output shown in Example 4-3 that the %hypv is around 61% on this idle
system. As was shown in Example 4-2 on page 84, this is the result of the
H_CEDE call being made to place the virtual processor into a wait state because
there is no meaningful work to do after servicing interrupts, and so on.

Example 4-3 lparstat -h output

lparstat -h 1 16
System configuration: type=Dedicated mode=Capped smt=On lcpu=4 mem=3808

%user %sys %wait %idle %hypv hcalls
----- ---- ----- ----- ----- ------
 0.1 0.6 0.0 99.4 61.2 2439926
 0.0 0.0 0.0 100.0 60.8 2442449
 0.0 0.0 0.0 100.0 61.2 2442355
 0.0 0.0 0.0 100.0 61.6 2439577
 0.0 0.0 0.0 100.0 60.8 2442471
 0.0 0.2 0.0 99.8 61.7 2436181
 0.0 0.0 0.0 100.0 61.2 2443133
 0.0 0.1 0.0 99.9 61.2 2448492
 0.0 0.0 0.0 100.0 61.2 2447438
 0.0 0.0 0.0 100.0 61.2 2446917
#

To provide input to the capacity planning and quality of service tools, the POWER
Hypervisor reports certain statistics to an operating system. These include the
number of virtual processors that are online, minimum processor capacity that
the operating system can expect (the operating system may cede any unused
capacity back to the system), the maximum processor capacity that the partition
will grant to the operating system, the portion of spare capacity (up to the
maximum) that the operating system will be granted, variable capacity weight,
and the latency to a dispatch via a POWER Hypervisor call. The output of the
lparstat command with the -i flag, shown in Example 4-4 on page 92, will report
the logical partition related information.
 Chapter 4. POWER Hypervisor 91

Example 4-4 lparstat -i output

lparstat -i
Node Name : aix_lpar01
Partition Name : AIX 5L Version 5.3 Gold
Partition Number : 1
Type : Dedicated-SMT
Mode : Capped
Entitled Capacity : 2.00
Partition Group-ID : 32769
Shared Pool ID : -
Online Virtual CPUs : 2
Maximum Virtual CPUs : 2
Minimum Virtual CPUs : 1
Online Memory : 3808 MB
Maximum Memory : 4096 MB
Minimum Memory : 128 MB
Variable Capacity Weight : -
Minimum Capacity : 1.00
Maximum Capacity : 2.00
Capacity Increment : 1.00
Maximum Dispatch Latency : -
Maximum Physical CPUs in system : 2
Active Physical CPUs in system : 2
Active CPUs in Pool : -
Unallocated Capacity : -
Physical CPU Percentage : 100.00%
Unallocated Weight : -
#

92 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 5. Micro-Partitioning

In this chapter we discuss the detailed implementation for Micro-Partitioning,
which is one of the key features provided in the IBM ̂p5 systems.

The following topics are included:

� Partitioning on POWER5

� Micro-Partitioning implementation

� Performance considerations

� Configuration guidelines

5

© Copyright IBM Corp. 2005. All rights reserved. 93

5.1 Partitioning on the IBM eServer p5 systems
With technology inspired by IBM zSeries® heritage, logical partitioning (LPAR)
appeared on IBM Sserver pSeries POWER4 processor–based systems
supporting AIX 5L Version 5.1 in 2001. Logical partitioning of a system allows
more than one operating system to reside on the same platform simultaneously
without interfering with each other. With POWER4 technology, the smallest
granularity of partitioning was the assignment of one processor to a partition. All
partitions were considered dedicated, where an entire processor is dedicated to
the partition and not allowed to be shared among other partitions. This means a
32-way IBM Sserver pSeries 690 can host up to 32 independent partitions for
running a combination of AIX 5L and Linux.

Continuing the evolution of partitioning technology, the IBM Sserver p5 systems
extends its capabilities by further improving the flexibility of LPARs. There are two
types of partitions in the IBM Sserver p5 systems, and both types of partitions
can coexist in the same system at any given time.

� Dedicated processor partitions
� Shared processor partitions or micro-partitions

In addition to sharing the processor, the IBM Sserver p5 systems provide
sharing of devices through virtual I/O, virtual terminals, and virtual Ethernet.
These topics will be covered later in this book.

Dedicated processor partitions
A dedicated processor partition, like the partitions used on servers based on the
POWER4 processor–based servers, cannot share the processor with other
partitions. These processors are owned by the partition where they are running.
The amount of processing capacity on the partition is limited by the total
processing capacity of the processors configured in that partition, and it cannot
go over this capacity (unless you add more processors inside the partition using
a dynamic LPAR operation). By default, a powered-off logical partition using
dedicated processors will have its processors available for use by other partitions
in the system.

Micro-Partitioning
Shared processor partitions or Micro-Partitioning1 provides the ability to share
processors among other partitions in the system. This allows a system to perform
more efficiently than would be required with dedicated processor partitions.

1 Some publications refer to this technology as shared processor partitions, but the terms
micro-partitions and Micro-Partitioning in used this book.
94 Advanced POWER Virtualization on IBM Eserver p5 Servers

Micro-Partitioning is the mapping of virtual processors to physical processors.
The virtual processors are assigned to the partitions, not physical ones. With the
assistance of the POWER Hypervisor, an entitlement or percentage of processor
usage is granted to the shared partitions. The minimum processor entitlement is
1/10 of a processor for a partition. By dividing up processor usage in this manner,
a system can have multiple partitions sharing the same physical processor, and
dividing the processing capacity among themselves, as shown in Figure 5-1.

Figure 5-1 System with dedicated and shared partitions

With fractional processor allocations, more partitions can be created on a given
platform, which enables clients to maximize the number of workloads that can be
supported on a server simultaneously. Micro-Partitioning enables both optimized
use of processing capacity while preserving the isolation between applications
provided by separate operating system images.

There are several scenarios where the use of Micro-Partitioning can bring
advantages such as optimal resource utilization, rapid deployment of new
servers and application isolation:

Server consolidation Consolidating small systems onto a large and robust
server brings advantages in management and
performance, usually together with reduced total cost
of ownership. Micro-Partitioning enables the
consolidation from small and large systems without the
burden of dedicating very powerful processors to a
small partition. You can divide the processing power
 Chapter 5. Micro-Partitioning 95

between several partitions with the adequate
processing capacity for each one.

Server provisioning With Micro-Partitioning and virtual I/O, a new partition
can be deployed rapidly, to accommodate unplanned
demands, or to be used as a test environment.

Virtual server farms In environments where applications scale with the
addition of new servers, the ability to create several
partitions sharing processing resources is very useful
and contributes to better use of processing resources
by the applications deployed on the server farm.

5.2 Micro-Partitioning implementation
Micro-Partitioning enables several operating system images to share the physical
processor resources in a time-sliced manner. From an operating system
perspective, a virtual processor is indistinguishable from a physical processor.
The key benefit of implementing partitioning in the POWER Hypervisor firmware
and POWER5 chip architecture is to provide a transparent interface to the
operating system.

Optionally, for increased resource flexibility, the operating system can be
enhanced to exploit Micro-Partitioning. For instance, an operating system may
voluntarily relinquish processor cycles to the Hypervisor when they are not
needed. AIX 5L V5.3 is the first version of AIX 5L to support Micro-Partitioning.
SUSE LINUX Enterprise Server 9 for POWER systems and Red Hat Enterprise
Linux AS 3 for POWER Update 3 also include such optimizations.

The virtualization of physical processors on POWER5-based servers requires a
new partitioning model because it is fundamentally different from the partitioning
model used on POWER4-based servers. Several new terminologies and
concepts are introduced in Micro-Partitioning.

Layers of Processor Abstraction
The following terminology represents the three types of processors used in
Micro-Partitioning:

Logical Processor A hardware thread; an operating system view of a
managed processor unit. In the AIX 5L V5.3 operating
system, each hardware thread appears as a unique
processor (for example, bindprocessor -q). The number
of logical processors will be double the number of virtual
processors with simultaneous multithreading enabled.
Both hardware threads on one virtual processor must be
96 Advanced POWER Virtualization on IBM Eserver p5 Servers

in the same partition at the same time. Currently, 128
logical processors per partition is the maximum.

Virtual Processor Defines the way that a partition’s entitlement may be
spread over physical processor. The virtual processor is
the unit of POWER Hypervisor dispatch and the
granularity of processor dynamic reconfiguration.
Currently, the maximum number of virtual processors is
64 per partition.

Physical Processor The actual physical hardware resource. Currently, the
maximum number of physical processors in the POWER5
systems is 64. This definition is the number of unique
processor cores, not the number of processor chips (each
of which contains two processing cores).

Virtual processors
Virtual processors are the whole number of concurrent operations that the
operating system can use. The processing power that is available to the
operating system on the partition can be conceptualized as being spread equally
across these virtual processors.

In Micro-Partitioning, the partitions are defined using the Hardware Maintenance
Console (HMC). When you create a partition, you have to choose between a
shared processor partition and a dedicated processor partition. You cannot mix
shared processors and dedicated processors in one partition. Using the HMC
menu shown in Figure 5-2 on page 98, selecting the optimal number of virtual
processors depends on the workload in the partition.

To enable sharing of physical processors in Micro-Partitioning, you have to
configure these additional options:

� Minimum, desired, and maximum processing units of capacity
� The processing sharing mode, either capped or uncapped
� Minimum, desired, and maximum virtual processors
 Chapter 5. Micro-Partitioning 97

Figure 5-2 HMC console for virtual processor management

You also can use the Advanced tab in your partitions profile to change the default
configuration and to assign more virtual processors. At the time of publication,
the maximum number of virtual processors per partition is 64.

Processing capacity is specified in terms of processing units. Processing units
can be configured in fractions of 1/100 of a processor. The minimum capacity of
1/10 of a processor is specified as 0.1 processing units. To assign a processing
capacity representing 50% of a processor, 0.50 processing units are specified on
the HMC.
98 Advanced POWER Virtualization on IBM Eserver p5 Servers

On a system with two processors, a maximum of 2.0 processing units can be
assigned to a partition. After a partition is activated, processing capacity is
usually referred to as capacity entitlement or entitled capacity. Figure 5-3 shows
a graphical view of the definitions of processor capacity.

Figure 5-3 Processing units of capacity

By default, the number of processing units that you specify is rounded up to the
minimum number of virtual processors needed to satisfy the assigned number of
processing units. The default settings maintain a balance of virtual processors to
processor units. For example:

� If you specify 0.50 processing units, one virtual processor will be assigned.
� If you specify 2.25 processing units, three virtual processors will be assigned.

A logical partition will have at least as many virtual processors as its assigned
processing capacity. By making the number of virtual processors too small, you
limit the processing capacity of an uncapped partition. If you have a partition with
0.50 processing units and one virtual processor, the partition cannot exceed 1.00
processing units because it can run only one job at a time, which cannot exceed
1.00 processing units. However, if the same partition with 0.50 processing units
was assigned two virtual processors and processing resources were available,
the partition could use an additional 1.50 processing units.

Figure 5-4 on page 100 shows the relationship between two partitions using a
shared processor pool of a single physical CPU. One partition has two virtual
processors and the other a single one. The figure also shows how the capacity
entitlement is evenly divided over the number of virtual processors.

Minimum Requirement
0.1 Processing Units

Processing Capacity
1 Physical Processor
1.0 Processing Units

0.5 Processing Units
0.4 Processing Units
 Chapter 5. Micro-Partitioning 99

Figure 5-4 Distribution of capacity entitlement on virtual processors

When a partition is started, preference is given to the desired value, but this value
cannot always be used because there may not be enough unassigned capacity
in the system. In that case, a different value is chosen, which must be greater
than or equal to the minimum capacity attribute. The value that is chosen
represents a commitment of capacity that is reserved for the partition. This
capacity cannot be used to start another shared partition; otherwise, capacity
could be overcommitted.

The entitled processor capacity is distributed to the partitions in the sequence in
which the partitions are started. For example, consider a shared pool that has 2.0
processing units available. Partitions 1, 2, and 3 are activated in sequence:

� Partition 1 activated
Min. = 1.0, max = 2.0, desired = 1.5
Allocated capacity entitlement: 1.5

� Partition 2 activated
Min. = 1.0, max = 2.0, desired = 1.0
Partition 2 cannot be activated because the minimum capacity is not met.

� Partition 3 activated
Min. = 0.1, max = 1.0, desired = 0.8
Allocated capacity entitlement: 0.5

The maximum value is used only as an upper limit for dynamic operations.

1 Physical Processor
1.0 Processing Units

0.5 Processing Units
0.4 Processing Units

LPAR 1 Capacity Entitlement 50

Virtual
Processor 1

25 25

Virtual
Processor 2

LPAR 2 Capacity Entitlement 40

Virtual
Processor 1

40
100 Advanced POWER Virtualization on IBM Eserver p5 Servers

Capped and uncapped mode
In the configuration of Micro-Partitioning, two types are available, capped and
uncapped. The difference is in defining the ability of a partition to use extra
capacity available in the system. If a processor donates unused cycles back to
the shared pool, or if the system has idle capacity (because there is not enough
workload running), the extra cycles may be used by other partitions, depending
on their type and configuration.

Capped mode The processing capacity never exceeds the assigned
processing capacity.

Uncapped mode The processing capacity may be exceeded when the
shared processing pool has available resources.

A capped partition is defined with a hard maximum limit of processing capacity.
That means that it cannot go over its defined maximum capacity in any situation,
unless you change the configuration for that partition (either by modifying the
partition profile or by executing a dynamic LPAR operation). Even if the system is
otherwise idle, the capped partition cannot exceed its entitled capacity.

With an uncapped partition, you must specify the uncapped weight of that
partition. If multiple uncapped logical partitions require idle processing units, the
managed system distributes idle processing units to the logical partitions in
proportion to each logical partition's uncapped weight. The higher the uncapped
weight of a logical partition, the more processing units the logical partition gets.

Figure 5-5 on page 102 shows the usage of a capped partition of the shared
processor pool. Partitions using the capped mode are not able to assign more
processing capacity from the shared processor pool than the capacity
entitlement will allow.
 Chapter 5. Micro-Partitioning 101

Figure 5-5 Capped shared processor partitions

Figure 5-6 on page 103 shows the usage of the shared processor pool by an
uncapped partition. The uncapped partition can assign idle processing capacity if
it needs more than the entitled capacity.

In general, the value of the minimum, desired, and maximum virtual processor
attributes should parallel those of the minimum, desired, and maximum capacity
attributes in some fashion. A special allowance should be made for uncapped
partitions, as they are allowed to consume more than their entitlement.

If the partition is uncapped, then the administrator may want to define the desired
and maximum virtual processor attributes x% above the corresponding
entitlement attributes. The exact percentage is installation-specific, but 25% to
50% is a reasonable number.

Maximum Processor Capacity

Entitled Processor CapacityProcessor
Capacity
Utilization LPAR Capacity Utilization

Pool Idle Capacity Available

Time

Minimum Processor Capacity

Ceded Capacity

Utilized Capacity
102 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 5-6 Uncapped shared processor partition

Table 5-1 shows several reasonable settings for number of virtual processors,
processing units, and the capped and uncapped mode.

Table 5-1 Reasonable settings for shared processor partitions

a - Virtual processors, b - Processing units

Operating systems and applications running in shared partitions need not be
aware that they are sharing processors. However, overall system performance
can be significantly improved by minor operating system changes. AIX 5L V5.3
provides support for optimizing overall system performance of shared processor
partitions.

Min
VPsa

Desired
VPs

Max VPs Min PUb Desired
PU

Max. PU Capped

1 2 4 0.1 2.0 4.0 Y

1 3 or 4 6 or 8 0.1 2.0 4.0 N

2 2 6 2.0 2.0 6.0 Y

2 3 or 4 8 or 10 2.0 2.0 6.0 N

Maximum Processor Capacity

Processor
Capacity
Utilization

Pool Idle Capacity Available

Time

Entitled Processor Capacity

Minimum Processor Capacity

Utilized Capacity

Ceded Capacity
 Chapter 5. Micro-Partitioning 103

Weight for uncapped partitions
You can determine how the POWER Hypervisor should distribute the extra
cycles between different uncapped partitions. When configuring an uncapped
partition on the HMC, you are presented with an option to set the variable
capacity weight. It is a number between 0 and 255 that represents the relative
share of extra capacity that the partition is eligible to receive. For any uncapped
partition, its eligible share is calculated by dividing its own variable capacity
weight by the sum of the variable capacity weights for all uncapped partitions.

The default uncapped weight for uncapped logical partitions is 128. A partition's
share is computed by dividing its variable capacity weight by the sum of the
variable capacity weights for all uncapped partitions. Setting the uncapped
weight to 0 will result in the logical partition being treated as capped. A logical
partition with an uncapped weight of 0 cannot use more processing units than
those that are committed to the logical partition.

5.2.1 Virtual processor dispatching
There are four logical states that a virtual processor could be in:

Running Currently dispatched onto a physical processor.

Runnable Currently not running, but ready to run. The queue of
runnable virtual processors represents a first-in, first out
(FIFO) queue for selecting the next virtual processor to be
dispatched to a physical processor.

Not-runnable The state of a virtual processor that has released its
cycles either by calling H_CEDE or H_CONFER POWER
Hypervisor calls. In the cede case, either an interrupt or
an H_PROD call from another virtual processor makes
this virtual processor runnable again. In the confer case, a
H_PROD call or a dispatch cycle granted to the conferred
targets will make the virtual processor runnable again.

Entitlement expired The state of all virtual processors that have received full
entitlement for the current dispatch window.

The POWER Hypervisor schedules virtual processors from a set of physical
processors that is called the pool. There are up to three pools of physical
processors on a system: one is for dedicated processor partitions, one is for
shared processor pool, and the other is for unallocated processors.

Each partition is presented with the resource abstraction for its partition and
other required information through the Open Firmware device tree. The device
tree is created by firmware and copied into the partition before the operating
system is started. Operating systems receive resource abstractions and
104 Advanced POWER Virtualization on IBM Eserver p5 Servers

participate in the partitioning model by making POWER Hypervisor calls at key
points in their execution as defined by the model.

For Micro-Partitioning, the POWER Hypervisor schedules virtual processors from
a set of physical processors in the shared processor pool. By definition, these
processors are not associated with dedicated partitions.

In Micro-Partitioning there is no fixed relationship between virtual processors and
physical processors. The POWER Hypervisor can use any physical processor in
the shared processor pool when it schedules a virtual processor. By default, it
attempts to use the same physical processor that was last used by the partition,
but this cannot always be guaranteed. The POWER Hypervisor uses the concept
of a home node for virtual processors, enabling it to select the best available
physical processor from a processor affinity perspective for the virtual processor
that is to be scheduled.

Processor affinity As an application runs, the instruction cache fills with the
instructions and the data cache fills with the data
associated with the application. If the application is
momentarily preempted by another higher priority task
that only executes for a short period of time, the caches
may still have instructions and data related to the
application that was preempted when it is redispatched,
and it would be optimal for that application to be
dispatched back onto that processor.

Affinity is actively managed by the POWER Hypervisor because each partition
has a completely different context. Currently, there is one shared processor pool,
so all virtual processors are implicitly associated with the same pool.

Operating systems use their virtual processors by being dispatched in time-sliced
manner onto physical processors under the control of the POWER Hypervisor,
much like the operating system time slices software threads.

The POWER Hypervisor utilizes the HDEC register to drive its partition
dispatcher. HDEC is a clock interrupt source utilized by the POWER Hypervisor
to preempt a dispatched partition and regain control of the physical processor.
For the details of HDEC, refer to “POWER Hypervisor Decrementer” on page 33.

Dispatch wheel
The POWER Hypervisor uses the architectural metaphor of a dispatch wheel
with a fixed timeslice of 10 milliseconds (1/100 seconds) to guarantee that each
virtual processor receives its share of the entitlement in a timely fashion. This
means that the entitled processing unit of each partition is distributed to one or
more virtual processors, which will then be dispatched onto physical processors
in a time-slice manner during every 10 ms dispatch wheel. The time that each
 Chapter 5. Micro-Partitioning 105

virtual processor gets dispatched depends on the number of virtual processors
and the entitled processing capacity that has been assigned to that partition from
HMC by the system administrator. When a partition is completely busy, the
partition entitlement is evenly distributed among its online virtual processors.

The POWER Hypervisor manages a dispatch wheel for each physical processor
in the shared pool. Figure 5-7 illustrates the assignment of virtual processors to a
physical processor.

Figure 5-7 Dispatch wheel

Initially, if the available physical processor entitlement in the whole system meets
the requirement defined for the partition, the partition will be started and the
POWER Hypervisor will begin to dispatch the required virtual processors to each
physical processor evenly. For every subsequent time slice, the POWER
Hypervisor does not guarantee that all virtual processors will be dispatched in

Virtual
Processor 0
(.25 units)

Virtual
Processor 2
(.10 units)

Virtual
Processor 1
(.25 units)

Virtual
Processor 3
(.40 units)

Physical
Processor
(1.0 units)

Dispatched

Dispatch Wheel
(10 msec)
106 Advanced POWER Virtualization on IBM Eserver p5 Servers

the same order, nor does it guarantee that the virtual processors in a given
partition are dispatched together. However, it does ensure that every partition
gets its entitlement if needed.

The dispatch wheel works the same way when simultaneous multithreading is
enabled for a processor or group of processors. The two logical processors
(hardware threads) are dispatched together whenever the POWER Hypervisor
schedules the virtual processor to run. The amount of time that each virtual
processor runs is split between the two logical processors.

Figure 5-8 shows a diagram for a case when simultaneous multithreading is
enabled.

Figure 5-8 Dispatch wheel when simultaneous multithreading is enabled

Dispatched

Dispatch Wheel
(10 msec)

Virtual Processor 3

Logical CPU 0Logical
Processor 1

Logical
Processor 0

Virtual Processor 2

Logical CPU 0Logical
Processor 1

Logical
Processor 0

Virtual Processor 0

Logical CPU 0Logical
Processor 1

Logical
Processor 0

Virtual Processor 3

Logical CPU 0Logical
Processor 1

Logical
Processor 0

Physical Processor 0

Logical CPU 0Thread 1
PURR 1

Thread 0
PURR 0
 Chapter 5. Micro-Partitioning 107

Processor affinity policy
The POWER Hypervisor attempts to dispatch work in a way that maximizes
processor affinity. When the POWER Hypervisor is dispatching a virtual
processor, it first attempts to use the same physical processor this virtual
processor was previously dispatched on. Otherwise, it will be dispatched to the
first available processor in the following order, same chip, same multi-chip
module (MCM), or same node. When a physical processor becomes idle, the
POWER Hypervisor will look for a virtual processor that requires processing time.
Priority will be given to virtual processors in this order:

1. Virtual processors that have an affinity for that processor
2. Virtual processors with no affinity to a real processor
3. Virtual processors that are uncapped

In IBM AIX 5L V5.3, the mpstat command using the -d flag displays detailed
affinity and migration statistics for AIX 5L threads and dispatching statistics for
logical processors (Example 5-1).

Example 5-1 The mpstat -d command

mpstat -d
System configuration: lcpu=4 ent=0.5

cpu cs ics bound rq push S3pull S3grd S0rd S1rd S2rd S3rd S4rd S5rd ilcs vlcs
 0 68598 38824 0 0 0 0 0 95.6 0.0 0.0 4.4 0.0 0.0 174110 237393
 1 291 244 0 0 0 0 0 90.9 7.4 0.0 1.7 0.0 0.0 1092 237759
 2 54514 30174 1 1 0 0 0 94.0 0.1 0.0 6.0 0.0 0.0 2756 71779
 3 751 624 0 0 0 0 0 91.3 2.9 0.0 5.8 0.0 0.0 1192 72971
ALL 124154 69866 1 1 0 0 0 94.8 0.1 0.0 5.1 0.0 0.0 89575 309951

The POWER Hypervisor dispatch affinity domains are defined as follows, and
statistics for virtual processor dispatch across these domains is given by the
mpstat command.

cpu Logical CPU (processor) number.

cs The number of context switches.

ics The number of involuntary context switches; typically caused by the
thread’s time slice expiring.

bound Total number of threads bound to a particular processor.

rq The number of threads on the run queue.

push The number of thread migrations to other processors due to starvation
load balancing.

S3pull Number of thread migrations outside the S3rd affinity domain due to
idle stealing.

S3grd Number of dispatches from the global run queue outside the S3rd
affinity domain.
108 Advanced POWER Virtualization on IBM Eserver p5 Servers

S0rd The process redispatch occurs within the same logical processor. This
happens in the case of simultaneous multithreading enabled systems.

S1rd The process redispatch occurs within the same physical processor,
among different logical processors. This involves sharing of the L1, L2,
and L3 cache.

S2rd The process redispatch occurs within the same processor chip, but
among different physical processors. This involves sharing of the L2
and L3 cache.

S3rd The process redispatch occurs within the same MCM module, but
among different processor chips.

S4rd The process redispatch occurs within the same central processing
complex (CPC) plane, but among different MCM modules. This
involves access to the main memory or L3-to-L3 transfer.

S5rd The process redispatch occurs outside of the CPC plane.

ilcs Total number of involuntary logical CPU context switches.

vlcs Total number of voluntary logical CPU context switches.

As previously stated, the POWER Hypervisor always tries first to dispatch the
virtual processor onto the same physical processor that it last ran on and,
depending on resource utilization, will broaden its search out to the other
processor on the POWER5 chip, then to another chip on the same MCM, then to
a chip on another MCM.

Operating system support
In general, operating systems and applications do not have to be aware that they
are sharing processors in a Micro-Partitioning environment. However, overall
system performance can be improved significantly by minor operating system
changes. The main issue here is that the POWER Hypervisor cannot distinguish
between the operating system doing useful work such as numerical
computations and non-useful work such as spinning while waiting for a lock to be
released. The result is that the operating system may waste much of its
entitlement doing nothing of value.

AIX 5L V5.3 provides support for optimizing overall system performance of
Micro-Partitioning. These optimizations are built around the idea that an
operating system can provide hints to the POWER Hypervisor about scheduling.
For example, an operating system can signal to the POWER Hypervisor when it
is no longer able to schedule work and yield the remaining time slice. This results
in better utilization of the physical processors in the shared processor pool.

The dispatch mechanism may utilize POWER Hypervisor calls to communicate
between the operating system and the POWER Hypervisor. The major three
 Chapter 5. Micro-Partitioning 109

POWER Hypervisor calls used by operating systems are H_CEDE, H_CONFER,
and H_PROD. For the definition of POWER Hypervisor calls, refer to Table 4-1
on page 81.

When the operating system detects an inability to utilize processor cycles, it may
cede or confer its cycles back to the POWER Hypervisor, enabling it to schedule
another virtual processor for the remainder of the dispatch cycle. Reasons for a
cede or confer may include the operating system entering its idle task or an
application entering a spin loop to wait for a resource to free. There is no concept
of credit for cycles that are ceded or conferred. Entitled cycles not used during a
dispatch interval are lost.

A virtual processor that has ceded cycles back to the POWER Hypervisor can be
reactivated using a H_PROD POWER Hypervisor call. If the operating system
running on another virtual processor within the logical partition detects that work
is available for one of its idle processors, it can use H_PROD to signal the
POWER Hypervisor to make the virtual processor runnable again. Once
dispatched, this virtual processor would resume execution at the return from the
H_CEDE POWER Hypervisor call.

Dispatching example
Table 5-2 shows an example configuration that will be used to illustrate
dispatching of virtual processors. In this Micro-Partitioning example, three logical
partitions share two physical processors, and all partitions are capped.

Table 5-2 Micro-Partitioning definition:

Figure 5-9 on page 111 shows each of these partitions running during two
POWER Hypervisor dispatch windows.

LPAR Capacity
entitlement

Virtual
processors

Capped or
uncapped?

1 0.8 2 capped

2 0.2 1 capped

3 0.6 3 capped
110 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 5-9 Dispatching processors in Micro-Partitioning

Logical partition 1 (LPAR1) is defined with an entitlement capacity of 0.8
processing units and two virtual processors (VP0 and VP1). This means that the
partition is entitled to 80% of physical processor capacity from the shared
processor pool for each 10 ms dispatch window. The figure shows that the
workload is evenly distributed (40% each) between the two physical processors.
Note that it is possible for a virtual processor (for example, VP1) to be dispatched
more than once during a dispatch interval. The figure shows LPAR1 with VP1
running for two cycles on physical processor 0; LPAR3 with VP0 running for the
next two cycles; then LPAR1 is redispatched. This may happen if the operating
system confers (H_CONFER) cycles and then is reactivated by the POWER
Hypervisor call, H_PROD.

Logical partition 2 (LPAR2) is configured with one virtual processor (VP0) and a
capacity of 0.2 processing units, entitling it to use 20% of the physical processor
resources during each dispatch interval. In this example, the virtual processor
dispatched during the two dispatch wheels is assigned to the same physical
processor according to the affinity policy.

Logical partition 3 (LPAR3) is configured with three virtual processors (VP0, VP1,
and VP2) and has an entitled capacity of 0.6 processing units. Each virtual
processor receives 20% of a physical processor in each dispatch interval, but in
the case of VP0 and VP2, the physical processor they run on is changed in the
two dispatch intervals. The POWER Hypervisor does attempt to maintain
physical processor affinity when dispatching virtual processors. As described
previously, dispatch logic will always attempt to dispatch the virtual processor
onto the same physical processor it last ran on. Depending on resource
utilization, it will broaden its search out to the other processor on the POWER5
chip, then to another chip on the same MCM, then to a chip on another MCM.
 Chapter 5. Micro-Partitioning 111

Tracing virtual processor dispatch
The dispatching of virtual processors by the POWER Hypervisor does not involve
the operating system running in the partition. The operating system cannot
directly monitor the rate or characteristics of context switching from the POWER
Hypervisor. However, there is a communication area that is shared between the
POWER Hypervisor and each virtual processor in a partition so that an operating
system such as AIX 5L V5.3 can implement tracing of the virtual processor
context switching.

The trace facility in AIX 5L V5.3 supports the trace hook value of 419. This trace
hook represents the information that is available about context switching.
Example 5-2 shows how a system administrator or systems programmer can
trace virtual processor dispatching.

Example 5-2 Tracing virtual processor dispatching

trace -aj 419
trcstop
trcrpt
ID PROCESS NAME CPU PID TID I SYSTEM CALL ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT
419 -229498- 3 229498 876731 0.020218416 5.926309 cpu preemption data Preempted vProcIndex=0005
 rtrdelta=0000 enqdelta=17321 exdelta=202DC

start wait=2D33E3B52A87 end wait=2D33E3CE5F7B
SRR0=000000000017B770
SRR1=8000000000009032

419 -229498- 2 229498 819359 0.020325289 0.101956 cpu preemption data Preempted vProcIndex=0004
rtrdelta=0000 enqdelta=1732A3 exdelta=202DB

start wait=2D33E3B529FC end wait=2D33E3CE5F7A
SRR0=000000000017B74C
SRR1=8000000000009032

The time when a virtual processor is removed from a physical processor is
encoded in the trace hook as well as in the start wait field. The time that the
virtual processor is redispatched is encoded as the end wait field. We can see
the statistics from the following sequence of an AIX trace.

Some measure of virtual processor to physical processor affinity is possible as
well. The trace hook shows an index to the physical processor (vProcIndex field).
The index is fixed over time, and not necessarily an indicator of the physical
processor number of the system. If a virtual processor number is dispatched to
the same vProcIndex as the previous dispatch, affinity is maintained.

5.2.2 Phantom interrupts
In order to speed the processing of I/O interrupts, the delivery of interrupts to
physical processors can happen without direct execution of the POWER
Hypervisor. Rather, interrupts are delivered by the hardware directly to a physical
processor running a partition’s virtual processor. In the event an interrupt is
delivered to a virtual processor for a partition that does not own the hardware, the
112 Advanced POWER Virtualization on IBM Eserver p5 Servers

interrupt is ignored by the currently executing partition and is queued by the
POWER Hypervisor for servicing by the correct partition. An interrupt that is
mistakenly delivered to an incorrect partition is termed a phantom interrupt.

Figure 5-10 shows the interrupt servicing logic and can be described as follows.
If the processor is idle (running in POWER Hypervisor mode), then the POWER
Hypervisor handles the interrupt and identifies the correct partition to make ready
to run. The interrupt is queued to be delivered when a virtual processor for the
correct partition runs. If the physical processor is running a virtual processor for a
partition, the virtual processor receives the I/O interrupt. The operating system
running on the virtual processor calls the POWER Hypervisor (via the H_XIRR
call) to determine the interrupt source. If the interrupt source is not for this
partition, the interrupt is queued in the POWER Hypervisor for delivery to the
correct partition. If the interrupt source is for this partition, the correct device
driver is invoked.

Figure 5-10 Interrupt servicing in POWER5 systems

Device delivers interrupt
to physical processor

Physical processor idle?

Interrupt is queued
by Hypervisor

Hypervisor identifies the
partition owning I/O interrupt

and makes It runnable

Deliver the interrupt to
a running partition

Operating System
determines the source

via H_XIRR call

Destined for this
partition?

Yes

Yes

Invoke Device Driver

Interrupt finished

No

Partition runs

No
 Chapter 5. Micro-Partitioning 113

For dedicated processor partitions, phantom interrupts are extremely rare, as the
I/O hardware can be relatively certain of which physical processors a partition is
running on. In Micro-Partitioning, phantom interrupts happen with statistical
likelihood. The latency for interrupt servicing can become extended, due to
nuances of partition dispatch. But normally interrupt latency will have an upper
limit of the duration of the dispatch wheel (10 ms).

Under normal and even heavy I/O load, the performance degradation of handling
phantom interrupts is very low. That is because the CPU cost to process a
phantom interrupt is small. In order to understand the rate of phantom interrupts,
we allow extraction of their rates by the AIX 5L command mpstat. In
Example 5-3, the ph field shows the number of phantom interrupts for each
logical processor.

Example 5-3 mpstat command

(localhost:) # mpstat -i 1 100

System configuration: lcpu=8 ent=1.0
cpu mpcs mpcr dev soft dec ph

 0 0 1 1939 47 183 2735
 1 0 1 1946 1 83 2225
 2 0 1 1815 1 100 2912
 3 0 1 1870 1 89 1510
 4 0 1 2000 11 102 3096
 5 0 1 1951 1 100 1715
 6 0 1 2093 1 112 1942
 7 7 0 2101 0 100 2527
 ALL 7 7 15715 63 869 18662

 0 0 1 1767 49 148 4131
 1 0 1 1809 1 100 1843
 2 0 1 1951 1 101 4062
 3 0 1 1974 1 85 2602
 4 0 1 1918 11 101 2264
 5 0 1 1868 1 101 3492
 6 0 1 1980 1 110 5461
 7 7 0 1971 0 100 1841
 ALL 7 7 15238 65 846 25696

You can trace phantom interrupts in AIX 5L V5.3 using the trace command with
trace hook values of 492 and 47F. In Example 5-4 on page 115, the tracing of
hook values 100 and 200 are included to show when the interrupt occurs and
when the preempted process (in this case, wait) resumes.
114 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 5-4 AIX 5L trace for phantom interrupt

trace -aj 100,200,492,47F
trcstop
trcrpt
ID PROCESS CPU PID ELAPSED_SEC DELTA_MS APPL SYSCALL KERNEL INTERRUPT
100 wait 0 8197 0.340638 0.337172 I/O INTERRUPT iar=2C514 cpuid=00
492 wait 0 8197 1 0.340638 0.337173 h_call:start H_XIRR iar=3B6B100

p1=1857D50 p2=234E70 p3=9C6B508A638
492 wait 0 8197 1 0.340642 0.337177 h_call:end H_XIRR iar=3B6B100 rc=0000
47F wait 0 8197 1 0.340642 0.337177 phantom interrupt cpuid=00
200 wait 0 8197 1 0.340643 0.337178 resume wait iar=2C514 cpuid=00

5.3 Performance considerations
Micro-Partitioning adds a layer of abstraction by the creation of virtual
processors. This virtualization promotes greater flexibility and increased
processor utilization. However, in some cases, improper system configuration
utilizing Micro-Partitioning can negatively affect performance. The intention of
this book is to assist system administrators with avoiding those pitfalls.

The impact on performance can be positive or negative and may be defined or
measured in a number of different ways:

� A decrease in maximum throughput for a fixed entitlement due to workloads in
other partitions. The impact can be measured in partitions with high CPU
utilization levels.

� A change in processing time used by a partition to complete a fixed task due
to workloads in other partitions. This impact may be measured at any
utilization level.

� A change in processing time for a software thread or process to complete a
fixed task due to workloads in other partitions. This impact may be measured
at any utilization level.

With Micro-Partitioning, the impact on performance tends to be isolated to each
partition. In other words, there is no unmeasured partition or time unaccounted
for that reflects the impact on performance. Rather, the impact on performance
appears as changing amounts of CPU time to complete work. The changing
amounts can be either positive or negative. Better processor utilization through
load balancing, efficient programs and Micro-Partitioning aware operating
systems can has a positive impact. However, high CPU utilization by all active
partitions can be negative. In most cases, the impact on performance only occurs
when multiple partitions are running on the system. There is very little
performance impact when running a single partition by itself.
 Chapter 5. Micro-Partitioning 115

For example, in a test using Network File System (NFS), throughput was
measured on four dedicated processor partitions, each with one physical
processor. The result was compared to a Micro-Partitioning environment
implementing four partitions with 1.0 entitlement per partition, each essentially
running on its own physical processor. The throughput in each partition was the
same in both cases. Processor usage was about 2% higher in the case of
Micro-Partitioning.

5.3.1 Micro-Partitioning considerations
In Chapter 3, “Simultaneous multithreading” on page 41, simultaneous
multithreading was defined by the POWER5 architecture as having two hardware
threads of execution occurring simultaneously. These hardware threads could be
from independent programs or programs that are multi-threaded. Each hardware
thread is considered a unique processor by the operating system. Except for the
few differences mentioned here, the behavior of simultaneous multithreading is
independent of whether the partition is configured with dedicated processors or
Micro-Partitioning.

The purpose of simultaneous multithreading is to increase the number of
instructions that can execute in a unit to time through the microprocessor. Each
thread uses microprocessor resources such as registers to execute instructions.
Under almost all circumstances, there are sufficient resources to have more
throughput with two threads executing than with a single thread executing.
However, the simultaneous execution of two threads results in the sharing of
some microprocessor resources. This implies that the time to execute a fixed
number of instructions by a single thread may increase when two threads are
active in the processor core. However, over that same measured interval, the
total instructions executed by both threads normally will be greater than those
that could be executed by a single thread. If a partition is executing a
low-to-medium CPU utilization, there may not be enough software threads or
software processes to keep all of the hardware threads busy. In this case, it is
beneficial to be able to apply all of the microprocessor resources to a single
thread.

AIX 5L V5.3 classifies the two threads on a microprocessor as a primary thread
and a secondary thread. In a partition with simultaneous multithreading enabled,

Note: The impact on performance when implementing Micro-Partitioning can
be both positive and negative.

Note: AIX 5L V5.3 classifies the two hardware threads as primary and
secondary. Dispatch preference is given to the primary thread.
116 Advanced POWER Virtualization on IBM Eserver p5 Servers

threads of a process are dispatched to the primary hardware threads before the
secondary threads. This helps to optimize performance for single- threaded
applications running on a microprocessor. Because the secondary threads do
not get work to execute, they go into a snooze state and the primary thread runs
at almost single-thread performance.

In dedicated processor partitions, the POWER Hypervisor can dynamically
transition the processor from simultaneous multithreading to single-threaded
when requested by the operating system. When a single hardware thread
running on a processor becomes idle, the processor is changed to
single-threaded mode, and the running thread benefits from single-threaded
performance. When the other thread is runnable again, the processor returns to
simultaneous multithreading mode and runs both threads.

Micro-Partitioning does not support automatic changing between simultaneous
multithreading and single-threaded; this is controlled by the smtctl command. In
Micro-Partitioning, if a hardware thread becomes idle, it spins in an idle loop at
low priority. This enables the other running thread to get a large part of the
processing capacity to itself.

Effect of simultaneous multithreading on processor usage
For a processor to cede its idle cycles to the POWER Hypervisor in the case of
Micro-Partitioning, both hardware threads must be idle. If one thread is idle while
the other is running, some idle capacity remains in the partition and cannot be
given back to the POWER Hypervisor. This effect is noted by comparing the CPU
utilization of the partition versus the fraction of its entitlement used.

The behavior is more perceptible when CPU usage within a partition is between
40% and 70% of processing capacity. You can observe this effect by looking at
the difference between partition entitlement utilization (processing capacity
consumed by the partition) and partition processor utilization (processing
capacity consumed by the threads in the partition). The AIX 5L command vmstat
shows this information in the ec and pc columns. Figure 5-11 on page 118
illustrates this effect as observed when running a Java™-based application
server with WebSphere® and DB2®.
 Chapter 5. Micro-Partitioning 117

Figure 5-11 Effects of simultaneous multithreading

As partition utilization increases, this effect decreases because the hardware
threads get more work to be done so the idle time for each thread decreases.
Obviously, this effect is not present in partitions running in single-threaded mode.

Micro-Partitioning effects on caching
On POWER5 systems, the two processor cores on the same chip share the L2
and L3 caches. A system running with dedicated partitions and with each core
assigned to a different partition, the caches are still shared. This results in the
two cores competing for cache capacity. Naturally, each core can access only the
cache lines correspondent to its memory addresses. But, the competition for
cache capacity has direct impact on the performance each microprocessor can
achieve.

In Micro-Partitioning, the same situation can occur, with the additional factor that
during a given interval a physical processor may have executed code from
several different partitions. When a virtual processor is dispatched onto a
physical processor, all of the memory addresses are relative to the partition the
virtual processor is assigned. Cache usage becomes dependent on the memory
access behavior of different applications running on different partitions. The
competition for shared caches is a significant factor in Micro-Partitioning
performance, as the cache hit ratios for a measured partition may change over
time as other partitions run at varying levels of activity.

1 2 3 4 5 6
Workload units

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e CPU

Entitlement

Difference
118 Advanced POWER Virtualization on IBM Eserver p5 Servers

The POWER Hypervisor is responsible for maintaining affinity between virtual
and physical resources in Micro-Partitioning. When dispatching a virtual
processor onto a physical processor, the POWER Hypervisor tries to redispatch
a virtual processor to the same physical processor that it ran on previously. This
attempts to maximize cache affinity and reduce the need for reloading data from
main memory.

Nevertheless, in Micro-Partitioning there is the potential of having several
partitions sharing a processor, resulting in several different memory contexts.
Moreover, because of dispatching requirements, a physical processor may not be
available when a virtual processor makes the transition from not-runnable to
runnable. When a virtual processor is ready to run, the POWER Hypervisor
checks whether the physical processor that ran this virtual processor for the last
time is idle. If it is busy, then it starts looking in increasing levels of affinity scope
for an idle processor (other cores on same chip, other processors within same
MCM, and any other processor in the system) until one is found. If no processor
is available, the virtual processor is queued onto the runnable queue. Figure 5-12
depicts the flow of actions described.

Figure 5-12 Affinity between virtual and physical processors

VP placed in run
queue

Check last
physical processor
used to run this VP

Idle? Run the VP on the
physical processor

Idle CPUs on
the chip?

Run on the other
core of the same

chip

N

Y

Y

N

Idle CPUs on
MCM?

Run in first idle
processor on the

MCM

Run in the first idle
processor foundIdle CPUs?

Y

N

Y

N

Is VP
runnable

?

Is it an MCM-
based system?

Y

N

 Chapter 5. Micro-Partitioning 119

Even if the virtual processor is dispatched on the same physical processor from
its last run, data in cache may have been replaced by previous virtual processors
dispatched in the same physical processor.

The amount of leftover cache context depends on the amount of data read from
other applications running on the same processor and the ratio of virtual
processors to physical processors. If an application running on a virtual
processor is memory intensive, data in the caches belonging to other virtual
processors is replaced. The caches are reloaded when other virtual processors
are later dispatched. Therefore, an application whose performance depends on
cache efficiency will be affected when running in a micro-partition along with
other partitions that do intensive memory access.

Number of virtual processors
When the number of virtual processors is much larger than the number of
physical processors on the system, the time slice given to each virtual processor
on the physical processors tends to gets smaller. One way to calculate the size of
the virtual processor time slice is to divide the partition entitlement by the number
of virtual processors. Increasing the number of virtual processors increases the
probability that a cache line will be flushed for a virtual processor that is not
running, and thus reduces the physical processor’s cache efficiency.

When virtual processor capacity is small, the impact on performance of reading
data from memory is significantly high, due to the fact that the time to fetch data
from memory is constant and the time slice is small for small capacity
entitlements. Therefore, the impact is more significant in virtual processors with
small capacity.

Keep in mind the purpose of a cache is to hold data that is referenced frequently.
If applications running on the system are processing data by reading it, modifying
it, and then writing it back to memory, the virtual processor time slice effects
mentioned above would be no different than dedicated processor partitions.

The performance impact of increasing cache miss rates in the partition due to
competition with other partitions depends on the size of the partition, the number
of virtual processors, the nature of the other partitions, and the type of
application.

A worst-case scenario is where one partition uses the caches moderately and
another partition uses the caches extensively. Both partitions run on the same
processor. For example, application A, which is composed of small but numerous
tasks, fits well in the cache by itself. Application B uses memory heavily for
reading and writing large blocks of data. In all cases, each partition has two
virtual processors, each with 0.1 processor capacity. The partition running
application A is uncapped, and the partitions running application B are capped.
120 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 5-13 shows the results of three test cases.

Figure 5-13 Measurements of cache effects in different partitions

Case 1 shows the throughput for application A running without any other
partitions active, and serves as a reference point. Case 2 shows the throughput
when application A runs in one partition, and one other partition runs application
B. Even with the effects of application B reducing caching efficiency, application
A runs well, with slightly more than a 5% penalty for sharing the same physical
processor with application B. Case 3 shows the throughput for application A
while seven other partitions run benchmark B. Due to seven partitions and 14
virtual processors running memory-intensive workloads, we can see that caching
efficiency drops to around 76%. This example was an extreme case where the
workloads were selected so that the effect on cache usage would have the most
impact on performance. Most applications that will run on these systems,
including commercial and technical workloads, should observe a smaller impact
in performance.

In addition to the changes in maximum throughput achieved by a partition for a
fixed entitlement, changes in the CPU time to perform a task will occur. For
example, consider a case where a partition requires 100 CPU seconds to
complete a database sort when it runs on a processor while the other partitions
on the system are relatively idle. When the exact same sort is run again at a time
when a number of other partitions are active, the resulting CPU time is 130
seconds. It is important to understand this phenomenon in environments where
billing for CPU usage is performed.

5.3.2 Locking considerations
Most operating systems and sophisticated applications use spin locks to serialize
read/write access to shared memory. The effectiveness of spin locks is based on
the idea that the locks are not held for long periods of time. In Micro-Partitioning,
it is possible for a virtual processor holding a lock to be undispatched for several

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Relative performance

Case 1
Case 2
Case 3
 Chapter 5. Micro-Partitioning 121

milliseconds. This increases the likelihood of lock contention when a partition is
spread over several virtual processors.

For example, in AIX 5L V5.3, kernel locks that run with interrupts disabled benefit
from special handling in Micro-Partitioning. They are handled differently from
locks that run with interrupts enabled, since having interrupts disabled prohibits
the undispatching of the blocked software thread and running another.

Consider the case where a virtual processor owning the lock is not running (for
example, it used up the entitled time slice), and there is another virtual processor
that needs the same lock to run on the system concurrently. Without optimization,
a blocked virtual processor will spin waiting until the lock is released by the
owner. To effectively solve this situation without spending unnecessary cycles,
the virtual processor waiting for the lock uses the POWER Hypervisor call
H_CONFER to give its cycles to the virtual processor owning the lock. The
POWER Hypervisor dispatches the lock owner to continue processing and
eventually release the lock. Note that in a simultaneous multithreading enabled
partition, this mechanism is relatively less effective. If there is heavy locking,
running a partition in single-threaded mode may reduce the impact.

Lock contention can be monitored with the AIX 5L trace facility. Example 5-5
shows a case where a thread on virtual processor 0 attempts to acquire a lock.
When it determines that there is lock contention with another thread, it confers its
processor cycles. After the lock is released, it acquires the lock.

1. Thread on virtual processor 0 attempts to acquire a lock.

Example 5-5 AIX 5L trace of lock contention - step 1

ID PROCESS NAME CPU PID TID I SYSTEM CALL ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT
112 -229498- 0 229498 1294461 0.033375354 0.000376 lock: dmiss lock

addr=F1000600234F0100 lock
status=B7060000000000
requested_mode=LOCK_SWRITE

 eturn addr=3CCF1EC
name=00000000.00000000

2. After identifying lock contention with another thread, the lock becomes a spin
lock.

Example 5-6 AIX 5L trace of lock contention - step 2

112 -229498- 0 229498 700529 0.033376227 0.000019 krlock: cpuid=00 addr=F100060004006B80 action=spin
122 Advanced POWER Virtualization on IBM Eserver p5 Servers

3. Instead of actively spinning, it confers its cycles to CPU 2, which is ahead of it
in the lock queue.

Example 5-7 AIX 5L trace of lock contention - step 3

112 -229498- 0 229498 700529 0.033382946 0.000019 krlock: cpuid=00 addr=F100060004006B80 action=confer (target cpuid=0002)

4. The POWER Hypervisor runs to confer cycles and dispatches the thread on
CPU 2.

Example 5-8 AIX 5L trace of lock contention - step 4

492 -229498- 0 229498 700529 0.033383307 0.000014 h_call: start H_CONFER iar=17A8F0 p1=0002 p2=52904FF p3=2D33E3F7FA44
419 -229498- 2 229498 819359 0.033598712 0.215405 cpu preemption data Preempted vProcIndex=0004

rtrdelta=0000 enqdelta=4471D exdelta=A66B
start wait=2D33E3F3B790 end wait=2D33E3F8A518
SRR0=000000000017B770
SRR1=8000000000009032

5. Virtual CPU 2, which was waiting on the lock, acquires it. After it is no longer
needed, it is handed off to the thread on CPU 3, which also was waiting for it.

Example 5-9 AIX 5L trace of lock contention - step 5

112 -229498- 2 229498 819359 0.033599436 0.000724 krlock: cpuid=02 addr=F100060004006B80 action=acquire
112 -229498- 2 229498 819359 0.033600580 0.001144 lock: dlock lock addr=F1000600234F0100 lock status=B70800000C809F

requested_mode=LOCK_SWRITE return addr=3CCF1EC
name=00000000.00000000

112 -229498- 2 229498 819359 0.033601444 0.000864 krlock: cpuid=02 addr=F100060004006B80
action=handoff (target cpuid=0003)

419 -229498- 3 229498 876731 0.033602912 0.001468 cpu preemption data Preempted vProcIndex=0005
 rtrdelta=0000 enqdelta=446AF exdelta=A670

start wait=2D33E3F3B7FE end wait=2D33E3F8A51D
SRR0=000000000017B74C SRR1=8000000000009032

6. Virtual CPUs 2 and 3 continue processing.

Example 5-10 AIX 5L trace of lock contention - step 6

254 -229498- 2 229498 819359 0.033603515 0.000603 MBUF m_copydata mbuf=F100061008250C00 offset=0 len=26
cpaddr=F100061001480000

254 -229498- 3 229498 819359 0.033604287 0.000763 MBUF return from m_copydata
254 -229498- 2 229498 819359 0.033604697 0.000410 MBUF m_copydata mbuf=F100061008250C00 offset=26 len=8

cpaddr=F10006100148001A
254 -229498- 2 229498 819359 0.033605015 0.000318 MBUF return from m_copydata

7. On the next pass of the POWER Hypervisor dispatch wheel, virtual CPU 0 is
dispatched to run again. Note that approximately 7 ms have passed.

Example 5-11 AIX 5L trace of lock contention - step 7

419 -229498- 0 229498 700529 0.040380275 .069589 cpu preemption data Unblocked vProcIndex=0007
rtrdelta=AA7D enqdelta=12875A exdelta=2E448
start wait=2D33E3F7FC15 end wait=2D33E40E1234
SRR0=00000000001EB274 SRR1=8000000000009032

492 -229498- 0 229498 700529 0.040381096 0.000821 h_call: end H_CONFER iar=17A8F0 rc=0000
 Chapter 5. Micro-Partitioning 123

8. The thread running on virtual CPU 3 hands off the lock to the thread running
on CPU 0, which resumes and acquires the lock.

Example 5-12 AIX 5L trace of lock contention - step 8

112 -229498- 3 229498 819359 0.033601444 0.000864 krlock: cpuid=03 addr=F100060004006B80
action=handoff (target cpuid=0000)

419 -229498- 0 229498 819359 0.040382945 0.001207 cpu preemption data Unblocked vProcIndex=0006
rtrdelta=AA2E enqdelta=12882B exdelta=2E447

start wait=2D33E3F7FB93 end wait=2D33E40E1233
SRR0=00000000001EB274 SRR1=8000000000009032

112 -229498- 0 229498 819359 0.040381738 0.000642 krlock: cpuid=00 addr=F100060004006B80 action=acquire
112 -229498- 0 229498 819539 0.040381882 0.000144 lock: dlock lock addr=F1000600234F0100 lock

status=B70800000AB071 requested_mode=LOCK_SWRITE
return addr=3CCF1EC name=00000000.00000000

Since lock contention is statistical, reducing the number of virtual processors in a
partition will usually decrease lock contention just as increasing the number of
virtual processors in a partition usually increases lock contention. Environments
that have responsiveness issues without full utilization of entitled capacity should
be evaluated for possible lock contention issues. AIX 5L kernel lock contention
can be analyzed with the use of the curt tool.

There are two types of virtual processor context switches, voluntary and
involuntary. Context switches initiated by H_CEDE, H_CONFER, and H_PROD
POWER Hypervisor calls are voluntary context switches, while timeslice-related
context switches are involuntary. The number of voluntary and involuntary
context switches can be extracted from the output fields vlcs and ilcs by the
AIX 5L command mpstat.

The number of virtual processor context switches is important because it is one
measure of POWER Hypervisor activity. In some cases it is best to minimize the
number of virtual processors in each partition, if there are many partitions
activated. On the other hand, if more virtual processors are needed to satisfy
peak load conditions and the capacity requirements vary greatly over time, it may
be best to take virtual processors offline when they are not needed. In such a
situation, the Partition Load Manager may be used to automate this process as a
function of load. The detailed explanation of Partition Load Manager is discussed
in Chapter 10, “Partition Load Manager” on page 373.

The context switch statistics and the number of POWER Hypervisor calls can
also be extracted from AIX 5L high-level commands such as lparstat and
mpstat. The detailed explanation for the commands is discussed in 8.1,
“Performance commands” on page 258. Example 5-13 on page 125 illustrates
lparstat, which shows the name of the POWER Hypervisor call and its elapsed
execution time.
124 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 5-13 lparstat command

lparstat -H 1 1

System configuration: type=Shared mode=Uncapped smt=On lcpu=4 mem=256 ent=0.20

 Detailed information on Hypervisor Calls

Hypervisor Number of %Total Time %Hypervisor Avg Call Max Call
 Call Calls Spent Time Spent Time(ns) Time(ns)

remove 0 0.0 0.0 1 709
read 0 0.0 0.0 1 376
nclear_mod 0 0.0 0.0 1 0
page_init 4 0.0 0.1 655 1951
clear_ref 0 0.0 0.0 1 0
protect 0 0.0 0.0 1 0
put_tce 0 0.0 0.0 1 1671
xirr 6 0.0 0.1 638 1077
eoi 6 0.0 0.1 447 690
ipi 0 0.0 0.0 1 0
cppr 6 0.0 0.1 265 400
asr 0 0.0 0.0 1 0
others 0 0.0 0.0 1 0
enter 4 0.0 0.0 272 763
cede 357 1.3 98.4 7106 641022
migrate_dma 0 0.0 0.0 1 0
put_rtce 0 0.0 0.0 1 0
confer 0 0.0 0.0 1 0
prod 55 0.0 0.8 391 1168
get_ppp 1 0.0 0.1 1738 2482
set_ppp 0 0.0 0.0 1 0
purr 0 0.0 0.0 1 0
pic 1 0.0 0.0 260 656
bulk_remove 0 0.0 0.0 1 0
send_crq 0 0.0 0.0 1 2395
copy_rdma 0 0.0 0.0 1 0
get_tce 0 0.0 0.0 1 0
send_logical_lan 1 0.0 0.1 2685 4602
add_logicl_lan_buf 6 0.0 0.2 686 859

From an operating system point of view, there are software context switches to
make a different thread execute. The AIX 5L and Linux command vmstat can be
used to check context switches at the operating system level.

The example shown in Figure 5-14 on page 126 represents the relative
performance of various configurations when executing an NFS benchmark. It
shows both the SMP scaling effect and the performance considerations when
 Chapter 5. Micro-Partitioning 125

running several virtual processors. When the configuration changes from a
four-way dedicated processor partition to four 1-way dedicated processor
partitions, aggregate throughput is increased by a small margin. This is due to
both decreased data movement between processors and locking.

Figure 5-14 The effect of multiple virtual processors in overall performance

With Micro-Partitioning, four partitions with two virtual processors each see a
reduction in performance compared to four dedicated processor partitions.
Micro-Partitioning using two partitions with four virtual processors was tested and
it was found that using four virtual processors increases the lock contention.

Finally, we have four partitions, each with four virtual processors. This case has
the lowest performance, due to increasing cache interference and locking
requirements. As we increase the number of virtual processors, the relative
performance is more affected because of the SMP scaling inside the partition
and cache interference due to dispatching the multiple virtual processors in the
system.

5.3.3 Memory affinity considerations
In the POWER5 processor–based servers, memory is attached to processor
modules and it has the same access characteristics for any processor within the
module. This does not differ from POWER4 processor–based servers. Memory
and processors that are connected directly are said to fall within a single affinity
domain. A processor can access memory attached to its local memory domain

Note: It is recommended that you have as few virtual processors configured
as possible for each partition. It is better to have few virtual processors with
higher capacity than a large number of virtual processors each with a small
amount of processing power. If it is necessary for expanding the partition to
handle more workload, you can add more virtual processors by executing a
dynamic LPAR operation.

0.7

0.8

0.9

1

1.1

R
el

at
iv

e
pe

rfo
rm

an
ce

4-way SMP (4 CPUs)
4 partitions dedicated (1 CPU each)
4 micro-partitions (2 CPUs each)
2 micro-partitions (4 CPUs each)
4 micro-partitions (4 CPUs each)
126 Advanced POWER Virtualization on IBM Eserver p5 Servers

faster (that is, lower latency) than it can access memory attached to other
memory domains. AIX 5L V5.3 has optional support for organizing its memory
management strategies around these affinity domains.

With memory affinity support enabled, AIX 5L attempts to satisfy page faults from
the memory closest to the processor that generated the page fault. This is of
benefit to the application because it is now accessing memory that is local to the
MCM rather than memory scattered among different affinity domains. This is true
for dedicated processor partitions. When using Micro-Partitioning, however,
virtual processors may be dispatched on different physical processors during the
time a partition is running. As a result, there is no way to implement affinity
domains, so memory affinity has no meaning in Micro-Partitioning. Memory is
allocated to partitions in a round-robin way, and this tends to reduce processor
utilization due to variation in memory allocation.

5.3.4 Idle partition consideration
In Micro-Partitioning, the POWER Hypervisor manages virtual processor
dispatching between different partitions so that each partition gets the deserved
processing entitlement. In the case of partitions running in the system in the idle
state (no work being done), the unused processing cycles may be conferred to
other partitions by the POWER Hypervisor, leading to more efficient usage of the
CPU resources. There are some activities that consume processor resources
even when the partition is idle. System activity such as interrupts and daemons
polling for events are some examples of activities that use processing resources.
Because of these activities, an idle partition still presents some load to the
physical processor. Moreover, the POWER Hypervisor also needs some
processing resources to manage these idle partitions and the virtual processors
running on them. Normally, a system is not expected to have a large number of
idle virtual processors. If there are many, you should analyze whether they are
really needed for the work that has to be done. AIX 5L V5.3 implements some
timer-management functions to minimize resource utilization by the idle
partitions. Performance affected by idle partition management should be
minimal. Figure 5-15 on page 128 shows the impact of adding idle partitions to a
system running a workload in one uncapped partition.

Important: Applications that benefit from memory affinity should not be
implemented in Micro-Partitioning environments.
 Chapter 5. Micro-Partitioning 127

Figure 5-15 Uncapped partition performance example

Because idle partitions are not doing any productive work, to further reduce the
performance impact associated with having idle partitions in the system, AIX 5L
V5.3 introduces the idea of slow ticks. This is an operation mode for idle
processors with a reduced timer tick rate. In AIX 5L, a clock interrupt has always
occurred every 10 ms (1/100 of a second). This is still the case for busy
partitions. For idle partitions, the period of the clock interrupt is changed
dynamically to 1/10 of a second. Slow ticks are enabled in partitions running
independently as a function of load average on each processor of a system. Note
that daemons that run periodically for polling activities, or applications that
present similar behavior, can prevent the change to slow ticks; because there are
threads running periodically, the partition is not technically idle.

5.3.5 Application considerations in Micro-Partitioning
Applications do not have to be aware of Micro-Partitioning because it is
completely transparent from the application perspective. However, there are
some considerations that should guide a decision about which applications are
suitable for Micro-Partitioning and which are not.

Applications with response time requirements
The Micro-Partitioning environment is dynamic, especially when capped and
uncapped partitions are running on the same system.

As stated in 5.2.1, “Virtual processor dispatching” on page 104, the POWER
Hypervisor attempts to dispatch all virtual processors in an interval of 10
milliseconds. It does not guarantee, however, that the elapsed time between one
dispatch and the next one is fixed. Virtual processors can therefore be
dispatched any time between immediately (smallest latency) and 18 ms (largest

1 uncapped

1 uncapped + 1 idle

1 uncapped + 7 idle

80 85 90 95 100
Relative performance
128 Advanced POWER Virtualization on IBM Eserver p5 Servers

latency) after the last dispatch, based on the virtual processor configured
capacity and the number of virtual processors in the shared pool. Figure 5-16
illustrates the case for the smallest capacity (10% of a physical processor),
where the time slice is 1 millisecond.

Figure 5-16 Dispatch latencies for virtual processors

Applications that have strong response time requirements for transactions also
may not be good candidates for Micro-Partitioning. You can configure the
processing capacity inside a partition by tuning for the optimal number of virtual
processors, depending on the specific needs for the partition. If an application
depends on the individual processing capacity of a processor to run efficiently, it
will probably have higher response times when running on a partition with
smaller (but more) virtual processors. In order to meet quality of service
requirements, care must be taken when configuring the system to support
response time critical workloads. For planning purposes, if you decide to run
applications that must have predictable response times, or applications that have
transactions whose individual performance is a performance factor, you should
consider configuring the partition with extra capacity (perhaps 2-5% CPU per
partition), in order to compensate for these effects.

Applications in Micro-Partitioning environments, like those running in dedicated
processor partitions, see their response times as a function of the CPU
utilization. In Micro-Partitioning, if an application is run and the CPU utilization
within the partition becomes very high, response time will suffer. The problem is
magnified for small virtual processors, since each virtual processor is logically a
slower CPU. In laboratory tests, it is frequently difficult to drive small virtual
processor partitions to high utilizations on heavy CPU transactions with
acceptable quality of service. Applications without strong quality of service
requirements are good candidates for small-scale Micro-Partitioning.

Applications with polling behavior
Applications that perform polling may or may not be good candidates for
Micro-Partitioning. Because they need to periodically poll to detect whether the
resource is available or condition is satisfied, they spend cycles that otherwise

p1p1

p0p0

p1p1

p0p0

Dispatch Interval 1 Dispatch Interval 2Interrupt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Time (ms)

Largest
latency

Smallest
latency
 Chapter 5. Micro-Partitioning 129

would be available for other partitions (because they are not actually doing work).
If the application needs to periodically wake up a thread to do the polling, that
means that a virtual processor must be dispatched to run that thread, and spend
physical processor cycles, even if it is not producing work. This behavior is the
same regardless of the application being run on a partitioned server or not. What
might make a differences that in Micro-Partitioning spare cycles can be conferred
to other partitions with the help of the POWER Hypervisor.

Applications with low average utilization and high peaks
Applications where average usage of processor resources is low with peaks of
usage during a short period of time are good candidates for Micro-Partitioning.
More than one application can share the processor resources and run with the
required performance, exploiting the benefits of sharing otherwise unused
resources. Applications that perform online transaction processing (OLTP)
generally fit into this category because they are based on user input, and may
vary throughout the day depending on user activity. Usually there are distinct but
independent peaks of utilization and an average use significantly lower than the
peaks. Examples of such applications are mail servers, Web-based applications,
and directory servers.

Figure 5-17 shows the user distribution for a system on a real client scenario. You
can clearly identify the peak times.

Figure 5-17 User distribution on an application server

0

100

200

300

400

500

600

700

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

Time Of Day

N
um

be
r

of
 U

se
rs
130 Advanced POWER Virtualization on IBM Eserver p5 Servers

For OLTP applications, the processor usage usually follows a similar distribution,
as shown on Figure 5-18 for the same system.

Figure 5-18 Processor utilization by the application server

The same behavior can be seen on mail servers. An analysis of a Lotus®
Domino® server rendered a similar shape for number of users and processor
usage.

If you have several workloads that have peak activity at different times, you can
have each one running on a separate partition, and all partitions sharing the
same physical processors. By adjusting each partition entitlement and the
partition mode (capped or uncapped), you can run the system at a higher
average utilization while fulfilling the processing requirements for each
application.

Figure 5-19 on page 132 illustrates a typical scenario in which different
applications are running in a Micro-Partitioning environment, with different peak
times, and a mixed of capped and uncapped partitions. The system is running
with four physical processors, virtualized into 20 virtual processors distributed
between five partitions. Three partitions run OLTP types of applications, and two
partitions run batch processing.

0
10
20
30
40

50
60
70
80
90

100

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
Time Of Day
 Chapter 5. Micro-Partitioning 131

Figure 5-19 Processor utilization between five partitions

From this chart, we can see that partitions 1 and 2 have peak utilization at
different times. Therefore, there is no need to duplicate the amount of resources
to satisfy both partitions at peak processing. Partition 3 is capped and at a low
utilization, so it remains constant during the time, and cedes the extra cycles not
needed to other partition. Partitions 4 and 5 also benefit from the shared
resources, receiving extra cycles whenever there are idle processors. And
because of the nature of the applications (online and batch), the partition weight
is a key factor to allocate the extra cycles to the uncapped partitions.

CPU-intensive applications
If an application uses most of its entitled processing capacity during its execution,
it may not be suitable to run in a Micro-Partitioning environment. Because the
requirements for the application are high and constant during execution, a
dedicated processor partition is a better choice for this application. In a dedicated
processor partition it will receive the processing capacity it needs, and it is less
susceptible to interference from other workloads running in the system.

However, if the partition’s entitled processing capacity does not own most of the
physical processor’s capacity, it will be beneficial to run these applications in an
uncapped partition as they have the ability to use the extra cycles that may be
available eventually. In this case, the application can execute more work on a
system that would otherwise be idle. That would be the case when running online
applications in a system during daytime and batch applications at night.

Typical applications in this scenario are decision support systems (DSS) and
high-performance computing applications.

P artition 1 (O LT P)
0 .5 en titlem e n t
U ncapped (w e ig th 10)

P artition 2 (O LT P)
0 .5 en titlem e n t
U ncapped (w e ig th 20)

P artition 3 (O LT P)
1 .5 en titlem e n t
C apped

P artition 4 (B a tch)
0 .5 en titlem e n t
U ncapped (w e ig th 1)

P artition 5 (B a tch)
1 .0 en titlem e n t
U ncapped (w e ig th 2)
132 Advanced POWER Virtualization on IBM Eserver p5 Servers

5.3.6 Micro-Partitioning planning guidelines
When planning for Micro-Partitioning, it is important to identify the application
requirements and behavior in order to correctly size the partitions and maximize
the system performance.

Planning for future applications is often a case where estimates are the only
information available. In these cases, Micro-Partitioning can help, since partitions
can be adjusted for required capacities in a very flexible way. On the other hand,
an estimate can always be larger than the actual requirements, or smaller.
Because of this, you must always consider having reserve capacity to
accommodate unexpected resource requirements.

When the application environment is already in production or test, the task of
planning for Micro-Partitioning becomes more direct. You can measure the
resource utilization by the application on the running system and use this as a
base for Micro-Partitioning performance requirements. Based on the detailed
information you measure, you can plan the Micro-Partitioning environment to
make the most effective use of the physical resources.

When planning for Micro-Partitioning, there are three main strategies for defining
configurations:

Idle Resource Reallocation
A careful analysis of application resource usage and
peak processing requirements, in order to deploy
applications and substantially increase system
utilization. You should run most of the partitions in
uncapped mode.

Harvested Capacity The definition of partitions that have quality of service
requirements, and allowing other partitions to run on the
system with the resources eventually idle. You may have
some partitions running uncapped when you use this
approach so that they can use available resources in the
system.

Guaranteed Capacity A basic definition, based on the sum of capacities from
all servers being migrated, or based on sizing estimates
using any published performance unit. In general, the
partitions are running in capped mode when using this
strategy.

Each strategy applies to different situations, depending on the amount of
information you have for planning.
 Chapter 5. Micro-Partitioning 133

Idle Resource Reallocation
This is the strategy where you make the most efficient use of the processing
capacity in the system. It is also the strategy that requires the most accurate
planning and detailed knowledge about the applications behavior.

Idle Resource Reallocation involves an accurate knowledge of resource
utilization over time by applications, in order to share resources and deliver
quality of service. Instead of planning by summing up the peak utilization for each
application, you plan a processing capacity sufficient for the sum of the usage of
each application at all times. When one application does not consume resources
up to the peak, these resources are reallocated to other applications that peak at
that moment. Under normal circumstances, all partitions have their requirements
fulfilled. If a few partitions consume resources up to the peak, the system still
fulfills all partition requirements. However, if most or all of the application peaks
at the same time in an unplanned manner, then the system is overcommitted and
partitions will have performance constraints.

With adequate planning, a system can be configured with applications that do not
overlap their peaks in processing, and therefore never overcommit the system.
Total system usage will be high, and quality of service will be maintained, with
maximum efficiency in resource usage.

Figure 5-20 on page 135 shows the processor usage (in percent over time) for
three different applications during the same period. From the charts you can see
that the peaks in processing for each application are not at the same time.
134 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 5-20 Resource utilization for three different applications

For clarity, the core of this example is simplicity. We hypothetically consider that
for each of these applications, each percentage of resources is equivalent to 0.1
rPerf.

We can therefore show the peak utilization for each partition and the sum of the
peaks, as well as the smaller server model that would be required to host these

Applicat ion B

0
10
20
30

40
50
60
70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Applicat ion B

Applicat ion C

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15

Applicat ion C

Applicat ion A

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Applicat ion A
 Chapter 5. Micro-Partitioning 135

applications in a dedicated server or dedicated partition environment (Table 5-3
on page 136):

Table 5-3 Peak utilization per partition

The workload of these three applications could be fulfilled by three 2-way
standalone servers, or one 8-way server with three dedicated partitions (two
processors each) and two inactive processors.

If we consolidate these applications on a server with Micro-Partitioning, we can
benefit from their behavior and size a system with less capacity than the sum of
all peaks. First, we need to sum the usage for the three applications, at a given
time.

Figure 5-21 shows the result of this sum, and we can see that the maximum peak
processing for the sum is 96 percent (using the same consideration that for each
application the ratio is 0.1 rPerf for each 1 percent of utilization). We therefore
reach a requirement of 9.6 rPerf for all three applications.

Figure 5-21 Application resource utilization example

Application Peak
processing (%)

Capacity
requirement in rPerf

Smallest server
required

A 77 7.7 p5-510, 2 proc, 1500 MHz

B 65 6.5 p5-510, 2 proc, 1500 MHz

C 55 5.5 p5-510, 2 proc, 1500 MHz

TOTAL 197 19.7 p5-570, 6 proc, 1500 MHz
(2 spare CoD)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Application C
Application B
Application A
136 Advanced POWER Virtualization on IBM Eserver p5 Servers

By adding a 20 percent contingency to accommodate several factors such as
uncertainties in the exact time of workload peaks, and system effects due to
Micro-partitioning, we calculate to a requirement of 11.52 rPerf. This is about half
of the capacity that we would need if we sized for peak capacity of each
application independently (and also including the contingency).

This workload can be satisfied with one 4-way p5-550 at 1500 MHz, with three
active processors and one inactive (Cod) processor, when compared to the
deployment on dedicated partitions or servers that would have required six
processors.

As previously discussed, this is the most efficient strategy for consolidating
running systems using Micro-Partitioning. It is important to note that all partitions
must be uncapped, so they can receive the resources needed for peak
processing. Also, if for some reason the peaks in processing change, the
partition entitlements must be recalculated and a new planning effort should be
made. Otherwise, partitions may not be able to get the resources they need, and
application performance will not be as optimal as it could be.

Harvested capacity
When you have a mix of partitions that have a response time requirement (such
as OLTP applications) and partitions that do not have response time
requirements (such as batch applications or test partitions), and you have some
knowledge of the applications behavior, Micro-Partitioning is designed to run the
workloads without providing capacity for the peak processing of each partition.
You can provide capacity for the partitions that have the response time
requirements, up to peak capacity. Because they do not normally run at peak
processing, the extra resources can be used by the partitions that do not have
response time requirements. For these partitions, instead of specifying a peak
capacity, you define a minimum capacity for them to run and let them run
uncapped, using the resources available from the other partitions.

In the case you run both production, test, and development partitions on the
same server, you can, for example, configure a DB server and application server
partitions so they have their processing requirements guaranteed. The
development and test partitions can be configured as uncapped partitions and
use any available resources on the system.

Another recommended application of this strategy is the case of a server farm
running an application that receives load from load balancers. Normally the load
is balanced among the servers executing the application. In case one server
receives more workload than others, it can use more resources from the
processor pool, then return to normal behavior when the extra workload finishes.
 Chapter 5. Micro-Partitioning 137

Guaranteed capacity
This is the simplest algorithm of capacity planning for Micro-Partitioning. When
you are planning a system for new applications, typically no performance data is
available about the resource utilization by the applications. Therefore, you should
rely on application sizing and performance requirements estimates to size the
partitions, and add extra capacity as a contingency for when the application
needs more than initially planned.

This is also the case where you have the applications running, but cannot identify
capacity utilization behavior (because of either insufficient metrics or random
behavior).

For these situations, the simplest approach is to size a system based on the
required capacities, up to the peak capacity, and add additional capacity for
contingency. This method offers the smallest risk and is fairly simple to estimate.
Moreover, since the system was planned based on the peak requirements for
each application, you do not need a substantial effort in performance
management, since there is installed capacity for all of the application
performance requirements.

The drawback of this strategy is that it does not optimize resource usage based
on application behavior, so a large fraction of the processing resources may be
unused during hours of less activity, and if also when applications present
complementary processing requirements (one application has a peak and the
other has a valley).

An application of this strategy can be a server consolidation environment in an
outsourcing contract, where each client pays for a guaranteed capacity, and
there is not a possibility for over-commitment of resources. Another case is the
consolidation of many applications with very small workloads, requiring less than
one physical POWER5 processor. Take note that the entry server p5-510 at
1.65 GHz with only one processor has approximately the same processing power
as a 12-way 7017-S7A that was considered the top high end enterprise class
server less than ten years ago. Hence, many applications exist that only need a
fraction of one POWER5 processor. Using guaranteed capacity algorithms for
consolidating several of these applications on one processor using
Micro-Partitioning technology is far more efficient than dedicating even the
slowest available processor to each of these applications.

Consider the example of a three-tiered ERP system. Based on the functional
requirements from the client, a sizing tool generates an estimate for system
requirements based on peak requirements for each component of the solution.

A typical ERP solution is based on several servers running different functions; a
database server, one or more application servers, one development system, and
138 Advanced POWER Virtualization on IBM Eserver p5 Servers

one test system. A hypothetical example of a new system installation would be
similar to the requirements listed in Table 5-4.

Table 5-4 An example of an ERP system requirements

If we were to use separate systems for each function, we would use five systems,
with an adequate capacity to provide system usage within the performance
requirements (Table 5-5).

Table 5-5 Implementation with separate servers

Note: rPerf is an estimate of relative commercial processing performance
between IBM Sserver p5 systems. It is derived from an IBM analytical model
that uses characteristics from IBM internal workloads and industry transaction
processing and Web processing benchmarks. The rPerf model is not meant to
represent any specific public benchmark result. It is used here as an indication
of the required performance in IBM systems for this specific scenario.

Function Estimated capacity in rPerf Estimated plus
contingency in rPerf

DB Server 4.0 4.4

Application Server 1 3.3 3.7

Application Server 2 3.3 3.7

Development 1.8 2.0

Test 1.3 1.5

Total 13.7 15.3

Function Capacity
requirement in rPerf

Server Capacity
provided in
rPerf

DB Server 4.4 p5-510, 1 proc, 1650 MHz 5.24

App Server 1 3.7 p5-510, 1 proc, 1650 MHz 5.24

App Server 2 3.7 p5-510, 1 proc, 1650 MHz 5.24

Development 2.0 p5-510, 1 proc, 1500 MHz 3.25

Test 1.5 p5-510, 1 proc, 1500 MHz 3.25

Total 15.3 5 servers, 5 processors 22.22
 Chapter 5. Micro-Partitioning 139

The amount of rPerf required for the application is 15.3. The amount of rPerf
configured into the systems is 22.22 due to physical constraints. (The number of
processors must be an integer number.) Although extra capacity is being
configured, it cannot be allocated wherever it is needed because these systems
are separate. The DB server application, for example, can request extra
processing power equivalent to 0.84 rPerf, while the Test partition can get an
extra 1.75 rPerf.

If we use a more sophisticated approach by configuring a dedicated server, we
will have more flexibility in moving extra resources among partitions, but still need
to provide extra capacity that can be utilized. Table 5-6 shows the same example
using dedicated processor partitioning with a 1.65 GHz server.

Table 5-6 Dedicated processor partitioning with 1.65 GHz mid-range server

Of the servers available at the time of writing, an 8-way p5-570 server matches
the requirements. By ordering some of the processors as CoD features, it is
possible to activate only five of the processors to satisfy the workload.

Again in this case, the provided processing power is more than needed (7.7
rPerf), but this extra processing power cannot be freely reused where it is
required. For example, the needs of the DB server can only request an extra 0.2
rPerf equivalent, while the test partition can request up to 3.1 rPerf. When using
CoD, it is possible to satisfy the DB extra resource needs by activating one of the
CoD processors.

When using a server with Micro-Partitioning, you can accommodate the different
functions with more effective utilization. A single IBM Sserver p5 550 can
deliver up to 19.66 rPerf with four POWER5 processors running at 1.65 GHz.

Function Required
capacity in
rPerf

Server Capacity
provided
in rPerf

DB Server 4.4 p5-510, 1 proc, 1650 MHz 4.6

App Server 1 3.7 p5-510, 1 proc, 1650 MHz 4.6

App Server 2 3.7 p5-510, 1 proc, 1650 MHz 4.6

Development 2.0 p5-510, 1 proc, 1650 MHz 4.6

Test 1.5 p5-510, 1 proc, 1650 MHz 4.6

Total 15.3 1 servers, 5 activated 1650 MHz
processors, 3 offline Cod processors

23.0
Activated
37.22 total
available
140 Advanced POWER Virtualization on IBM Eserver p5 Servers

Since the behavior of each system is not known, so to accommodate the
requirements of a single system using Micro-Partitioning, we sum the peak
performance requirements for each function, and apply a 20 percent sizing
contingency. This contingency accommodates several factors, including the fact
that rPerf is only an approximate indicator of performance between systems,
uncertainties in workload peaks, and system effects due to Micro-partitioning
technology.

For this workload, we would have the configuration as provided in Table 5-7 using
a 4-way p5-550 server.

Table 5-7 .Implementation with Micro-Partitioning

The extra resources on the machine can then be allocated to any of the partitions
whenever they require capacity. Moreover, when a partition is not using its total
capacity, the remainder of its entitlement is automatically available in the shared
processing pool. Also, when the applications are running, resource allocation can
be fine-tuned and allocated according to the partition needs.

This example shows that even when using the guaranteed capacity sizing
algorithm, and taking a 20 percent contingency for the solution using
Micro-Partitioning technology over the dedicated server solutions,
micro-partitioning allows replacing five servers, each with one processor, with
one 4-way server.

Sizing partitions for a virtualized environment is not fundamentally different than
sizing for dedicated systems. The ultimate efficiency of sizing depends heavily on
the knowledge of the workload, degree of risk assumed in sizing, and the
expected attention to capacity monitoring. Idle resource reallocation provides the
most optimized environment. However, it requires good knowledge of the
workload and likely the closest monitoring of system capacity. Harvested
capacity allows very high system utilizations, if workloads with relaxed response
time requirements can exploit otherwise idle cycles. Guaranteed capacity, while

Function Requested
capacity in
rPerf

Capacity using
Micro-Partitioning technology
with a 20% contingency

% of physical
processor
requirement

DB Server 4.4 5.28 1.07

App Server 1 3.7 4.44 0.90

App Server 2 3.7 4.44 0.90

Development 2.0 2.4 0.49

Test 1.5 1.8 0.37

Total 15.3 18.36 3.73
 Chapter 5. Micro-Partitioning 141

the least effective at maximizing the overall hardware utilization, works extremely
well for very small partitions. Guaranteed capacity also generally requires the
least attention to capacity monitoring, as there are no consequences of
workloads peaking concurrently.

5.4 Summary
There are some performance considerations to take into account when
implementing Micro-Partitioning technology. AIX 5L V5.3 and, to a lesser extent,
Linux do a good job of sharing the computing resources across the workloads
they are running. With Workload Manager or Partition Load Manager, it is
possible to make sure that an organization’s priorities are respected when there
is a conflict. Because of the overhead of scheduling virtual processors, there
should be an objective of keeping the number of partitions to a minimum.

If organizational policies do not require separate partitions, you must ask, “What
are the technical and performance reasons for creating a new partition, rather
than adding a new workload to an existing one and providing it with the same
amount of additional resources?” A consolidation project should have higher
objectives than replacing n-machines by n-partitions.

Some good reasons for using Micro-Partitioning technology include:

� Tuning the operating system for a given application; for example, 32-bit or
64-bit kernel, large pages, threaded Ethernet adapters, Linux or AIX 5L.

� A Network Install Manager (NIM) server, which must always be at the latest
level of AIX to be installed. The partition can be activated when required;
otherwise its resources can be made available to the shared pool.

� Ad hoc partition creation for an on-off occasion, demo, trial software, training,
and so on.

� Containing an unpredictable or runaway application that prevents it from
affecting other applications, although this can also be achieved with WLM.

� Provide application isolation for security or organizational reasons; for
example, you may want a firewall application to be isolated from your Web
servers. Isolating development, test, and training activities from production.

Careful planning should be done to satisfy application resource requirements.
This enables the system to be utilized efficiently with satisfactory performance
from the application point of view.

Important: To maximize performance, keep the number of partitions to a
minimum.
142 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 6. Virtual I/O

This chapter provides an introduction to virtual input/output (I/O), as well as a
close look at how the POWER Hypervisor handles transactions between the
partitions. This chapter also addresses performance aspects for each of the
components of the virtual I/O system. With respect to virtual I/O, the components
covered in this chapter are:

� POWER Hypervisor

� Virtual Serial Adapter

� Virtual Ethernet

� Shared Ethernet Adapter

� Virtual SCSI

The virtual I/O product documentation can be found at:

Using the Virtual I/O Server

http://publib.boulder.ibm.com/infocenter/eserver/v1r3s/index.jsp?lang=en

6

© Copyright IBM Corp. 2005. All rights reserved. 143

http://publib.boulder.ibm.com/infocenter/eserver/v1r3s/index.jsp?lang=en

6.1 Introduction
Virtual I/O provides the capability for a single I/O adapter to be used by multiple
logical partitions on the same server, enabling consolidation of I/O resources and
minimizing the number of required I/O adapters. The driving forces behind virtual
I/O are:

� The advanced technological capabilities of today’s hardware and operating
systems such as POWER5 and IBM AIX 5L Version 5.3.

� The value proposition enabling on demand computing and server
consolidation. Virtual I/O also provides a more economic I/O model by using
physical resources more efficiently through sharing.

As we write this, the virtualization features of the POWER5 platform support up
to 254 partitions, while the server hardware provides only up to 160 I/O slots per
machine. With each partition typically requiring one I/O slot for disk attachment
and another one for network attachment, this puts a constraint on the number of
partitions. To overcome these physical limitations, I/O resources have to be
shared. Virtual SCSI provides the means to do this for SCSI storage devices.

Furthermore, virtual I/O enables attachment of previously unsupported storage
solutions. As long as the Virtual I/O Server supports the attachment of a storage
resource, any client partition can access this storage by using virtual SCSI
adapters.

For example, if there is no native support for EMC storage devices on Linux,
running Linux in a logical partition of a POWER5 server makes this possible. A
Linux client partition can access the EMC storage through a virtual SCSI adapter.
Requests from the virtual adapters are mapped to the physical resources in the
Virtual I/O Server. Therefore, driver support for the physical resources is needed
only in the Virtual I/O Server.

Typically, a small operating system instance needs at least one slot for a Network
Interface Connector (NIC) and one slot for a disk adapter (SCSI, Fibre Channel,
and so on), but more robust configurations often consist of two redundant NIC
adapters and two disk adapters.

Virtual I/O devices are intended as a complement to physical I/O adapters (also
known as dedicated or local I/O devices). A partition can have any combination
of local and virtual I/O adapters.

Supported levels
Although IBM Sserver p5 servers support AIX 5L Version 5.2, it is not possible
to run an AIX 5L V5.2 partition with Micro-Partitioning, virtual SCSI, virtual
144 Advanced POWER Virtualization on IBM Eserver p5 Servers

Ethernet, or shared ethernet adapters. However, a mixed environment between
AIX 5L V5.2 and AIX 5L V5.3 partitions on Sserver p5 servers is supported.

Figure 6-1 shows a sample configuration with mixed operating systems and
mixed AIX 5L versions. The first five partitions are using dedicated processors.
The AIX 5L V5.2 partition cannot join the virtual I/O paths, but it provides all
known LPAR and dynamic LPAR features. It has to be configured with dedicated
I/O adapters. The AIX 5L V5.3 partitions using shared processors likewise may
use dedicated storage and dedicated networking.

Figure 6-1 Mixed operating system environment

6.2 POWER Hypervisor support for virtual I/O
As Figure 6-1 illustrates, the POWER Hypervisor provides the interconnection for
the partitions. To use the functionalities of virtual I/O, a partition uses a virtual
adapter. The POWER Hypervisor provides the partition with a view of an adapter
that has the appearance of an I/O adapter, which may or may not correspond to a
physical I/O adapter. The POWER Hypervisor provides two classifications of
virtual adapters:

� Hypervisor simulated class. This classification of virtual adapter, shown in
Figure 6-2 on page 146, is where the POWER Hypervisor simulates an I/O
adapter. This class is used in virtual Ethernet support (see 6.5, “Virtual
 Chapter 6. Virtual I/O 145

Ethernet” on page 164). This technique provides reliable and fast
communication between partitions using network protocols.

Figure 6-2 POWER Hypervisor simulated class

� Partition managed class. In this class, shown in Figure 6-3 on page 147, a
server partition provides the services of one of its physical I/O adapters to
client partition. A server partition provides support to handle I/O requests from
the client partition and perform those requests on one or more of its devices,
targeting the client partition’s direct memory access (DMA) buffer areas using
LRDMA facilities. (See “Logical Remote Direct Memory Access (LRDMA)” on
page 150.) It then passes I/O responses back to the client partition. This
classification of virtual adapter is used by virtual SCSI as described in 6.8,
“Virtual SCSI” on page 205.

LPAR LPAR

POWER Hypervisor

Simulated Class

A A

A – Virtual adapter
146 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-3 POWER Hypervisor partition managed class

6.2.1 Virtual I/O infrastructure
The virtual I/O infrastructure is a complex subject, and it is not the purpose of this
book to address it extensively. We briefly present some of the components that
are relevant to understanding the performance issues.

The Open Firmware device tree
The virtual I/O adapters and associated inter-partition communication paths are
defined using the HMC during the creation of the partition’s profile.

When a partition is booted, it receives from the POWER Hypervisor the definition
of all of its available hardware resources as device nodes in what is called the
partition Open Firmware device tree.

Depending on the specific virtual device, their device tree node may be found as
a child of / (the root node) or in the virtual I/O subtree.

LPAR LPAR

POWER Hypervisor

A A

Partition Managed Class

B
C

A – Virtual adapter
B – Physical adapter
C – Remote DMA
 Chapter 6. Virtual I/O 147

In addition to the virtual I/O devices, the Open Firmware device tree also
contains the definition of the virtual host bridge and the virtual interrupt source
controller. These definitions enable the partition to communicate with the virtual
devices in the same way that it communicates with physical devices.

Each virtual device node in the Open Firmware device tree contains the
properties defined in Table 6-1.

Table 6-1 Required attributes of the /vdevice node

Property name Req? Definition

name Yes Standard property name per IEEE 1275
specifying the virtual device name; the value shall
be “vdevice”

device_type Yes Standard property name per IEEE 1275
specifying the virtual device type; the value shall
be “vdevice”

model No Property not present

compatible Yes Standard property name per IEEE 1275
specifying the virtual device programming
models; the value shall include “IBM,vdevice”

used-by-rtas No Property not present

ibm,loc-code No Location code

reg No Property not present

#size-cells Yes Standard property name per IEEE 1275; the
value shall be 0. No child of this node takes space
in the address map as seen by the owning
partition.

#address-cells Yes Standard property name per IEEE 1275; the
value shall be 1.

#interrupt-cells Yes Standard property name per IEEE 1275; value
shall be 2. The first cell contains the interrupt# as
will appear in the XIRR and is used as input to
interrupt RTAS calls. The second cell contains the
value 0, indicating a positive edge sense.

interrupt-map-mask No Property not present.

interrupt-ranges Yes Standard property name that defines the interrupt
number(s) and range(s) handled by this unit.

interrupt map No Property not present
148 Advanced POWER Virtualization on IBM Eserver p5 Servers

6.2.2 Types of connections
The virtual I/O infrastructure provides several primitives that are used to build
connections between partitions for various purposes. These primitives include:

� A Command/Response Queue (CRQ) facility that provides a pipe between
partitions. A partition can enqueue a command to the target partition’s CRQ
for processing by that partition. The partition can set up the CRQ to receive
an interrupt when an entry is placed in the queue.

� An extended Translation Control Entry (TCE) table called the Remote TCE
(RTCE) table, which enables a partition to provide windows to its memory for
other partitions to use, while maintaining addressing and access control to its
memory.

� Remote DMA services that enable a server partition to transfer data to
another partition’s memory via the RTCE windows. This enables a device
driver in a server partition to efficiently transfer data to and from another
partition. This is key to sharing a virtual I/O adapter in the server partition.

The Command/Response Queue
The CRQ facility provides a communications pipeline for ordered delivery of
messages between authorized partitions. The facility is reliable in the sense that
the messages are delivered in sequence. The sender is notified if the transport
facility in the POWER Hypervisor able to deliver the message or was unable to
provide the data associated with the message, or if the target partition either fails

interrupt-controller Yes The /vdevice node appears to contain an interrupt
controller.

ranges No Used by virtual adapters.

ibm,drc-indexes for DR For Dynamic Reconfiguration (DR). Refers to
the DR slots: the number provided is the
maximum number of slots that can be configured.
This is limited by, among other things, the RTCE
tables allocated by the POWER Hypervisor.

ibm,drc-power-domains for DR Value of -1 to indicate that no power manipulation
is possible or needed.

ibm,drc-types for DR Value of “SLOT”— any virtual IOA can fit into any
virtual slot.

ibm,drc-names for DR The virtual location code.

Property name Req? Definition
 Chapter 6. Virtual I/O 149

or deregisters its half of the transport connection. Optionally, the CRQ owner may
choose to be notified via an interrupt when a message is added to their queue.

The CRQ facility does not police the contents of the payload portions (after the
one-byte header) of messages that are exchanged between the communicating
partitions. The architecture does provide means (via the Format Byte) for self-
describing messages so that the definitions of the content and protocol between
the partitions may evolve over time without change to the CRQ architecture or its
implementation.

Remote Translation Control Entry (RTCE)
The TCE and RTCE tables are used to translate direct memory access (DMA)
operations and provide protection against improper operations.

The RTCE table is analogous to the TCE table for dedicated I/O, and Table 6-2
shows a comparison. The RTCE table has more information in it provided by the
POWER Hypervisor. This enables the POWER Hypervisor to create links to the
TCEs on the partition that owns the device. An entry in the RTCE table is never
accessed directly by the operating system; only though POWER Hypervisor calls
as described 4.1.1, “POWER Hypervisor functions” on page 79.

Table 6-2 TCE and RTCE comparison

Logical Remote Direct Memory Access (LRDMA)
The virtual I/O infrastructure can take advantage of different types of Direct
Memory Access (DMA). The virtual SCSI feature only uses Logical Remote
Direct Memory Access (LRDMA).

LRDMA enables an I/O server to securely target memory pages within an I/O
client for virtual I/O operations. The I/O server uses the POWER Hypervisor call
of the Logical Remote DMA facility to manage the movement of commands and
data associated with the client requests. The server driver may use this service if

TCE (Translation Control Entry) RTCE (Remote TCE)

In POWER4 processor–based pSeries
servers

 In POWER5 processor–based pSeries
servers

Translation table for logical to dedicated
I/O bus addresses

Needed for Remote DMA

Managed by the POWER Hypervisor Managed by the POWER Hypervisor

Addressed by the operating system Never addressed directly by the operating
system. Addressed only through POWER
Hypervisor calls.
150 Advanced POWER Virtualization on IBM Eserver p5 Servers

it has a connection established via a Command/Response Queue. Virtual SCSI
defines two modes of LRDMA:

Copy RDMA The I/O devices target DMA buffers in the I/O
server’s memory. After the DMA transfer
completes, the POWER Hypervisor copies the data
between the DMA buffers and the client’s memory.

Redirected RDMA This mode allows for an I/O device to securely
perform DMA transfers directly into the client
partition’s memory.

Example 6-4 shows how data is transferred using redirected RDMA.

Figure 6-4 Logical Remote Direct Memory Access (LRDMA)

Redirected RDMA provides better overall system performance because the data
is transferred to and from the data buffer by the DMA controller on the adapter
card. This performance degradation by using copy RDMA may be offset if the I/O
server’s DMA buffer is being used as cache for multiple virtual I/O operations.

POWER Hypervisor

Virtual SCSI
Client

PCI Adapter

Data
Buffer

I/O Server

Virtual
SCSI

Target

Virtual
SCSI

Initiator

Data

Physical
Adapter
Driver

Control
 Chapter 6. Virtual I/O 151

6.3 The IBM Virtual I/O Server
The IBM Virtual I/O Server is the link between the virtual resources and physical
resources. It is a specialized partition that owns the physical I/O resources, and
is supported only on POWER5 processor–based servers. This server runs in a
special partition that cannot be used for execution of application code.

It mainly provides two functions:

� Serves virtual SCSI devices to client partitions
� Provides a Shared Ethernet Adapter for VLANs

Installation of the Virtual I/O Server partition is performed from a special mksysb
CD-ROM that is provided to clients who order the Advanced POWER
Virtualization feature, at an additional charge1. This is dedicated software only for
the Virtual I/O Server operations, so the Virtual I/O Server software is supported
only in Virtual I/O Server partitions.

You can install the Virtual I/O Server from CD or using NIM on Linux (NIMoL)
from the Hardware Maintenance Console (HMC).

The Virtual I/O Server supports the following operating systems as Virtual I/O
clients:

� IBM AIX 5L V5.3
� SUSE LINUX Enterprise Server 9 for POWER
� Red Hat Enterprise Linux AS 3 for POWER, update 3
� Red Hat Enterprise Linux AS 4 for POWER

The I/O Server operating system is hidden to simplify transitions to further
versions. No specific operating system skills are required for administration of the
I/O Server.

Performance considerations for the Virtual I/O Server are addressed in “Virtual
I/O Server performance results” on page 191.

Command line interface
The Virtual I/O Server provides a restricted scriptable command line interface
(CLI). All aspects of Virtual I/O Server administration are accomplished through
the CLI, including:

� Device management (physical, virtual, LVM)
� Network configuration
� Software installation and update
� Security

1 Included with Sserver p5-590 and Sserver p5-595.
152 Advanced POWER Virtualization on IBM Eserver p5 Servers

� User management
� Installation of OEM software
� Maintenance tasks

For the initial logon to the Virtual I/O Server, use the user ID padmin, which is the
prime administrator. When logging on, you are prompted for a new password, so
there is no default password to remember.

Upon logging on to the I/O server, you will be placed into a restricted Korn shell.
The restricted Korn shell works the same way as a regular Korn shell with some
restrictions. Specifically, users cannot do the following:

� Change the current working directory.

� Set the value of the SHELL, ENV, or PATH variables.

� Specify the path name of the command that contains a redirect output of a
command with a >, >|, <>, or >>.

As a result of these restrictions, you cannot execute commands that are not
accessible to your PATH. In addition, these restrictions prevent you from directly
sending the output of the command to a file, requiring you to pipe the output to
the tee command instead.

The Virtual I/O Server CLI supports two execution modes: traditional and
interactive.

The traditional mode is for single command execution. In this mode, you execute
one command at a time from the shell prompt. For example, to list all virtual
devices, enter the following:

#ioscli lsdev -virtual

To reduce the amount of typing required in traditional shell level mode, an alias
has been created for each subcommand. With the aliases set, you are not
required to type the ioscli command. For example, to list all devices of type
adapter, you can enter the following:

#lsdev -type adapter

You can type help for an overview of the supported commands, as shown in
Example 6-1 on page 154.
 Chapter 6. Virtual I/O 153

Example 6-1 Commands available in Virtual I/O Server environment

$ help

Install Commands Physical Volume Commands Security Commands
 updateios lspv lsgcl
 lssw migratepv cleargcl
 ioslevel lsfailedlogin
 remote_management Logical Volume Command
 oem_setup_env lslv UserID Commands
 oem_platform_level mklv mkuser
 license extendlv rmuser

rmlvcopy lsuser
LAN Commands rmlv passwd
 mktcpip mklvcopy chuser
 hostname
 cfglnagg
 netstat Volume Group Commands Maintenance Commands
 entstat lsvg chlang
 cfgnamesrv mkvg diagmenu
 traceroute chvg shutdown
 ping extendvg fsck
 optimizenet reducevg backupios
 lsnetsvc mirrorios savevgstruct

unmirrorios restorevgstruct
Device Commands activatevg starttrace
 mkvdev deactivatevg stoptrace
 lsdev importvg cattracerpt
 lsmap exportvg bootlist
 chdev syncvg snap
 rmdev startsysdump
 cfgdev topas
 mkpath mount
 chpath unmount
 lspath showmount
 rmpath startnetsvc

errlog stopnetsvc

In interactive mode, the user is presented with the ioscli command prompt by
executing the ioscli command without any subcommands or arguments. From
this point on, ioscli commands are executed one after the other without having
to retype ioscli. For example, to enter interactive mode, type:

#ioscli

When in interactive mode, to list all virtual devices, enter:

#lsdev -virtual
154 Advanced POWER Virtualization on IBM Eserver p5 Servers

External commands, such as grep or sed, cannot be executed from the
interactive mode command prompt. You must first exit interactive mode by
entering quit or exit. A measurement of virtual I/O in conjunction with the
Shared Ethernet Adapter functionality is discussed in 6.6, “Shared Ethernet
Adapter” on page 186.

Limitations and considerations
The Virtual I/O Server software is dedicated software only for the Virtual I/O
Server operations, and there is no possibility of running other applications in the
Virtual I/O Server partition.

There is no option to get the Virtual I/O Server partition pre-installed on new
systems. As this is written, the pre-install manufacturing process does not allow
the Virtual I/O Server partition to be pre-installed.

Other limitations can occur because of resource shortages. The Virtual I/O
Server should be properly configured with enough resources. The most
important are the processor resources. If a Virtual I/O Server has to host a lot of
resources to other partitions, you must ensure that enough processor power is
available. In case of high load or high traffic across virtual Ethernet adapters and
virtual disks, partitions can observe delays in accessing resources.

Logical volume limitation
The Virtual I/O Server software enables you to define up to 1024 logical volumes
per volume group, but the actual number you can define depends on the total
amount of physical storage defined for that volume group and the size of the
logical volumes you configure.

Table 6-3 shows the limitations for logical storage management.

Table 6-3 Limitations for logical storage management

Category Limit

Volume group 4,096 per system

Physical volume 1,024 per volume group

Physical partition 2,097,152 per volume group

Logical volume 4,096 per volume group

Logical partition Based on physical partitions
 Chapter 6. Virtual I/O 155

6.3.1 Providing high availability support
When we talk about providing high availability for the Virtual I/O Server we are
talking about incorporating the I/O resources (physical and virtual) on the Virtual
I/O Server as well as the client partitions into a configuration that is designed to
eliminate single points of failure.

The Virtual I/O Server is a single point of failure. In case of a crash of the Virtual
I/O Server, the client partitions will see I/O errors and not be able to access the
adapters and devices that are hosted by the Virtual I/O Server.

However, redundancy can be built into the configuration of the physical and
virtual I/O resources at several stages.

Since the Virtual I/O Server is a customized AIX 5L OS-based appliance,
redundancy for physical devices attached to the Virtual I/O Server can be
provided by using capabilities such as LVM mirroring, Multipath I/O, and
EtherChannel.

Figure 6-5 on page 157 shows a single Virtual I/O Server configuration with disk
and network attachment. The disks are mirrored through LVM. The two physical
network adapters are configured as a Link Aggregation in Network Interface
Backup (NIB) mode.

While this kind of configuration protects you from the failure of one of the physical
components, such as a disk or network adapter, it will still cause the client
partition to lose access to its devices if the Virtual I/O Server fails.

The Virtual I/O Server itself can be made redundant by running a second
instance of it in another partition. When running two instances of the Virtual I/O
Server, you can use LVM mirroring, Multipath I/O, Link Aggregation, or Multipath
routing with dead gateway detection in the client partition to provide highly
available access to virtual resources hosted in separate Virtual I/O Server
partitions. Many configurations are possible; they depend on the available
hardware resources as well as your requirements.

Note: When activating the EtherChannel you may see some Unsupported
ioctl in device driver errors if you are using virtual Ethernets in your Link
Aggregation. These errors can be ignored.
156 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-5 Single Virtual I/O Server configuration

Network interface backup
Figure 6-6 on page 158 shows a configuration using network interface backup.

The client partition has two virtual Ethernet adapters. Each adapter is assigned
to a different VLAN (using the PVID). Each Virtual I/O Server is configured with a
Shared Ethernet Adapter that bridges traffic between the virtual Ethernet and the
external network. Both Shared Ethernet Adapters should be able to connect to
the same set of hosts in the external network.

Each of the Shared Ethernet Adapters is assigned to a different VLAN (using
PVID). By using two VLANs, network traffic is separated so that each virtual
Ethernet adapter in the client partition seems to be connected to a different
Virtual I/O Server.

The two virtual Ethernet adapters in the client partition are configured as an
EtherChannel using Network Interface Backup. The Link Aggregation is
configured with a primary adapter and a backup, and the operation mode is left
as the default standard mode. Additionally, the EtherChannel is configured with
an Internet Address to Ping. This address will be pinged periodically by the
 Chapter 6. Virtual I/O 157

EtherChannel to determine whether connectivity to the external network exists.
Typically a router that should be always available is used as the ping target.

Figure 6-6 Virtual I/O Server configuration with network interface backup

Even though a Link Aggregation with more than one primary virtual Ethernet
adapter is not supported, a single virtual Ethernet adapter Link Aggregation is
possible because a single adapter configured as an EtherChannel in standard
mode does not require switch support from the POWER Hypervisor.

The IP address of the client partition is configured on the network interface of the
EtherChannel. If the primary adapter fails, the EtherChannel will automatically
switch to the backup adapter. The IP address of the client server partition that is
configured on the EtherChannel network interface will remain available.

Restriction: When using the EtherChannel with two adapters as in this
example and configuring one adapter as backup, no aggregation resulting in
higher bandwidth will be provided. No network traffic will go through the
backup adapter unless there is failure of the primary adapter.

Also note that gratuitous ARP has to be supported by the network in order for
adapter failover to work.
158 Advanced POWER Virtualization on IBM Eserver p5 Servers

This configuration protects your network interface adapter against:

� Failure of one physical network adapter in one Virtual I/O Server partition

� Failure of one Virtual I/O Server partition

� Failure of one network switch (if adapters are connected to different switches
as shown in this example)

The physical Ethernet adapters shown in Figure 6-6 on page 158 are connected
to the network switches on untagged ports. The Virtual I/O Server partition strips
VLAN tags from packets before delivering them to the switches. The network
switches see the MAC addresses on the virtual Ethernet adapters in the client
partition, but will not see the VLAN tags. The Virtual I/O Server partition
propagates broadcast packets from the switches to the virtual Ethernet adapters
in the client partition.

If a Virtual I/O Server (or some network component) fails, the Ethernet network
will see the client partition’s IP address suddenly hop from one switch and MAC
address to another. Such behavior will be handled acceptably if both of the
following are true:

� The network supports Gratuitous ARP.

� The network switches are configured such that both ports (one on each
switch) can contact the same set of hosts in the rest of the network.

It is recommended that the client partition be configured to detect network
unreachability by specifying in the Network Interface Backup configuration an IP
address (or host name) of a router to which connectivity should always be
available.

For more details about configuring Link Aggregation (EtherChannel) see AIX
System Management Guide: Communications and Networks, which is available
with the product documentation.

Multipath routing and dead gateway detection
Figure 6-7 on page 160 shows a configuration using multipath routing and dead
gateway detection.

The client partition has two virtual Ethernet adapters. Each adapter is assigned
to a different VLAN (using the PVID). Each Virtual I/O Server is configured with a
Shared Ethernet Adapter that bridges traffic between the virtual Ethernet and the
external network. Each of the Shared Ethernet Adapters is assigned to a different
VLAN (using PVID).
 Chapter 6. Virtual I/O 159

By using two VLANs, network traffic is separated so that each virtual Ethernet
adapter in the client partition seems to be connected to a different Virtual I/O
Server.

Figure 6-7 Configuration with multipath routing and dead gateway detection

In the client partition, two default routes with dead gateway detection are defined:
One route is going to gateway 9.3.5.10 using virtual Ethernet adapter with
address 9.3.5.12; the second default route is going to gateway 9.3.5.20 using the
virtual Ethernet adapter with address 9.3.5.22.

In case of a failure of the primary route, access to the external network is
provided through the second route. AIX 5L detects route failures and adjusts the
cost of the route accordingly.

Restriction: It is important to note that multipath routing and dead gateway
detection do not make an IP address highly available. In the case of failure of
one path, dead gateway detection will route traffic through an alternate path.
The network adapters and their IP addresses remain unchanged. Therefore,
when using multipath routing and dead gateway detection, only your access to
the network will become redundant, but not the IP addresses.
160 Advanced POWER Virtualization on IBM Eserver p5 Servers

This configuration protects your access to the external network against failure of:

� One physical network adapter in one Virtual I/O Server partition
� One Virtual I/O Server partition
� One gateway

LVM mirroring
Figure 6-8 shows a Virtual I/O Server configuration using LVM mirroring on the
client partition. The client partition is LVM mirroring its logical volumes using the
two virtual SCSI client adapters. Each of these adapters is assigned to a
separate Virtual I/O Server partition.

The two physical disks are each attached to a separate Virtual I/O Server
partition and made available to the client partition through a virtual SCSI server
adapter.

Figure 6-8 Virtual I/O Server configuration with LVM mirroring
 Chapter 6. Virtual I/O 161

This configuration protects a virtual disk in a client partition against failure of:

� One physical disk
� One physical adapter
� One Virtual I/O Server partition

Multipath I/O
Figure 6-9 on page 163 shows a configuration using Multipath I/O to access an
ESS disk. The client partition sees two paths to the physical disk through MPIO.
Each path is using a different virtual SCSI adapter to access the disk. Each of
these virtual SCSI adapters is backed by a separate Virtual I/O Server partition.

This configuration protects a virtual disk in a client partition against failure of:

� One physical FC adapter in one Virtual I/O Server partition
� One Virtual I/O Server partition

Depending on your SAN topology, each physical adapter could be connected to a
separate SAN switch to provide redundancy. At the physical disk level, the ESS
provides redundancy because it uses RAID technology internally.

Restriction: At we write this book, LVM mirroring using virtual SCSI works
only when the logical volume on the Virtual I/O Server is configured with the
following settings:

� Mirror Write Consistency turned off
� Bad Block Relocation turned off
� No striping
� Logical volume must not span several physical volumes

Note: This type of configuration works only when the physical disk is assigned
as a whole to the client partition. You cannot split up the physical disk into
logical volumes at the Virtual I/O Server level.
162 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-9 Virtual I/O Server configuration with MPIO

6.4 Virtual Serial Adapter (VSA)
The POWER Hypervisor supports three types of virtual I/O devices:

� Virtual LAN (VLAN; see 6.5, “Virtual Ethernet” on page 164)
� Virtual SCSI (VSCSI; see 6.8, “Virtual SCSI” on page 205)
� Virtual Serial Adapter (VSA).

The VSA can only be used for providing a virtual console to the partitions. This
console is visible to the end user in the HMC display.

The virtual serial port cannot be used for any other purpose. For example, it
cannot be used for HACMP heartbeat monitoring.

There are no specific performance considerations to address regarding the VSA.
 Chapter 6. Virtual I/O 163

6.5 Virtual Ethernet
Virtual Ethernet enables inter-partition communication without the need for
physical network adapters assigned to each partition. Virtual Ethernet enables
the administrator to define in-memory point-to-point connections between
partitions. These connections exhibit characteristics similar to physical
high-bandwidth Ethernet connections and support multiple protocols (IPv4, IPv6,
ICMP). Virtual Ethernet requires an Sserver p5 system with either AIX 5L V5.3
or the appropriate level of Linux and an HMC to define the virtual Ethernet
devices. Virtual Ethernet does not require the purchase of any additional features
or software such as the Advanced POWER Virtualization feature.

6.5.1 Virtual LAN
This section discusses the concepts of Virtual LAN (VLAN) technology with
specific reference to its implementation within AIX 5L V5.3.

Virtual LAN overview
Virtual LAN is a technology used for establishing virtual network segments on top
of physical switch devices. If configured appropriately, a VLAN definition can
straddle multiple switches.

In every partition, virtual and dedicated network devices can be used
simultaneously for communication. Figure 6-10 shows adapters of a partition that
has one virtual Ethernet adapter (ent0) and two real adapters (ent1 and ent2).
Up to 256 adapters (sum of virtual and real) are supported per LPAR.

Figure 6-10 Virtual and local adapters on one partition

Typically, a VLAN is a broadcast domain that enables all nodes in the VLAN to
communicate with each other without any L3 routing or inter-VLAN bridging. In
Figure 6-11 on page 165, two VLANs (VLAN 1 and 2) are defined on three
switches (Switch A, B, and C). Although nodes C-1 and C-2 are physically
connected to the same switch C, traffic between two nodes can be blocked. To
enable communication between VLAN 1 and 2, L3 routing or inter-VLAN bridging
should be established between them; typically this is provided by an L3 device.

lsdev -Cc adapter
ent0 Available Virtual I/O Ethernet Adapter (l-lan)
ent1 Available 01-08 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
ent2 Available 01-09 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
vsa0 Available LPAR Virtual Serial Adapter
vscsi0 Available Virtual SCSI Client Adapter
164 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-11 Example of a VLAN

The use of VLAN provides increased LAN security and flexible network
deployment over traditional network devices.

AIX 5L V5.3 VLAN support
Some of the technologies for implementing VLANs include:

� Port-based VLAN
� Layer 2 VLAN
� Policy-based VLAN
� IEEE 802.1Q VLAN

VLAN support in AIX 5L V5.3 is based on the IEEE 802.1Q VLAN
implementation. The IEEE 802.1Q VLAN is achieved by adding a VLAN ID tag to
an Ethernet frame. The Ethernet switches restrict the frames to ports that are
 Chapter 6. Virtual I/O 165

authorized to receive frames with that VLAN ID. Switches also restrict broadcasts
to the logical network by ensuring that a broadcast packet is delivered to all ports
that are configured to receive frames with the VLAN ID that the broadcast frame
was tagged with.

A port on a VLAN-capable switch has a default PVID (Port VLAN ID) that
indicates the default VLAN the port belongs to. The switch adds the PVID tag to
untagged packets that are received by that port. In addition to a PVID, a port may
belong to additional VLANs and have those VLAN IDs assigned to it that indicate
the additional VLANs that the port belongs to.

A port will only accept untagged packets or packets with a VLAN ID (PVID or
additional VIDs) tag of the VLANs the port belongs to. A port configured in the
untagged mode is only allowed to have a PVID and will receive untagged packets
or packets tagged with the PVID. The untagged port feature helps systems that
do not understand VLAN tagging communicate with other systems using
standard Ethernet.

Each VLAN ID is associated with a separate Ethernet interface to the upper
layers (for example, IP) and creates unique logical Ethernet adapter instances
per VLAN (for example, ent1 or ent2).

You can configure multiple VLAN logical devices on a single system. Each VLAN
logical device constitutes an additional Ethernet adapter instance. These logical
devices can be used to configure the same Ethernet IP interfaces as are used
with physical Ethernet adapters.

VLAN communication by example
This section discusses how VLAN communication between partitions and with
external networks works in more detail, using the sample configuration in
Figure 6-12 on page 167. The configuration uses four client partitions (Partition 1
through Partition 4) and one Virtual I/O Server partition. Each of the client
partitions is defined with one virtual Ethernet adapter. The Virtual I/O Server
partition has a Shared Ethernet Adapter that bridges traffic to the external
network. The Shared Ethernet Adapter is discussed in more detail in 6.6,
“Shared Ethernet Adapter” on page 186.
166 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-12 VLAN configuration

Interpartition communication
Partition 2 and Partition 4 are using only the PVID. This means that:

� Only packets for the VLAN specified as PVID are received.

� Packets that are sent have a VLAN tag added for the VLAN specified as PVID
by the virtual Ethernet adapter.

In addition to the PVID, the virtual Ethernet adapters in Partition 1 and Partition 3
are also configured for VLAN 10 using specific network interface (en1) create
through smitty vlan. This means that:

� Packets sent through network interfaces en1 are added a tag for VLAN 10 by
the network interface in AIX 5L V5.3.

� Only packets for VLAN 10 are received by the network interfaces en1.

� Packets sent through en0 are automatically tagged for the VLAN specified as
PVID.

Only packets for the VLAN specified as PVID are received by the network
interfaces en0.Table 6-4 on page 168 lists which client partitions can
communicate with each other through what network interfaces.
 Chapter 6. Virtual I/O 167

Table 6-4 Interpartition VLAN communication

Communication with external networks
The Shared Ethernet Adapter is configured with PVID 1 and VLAN 10. This
means that untagged packets that are received by the Shared Ethernet Adapter
are tagged for VLAN 1. Handling of outgoing traffic depends on the VLAN tag of
the outgoing packets.

� Packets tagged with the VLAN that matches the PVID of the Shared Ethernet
Adapter are untagged before being sent out to the external network.

� Packets tagged with a VLAN other than the PVID of the Shared Ethernet
Adapter are sent out with the VLAN tag unmodified.

In our example, Partition 1 and Partition 2 have access to the external network
through network interface en0 using VLAN 1. Since these packets are using the
PVID, the Shared Ethernet Adapter will remove the VLAN tags before sending
the packets to the external network.

Partition 1 and Partition 3 have access to the external network using network
interface en1 and VLAN 10. These packets are sent out by the Shared Ethernet
Adapter with the VLAN tag. Therefore, only VLAN-capable destination devices
will be able to receive the packets. Table 6-5 lists this relationship.

Table 6-5 VLAN communication to external network

VLAN Partition / network interface

1 Partition 1 / en0
Partition 2 / en0

2 Partition 3 / en0
Partition 4 / en0

10 Partition 1 / en1
Partition 3 / en1

VLAN Partition / Network interface

1 Partition 1 / en0
Partition 2 / en0

10 Partition 1 / en1
Partition 3 / en1
168 Advanced POWER Virtualization on IBM Eserver p5 Servers

6.5.2 Virtual Ethernet connections
Virtual Ethernet connections supported in POWER5 processor–based systems
use VLAN technology to ensure that the partitions can access only data directed
to them. The POWER Hypervisor provides a virtual Ethernet switch function
based on the IEEE 802.1Q VLAN standard that enables partition communication
within the same server. The connections are based on an implementation
internal to the Hypervisor that moves data between partitions. This section
describes the various elements of a virtual Ethernet and implications relevant to
different types of workloads. Figure 6-13 is an example of an inter-partition
VLAN.

Figure 6-13 logical view of an inter-partition VLAN

Virtual Ethernet concepts
Partitions that communicate through a virtual Ethernet channel must have an
additional in-memory channel. This requires the creation of an in-memory
channel between partitions on the HMC. The kernel creates a virtual device for
each memory channel indicated by the firmware. The AIX 5L V5.3 configuration
manager creates the device special files. A unique MAC address is also
generated when the virtual Ethernet device is created. A prefix value can be
assigned for the system so that the generated MAC addresses in a system
 Chapter 6. Virtual I/O 169

consist of a common system prefix plus an algorithmically generated unique part
per adapter.

The virtual Ethernet can also be used as a bootable device to enable such tasks
as operating system installations to be performed using NIM.

MTU Sizes
The virtual Ethernet adapter supports, as Gigabit (Gb) Ethernet, Standard
MTU-Sizes of 1500 bytes and Jumbo frames with 9000 bytes. Additionally to
physical Ethernet, the MTU-Size of 65280 bytes is also supported in virtual
Ethernet. So, the MTU of 65280 bytes can be only used inside a virtual Ethernet.

IPv6 Support
Virtual Ethernet supports multiple protocols, such as IPv4 and IPv6.

6.5.3 Benefits of virtual Ethernet
Due to the number of possible partitions on many systems being greater than the
number of I/O slots, virtual Ethernet is a convenient and cost-saving option to
enable partitions within a single system to communicate with one another
through a VLAN. The VLAN creates logical Ethernet connections between one or
more partitions and is designed to help prevent a failed or malfunctioning
operating system from being able to affect the communication between two
functioning operating systems. The virtual Ethernet connections may also be
bridged to an external network to permit partitions without physical network
adapters to communicate outside of the server.

The transmission speed of virtual Ethernet is in the range of 1 Gb to 3 Gb per
second, depending on the transmission (MTU) size. A partition can support up to
256 virtual Ethernet adapters with each virtual Ethernet capable of being
associated with up to 21 VLANs (20 VID and 1 PVID).

A virtual Ethernet adapter appears to the operating system in the same way as a
physical adapter. It also can be configured in the same manner. While the MAC
address of physical Ethernet is coded on the (hardware) adapter, the MAC
address of the virtual adapter is generated by the HMC.
170 Advanced POWER Virtualization on IBM Eserver p5 Servers

6.5.4 Limitations and considerations
Consider the following limitations when implementing a virtual Ethernet:

� A maximum of up to 256 virtual Ethernet adapters are permitted per partition.

� Virtual Ethernet can be used in both shared and dedicated processor
partitions if the partition is running AIX 5L V5.3 or Linux with the 2.6 kernel or
a kernel that supports virtualization.

� A mixture of virtual Ethernet connections, real network adapters, or both are
permitted within a partition.

� Virtual Ethernet requires a POWER5 processor–based system and an HMC
to define the virtual Ethernet adapters.

� Virtual Ethernet can connect only partitions within a single system.

� Virtual Ethernet connections from AIX 5L or Linux partitions to an i5/OS
partition may work; however, when this book was being written these
capabilities were unsupported.

� Virtual Ethernet uses the system processors for all communication functions
instead of offloading the load to processors on network adapter cards, so an
increase in system processor load is generated by the use of virtual Ethernet.

6.5.5 POWER Hypervisor switch implementation
The POWER Hypervisor switch is consistent with IEEE 802.1 Q. It works on
OSI-Layer 2 and supports up to 4096 networks (4096 VLAN IDs).

When a message arrives at a Logical LAN switch port from a Logical LAN
adapter, the POWER Hypervisor caches the message’s source MAC address to
use as a filter for future messages to the adapter. The POWER Hypervisor then
processes the message differently depending on whether the port is configured
for IEEE VLAN headers. If the port is configured for VLAN headers, the VLAN
header is checked against the port’s allowable VLAN list. If the message
specified VLAN is not in the port’s configuration, the message is dropped. After
the message passes the VLAN header check, it passes onto destination MAC
address processing.

If the port is not configured for VLAN headers, the POWER Hypervisor inserts a
two-byte VLAN header (based on the port’s configured VLAN number) into the
message. Next, the destination MAC address is processed by searching the
table of cached MAC addresses.

If a match for the MAC address is not found and if no trunk adapter is defined for
the specified VLAN number, the message is dropped; otherwise, if a match for
the MAC address is not found and if a trunk adapter is defined for the specified
 Chapter 6. Virtual I/O 171

VLAN number, the message is passed on to the trunk adapter. If a MAC address
match is found, then the associated switch port’s configured, allowable VLAN
number table is scanned for a match to the VLAN number contained in the
message’s VLAN header. If a match is not found, the message is dropped.

Next, the VLAN header configuration of the destination switch port is checked. If
the port is configured for VLAN headers, the message is delivered to the
destination Logical LAN adapters, including any inserted VLAN header. If the
port is configured for no VLAN headers, the VLAN header is removed before
being delivered to the destination Logical LAN adapter.

Figure 6-14 on page 173 shows a graphical representation of the behavior of the
virtual Ethernet when processing packets.
172 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-14 Flow chart of virtual Ethernet

Virtual Ethernet Adapter

VLAN Switch Port

Hypervisor Caches Source MAC

IEEE
VLAN

Header?

Insert VLAN
Header

Check VLAN Header

Port
Allowed?

Dest.
MAC in
Table?

Configure
Associated
Switch Port

Matches
VLAN

In Table?

Deliver Pass to
Trunk Adapter

Drop
Packet

Y

N

Y

N

Trunk
Adapter
Defined?

N

Y

N

Y

N

Y

 Chapter 6. Virtual I/O 173

6.5.6 Performance considerations
This section presents several experiments that were performed on an
Sserver p5 server to measure the influence of some parameters that a system
administrator can set.

General comments about measurements
The operating system that ran on all partitions was AIX 5L V5.3. The results of
the measurements could vary if they would be repeated at a later time with
updates to the operating system and firmware.

The platform that was used for these tests was a four-way 1.65 GHz IBM
Sserver p5 570.

Unless otherwise mentioned, the VLAN connections were set up between two
partitions, each configured with one dedicated processor. Simultaneous
multithreading was enabled.

The virtual Ethernet and physical Ethernet adapters were tested with their default
interface specific network options (as defined in the no command) and Object
Data Manager (ODM) settings. Specifically, these were:

Virtual Ethernet For MTU 1500, tcp_sendspace=131072,
tcp_recvspace=65536

For MTU 9000, tcp_sendspace=262144,
tcp_recvspace=131072, rfc1323=1

For MTU 65394, tcp_sendspace=262144,
tcp_recvspace=131072, rfc1323=1

Physical Ethernet Gigabit Ethernet

For MTU 1500, tcp_sendspace=131072,
tcp_recvspace=65536

For MTU 9000, tcp_sendspace=262144,
tcp_recvspace=131072, rfc1323=1

The adapter defaults were used, which include
large_send (also known as TCP segmentation off load),
TCP checksum off load, and interrupt coalescing. The
ODM attributes were: large_send=1, chksum_offload=1
and intr_rate=10000.

Description of the performance tests and tools
To measure the VLAN performance, the benchmark used was netperf. This
benchmark can be used to measure various aspects of networking performance.
Currently, it focuses on bulk data transfer (streaming) and request/response
174 Advanced POWER Virtualization on IBM Eserver p5 Servers

performance using either Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP), with the Berkeley Sockets interface.

This benchmark is now part of the public domain and can be found at:

http://www.netperf.org/netperf/NetperfPage.html

IBM has developed a derivative version that is more tightly integrated with the
capabilities of the AIX 5L V5.3 operating system. All measurements described in
this book use the IBM-modified version of netperf.

The experiment results presented later use both operational modes of netperf:
streaming mode, called TCP_STREAM, and transactional request/response
mode. called TCP_RR.

TCP_STREAM This benchmark performs the data streaming test between the
local system and the remote system. TCP_STREAM is used in
simplex and duplex mode. In simplex mode, one side sends
and the other end receives data; in duplex mode, both ends
send and receive at the same time. So the amount of data that
is transported via the media will increase. The TCP_STREAM
benchmark can be performed with a different data chunk size.
The results presented here are for an application that sends
data chunks between 16 KB and 64 KB to the communication
sockets (which then split them into IP packets depending on
the MTU size).

TCP_RR netperf request/response performance is quoted as
transactions per second for a given request and response site.
A transaction is defined as the exchange of a single request
and a single response. From a transaction rate, one can infer
round-trip average latency. The TCP_RR benchmarks are
done with one and 20 sessions. Unlike the one-session test,
the 20-session test shows how the response time and latency
is growing with more load.

In each mode, four programs called sessions are used. These sessions send
traffic over the connection to simulate a real workload with multiple IP sessions
flowing through the same adapter.

Overview of the following benchmark measurements
The first measurement shows how throughput is growing by adding more
entitlements to a virtual processor, then a test compares parameters such as
processor utilization, transaction rate, and latency in both physical and virtual
networks. The last set of measurements shows the difference in performance of
the VLAN using single-threaded and simultaneous multithreading modes.
 Chapter 6. Virtual I/O 175

http://www.netperf.org/netperf/NetperfPage.html

6.5.7 VLAN throughput at different processor entitlements
This purpose of this test is to see what throughput might be expected in a VLAN.
Because the throughput varies with processor entitlements and MTU size, these
parameters are variable in the measurement.

Figure 6-15 Processor entitlements and MTU sizes

Both LPARs have one VLAN adapter, and there are multiple sessions running
between adapters. The benchmark used for this test is netperf TCP_STREAM.

LPAR1, with varied processor entitlements, is sending a simplex stream. LPAR2,
with two dedicated processors, receives it.

The goal of the test was to measure the performance of LPAR1, so resources for
LPAR 2 are oversized using two dedicated processors, so there is no bottleneck
on the receiving side that would affect the measurement. This enables the
throughput of the VLAN interface of LPAR1 to be effectively measured as a
function of the CPU entitlement of LPAR1.

Figure 6-16 on page 177, Figure 6-17 on page 177, and Figure 6-18 on
page 178 show the results of the performance measurements that were taken
using varying processor entitlements and MTU sizes of 1500, 9000, and 65394
bytes.

LPAR1

1 VLAN adapter
1 Virtual CPU
Entitlements
 0.1 to 1.0

LPAR2

1 VLAN adapter
2 Dedicated CPUs

POWER Hypervisor
176 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-16 Throughput versus CPU entitlements, MTU size=1500

Figure 6-17 Throughput versus CPU entitlements, MTU size=9000

0

200

400

600

800

1000

1200

1400Throughput
[Mb/s]

0.1 0.3 0.5 0.8 1
CPU entitlements

Throughput, MTU size=1500

0

1000

2000

3000

4000

5000

Throughput
[Mb/s]

0.1 0.3 0.5 0.8 1

CPU entitlements

Throughput, MTU size=9000
 Chapter 6. Virtual I/O 177

Figure 6-18 Throughput versus CPU entitlements, MTU size=65394

VLAN performance
The throughput of the VLAN scales nearly linear with the allocated processor
entitlements. Throughput with MTU=9000 is more than three times the rate with
MTU=1500, and the throughput with MTU=65394 is more than seven times the
rate with MTU=1500. This is due to improved efficiency of sending larger packets
with one call up or down the TCP/IP protocol stack.

6.5.8 Comparing throughput of VLAN to physical Ethernet
In the next set of tests, a performance comparison of the VLAN and the physical
Ethernet adapter was made. Both LPARs are assigned one dedicated POWER5
processor, and ran in simultaneous multithreading mode.

Figure 6-19 on page 179 and Figure 6-20 on page 179 show the two different
types of connections between the LPARs and VLAN through the POWER
Hypervisor and physical Ethernet using a 1 Gb/s Ethernet switch.

The benchmark TCP_STREAM was running in simplex and duplex mode at
different MTU sizes on both setups, measuring throughput and processor
utilization.

0

2000

4000

6000

8000

10000

0.1 0.3 0.5 0.8 1

CPU entitlements

Throughput, MTU size=65394
178 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-19 VLAN performance configuration

Figure 6-20 Physical Ethernet configuration

LPAR1

1 VLAN adapter
1 Dedicated CPU

LPAR2

1 VLAN adapter
1 Dedicated CPU

POWER Hypervisor

LPAR1

1 Gb Ethernet
Adapter

1 Dedicated CPU

LPAR2

1 Gb Ethernet
Adapter

1 Dedicated CPU

POWER Hypervisor
 Chapter 6. Virtual I/O 179

VLAN and physical Ethernet performance
Figure 6-21 shows how throughput varies with different values of MTU size in
simplex and duplex modes. (The physical Ethernet adapter does not support an
MTU size of 65394.)

Figure 6-21 VLAN and physical Ethernet using TCP_STREAM

The VLAN adapter has a higher raw throughput at all MTU sizes. With an MTU
size of 9000 bytes, the throughput difference is very large (four to five times)
because the physical Ethernet adapter is running at wire speed (989 Mbit/s user
payload), but the VLAN can run much faster because it is limited only by CPU
and memory-to-memory transfer speeds.

6.5.9 Comparing CPU utilization
These measurements use the same configurations as shown in Figure 6-19 on
page 179 and Figure 6-20 on page 179, and with the same TCP_STREAM
workload. CPU utilization is shown for different MTU sizes, in both simplex and
duplex mode, in Figure 6-22 on page 181 and Figure 6-23 on page 181.

0

2000

4000

6000

8000

10000

Throughput
[Mb/s]

1

Throughput, TCP_STREAM

VLAN
Gb Ethernet

MTU 1500 1500 9000 9000 65394 65394
Simpl./Dupl. S D S D S D
180 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-22 CPU utilization with TCP_STREAM, simplex mode

Figure 6-23 CPU utilization with TCP_STREAM, duplex mode

0
10
20
30
40
50
60
70

CPU
utilization
[%cpu/Gb]

1

CPU utilization with TCP_STREAM, simplex mode

VLAN
Gb Ethernet

 MTU 1500 1500 9000 9000 65394 65394
 Send/Receive S R S R S R

0

10

20

30

40

50

60

CPU
utilization
[%cpu/Gb]

1

CPU utilization with TCP_STREAM, duplex mode

VLAN

Gb Ethernet

MTU 1500 1500 9000 9000 65394 65394
Send/Receive S R S R S R
 Chapter 6. Virtual I/O 181

VLAN and physical Ethernet performance
As expected, the CPU utilization of the VLAN is higher than the throughput of
physical Ethernet. As with most adapter cards, the physical Ethernet adapter has
a processor on it to perform the memory transfers of the packets to and from the
adapter card. The VLAN requires the POWER Hypervisor to do the memory
transfers, resulting in higher CPU utilization. To compare CPU utilization, the
results are normalized to 1 Gb throughput for both the VLAN and physical
Ethernet. In addition, another difference in CPU utilization between the virtual
Ethernet and the physical Ethernet adapter when using MTU 1500 is the effect of
having the attributes large_send and checksum_offload enabled on the physical
adapter. These two features reduce the CPU utilization for physical Ethernet, but
they are not available on virtual Ethernet.

6.5.10 Comparing transaction rate and latency
These measurements were obtained using the configurations shown in
Figure 6-19 on page 179 and Figure 6-20 on page 179. The TCP_RR workload
was used to get a value for number of transactions and latency. TCP_RR is used
with two different parameters for the number of sessions (1 and 20), which is a
measure for different workloads.

The results are presented in two charts. Figure 6-24 shows the transaction rate
for MTU size of 1500 and 9000 and for 1 and 20 sessions. Figure 6-25 on
page 183 shows the latency for the same parameters.

Figure 6-24 Transaction rate at different MTU sizes and 1 and 20 sessions

0

20000

40000

60000

80000

Transaction
rate [1/s]

1

Transactions/sec, TCP_RR, duplex mode

VLAN
Gb Ethernet

MTU 1500 1500 9000 9000
Sessions 1 20 1 20
182 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-25 Latency at different MTU sizes and 1 and 20 sessions

VLAN and physical Ethernet performance
The virtual Ethernet has lower latency for light workloads than the physical
Ethernet adapter. This is because the Ethernet adapter has interrupt coalescing
enabled by default (ODM attribute intr_rate=10000). This adds latency to the
adapter’s single session test, but it helps reduce CPU utilization for higher
transaction rate workloads (such as the 20-session test), which is why the
throughput is similar at 20 sessions. The latency can be reduced by disabling
interrupt coalescing (set the adapters intr_rate=0). The virtual Ethernet does not
support any method of interrupt coalescing.

The physical Ethernet has lower latency in heavy workloads because interrupt
coalescing is enabled by default on the adapter.

6.5.11 VLAN performance
This purpose of this test was to show the performance gain of running the
processor in simultaneous multithreading mode. The configuration was the same
as shown in Figure 6-19 on page 179. For this comparison, both TCP_STREAM
and TCP_RR workloads are used.

Figure 6-21 on page 180 showed the results of VLAN throughput. The following
charts show the percent gain in throughput when comparing simultaneous
multithreading to single-threaded mode. Figure 6-26 on page 184 has results for
TCP_STREAM, and Figure 6-27 on page 185 illustrates the results for TCP_RR.

0

50

100

150

200

250

300
Latency [µs]

1

Latency, TCP_RR, duplex mode

VLAN
Gb Ethernet

MTU 1500 1500 9000 9000
Sessions 1 20 1 20
 Chapter 6. Virtual I/O 183

Figure 6-26 Performance gain with simultaneous multithreading, TCP_STREAM

The VLAN benefits from simultaneous multithreading because it is not limited by
media speed and takes advantage of the extra available processor cycles.

The reason for negative scaling in Figure 6-27 on page 185 when simultaneous
multithreading is enabled is that at very small workloads (which is the case when
there is only one TCP_RR session), running in single-threaded mode is more
efficient. With simultaneous multithreading enabled, the system disables the
second thread when the load on the system is light but checks periodically to
determine whether it needs to reactivate it. This checking, disabling, and
enabling of the second thread tends to affect the latency of the TCP_RR
transactions, thus reducing throughput.

0

10

20

30

40

50

60

70

Gain [%]

1

Performance gain with SMT and TCP_STREAM

VLAN

MTU 1500 1500 9000 9000 65394 65394
Simplex/Duplex S D S D S D
184 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-27 Performance gain with simultaneous multithreading, TCP_RR

6.5.12 VLAN implementation guidelines
Because there is little experience with VLANs before now, we offer some
guidelines for designing VLANs.

1. Know your environment and the network traffic.

2. Choose the MTU size as high as it makes sense for network traffic in the VLAN.

3. Use an MTU size of 65394 if you expect a large amount of data to be copied
in your VLAN.

4. Keep the tcp_pmtu_discover attribute set to its default value (active discovery).

5. If the VLAN is to be bridged to a Shared Ethernet Adapter for access to an
external network, set the MTU size of the VLAN in the client partition to the
value used for the definition of the Shared Ethernet Adapter on the Virtual I/O
Server partition.

6. Do not turn off simultaneous multithreading unless the applications demand it.

7. The VLAN throughput scales linearly with processor entitlements, so there is
no need to dedicate processors to partitions because of VLAN performance.

-20
-10

0
10
20
30
40
50
60
70

Gain [%]

1

Performance gain of SMT vs. ST for TCP_RR

VLAN

MTU 1500 1500 9000 9000
TCP_RR Sessions 1 20 1 20

Important: The following recommendations have no guarantee for enhancing
performance; they are merely provided as suggestions.
 Chapter 6. Virtual I/O 185

6.6 Shared Ethernet Adapter
A Virtual I/O Server partition is not required for implementing a VLAN. Virtual
Ethernet adapters can communicate with each other via the POWER Hypervisor
without the functionality of the Virtual I/O Server.

Bridging from the VLAN to the physical LAN can be accomplished in two ways:

� Routing
� Shared Ethernet Adapter

By enabling the AIX 5L V5.3 routing capabilities (ipforwarding network option),
one partition with a physical Ethernet adapter connected to an external network
can act as a router. Figure 6-28 shows a sample configuration. In this type of
configuration the partition that routes the traffic to the external work does not
necessarily have to be the Virtual I/O Server as in the pictured example. It could
be any partition with a connection to the outside world. The client partitions
would have their default route set to the partition that routes traffic to the external
network.

Figure 6-28 Connection to external network using AIX 5L V5.3 routing

Using a Shared Ethernet Adapter, you can connect internal and external VLANs
using one physical adapter. The Shared Ethernet Adapter hosted in the Virtual
I/O Server partition acts as an OSI Layer 2 switch between the internal and
external network.
186 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-29 shows the Shared Ethernet Adapter being used as a bridge between
the virtual Ethernet and physical Ethernet.

Figure 6-29 Shared Ethernet Adapter configuration

The bridge interconnects the logical and physical LAN segments at the network
interface layer level and forwards frames between them. The bridge performs the
function of a MAC relay (OSI Layer 2), and is independent of any higher layer
protocol. Figure 6-30 on page 188 is a close-up view of the Virtual I/O Server
partition.

C lient
Partition

C lient
Partition

V irtua l I/O Server
Partition

PO W ER H ypervisor

Virtual
E thernet
Adapter

V irtual
E thernet
Adapter

Shared
Ethernet
Adapter

V irtual
E thernet
Adapter

Physical
E thernet
Adapter

Physical
E thernet
Adapter

N etw ork
 Chapter 6. Virtual I/O 187

Figure 6-30 Sharing a (physical) Ethernet adapter on OSI layers

The bridge is transparent to the Internet Protocol (IP) layer. For example, when
an IP host sends an IP datagram to another host on a network connected by a
bridge, it sends the datagram directly to the host. The datagram “crosses” the
bridge without the sending IP host being aware of it.

The Virtual I/O Server partition offers broadcast and multicast support. Address
Resolution Protocol (ARP) and Neighbor Discovery Protocol (NDP) also work
across the Shared Ethernet Adapter.

The Virtual I/O server does not reserve bandwidth on the physical adapter for
any of the VLAN clients that send data to the external network. Therefore, if one
client partition of the Virtual I/O Server sends data, it can take advantage of the
full bandwidth of the adapter, assuming that the other client partitions do not
send or receive data over the network adapter at the same time.

The following steps enable this connectivity:

1. Define the virtual Ethernet adapter on the I/O Server.

This is to be done on the HMC.

2. Define the virtual Ethernet adapters on the AIX 5L V5.3 or Linux partitions.

This definition is done on the HMC and is not a Virtual I/O Server function. It
creates virtual Ethernet adapters that can be used like any other Ethernet

Virtual I/O Server Partition

OSI Layer 2 Bridge (Shared Ethernet Adapter)

Device Driver Device Driver Device Driver

Virtual Adapter Virtual Adapter Physical Adapter

To client partitions
To external

Ethernet network
188 Advanced POWER Virtualization on IBM Eserver p5 Servers

adapter. Different virtual networks can be separated using
IEEE802.1Q-compatible VLAN features of the virtual Ethernet adapters.

3. Define the Shared Ethernet Adapter in the Virtual I/O Server partition.

The I/O Server acts as a bridge and forwards the IP packages using the
virtual Ethernet connections to the AIX 5L V5.3 or Linux partitions.

The implementation of virtual Ethernet adapters on an IBM Sserver p5 system
within Linux is assigned one IEEE VLAN-aware virtual Ethernet switch in the
system. All partitions talking on the Ethernet are peers. Up to 4,096 separate
IEEE VLANs can be defined. Each partition can have up to 65,533 virtual
Ethernet adapters connected to the virtual switch. Each adapter can be
connected to 21 IEEE VLANs (20 VID and 1 PVID).

The enablement and setup of a virtual Ethernet does not require any special
hardware or software. After a specific virtual Ethernet is enabled for a partition, a
network device named ethXX is created in the partition. The user can then set up
TCP/IP configuration appropriately to communicate with other partitions. For
information about network TCP/IP setup and configuration tools, see your
AIX 5L V5.3 or Linux distribution documentation.

To define the Shared Ethernet Adapter (SEA) in the Virtual I/O Server partition,
use the mkvdev command. The syntax is:

mkvdev -sea TargetDevice -vadapter VirtualEthernetAdapter ...
 -default DefaultVirtualEthernetAdapter
 -defaultid SEADefaultPVID [-attr Attributes=Value ...]

Using the example in Figure 6-31 on page 190, the target devices are the
physical adapters (for example, ent0 and ent1). The virtual devices are ent2,
ent3, and ent4, and the default ID is the default PVID associated with the default
virtual Ethernet adapter.

The following commands are required to set up the Shared Ethernet Adapter for
this example:

$ mkvdev –sea ent0 –vadapter ent2 –default ent2 –defaultid 1
$ mkvdev –sea ent1 –vadapter ent3 ent4 –default ent3 –defaultid 2

Important: To set up the Shared Ethernet Adapter, all involved virtual and
physical Ethernet interfaces have to be unconfigured (down or detached).
 Chapter 6. Virtual I/O 189

Figure 6-31 Example of Shared Ethernet Adapter bridging

In the second example, the physical Ethernet adapter is ent1. With the mkvdev
command, we map the virtual Ethernet adapter ent3 and ent4 to the physical
adapter. Additionally, ent3 is defined as a default adapter with the default VLAN
ID of 2. This means that untagged packets received by the Shared Ethernet
Adapter are tagged with the VLAN 2 ID and are send to the virtual Ethernet
adapter ent3.

After running the mkvdev command, the system will create the Shared Ethernet
Adapter ent5. You now can configure the ent5 interface with an IP address using
the mktcpip command.

6.6.1 Shared Ethernet Adapter performance
This test environment was conducted using the same conditions as described in
“General comments about measurements” on page 174.

Figure 6-32 on page 191 shows the setup of the experiment. The communication
path starts on a client partition that has a single dedicated processor, and is
connected via a VLAN adapter, through the POWER Hypervisor to the VLAN
adapter of the Virtual I/O Server partition, which bridges the virtual Ethernet
adapter to a physical Ethernet adapter that is connected via a gigabit Ethernet
network to a two-way POWER4+ processor–based server. The Virtual I/O Server
runs in a partition with a single dedicated 1.65 GHz POWER5 processor.

The TCP_STREAM workload as described in “Description of the performance
tests and tools” on page 174 is used to examine the throughput.

Note: The measurements are not done with a Gigabit Ethernet switch.
Instead, a physical point-to-point connection (crossover cable) was used so
there is no falsification of the measurement due to the internal behavior of a
real switch.
190 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-32 Configuration of test environment

Virtual I/O Server performance results
The next two figures show the results measured on the Virtual I/O Server.
Figure 6-33 on page 192 shows the throughput of the Virtual I/O Server at MTU
sizes of 1,500 and 9,000 in both modes, simplex and duplex. Note that this test
maximized the line speed of the Gigabit Ethernet. Therefore, the limitation is the
physical network media speed (1 Gb simplex or 2 Gb duplex).

Figure 6-34 on page 192 presents the utilization of the processor in the Virtual
I/O Server partition. To provide a better comparison of processor utilization
versus MTU size and simplex/duplex modes, the utilization is normalized to 1Gb
data throughput.

The results show that the Shared Ethernet Adapter enables the adapters to
stream data at media speed as long as it has enough processor entitlements.

Processor utilization per gigabit of throughput is higher with the Shared Ethernet
Adapter because it has to use the POWER Hypervisor to move the packets of the
VLAN between partitions, and because of the SEA’s device driver code.

POWER Hypervisor

Virtual I/O
Server Partition

1 VLAN adapter
1 Gb Ethernet Adapter

1 dedicated CPU

Gb Ethernet Network

Client Partition

1 VLAN adapter
1 dedicated CPU

POWER4+
Server

1 Gb Ethernet Adapter

Gb
EthernetVLANVLAN Gb

Ethernet

SEA
Bridge
 Chapter 6. Virtual I/O 191

Figure 6-33 Throughput of the Virtual I/O Server

Figure 6-34 Processor utilization of the Virtual I/O Server

0

500

1000

1500

2000

1 2 3 4

Virtual I/O Server Throughput, TCP_STREAM
Throughput

[Mb/s]

MTU 1500 1500 9000 9000
Simplex/Duplex simplex duplex simplex duplex

0

20

40

60

80

100

1 2 3 4

Virtual I/O Server
normalized CPU utilization, TCP_STREAM

CPU
Utilization
[%cpu/Gb]

MTU 1500 1500 9000 9000
Simplex/Duplex simplex duplex simplex duplex
192 Advanced POWER Virtualization on IBM Eserver p5 Servers

6.6.2 Request/response time and latency
In this test, the workload TCP_RR was used to determine the difference in
transaction rate and the latency between the Shared Ethernet Adapter and a
physical 1 Gb Ethernet adapter.

The measurements for the Shared Ethernet Adapter (SEA) were taken using the
configuration that was shown in Figure 6-32 on page 191, with traffic exchanged
between LPAR1 and the server.

Figure 6-35 shows the configuration of the physical Ethernet test. The Virtual I/O
Server is bypassed and the traffic flows directly from the client partition to the
POWER4+ server through the 1 Gbps physical network.

Figure 6-35 Dedicated connection between a partition and an external server

Results of request/response time and latency
The next two figures show the results of the TCP_RR benchmark for 1 and 20
sessions.

Note that the values shown for tests where there was just one session are limited
by the default setting of the physical Ethernet adapter’s interrupt coalescing
value. The physical Ethernet adapter has interrupt coalescing enabled by default
(intr_rate=10000) because this helps reduce CPU utilization at higher transaction
rates. However, this adds latency when only a single transaction is running due to
delaying the interrupt. Some workloads with small packets and light workload
may benefit from disabling the interrupt coalescing on the physical adapter.

Virtual I/O
Server Partition

1 VLAN adapter
1 Gb Ethernet Adapter

1 dedicated CPU

Gb Ethernet Network

Client Partition

1 Gb Ethernet Adapter
1 dedicated CPU

POWER4+
Server

1 Gb Ethernet Adapter

Gb
EthernetVLAN Gb

Ethernet

SEA
Bridge

Gb
Ethernet
 Chapter 6. Virtual I/O 193

Figure 6-36 Transaction rates, TCP_RR, 1 session

Figure 6-37 Transaction rates, TCP_RR, 20 sessions

Tip: Some workloads with small packets and light workloads may benefit from
disabling the interrupt coalescing on the physical adapter.

1
2

SEA
Gb Ethernet

0

1000

2000

3000

4000

5000

Transactions/sec, TCP_RR, 1 session

SEA
Gb Ethernet

MTU= 1500 9000

Transactions
[1/s]

1
2

SEA

Gb Ethernet
0

20000

40000

60000

80000

Transactions/sec, TCP_RR, 20 sessions

SEA

Gb Ethernet

MTU= 1500 9000

Transactions
[1/s]
194 Advanced POWER Virtualization on IBM Eserver p5 Servers

Latency was measured with the same parameters as the transaction rate.
Figure 6-38 and Figure 6-39 show the differences between the Shared Ethernet
Adapter and physical Ethernet and the increasing latency if the load grows to 20
sessions.

Figure 6-38 Latencies, TCP_RR, 1 session

Figure 6-39 Latency, TCP_RR, 20 sessions

1
2

SEA
Gb Ethernet

0

50

100

150

200

Latency, TCP_RR, 1 session

SEA

Gb Ethernet

MTU= 1500 9000

Latency
[µs]

1
2

SEA

Gb Ethernet
0

100

200

300

Latency, TCP_RR, 20 sessions

SEA
Gb Ethernet

MTU= 1500 9000

Latency
[µs]
 Chapter 6. Virtual I/O 195

6.7 Implementation guidelines
Sizing a server can be somewhat complex and time-consuming. Furthermore, it
can be performed with varying accuracy, depending on the amount of data you
can collect about the resources requirements of your applications.

This section offers some guidelines for designing a Virtual I/O Server partition.
The intent is to give some quick sizing guidelines that may be simple enough for
initial sizing when very little data about the application requirements is available.
Later on, the server could have its partition size increased or decreased to adjust
for variations in the actual workload during peak times of the day. Because of the
virtualization features of the hardware, the machine resources can be adjusted to
meet the demands of the Virtual I/O server. See 6.7.1, “Guidelines for Shared
Ethernet Adapter sizing” on page 197 for a more accurate method to adjust the
Virtual I/O Server resources.

Guidelines for sizing and configuring the network
The following guidelines are given to assist you in properly sizing your network.

1. Know your environment and the network traffic.

2. For the most demanding network traffic between VLANs and local networks,
use a dedicated network adapter.

3. For optimal performance, use dedicated processors for the Virtual I/O Server
partition.

4. Choose 9000 for the MTU size or what makes sense for your network traffic.

Guidelines for optimizing network throughput
Table 6-6 lists guidelines for easy estimating of network throughput. The speed
numbers are a bit conservative but rounded down for easy estimating. These
numbers are for POWER5 processor–based systems with PCI-X slots.

Table 6-6 Network streaming rates

Important: The following recommendations provide a reasonable starting
point for an initial configuration. Further tuning will be required to obtain
optimal performance.

Adapter speed Throughput (MB/second)

Simplex Full Duplex

10 Mb Ethernet 1 MB/s 2 MB/s

100 Mb Ethernet 10 MB/s 20 MB/s
196 Advanced POWER Virtualization on IBM Eserver p5 Servers

Guidelines for processor requirements
Because Ethernet running with an MTU size of 1500 bytes consumes more CPU
cycles than Ethernet running with Jumbo frames (MTU 9000), the guidelines are
different for each. In round numbers, the CPU utilization for large packet
workloads on jumbo frames is about half of the CPU required for MTU 1500.

With configurations where MTU is 1500
A basic general rule is to provide 100% of one POWER5 processor (1.65 GHz)
per Gigabit Ethernet adapter to drive it to maximum bandwidth. This would
translate to ten 100-Mbit Ethernet adapters if attached to a 100 Mb LAN.

For example, if two Gigabit Ethernet adapters will be used, then up to two
processors should be allocated to the partition.

With configurations where MTU is 9000 (jumbo frames)
The general rule is 50% of one POWER5 processor (1.65 GHz) per Gigabit
Ethernet to drive to maximum bandwidth.

The processing power needed to transfer data over a network depends mainly on
the number of packets to be handled. If your network traffic contains a lot of small
transactions that do not take advantage of the jumbo frame payload but use
small packets, then you should plan on one full CPU to drive each Gigabit
Ethernet adapter. (Jumbo frames do not help the small packet workload case).

6.7.1 Guidelines for Shared Ethernet Adapter sizing
Sizing of the Virtual I/O Server for the Shared Ethernet Adapter component
involves these steps:

1. Define the target bandwidth or transaction rate requirements.

The idea is to determine the target bandwidth on the physical Ethernet side of
the Virtual I/O Server partition, as this will determine the rate that data can be
transferred between the Virtual I/O Server partition and the client partitions.
When the target rate is known, the proper type and number of network
adapters can be selected. For example, various speed Ethernet adapters
could be used, such as 10 Mb, 100 Mb, or Gigabit. One or more adapters
could be used on individual networks or they could be aggregated using port
aggregation.

1000 Mb Ethernet (Gigabit Ethernet) 100 MB/s 150 MB/s (1.5X the simplex rate)

Adapter speed Throughput (MB/second)

Simplex Full Duplex
 Chapter 6. Virtual I/O 197

2. Define the type of workload.

The type of workload can be streaming data for workloads such as file
transfers or data backup, or small transaction workloads such as remote
procedure calls (RPCs). The streaming workload is mainly dominated by
large full-size network packets and associated small TCP Acknowledgement
packets. Transaction workloads typically involve smaller packets or may
involve small requests, such as a URL, and a larger response, such as a Web
page. It is common for an I/O server to have to support streaming and small
packet I/O during various periods of time. In such cases, the sizing should be
approached from both models and the larger sizing used.

3. Identify the MTU size that will be used.

The standard Internet cell size is 1,500 bytes (1,518 bytes on the wire) and is
the typical setting on adapter cards. Gigabit Ethernet can support MTU
9000-byte Jumbo frames and may be desirable for localized networks. The
larger Jumbo frames can reduce the CPU cycles considerably for the
streaming types of workloads. However for small workloads, the larger MTU
size will not help reduce CPU cycles. In many cases, the MTU choice is
driven by the existing network infrastructure and cannot be freely chosen
according to the application requirements.

4. Define the Virtual I/O Server partition configuration.

This definition includes the number of processors and I/O adapters. Another
issue that affects the CPU cycles used is whether the Shared Ethernet
Adapter is configured to run in threaded or non-threaded mode. Threaded
mode is used mainly when VSCSI will be configured on the same Virtual I/O
Server partition. Threaded mode helps ensure that VSCSI and the Shared
Ethernet Adapter share the CPU resource fairly. Threading adds more
instruction path length, however, thus using more CPU cycles. If the Virtual
I/O Server partition will be dedicated to running shared Ethernet and
associated virtual Ethernet only, they should be configured with threading
disabled in order to run in the most efficient mode. Enabling and disabling of
threading is covered in 6.7.3, “Control of threading in the Shared Ethernet
Adapter” on page 204.

When the workload and type of adapters have been chosen, determine how
many processors are required to move data through the network at the desired
rate. The networking device drivers are CPU-intensive. Small packets can come
in at a faster rate and use more CPU cycles than larger packet workloads. Larger
packet workloads are normally limited by network wire bandwidth and come in at

Important: The threading concept discussed above is software threading.
It is not the POWER5 hardware feature that enables running the virtual
processors in single-threaded or simultaneous multithreading mode.
198 Advanced POWER Virtualization on IBM Eserver p5 Servers

a slower rate, thus requiring less CPU than small-packet workloads for the
amount of data transferred.

CPU sizing
CPU sizing for the SEA is divided into two workload types, TCP streaming and
TCP request/response (transaction), for both MTU 1500 and MTU 9000
networks. The sizing is provided in terms of number of machine cycles needed
per byte of throughput or machine cycles needed per transaction.

The upcoming tables were derived with these formulas:

cycles per byte = (# CPUs * CPU_Utilization * CPU clock frequency)/
Throughput rate in bytes per second

and

cycles per transaction = (#CPUs * CPU_Utilization * CPU clock frequency)/
Throughput rate in transactions per second

When sizing, it is necessary to consider the impact of the threading option that is
available for the device driver of the Shared Ethernet Adapter. The threading
option increases processor utilization at lower workloads due to the threads
being started for each packet. At higher workload rates, such as full duplex or the
request/response workloads, the threads can run longer without waiting and
being redispatched. The thread option should be disabled if the Shared Ethernet
Adapter is running in a partition by itself without VSCSI.

The numbers were measured on a single 1.65 GHz POWER5 processor, running
with the default of simultaneous multithreading enabled. For other CPU
frequencies, the numbers in these tables can be scaled by the ratio of the CPU
frequencies for approximate values to be used for sizing.

For example, for a 1.5 GHz processor speed, use 1.65/1.5 * cycles per byte or
transactions value from the table. This example would result in a value of 1.1
times the value in the table, thus requiring 10% more cycles to adjust for the 10%
slower clock rate of the 1.5 GHz processor.

To use these values, multiply your required throughput rate (in bytes or
transactions) by the number of cycles per byte or transactions in the tables that
follow. This produces the required machine cycles for the workload for a 1.65
GHz speed. Then adjust this value by the ratio of the actual machine speed to
this 1.65 GHz speed.

Then to find the number of CPUs, divide the result by 1,650,000,000 cycles. You
would need that many CPUs to drive the workload. In these tables, one MB is
1,048,576 bytes.
 Chapter 6. Virtual I/O 199

For example, if the Virtual I/O Server must deliver 200 MB of streaming
throughput, it would take 200 * 1,048,576 * 11.2 = 2,348,810,240 /1,650,000,000
cycles per CPU=1.42 CPUs. Thus, in round numbers, it would take 1.5
processors in the Virtual I/O Server partition to handle this workload.

This could be handled with either a two-CPU dedicated partition or a 1.5-CPU
micro-partition.

Table 6-7 provides the figures to use for streaming workloads when the threading
option is enabled.

Table 6-7 Streaming workload, machine cycles per byte - threading enabled

Table 6-8 provides the figures to use when the threading option is disabled.

Table 6-8 Streaming workload, machine cycles per byte - threading disabled

Table 6-9 on page 201 has figures to use for transaction workloads when the
threading option is enabled. A transaction is a round-trip request and reply of size
listed in the first column of the table. Table 6-10 on page 201 has figures for when
threading is disabled.

Streaming
type

MTU 1500
rate and CPU
utilization

MTU 1500,
cycles per
byte

MTU 9000
rate and CPU
utilization

MTU 9000,
cycles per
byte

Simplex 112.8 MB at
80.6% CPU

11.2 117.8 MB at
37.7% CPU

5.0

Duplex 162.2 MB at
88.8% CPU

8.6 217.0 MB at
52.5% CPU

3.8

Streaming
type

MTU 1500
rate and CPU
utilization

MTU 1500,
cycles per
byte

MTU 9000
rate and CPU
utilization

MTU 9000,
cycles per
byte

Simplex 112.8 MB at
66.4% CPU

9.3 117.8 MB at
26.7% CPU

3.6

Duplex 161.6 MB at
76.4% CPU

7.4 216.8 MB at
39.6% CPU

2.9
200 Advanced POWER Virtualization on IBM Eserver p5 Servers

Table 6-9 Transaction workload, transactions per second - threading enabled

Table 6-10 Transaction workload, transactions per second - threading disabled

Micro-Partitioning considerations
Creating the Virtual I/O Server partition with Micro-Partitioning can be used when
interfacing to slower speed networks (for example, 10/100 Mb) since a full,
dedicated processor is not needed. This probably should be done only if the
workload is less than 50% CPU utilization or if the workload characteristics are
burst-type transactions. Configuring the partition as uncapped can also enable it
to use more processor cycles as needed to handle the bursts.

For example, if the network is used only at night when other processors may be
idle, the partition may be able to use the unused machine cycles. It could be
configured with minimal CPU to handle light traffic during the day, but the
uncapped processor could use more machine cycles during idle periods.

When configuring Micro-Partitioning for the Virtual I/O Server partition, it is
suggested that you increase the entitlement to accommodate the extra resources
needed by the POWER Hypervisor.

Memory sizing
The memory requirements for a Virtual I/O Server partition that provides the
Shared Ethernet Adapter functions only (no VSCSI) are minimal. In general, a
512 MB partition should work for most configurations.

Enough memory must be allocated for the I/O server data structures. For the
Ethernet and virtual devices, there are dedicated receive buffers that each device
will use. These buffers are used to store the incoming packets from the VLAN,
before delivery to the physical Ethernet adapter, so they are very transient.

Size of transactions Transactions/second
and I/O server utilization

MTU 1500 or 9000, cycles
per transaction

Small packets
(64 bytes)

59772 TPS at 83.4% CPU 23022

Large packets
1024 bytes)

51956 TPS at 80.0% CPU 25406

Size of transactions Transactions/second
and I/O server utilization

MTU 1500 or 9000, cycles
per transaction

Small packets
(64 bytes)

60249 TPS at 65.6% CPU 17965

Large packets
1024 bytes)

53104 TPS at 65.0% CPU 20196
 Chapter 6. Virtual I/O 201

For physical Ethernet network, the system typically uses 4 MB for MTU 1500 or
16 MB for MTU 9000 for dedicated receive buffers. For virtual Ethernet, the
system typically uses 6 MB for dedicated receive buffers; however, this number
can vary based on load.

Each instance of a physical or virtual Ethernet would need memory for this many
buffers.

In addition, the system has an mbuf buffer pool per CPU that is used if additional
buffers are needed. These mbufs typically occupy 40 MB.

6.7.2 Guidelines for physical Ethernet sizing
This section provides information about bandwidth for various Ethernet adapters,
CPU cycles required for the Virtual I/O Server to handle these packets, and the
formulas used to compute the server sizings.

Table 6-11 has approximate throughput rates for the various Ethernet adapters
and MTU sizes in simplex mode. Table 6-12 on page 203 provides approximate
throughput rates for various Ethernet adapters and MTU sizes in duplex mode.

Table 6-11 TCP streaming rates, simplex mode

Network type Raw bit rate
(Mb/s)

Payload rate
(Mb/s)

Payload
rate (MB)

10 Mb Ethernet, Half Duplex 10 6 .7

10 Mb Ethernet, Full Duplexa

a. The peak numbers represent best case throughput with multiple TCP ses-
sions running in duplex mode. Other rates are for single TCP sessions.

10 (20 Mbit full
duplex)

9.48 1.13

100 Mb Ethernet, Half Duplex 100 62 7.3

100 Mb Ethernet, Full Duplex 100 (200 Mbit
full duplex)

94.8 11.3

1000 Mb Ethernet, Full Duplex,
MTU 1500

1000 (2000 Mbit
full duplex)

948 113

1000 Mb Ethernet, Full Duplex,
MTU 9000

1000 (2000 Mbit
full duplex)

989 117.9
202 Advanced POWER Virtualization on IBM Eserver p5 Servers

Table 6-12 TCP Streaming rates, duplex mode

These tables provide the maximum network payload speeds. These are user
payload data rates that can be obtained by sockets-based programs for
applications that are streaming data (one program doing send() calls and the
receiver doing recv() calls over a TCP connection). The rates are a function of
the network bit rate, MTU size, physical level requirements such as Inter-frame
gap and preamble bits, data link headers, and TCP/IP headers. These are best
case numbers for a single LAN, and may be lower if going through routers or
additional network hops or remote links.

Note that the raw bit rate is the physical media bit rate and does not reflect
physical media data like Inter-frame gaps, preamble bits, cell information (for
ATM), data link headers, and trailers. These all reduce the effective usable bit
rate of the wire.

Uni-directional (simplex) TCP streaming rates are rates that can be seen by a
workload such as File Transfer Protocol (FTP) operations sending data from
machine A to machine B in a memory-to-memory test. Note that full duplex
media performs slightly better than half duplex media because the TCP
acknowledgement packets can flow back without contending for the same wire
that the data packets are flowing on.

These are user payload data rates that can be obtained by sockets-based
programs for applications that are streaming data (one program doing send()
calls and the receiver doing recv() calls) over a TCP connection. The rates are a
function of the network bit rate, MTU size, physical level requirements such as

Network type Raw bit rate (Mb/s) Payload
rate (Mb/s)

Payload
rate (MB)

10 Mbit Ethernet, half duplex 10 5.8 .7

10 Mbit Ethernet, full duplex 10 (20 Mbit full duplex) 18 2.2

100 Mbit Ethernet, half duplex 100 58 7

100 Mbit Ethernet, full duplex 100 (200 Mb full duplex) 177 21.1

1000 Mbit Ethernet, full
duplex, MTU 1500a

a. 1000 Mbit Ethernet (Gigabit Ethernet) duplex rates are for the PCI-X adapter in
PCI-X slots.

1000
(2000 Mbit full duplex)

1470
(1660 peak)

175
(198 peak)

1000 Mbit Ethernet, full
duplex, MTU 9000b

b. Data rates are for TCP/IP using IPV4 protocol. Adapters with MTU 9000 have
RFC1323 enabled.

1000
(2000 Mbit full duplex)

1680
(1938 peak)

200
(231 peak)
 Chapter 6. Virtual I/O 203

Inter-frame gap and preamble bits, data link headers, and TCP/IP headers.
These are best-case numbers for a single LAN, and may be lower if going
through routers or additional network hops or remote links.

Bi-directional (duplex) TCP streaming workloads have streaming data in both
directions (for example, an FTP from machine A to machine B and another FTP
running from machine B to machine A, concurrently). Such workloads can take
advantage of full duplex media that can send and receive concurrently. Some
media (for example, Ethernet in half duplex mode), cannot send and receive
concurrently, thus they will not perform any better (usually worse) when running
duplex workloads. Duplex workloads do not provide twice the throughput as
simplex workloads. This is because TCP acknowledge packets coming back from
the receiver have to compete with data packets flowing in the same direction.

6.7.3 Control of threading in the Shared Ethernet Adapter
These steps are necessary to configure the threading mode for the Shared
Ethernet Adapter:

1. Log on to the Virtual I/O Server partition as the user padmin.

2. Using the lsdev command, list the virtual adapters to find the Shared
Ethernet Adapter, as shown in Example 6-2.

Example 6-2 Listing virtual devices with lsdev

$ lsdev -virtual
name status description

ent2 Available Virtual I/O Ethernet Adapter (l-lan)
vsa0 Available LPAR Virtual Serial Adapter
ent3 Available Shared Ethernet Adapter

3. In this example, the Shared Ethernet Adapter is ent3. Use the lsdev
command again to find the current settings of the adapter. Example 6-3
shows that the thread mode is currently disabled (0).

Example 6-3 Displaying attributes of the Shared Ethernet Adapter

$ lsdev -dev ent3 -attr
attribute value description user_settable

pvid 100 PVID to use for the SEA device True
pvid_adapter ent2 Default virtual adapter to use for non-VLAN-tagged packets True
real_adapter ent0 Physical adapter associated with the SEA True
thread 0 Thread mode enabled (1) or disabled (0) True
virt_adapters ent2 List of virtual adapters associated with the SEA (comma
separated) True
204 Advanced POWER Virtualization on IBM Eserver p5 Servers

4. To enable threading, use the chdev command as shown in Example 6-4.

Example 6-4 Enabling threading with chdev

$ chdev -dev ent3 -attr thread=1
ent3 changed

5. You can confirm that the threading mode is enabled, shown in Example 6-5.

Example 6-5 Checking the new threading mode

$ lsdev -dev ent3 -attr
attribute value description user_settable

pvid 100 PVID to use for the SEA device True
pvid_adapter ent2 Default virtual adapter to use for non-VLAN-tagged packets True
real_adapter ent0 Physical adapter associated with the SEA True
thread 1 Thread mode enabled (1) or disabled (0) True
virt_adapters ent2 List of virtual adapters associated with the SEA (comma
separated) True
$

6.8 Virtual SCSI
Virtual SCSI is based on a client/server relationship. A Virtual I/O Server partition
owns the physical resources, and logical client partitions access the virtual SCSI
resources provided by the Virtual I/O Server partition. The Virtual I/O Server
partition has physically attached I/O devices and exports one or more of these
devices to other partitions. The client partition is a partition that has a virtual
client adapter node defined in its device tree and relies on the Virtual I/O Server
partition to provide access to one or more block interface devices. Virtual SCSI
requires POWER5 hardware with the Advanced POWER Virtualization feature
activated. It provides virtual SCSI support for AIX 5L V5.3 and Linux.

As we write this book, the virtualization features of the POWER5 platform
support up to 254 partitions, but the server hardware only provides up to 160 I/O
slots per machine. With each partition typically requiring one I/O slot for disk
attachment and another one for network attachment, this puts a constraint on the
number of partitions. To overcome these physical limitations, I/O resources must
be shared. Virtual SCSI provides the means to do this for SCSI storage devices.

Furthermore, virtual I/O allows attachment of previously unsupported storage
solutions. As long as the Virtual I/O Server partition supports the attachment of a
storage resource, any client partition can access this storage by using virtual
SCSI adapters.
 Chapter 6. Virtual I/O 205

For example, if there is no native support for EMC storage devices on Linux,
running Linux in a logical partition of a POWER5 server makes this possible. A
Linux client partition can access the EMC storage through a Virtual SCSI
adapter. Requests from the virtual adapters are mapped to the physical
resources in the Virtual I/O Server partition. Therefore, driver support for the
physical resources is needed only in the Virtual I/O Server partition.

Virtual SCSI client and server architecture overview
Virtual SCSI is based on a client/server relationship. The Virtual I/O Server
partition owns the physical resources and acts as server or, in SCSI terms, target
device. The logical partitions access the virtual SCSI resources provided by the
Virtual I/O Server partition as clients.

The virtual I/O adapters are configured using an HMC. The provisioning of virtual
disk resources is provided by the Virtual I/O Server. The virtual SCSI adapter
driver on the server partition is a dynamically loadable kernel extension and its
entry points are contained in the device switch table. As a virtual SCSI target
device, the primary function of the device driver is to convert SCSI Remote DMA
Protocol (SRP) requests from the initiator driver (client side) into I/O requests
that are forwarded to the device that is physically attached to the server. Data is
then transferred directly to the client memory using LRDMA. LRDMA is covered
in “Logical Remote Direct Memory Access (LRDMA)” on page 150, and SRP is
covered in “SCSI Remote DMA Protocol” on page 214.

The virtual SCSI client adapter device driver (vscsi_initdd) is a dynamically
loadable kernel extension and its entry points are contained in the device switch
table. As a virtual SCSI initiator, the primary function of the initiator driver is to
convert I/O requests from the peripheral or media device drivers to SRP
Information Units (IUs), then forward the SRP IUs to the target device for
LRDMA.

The virtual adapter on the client partition is in many ways similar to a physical
SCSI adapter. While a typical SCSI adapter has a parallel bus or optical link

Note: You will see different terms in this publication that refer to the various
components involved with virtual SCSI. Depending on the context, these
terms may vary. With SCSI, usually the terms initiator and target are used, so
you may see terms such as virtual SCSI initiator and virtual SCSI target. On
the Hardware Management Console, the terms virtual SCSI server adapter
and virtual SCSI client adapter are used. Basically they refer to the same
thing. When describing the client/server relationship between the partitions
involved in virtual SCSI, the terms hosting partition (meaning the Virtual I/O
Server) and hosted partition (meaning the client partition) are used.
206 Advanced POWER Virtualization on IBM Eserver p5 Servers

attached to it, the virtual adapter’s link is the POWER Hypervisor’s Reliable
Command/Response Transport.

Physical disks owned by the Virtual I/O Server partition either can be exported
and assigned to a client partition whole, or can be partitioned into several logical
volumes. The logical volumes can then be assigned to different partitions.
Therefore, Virtual SCSI enables sharing of adapters as well as disk devices.

For a physical or a logical volume to be available to a client partition, it is
assigned to a virtual SCSI server adapter in the Virtual I/O Server. The basic
command to map the Virtual SCSI with the logical volume or physical volume is:

mkvdev -vdev TargetDevice -vadapter VirtualSCSIServerAdapter
 [-dev DeviceName]

Run the lsdev -virtual command to make sure that your new virtual SCSI
adapter is available, as shown in Example 6-6.

Example 6-6 Checking for virtual SCSI adapters

$ lsdev -virtual
name status description

ent2 Available Virtual I/O Ethernet Adapter (l-lan)
vhost0 Available Virtual SCSI Server Adapter
vhost1 Available Virtual SCSI Server Adapter
vsa0 Available LPAR Virtual Serial Adapter

The next step is to create a virtual target device, which maps the Virtual SCSI
server adapter vhost0 to the logical volume rootvg_dbsrv. When you do not use
the -dev flag, the default name of the virtual target device adapter is vtscsix. Run
the mkvdev command as shown in Example 6-7 to perform this task. If you want
to map a physical volume to the virtual SCSI server adapter, use hdiskx instead
of the logical volume devices for the -vdev flag.

Example 6-7 Using mkdev to create a virtual target device

$ mkvdev -vdev rootvg_dbsrv -vadapter vhost0 -dev vdbsrv
vdbsrv Available

The lsdev command (Example 6-8), shows the newly created virtual target
device adapter.

Example 6-8 Using lsdev to show the virtual target device

$ lsdev -virtual
name status description
 Chapter 6. Virtual I/O 207

vhost0 Available Virtual SCSI Server Adapter
vsa0 Available LPAR Virtual Serial Adapter
vdbsrv Available Virtual Target Device - Logical Volume

The lsmap command (Example 6-9), shows the logical connections between
newly created devices.

Example 6-9 Using lsmap to show logical connections

$ lsmap -vadapter vhost0
SVSA Physloc Client PartitionID
--------------- -- ------------------
vhost0 U9111.520.10DDEEC-V1-C20 0x00000000

VTD vdbsrv
LUN 0x8100000000000000
Backing device rootvg_dbsrv
Physloc

Here you also see the physical location being a combination of the slot number
(in this case 20) and the logical partition ID. At this point the created virtual
device can be attached from the client partition. You can now activate your
partition into the SMS menu and install the AIX 5L V5.3 operating system on the
virtual disk or add an additional virtual disk using the cfgmgr command. The
Client PartitionID shows up as soon as the client partition is active.

The client partition accesses its assigned disks through a virtual SCSI client
adapter, which sees standard SCSI devices and LUNs through this virtual
adapter. Example 6-10 shows commands used to view the disks on an AIX 5L
V5.3 client partition.

Example 6-10 Viewing virtual SCSI disks

lsdev -Cc disk -s vscsi
hdisk2 Available Virtual SCSI Disk Drive
lscfg -vpl hdisk2
hdisk2 111.520.10DDEDC-V3-C5-T1-L810000000000 Virtual SCSI Disk Drive

Figure 6-40 on page 209 shows an example in which one physical disk is
partitioned into two logical volumes inside the Virtual I/O Server. Each of the two
client partitions is assigned one logical volume, which it accesses through a
virtual I/O adapter (virtual SCSI client adapter). Inside the partition, the disk is
viewed as normal hdisk.
208 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-40 Virtual SCSI architecture overview

6.8.1 Client and server interaction
An example of a typical interaction between the target and initiator device drivers
is a file read from a virtual disk device. The client stack considers the initiator
driver a SCSI-3 device with access to the virtual disk.

A typical I/O read request involves the following steps:

1. (Client) The application program initiates a read() system call to the Journaled
File System (JFS).

2. (Client) The file system requests a read from the Logical Volume Manager
(LVM). The LVM forms a buffer structure (struct buf) with DMA buffer
addressing information, as well as disk block information.

3. (Client) The buffer structure is passed to the disk device driver, which creates
a scsi_buf and sends it to the vscsi_initdd driver.

4. (Client) The initiator driver takes the information in the scsi_buf and creates
an SRP IU. If the I/O request includes data to be transferred, the initiator
driver maps the client’s data buffers for DMA.

5. (Client) The client builds a CRQ command element containing a pointer to the
SRP IU and sends the CRQ command element (see “The
Command/Response Queue” on page 149) through the POWER Hypervisor
to the vscsi_targetdd device driver on the I/O server.

POWER Hypervisor

Virtual I/O ServerClient Partition 1

Virtual
SCSI

Client Adapter

Physical
Adapter

Virtual SCSI
Server
Adapter

Client Partition 2

Virtual
SCSI

Client Adapter

Virtual SCSI
Server
Adapter

hdiskhdisk Logical
Volume

Logical
Volume

Physical
Disk
 Chapter 6. Virtual I/O 209

6. (Server) The target driver receives an interrupt indicating that an element has
been queued on its command queue.

7. (Server) The target driver uses the pointer to the SRP IU in the CRQ
command element and LRDMA services to copy the SRP IU from the client
partition to the server partition’s memory.

8. (Server) The target driver uses the information in the SRP IU to create a
buffer structure.

9. (Server) The target driver passes the buffer structure to the LVM running in
the server partition. The request ultimately makes its way to the physical
adapter’s device driver. This driver calls the usual DMA kernel services, which
have been extended to map the client’s buffers for DMA using LRDMA
services.

10.(Server) When the transaction is complete, the target driver constructs an
appropriate SRP response and uses LRDMA services to copy the response
to the client’s memory. It then builds a CRQ command element containing the
tag (or correlator field) from the original SRP IU and sends the CRQ element
through the POWER Hypervisor to the initiator.

11.(Client) The initiator driver receives an interrupt indicating that a CRQ element
has been queued to its response queue.

12.(Client) The initiator driver uses the information in the SRP response to give
status back to the vscsi_initdd driver. The driver passes the results back up to
LVM and through to finish servicing the read() system call.

6.8.2 AIX 5L V5.3 device configuration for virtual SCSI
The virtual I/O adapters are connected to a virtual host bridge, which AIX 5L
V5.3 treats much like a PCI host bridge. It is represented in the Object Data
Manager as a bus device whose parent is sysplanar0. The virtual I/O adapters
are represented as adapter devices with the virtual host bridge as their parent.
On the Virtual I/O Server, each logical volume or physical volume that is exported
to a client partition is represented by a virtual target device that is a child of a
virtual SCSI server adapter.

On the client partition, the exported disks are visible as normal hdisks, but they
are defined in subclass vscsi. They have a virtual SCSI client adapter as parent.
Example 6-41 on page 211 shows the relationship of the devices used by AIX 5L
V5.3 for virtual SCSI and their physical counterparts.
210 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-41 Virtual SCSI device relationship

The client and server adapters operate as a pair, in a point-to-point configuration,
with the POWER Hypervisor providing the means of communication between the
two. The SCSI requests and responses use the SCSI Remote DMA Protocol
(SRP, detailed in “SCSI Remote DMA Protocol” on page 214). The client partition
emulates a physical SCSI adapter that is presented to the client operating
system for connecting to disks. The client driver accepts requests for storage
services from the client operating system, converts those requests into SRP
information units (IUs), then uses copy RDMA to transmit those requests to the
server driver. The server driver completes the requests using a combination of
software emulation and services provided by the Virtual I/O Server operating
system and its physical devices, then converts the results into SRP information
units and returns the response back to the client driver.

In SCSI terminology, the client virtual SCSI adapter is called the initiator
adapter, and the server virtual SCSI adapter is called the target adapter.

POWER Hypervisor

Virtual I/O ServerAIX 5L Client Partition

Virtual SCSI
Device Driver

(initiator)

JFS

Logical
Volume Manager

SCSI Disk
Device Driver

SCSI-3 Adapter
Device Driver Virtual SCSI

Device Driver
(target)

Logical
Volume Manager

SCSI Disk
Device Driver

SCSI-3 Adapter
Device Driver

Reliable Command/Response Transport
Logical Remote Direct Memory Access

Native I/OVirtual I/O
 Chapter 6. Virtual I/O 211

The target and initiator virtual adapters are created on the HMC during creation
(or modification) of the partitions profiles. The target and initiator adapters are
always connected in a point-to-point configuration. One initiator adapter can
connect with at most one target adapter.

A target adapter can provide storage services to multiple initiators but not at the
same time. When initiator virtual adapters of client partitions are created on the
HMC, they may be assigned to a target adapter of a Virtual I/O Server partition
that is already assigned to other partition profiles. When a client disconnects
from an initiator driver, the adapter is put into the defined state, as opposed to the
available state. At this point, another client can begin communication with the
Virtual I/O Server.

The virtual SCSI architecture enables a partition to have instances of both client
and server drivers. This could be the case when a server partition exports the
disks it directly manages through its physical adapters, and boots from disks
exported from another server partition. We strongly recommend not using such
configurations. This could lead to deadlocks where two Virtual I/O Server
partitions depend on each being activated before the operating system can boot.
Cascaded devices (virtual devices that are backed by other virtual devices) are
not supported.

6.8.3 Interpartition communication
The interpartition communication that took place in 6.8.1, “Client and server
interaction” on page 209, involves the client device node in the Open Firmware
device tree of one partition, the server device node in the Open Firmware device
tree of another partition, the interpartition communication channel provided by
the POWER Hypervisor and a communication protocol definition. The
interpartition communication uses two primitive functions:

� Reliable Command/Response Transport
� SCSI Remote DMA Protocol

Reliable Command Response Transport
The Reliable Command Response Transport facility provides ordered delivery of
messages between authorized partitions. In order to communicate, a
client/server partition pair must establish a Command/Response Queue (CRQ).
(See “The Command/Response Queue” on page 149.)

A CRQ is established during configuration by a virtual SCSI driver, given the
presence in the Open Firmware device tree of a virtual SCSI device. The initiator
driver registers a response queue and the target driver registers a command
queue. Both use the h_reg_crq kernel service to call the POWER Hypervisor.
212 Advanced POWER Virtualization on IBM Eserver p5 Servers

The POWER Hypervisor creates a connection between the two partitions
through the queues.

When the queues are established, the virtual SCSI drivers can use the
h_send_crq kernel service to put queue elements on each other’s queues. The
initiator driver attempts to queue an element to the target driver’s command
queue to initiate a transaction. If it is successful, the initiator driver returns,
waiting for the interrupt indicating that a response has been posted by the target
driver to the initiator driver’s response queue.

The client partition uses only the Reliable Command/Response Transport. It
does not use LRDMA. As the server partition’s RTCE tables are not authorized
for access by the client partition, any attempt by the client partition to modify
server partition memory would be prevented by the POWER Hypervisor. RTCE
table access is granted on a connection-by-connection basis (client/server virtual
device pair).

The target driver is notified via an interrupt that it has received a message on its
command queue. The target driver decodes the I/O request and routes it through
the server partition’s file subsystem for processing. When the request completes,
the file subsystem calls the target driver and it packages a response into a queue
element that is then queued to the initiator driver’s response queue.

LRDMA defines an extended type of TCE table, the Remote DMA TCE Table.
(See “Remote Translation Control Entry (RTCE)” on page 150.) An RTCE is used
by the POWER Hypervisor to translate a server partition’s Logical Remote DMA
addresses. RTCE tables have extra data to help manage the use of its mappings
by server partitions. Note that only the target driver uses the Logical Remote
DMA primitives, not the initiator driver. The server partition’s RTCE tables are not
authorized for access by the client driver.

The use of redirected RDMA is completely invisible to the I/O client and has no
impact on the virtual SCSI architecture defined in this document. It is left entirely
to the discretion of the I/O server whether it first moves data from a physical
device into its own memory before moving the data to the I/O client (using DMA),
or whether the I/O server sets up the I/O request to the physical device in such a
way that the physical device DMAs directly to the memory of the I/O client. The
I/O server uses the RDMA mode that best suits its needs for a given virtual I/O
operation.

The logical remote direct memory service enables the server driver to read and
write to a well-defined part of the I/O client’s memory. This service is
unidirectional; that is, the client driver cannot use the service to write to, or read
from, the I/O server’s memory.
 Chapter 6. Virtual I/O 213

SCSI Remote DMA Protocol
The SCSI family of standards provides many different transport protocols that
define the rules for exchanging information between SCSI initiators and targets.
Virtual SCSI uses the SCSI Remote DMA Protocol (SRP), which defines the
rules for exchanging SCSI information in an environment where the SCSI
initiators and targets have the ability to directly transfer information between their
respective address spaces.

SCSI requests and responses are sent using the virtual SCSI adapters that
communicate through the POWER Hypervisor. However, the actual data transfer
is done directly between a data buffer in the client partition and the physical
adapter in the Virtual I/O Server by using the LRDMA protocol that was
described in “Logical Remote Direct Memory Access (LRDMA)” on page 150.

SCSI Remote DMA Protocol defines a method of encapsulating SCSI command
data blocks and is the protocol used for interpartition communication for virtual
SCSI on IBM Sserver p5 logical partitions. Because virtual SCSI involves
heterogeneous operating systems (AIX 5L and Linux) it is important to implement
a common industry standard protocol for communicating I/O operations between
partitions. SRP has defined the message format and protocol using an RDMA
communication service. The SCSI RDMA Protocol defines the rules for
exchanging SCSI information in an environment where SCSI initiators and
targets have the ability to directly transfer information between their respective
address spaces.

All SRP communication is accomplished via SRP Informational Units (IUs). An IU
is an organized collection of data specified by the SRP to be transferred as login
data, reject data, or a message on an RDMA channel. Thus all SCSI commands
and their associated data and status are encapsulated in an SRP IU. Note that
the protocol used for interpartition communication has no bearing on the makeup
of the destination device. The SRP protocol works the same whether the target
device is a physical device or a logical device (logical volume).

Memory descriptor mapping
The SRP architecture defines a memory descriptor, which is a 16-byte structure
that identifies a memory segment on which DMA operations can be performed.

The virtual SCSI architecture is defined such that DMA operations are never
initiated from the I/O client (from the initiator port). Because the I/O server’s
RTCE tables are not authorized for access by the I/O client, any attempt by the
I/O client to modify the I/O server’s memory would be prevented by the POWER
Hypervisor. RTCE table access is granted on a connection-by-connection basis
(client/server virtual device pair). If an I/O client happens to be serving some
other logical device, then the partition is entitled to use Logical Remote DMA for
the virtual devices that it is serving.
214 Advanced POWER Virtualization on IBM Eserver p5 Servers

Memory descriptors sent in IUs that are defined in this architecture always
reference memory in the initiator and are always used in DMA operations
initiated by the target.

SRP initiator ports and SRP target ports shall be determined by both their role
during LRDMA channel establishment and by the adapter types on which the
messages are sent and received.

6.8.4 Disk considerations
A virtual disk device is exported by the I/O server to the client. It can be mapped
by the server to either a logical volume, or defined on a slice of a physical volume
or an entire physical disk.

It is viewed by the I/O client as a physical disk. There can be many virtual disk
devices mapped onto a single physical disk. The system administrator creates a
virtual disk device by choosing a logical volume and binding it to a virtual SCSI
server adapter. The command adding virtual devices creates an ODM entry for
the virtual disk device.

It is expected that most of the SCSI commands targeting a virtual disk device will
be either reads or writes. Reads and writes are serviced by the LVM.

Figure 6-42 on page 216 shows the possible partitioning of a physical disk on the
Virtual I/O Server where there are two logical volumes that support two virtual
disk devices, hdx and hdy. In this example, hdx and hdy could be exported to two
different partitions.
 Chapter 6. Virtual I/O 215

Figure 6-42 Volume group on Virtual I/O Server

SCSI RESERVE and RELEASE
The virtual SCSI virtual adapter driver emulates the SCSI RESERVE and
RELEASE commands instead of passing them on to the device. That emulation
is limited in scope to a single I/O server. When one I/O client wins a reservation
on a logical volume, the virtual SCSI virtual adapter target driver has to refuse
access by other I/O clients to the logical volume. When the I/O client holding a
reservation fails, the virtual SCSI virtual adapter target driver has to break the
reservation on that logical volume. This enables configurations where one I/O
server provides storage services for multiple I/O clients.

However, this does not provide an adequate emulation of RESERVE and
RELEASE for configurations in which the same physical storage can be
accessed by multiple AIX 5L instances executing in different physical servers.
This emulation does not prevent access by the native stack on that I/O server.

Command tag queueing
SCSI command tag queueing refers to queuing commands to a SCSI device.
Command tag queueing requires the SCSI adapter, the SCSI device, the SCSI
device driver, and the SCSI adapter driver to support this capability. The virtual
SCSI architecture supports command tag queueing.

hdx

hdy

vi
rt

ua
ld

is
k_

vg

LVCB

LVCB

VGSA
VGDA
VGSA
VGDA

IPLREC

Volume Group Status Area
Volume Group Description Area

Redundant Copy of VGSA and VGDA

Logical Volume Control Block

Logical Volume Control Block

hdx

hdy

vi
rt

ua
ld

is
k_

vg

LVCB

LVCB

VGSA
VGDA
VGSA
VGDA

IPLREC

Volume Group Status Area
Volume Group Description Area

Redundant Copy of VGSA and VGDA

Logical Volume Control Block

Logical Volume Control Block
216 Advanced POWER Virtualization on IBM Eserver p5 Servers

6.8.5 Configuring for redundancy
To minimize the adverse effect that would result from the loss of a Virtual I/O
Server partition or physical adapter, a system administrator can use either of two
ways to create redundant configurations. Each of these techniques enables a
client partition to continue to function while maintenance is being done on the
server partition.

Logical volume mirroring
AIX 5L Logical Volume Manager supports mirroring of virtual disks. This
mirroring is configured on the client partition. For every write to a logical volume,
the LVM generates a write request for every mirrored copy. The system
administrator can define two virtual disk devices, either served by two distinct I/O
servers or two devices on the same Virtual I/O Server, and mirror the client
partition’s data on the two devices. Mirroring makes no requirements on either
the client or server drivers. It is cost-effective and the system configuration is
readily understood. Figure 6-43 presents a configuration of mirrored virtual disks
backed by physical disks.

Figure 6-43 Using LVM mirroring for virtual SCSI

POWER HYPERVISOR

Reliable Command / Response Transport
Logical Remote Direct Memory Access

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

LV1

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

Client Partition

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

LV2

POWER HYPERVISOR

Reliable Command / Response Transport
Logical Remote Direct Memory Access

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

VSCSI
Device Driver

(target)
Device Mapping

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

LV1

VSCSI
Device Driver

(target)
Device Mapping

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Fibre Channel
Device Deriver

Disk
Device Driver

Logical
Volume Manager

Virtual I/O Server
Partition

Client Partition

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

SCSI-3 Adapter
Device Driver

Disk
Device Driver

Logical
Volume Manager

JFS

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

VSCSI
Device Driver

(initiator)

LV2
 Chapter 6. Virtual I/O 217

If mirroring is needed, set the scheduling policy to parallel and allocation policy
to strict. The parallel scheduling policy enables reading from the disk that has
the fewest outstanding requests, and strict allocation policy allocates each copy
on separate physical volumes.

Physical mirroring
Physical mirroring is provided by the physical adapter rather than the operating
system. If the physical adapter used in the I/O server to connect to the disk
provides RAID support, it can be used along with virtual SCSI to provide a more
reliable storage solution.

Multi-path I/O
Multi-path I/O (MPIO) offers another possible solution to the redundancy
requirement. MPIO is a feature of AIX 5L V5.3 that permits a volume accessed
by multiple physical paths to be seen as a single hdisk. It is therefore logically
similar to IBM Subsystem Device Driver, which enables a volume on the
TotalStorage® Enterprise Storage Subsystem that is accessed through multiple
paths to be seen as a single path disk. However, the Subsystem Device Driver
logical construct of a virtual path disk is above the level of the hdisk, whereas
MPIO combines the paths underneath the level of the hdisk. MPIO is intended to
support additional disk subsystems besides ESS. These disk subsystems are
themselves capable of supporting multiple physical (parallel or Fibre Channel
SCSI) attachments.

MPIO has numerous possible configuration parameters, but a detailed
discussion of them is beyond the scope of this book. However, to gain the
benefits of high availability and throughput that MPIO offers, it is recommended
that it be configured with a round-robin algorithm, with health check enabled, and
a reserve policy of no reserve. This makes the best combination of throughput
and reliability, because all paths are used for data transfer, and failed paths are
detected and reacted to in a timely fashion.

Note: The IBM Virtual I/O Server does not support mirroring. Each disk (either
native or logical volume) exported from the Virtual I/O Server maps to only one
physical disk. The disk mirroring must be defined in the client I/O partition. In
the same way, the Virtual I/O Server does not support data striping over
several disks. If striping is required, it must be defined in the client partition.
218 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-44 shows a configuration using Multipath I/O to access an ESS disk.

Figure 6-44 MPIO example configuration

The client partition sees two paths to the physical disk through MPIO. Each path
uses a different virtual SCSI adapter to access the disk. Each of these virtual
SCSI adapters is backed by a separate Virtual I/O Server.

Note: This type of configuration works only when the physical disk is assigned
as a whole to the client partition. You cannot split the physical disk into logical
volumes at the Virtual I/O Server level.

Client Partition

MPIO

Virtual SCSI
Client Adapter

Virtual SCSI
Client Adapter

Virtual I/O Server 1

Physical
SCSI Adapter

Virtual SCSI
Server Adapter

Virtual I/O Server 2

Physical
SCSI Adapter

Virtual SCSI
Server Adapter

Storage Area Network (SAN)
Switch

ESS
Disk
 Chapter 6. Virtual I/O 219

6.8.6 Performance considerations
The primary goal of virtualization is to lower the total cost of ownership of
equipment by improving utilization of the overall system resources and reducing
the labor requirements to operate and manage many servers.

With virtualization, the IBM Sserver p5 servers can now be used in similar to
the way mainframes have been used for decades, sharing the hardware between
many programs, services, applications, or users. Of course, for each of these
individual users of the hardware, sharing resources may result in lower
performance than having dedicated hardware, but the overall cost is usually far
lower than when dedicating hardware to each user. The decision of using
virtualization is therefore a trade-off between cost and performance.

The performance considerations that we detail in this section must be balanced
against the savings made on the overall system cost. For example, the smallest
physical disk that is available to the IBM Sserver p5 systems is 36 GB. A typical
operating system requires 4 GB of disk. If one disk is dedicated to the operating
system (for example, rootvg in AIX 5L), nearly 90% of this physical disk space is
unused. Furthermore. the system disk I/O rate is often very low. With the help of
virtual SCSI, it is possible to split the same disk into nine virtual disks of 4 GB
each. If each of these disks is used for installation of the AIX 5L root volume
group, you can support nine separate instances of the AIX 5L operating system,
with nine times fewer disks and perhaps as many physical SCSI adapters.
Compare these savings with the extra cost of processing power needed to
handled the virtual disks.

Enabling virtual SCSI results in using extra processing power compared to
directly attached disks, due to extra POWER Hypervisor activity. Depending on
the configuration, this may or may not yield the same performance when
comparing virtual SCSI devices to physically attached SCSI devices. If a partition
has high performance and disk I/O requirements that justify the cost of dedicated
hardware, then using virtual SCSI is not recommended. However, partitions with
non-critical performance and low disk I/O requirements often can be configured
to use virtual SCSI, which in turn lowers hardware and operating costs.

Using a logical volume for virtual storage means that the number of partitions is
no longer limited by hardware. However, the trade-off is that some of the
partitions may experience slightly less than optimal storage performance.

In the test results that follow, we see that the overhead of virtual SCSI in both
SCSI and a FAStT implementation is small, and clients should assess the
benefits of the virtual SCSI implementation for their environment. Simultaneous
multithreading should be enabled in a virtual SCSI environment. With low I/O
loads and a small number of partitions, micro-partitioning of the Virtual I/O
Server partition has little effect on performance. For more efficient virtual SCSI
220 Advanced POWER Virtualization on IBM Eserver p5 Servers

implementation with larger loads, it may be advantageous to keep the Virtual I/O
Server partition as a dedicated processor.

Virtual storage can still be manipulated using the Logical Volume Manager the
same as an ordinary physical disk. Some performance considerations from
dedicated storage are still applicable when using virtual storage, such as
spreading hot logical volumes across multiple volumes on multiple virtual SCSI
so that parallel access is possible, the intra-disk policy (from the server’s point of
view, a virtual drive can be served using an entire drive, or a logical volume of a
drive). If the entire drive is served to the client, then the rules and procedures
apply on the client side as if the drive were local. If the server partition provides
the client with a partition of a drive and a logical volume, then the server decides
the area of the drive to serve to the client when the logical volume is created and
sets the inter-policy to maximum. This spreads each logical volume across as
many virtual storage devices as possible, allowing reads and writes to be shared
among several physical volumes.

Consider the following general performance issues when using virtual SCSI:

� If not constrained by processor performance, virtual disk I/O throughput is
comparable to local attached I/O.

� Virtual SCSI is a client/server model, so the combined CPU cycles required
on the I/O client and the I/O server will always be higher than local I/O.

� If multiple partitions are competing for resources from a virtual SCSI server,
care must be taken to ensure that enough server resources (processor,
memory, and disk) are allocated to do the job.

� There is no data caching in memory on the Virtual I/O Server partition. Thus,
all I/Os that it services are essentially synchronous disk I/Os. As there is no
caching in memory on the server partition, its memory requirements should
be modest.

In general, applications are functionally isolated from the exact nature of their
storage subsystems by the operating system. An application does not have to be
aware of whether its storage is contained on one type of disk or another when
performing I/O. But different I/O subsystems have subtly different performance
qualities, and virtual SCSI is no exception. What differences might an application
observe using virtual SCSI versus directly attached storage? Broadly, we can
categorize the possibilities into I/O latency and I/O bandwidth.

We define I/O latency as the time that passes between the initiation of I/O and
completion as observed by the application. Latency is a very important attribute
of disk I/O. Consider a program that performs 1000 random disk I/Os, one at a
time. If the time to complete an average I/O is six milliseconds, the application
will run no less than 6 seconds. However, if the average I/O response time is
reduced to three milliseconds, the application’s run time could be reduced by
 Chapter 6. Virtual I/O 221

three seconds. Applications that are multi-threaded or use asynchronous I/O may
be less sensitive to latency, but under most circumstances, less latency is better
for performance.

We define I/O bandwidth as the maximum data that can be read or written to
storage in a unit of time. Bandwidth can be measured from a single thread or
from a set of threads executing concurrently. Though many commercial codes
are more sensitive to latency than bandwidth, bandwidth is crucial for many
typical operations such as backup and restore of persistent data.

Because disks are mechanical devices, they tend to be rather slow when
compared to high-performance microprocessors such as POWER5. As such, we
will show that virtual SCSI performance is comparable to directly attached
storage under most workload environments.

Virtual SCSI latency
Because virtual SCSI is implemented as a client/server model, naturally there is
some extra latency that does not exist with direct attached storage. We define
this extra latency as the additional amount of time necessary to complete an I/O
operation when compared to the same operation on a locally attached device.
Figure 6-45 on page 223 shows that this additional time varies from 0.03 to 0.06
ms per I/O operation depending primarily on the block size of the request using a
dedicated Virtual I/O Server partition. It is comparable for both the physical disk
and logical volume backed virtual drives. The latency experienced when using a
Virtual I/O Server partition in a micro-partition may be higher and certainly more
variable than using a dedicated I/O server partition.
222 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-45 Latency for dedicated disk and logical volumes

For comparison purposes, Figure 6-46 on page 224 shows the average response
times for locally attached I/O using one FAStT700 RAID0 LUN with five physical
drives, caching enabled without write-cache mirroring. These measurements
conduct sequential I/O, enabling the reads to be satisfied from the disk read
cache and the writes to be cached in the FAStT700 controller. Because of
caching, the physical I/Os in the test have much lower latency than in typical
commercial environments, where random reads are not satisfied from cache so
often. Nonetheless, the additional virtual SCSI latency for these low-latency
caches is small compared to the actual disk latency. For I/Os with reads that are
not cached by the controller, the virtual SCSI latency is small enough to be
inconsequential.

Also observed the average disk response time increases with the block size. The
latency increases in performing a virtual SCSI operation are relatively greater on
smaller block sizes because of their shorter response time.

Latency Overhead per I/O Op

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

4K 8K 32K 64K 128K

Blocksize

m
s pdisk back

lv backed
 Chapter 6. Virtual I/O 223

Figure 6-46 Response times for dedicated I/O

Virtual SCSI bandwidth
Figure 6-47 on page 225 compares virtual SCSI to native I/O performance on
bandwidth tests. In these tests, a single thread operates sequentially on a
constant file that is 256 MB in size, again with a dedicated Virtual I/O Server
partition. More I/O operations are issued when reading or writing to the file using
a small block size than with a larger block size. This figure shows a comparison
of measured bandwidth using virtual SCSI and local attachment for reads with
varying block sizes of operations. The difference between virtual I/O and native
I/O in these tests is attributable to the increased latency using virtual I/O.
Because of the larger number of operations, the bandwidth measured with small
block sizes is much lower than with large block sizes.

Native I/O Average Response Time

0

0.5

1

1.5

2

2.5

4K 8K 32K 64K 128K

Blocksize

m
s Read

Write
224 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 6-47 Native to virtual SCSI I/O comparison

Figure 6-48 on page 226 shows that virtual SCSI performance using a dedicated
I/O server partition scales comparably to that of a similar native I/O-attached
configuration to very high bandwidths. The experiment uses one FAStT disk and
arrays of seven FAStT disks. Each array is attached to one Fiber Channel
adapter. All I/Os use a blocksize of 128 KB. The difference in bandwidth between
reads and writes is due to the cache in the FAStT controller. The experiment
shows that the difference in bandwidth using virtual SCSI or native disks is not
significant.

Native/VSCSI I/O Output Comparison

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

Blocksize

M
B/

se
c

Virtual
Native

Virtual 20.3 35.4 82.6 106.8 124.5

Native 24.3 41.7 90.6 114.6 132.6

4K 8K 32K 64K 128K
 Chapter 6. Virtual I/O 225

Figure 6-48 Native virtual SCSI bandwidth scaling

6.8.7 Sizing a virtual SCSI server
There are considerations to address when designing and implementing a virtual
SCSI environment. The primary considerations are:

� Memory requirements
� Micro-Partitioning or dedicated processor partitions

One thing that does not have to be factored into sizing is the processor impact of
using virtual I/O on the client. The processor cycles executed on the client to
perform a virtual SCSI I/O are comparable to that of a locally attached I/O. Thus,
there is no increase or decrease in sizing on the client partition for a known task.
These sizing techniques do not address a Virtual I/O Server that uses both
virtual SCSI and virtual Ethernet. If the two are combined, additional resources
must be anticipated to support virtual Ethernet activity.

Memory requirements
The architecture of virtual SCSI simplifies memory sizing in that there is no
caching of file data in the memory of the virtual SCSI server, so the memory
requirements for the virtual SCSI server are fairly modest. With large I/O
configurations and very high data rates, a 1 GB memory allocation for the virtual

Native/VSCSI Bandwidth Scaling

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

1 7 14 21 28

Disks

M
B/

se
c

VSCSI Writes
Native Writes
VSCSI Reads
Native Reads
226 Advanced POWER Virtualization on IBM Eserver p5 Servers

SCSI server is more than sufficient. For low I/O rate cases with a small number of
attached disks, 512 MB is a sufficient memory allocation.

Dedicated processor partitions
The amount of processor entitlement required for a virtual SCSI server is based
on the maximum I/O rates required of it. Most virtual SCSI servers will not run at
maximum I/O rates all the time, so the use of surplus processor time is potentially
wasted by using dedicated processor partitions. In this section, we propose two
sizing methodologies. For the first, you need a fair understanding of the I/O rates
and I/O sizes required of the virtual SCSI server. In the second, we size the
virtual SCSI server based more on the I/O configuration.

Sizing against expected I/O traffic
Our sizing methodology is based on the observation that processor time required
to perform an I/O on the virtual SCSI server is fairly constant for a given I/O size.
It is true that different devices (for example, SCSI and FAStT) have subtly varying
efficiencies. But under most circumstances, the I/O devices supported by the
virtual SCSI server are sufficiently similar to provide good recommendations.
Table 6-13 shows the recommendations for both physical disk and LVM
operations on a 1.65 GHz POWER5 processor with simultaneous multithreading
enabled. These numbers are measured at the physical processor. For other I/O
server CPU frequencies, you can adjust the cycles in Table 6-13 by multiplying
the cycles per operation by the ratio of the frequencies. For example, to adjust for
a 1.5 GHz CPU, 1.65 GHz / 1.5 GHz = 1.1, so multiply the CPU cycles in the
table by 1.1 to get the required cycles per operation.

Table 6-13 I/O CPU cycles required for various block sizes

Figure 6-49 on page 228 shows a comparison of native I/O and virtual SCSI
cycles per byte (CPB) using both logical volume–backed storage and physical
disk–backed storage. The virtual SCSI measures are of only the Virtual I/O
Server partition and do not include the client in the comparison. The processor
efficiency of I/O improves with larger I/O size. Effectively, there is a fixed latency
to start and complete an I/O, with some additional cycle time based on the size of
the I/O.

4K 8K 32K 64K 128K

Physical Disk 45,000 47,000 58,000 81,000 120,000

LVM 49,000 51,000 59,000 74,000 105,000
 Chapter 6. Virtual I/O 227

Figure 6-49 Comparison of native I/O to virtual SCSI

Configuration example
Consider a Virtual I/O Server partition that supports three client partitions on
physical disk backed storage. The first client partition requires a maximum of
7,000 8-KB operations per second. The second client partition requires a
maximum of 10,000 8-KB operations per second. The third client partition
requires a maximum of 5,000 128-KB operations per second. The number of
1.65 GHz processors for this requirement is approximately:

(7,000*47,000+10,000*47,000+5,000*120,000)/1,650,000,000) = 0.85 processors

We round up this total to one processor, as we are not using Micro-Partitioning.

Sizing against installed storage
An alternative approach, if you do not know the I/O rates of the client partitions, is
to size the virtual SCSI server to the maximum I/O rate of the attached storage
subsystem. The sizing could be biased to small I/Os or large I/Os. Sizing to
maximum capacity for large I/Os balances the processor capacity of the virtual
SCSI server to the potential I/O bandwidth of the attached I/O. The negative facet
of this sizing methodology is that, in nearly every case, we will assign more
processor entitlement to the virtual SCSI server than it typically consumes.

Consider a case where an I/O server manages 32 physical SCSI disks. We can
arrive at an upper bound of processors required based on assumptions about the

Native IO / VSCSI CPB Comparison

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Blocksize

C
P

B

native
lv back
pdisk back

native 12.56 6.64 2.17 1.41 1.03

lv back 11.96 6.18 1.78 1.14 0.80

pdisk back 10.93 5.73 1.77 1.24 0.91

4K 8K 32K 64K 128K
228 Advanced POWER Virtualization on IBM Eserver p5 Servers

I/O rates that the disks can achieve. If it is known that the workload is dominated
by 8 KB operations that are random, we could assume that each disk is capable
of approximately 200 disk I/Os per second (15 K rpm drives). At peak, the I/O
server would have to service approximately 32 disks * 200 I/Os per second *
120,000 cycles per operation, resulting in a requirement for approximately 19%
of one processor performance. Viewed another way, an I/O server running on a
single processor should be capable of supporting more than 150 disks serving
8 KB random I/Os for other partitions’ CPUs.

Alternatively, if the server is sized for maximum bandwidth, the calculation will
result in a much higher processor requirement. The difference is that maximum
bandwidth assumes sequential I/O. Because disks are much more efficient when
performing large sequential I/Os than small random I/Os, we can drive a much
higher number of I/Os per second. Assume that the disks are capable of 50 MB
per second when doing 128 KB I/Os. That implies that each disk could average
390 disk I/Os per second. Thus, the entitlement necessary to support 32 disks,
each doing 390 I/Os per second with an operation cost of 120,000 cycles
(32*390*120,000/1,650,000,000), is approximately 0.91 processors. Simply put,
an I/O server running on a single processor should be capable of driving
approximately 32 fast disks to maximum throughput.

This sizing method can be very wasteful of processor entitlement when using
dedicated processor partitions, but will guarantee peak performance. It is most
effective if the average I/O size can be estimated so that peak bandwidth does
not have to be assumed.

Sizing when using Micro-Partitioning
Defining virtual SCSI servers in micro-partitions enables much better granularity
of processor resource sizing and potential recovery of unused processor time by
uncapped partitions. Tempering those benefits, use of micro-partitions for virtual
SCSI servers slightly increases I/O response time and creates somewhat more
complex processor entitlement sizings.

The sizing methodology should be based on the same operation costs as for
Virtual I/O Server partition. However, additional entitlement should be added for
running in micro-partitions. We recommend that the Virtual I/O Server partition
be configured as uncapped so that if it is undersized, it is possible to get more
processor time to service I/O.

Because I/O latency with virtual SCSI varies with the machine utilization and
Virtual I/O Server topology, consider the following:

1. For the most demanding I/O traffic (high bandwidth or very low latency), try to
use native I/O.
 Chapter 6. Virtual I/O 229

2. If native I/O is not an option and the system contains enough processors,
consider putting the Virtual I/O Server in a dedicated processor partition.

3. If using a Micro-Partitioning Virtual I/O Server, use as few virtual processors
as possible.

6.9 Summary
Virtualization is an innovative technology that redefines the utilization and
economics of managing an on demand operating environment. The POWER5
architecture provides new opportunities for clients to take advantage of
virtualization capabilities. Virtual I/O provides the capability for a single physical
I/O adapter to be used by multiple logical partitions of the same server, enabling
consolidation of I/O resources.

Overhead of virtual SCSI in both a SCSI and a FAStT implementation is small,
and clients should assess the benefits of the virtual SCSI implementation for their
environment. Simultaneous multithreading should be enabled in a virtual SCSI
environment. With low I/O loads and a small number of partitions,
Micro-Partitioning of the Virtual I/O Server partition has little effect on
performance. For a more efficient virtual SCSI implementation with larger loads,
it may be advantageous to keep the I/O server as a dedicated processor. LVM
mirroring should be used for redundancy.

Virtual SCSI implementation is an excellent solution for clients looking to
consolidate I/O resources with a modest amount of processor overhead. The
new POWER5 virtual SCSI capability creates new opportunities for
consolidation, and demonstrates strong performance and manageability.
230 Advanced POWER Virtualization on IBM Eserver p5 Servers

Part 2 Virtualization
support and
tuning

In this part we look at the changes to performance tools in the AIX 5L Version 5.3
operating system, POWER5 processor–based system performance, application
tuning, and the Partition Load Manager.

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 231

232 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 7. AIX 5L Version 5.3 operating
system support

In this chapter we discuss what is new in AIX 5L V5.3 from a performance and
POWER5 point of view in the following sections:

� Physical and virtual processors

� Simultaneous multithreading

� Metrics problems

� Updated and new performance commands

� Logical Volume Manager

� Paging space

� Physical and virtual networks

7

© Copyright IBM Corp. 2005. All rights reserved. 233

7.1 Introduction
The appropriate version of AIX 5L for POWER5 is AIX 5L Version 5.3 for
virtualization, which has modifications for the new functionalities of the POWER5
processor. AIX 5L Version 5.2 is also supported but cannot use the new features
of POWER5. Versions prior to AIX 5L V5.2 are not supported.

The implementation of the logical processor abstraction is provided by the
POWER5 architecture and the POWER Hypervisor firmware. From an operating
system perspective, a logical processor is indistinguishable from a physical
processor.

7.1.1 Processors
Before AIX 5L V5.3, physical processors were dedicated to partitions. With the
virtualization capabilities of the POWER5 architecture, the concept of a logical
processor can be used by the operating system.

Logical processors
A logical processor is seen by the operating system as being a single physical
processor. In reality, it is just a single hardware thread on the processor.
Changes to ODM have been made to reflect the new type of processors,
Example 7-1 shows attributes of a POWER4 processor and Example 7-2 shows
two new attributes for a POWER5 processor. The attributes of processors are
exactly the same whether the operating system is running with a dedicated
processor or in Micro-Partitioning.

Example 7-1 Attributes of POWER4 processor

lsattr -El proc3
frequency 1499960128 Processor Speed False
state enable Processor state False
type PowerPC_POWER4 Processor type False

Example 7-2 Attributes of POWER5 processor

lsattr -El proc0
frequency 1656424000 Processor Speed False
smt_enabled false Processor SMT enabled False
smt_threads 2 Processor SMT threads False
state enable Processor state False
type PowerPC_POWER5 Processor type False
234 Advanced POWER Virtualization on IBM Eserver p5 Servers

Optimizations
For the most part, AIX 5L V5.3 should be able to run and function on a
Micro-Partitioning system with no changes. However, to optimize OS
performance as well as the collective performance of all shared partitions, it is
important for the OS to add some specific Micro-Partitioning optimizations.
These optimizations involve giving up the processor in the idle process so that
another logical processor in our partition or so even another partition could use it.

We can call two POWER Hypervisor calls to control those optimizations:

H_CEDE Used to give processor cycles to the pool.

H_PROD Used to restore processor cycles to the processor that
has ceded them.

Simultaneous multithreading
On AIX 5L V5.3 with simultaneous multithreading enabled, each hardware thread
is supported as a separate logical processor. A dedicated partition with one
physical processor is seen under AIX 5L V5.3 as a partition with two logical
processors, as shown in Figure 7-1. The same applies to Micro-Partitioning: A
logical processor partition is configured by AIX 5L V5.3 as a logical six-way
partition. The two hardware threads are also called sibling threads.

Figure 7-1 Logical versus physical processors

Simultaneous multithreading can be enabled or disabled dynamically with the
smtctl command. The change can also be made at next boot and persists
across system boots. By default, simultaneous multithreading is enabled.

The syntax of the smtctl command is:

smtctl [-m off | on [-w boot | now]]

Logical
CPU1

Logical
CPU0

Physical CPU

AIX 5L V5.3 layer

Physical layerThread1Thread0
 Chapter 7. AIX 5L Version 5.3 operating system support 235

When you enter the command without any flags, it returns information about the
status of simultaneous multithreading on your system as shown in Example 7-3.

Example 7-3 smtctl command example

smtctl

This system is SMT capable.

SMT is currently enabled.

SMT boot mode is not set.

Processor 0 has 2 SMT threads
SMT thread 0 is bound with processor 0
SMT thread 1 is bound with processor 0

The boot image includes an option for simultaneous multithreading. If the
simultaneous multithreading mode is changed, the boot image must be
recreated; otherwise at the next reboot the simultaneous multithreading mode
will be the same as the previous boot.

Normally, AIX 5L V5.3 maintains sibling threads at the same priority but will boost
or lower thread priorities in a few key places to optimize performance. AIX 5L
V5.3 lowers thread priorities when the thread is doing non-productive work
spinning in the idle loop or on a kernel lock. When a thread is holding a critical
kernel lock, AIX 5L V5.3 boosts the thread priorities. These priority adjustments
do not persist into user mode. AIX 5L V5.3 does not consider a software thread a
dispatching priority when choosing its hardware thread priority.

Several scheduling enhancements were made to exploit simultaneous
multithreading. For example, work will be distributed across all primary threads
before being dispatched to secondary threads, because the performance of a
thread is best when its sibling thread is idle. AIX 5L also considers thread affinity
in idle stealing and periodic run queue load balancing.

For detailed information about simultaneous multithreading, refer to Chapter 3,
“Simultaneous multithreading” on page 41.

Metrics problems
A dedicated partition that is created with one real processor is configured by
AIX 5L V5.3 as a logical two-way by default. This is independent of the partition
type, so a shared partition with two logical processors is configured by AIX 5L
V5.3 as a logical four-way by default. Logically, the only supported kernel in a
simultaneous multithreading environment is the multiprocessor.
236 Advanced POWER Virtualization on IBM Eserver p5 Servers

In traditional processor utilization, data collection is sample-based. There are
100 samples per second sorted into four categories:

user Interrupted code outside AIX 5L V5.3 kernel.

sys Interrupted code inside AIX 5L V5.3 kernel and current
running thread is not waitproc.

iowait Current running thread is waitproc and there is an I/O
pending.

idle Current running thread is waitproc and there is no I/O
pending.

Each sample corresponds to a 10 ms (1/100 sec.) clock tick. These are recorded
in the sysinfo (system-wide) and cpuinfo (per-processor) kernel data structures.
To preserve binary compatibility, this stayed unchanged with AIX 5L V5.3.

Of course, this greatly affects the metrics. Traditional utilization metrics are
misleading because the tools believe that there are two physical processors
when in fact we only have one. As an example, one thread 100% busy and one
thread idle would result in 50% utilization, but the physical processor is really
100% busy. This is similar to what happened with hardware multithreading, and
the same problem exists with hyperthreading.

New metrics
The displayed %user, %sys, %idle, %wait are now calculated using the
PURR-based metrics. Using the example in which one thread is 100% busy and
the other is idle, reported utilization would no longer be 50% but the correct
100%. This is because one thread would receive (almost) all of the PURR
increments and the other (practically) none, meaning 100% of PURR increments
would go into the %user and %sys buckets. This is a more reasonable indicator
of the division of work between the two threads. Unfortunately, this hides the
simultaneous multithreading gain.

We now show the new metrics on AIX 5L V5.3 with simultaneous multithreading.
We measure two different times: the thread’s processor time and the elapsed
time. For the first, we use the thread’s PURRs, which are now virtualized. To
measure the elapsed time we use the Timebase register (TB).

Note: Performance tools such as vmstat, iostat, and sar convert tick counts
from the sysinfo structure into utilization percentages for the machine or
partition. For other tools, such as sar -P ALL and the topas “hot cpu” section,
there is a conversion of tick counts from cpuinfo into utilization percentages
for a processor or thread.
 Chapter 7. AIX 5L Version 5.3 operating system support 237

For the physical resource utilization metric for a logical processor, we use (delta
PURR/delta TB), which represents the fraction of the physical processor
consumed by a logical processor, and ((delta PURR/delta TB)*100) over an
interval to represent the percentage of dispatch cycles given to a logical
processor.

Using PURR-based samples and entitlement, we calculate the “physical”
processor utilization metrics. As an example we have:

%sys = (delta PURR in system mode/entitled PURR)*100

entitled PURR equals (ENT*delta TB) and ENT is entitlement in number of
processors (entitlement/100).

When we need to know how much physical processor is being consumed (PPC)
we use sum(delta PURR/delta TB) for each logical processor in a partition. The
result is in decimal number of processors.

We also may need the percentage of entitlement consumed: (PPC/ENT)*100.

Another useful metric is the available pool of processors. Taking the pool idle
count (PIC), which represents clock ticks where the POWER Hypervisor was idle
(that is, all partition entitlements are satisfied and there is no partition to
dispatch), then we have (delta PIC/delta TB).

This also results in decimal number of processors.

Logical processor utilization is useful for figuring out whether to add more logical
processors to a partition. We calculate it by summing the old 10 ms tick-based
%sys and %user.

There are two other usages for the PURR. The first is the measurement of
relative simultaneous multithreading split between threads and is simply the ratio
purr0/purr1. To know the fraction of time partition1 ran on a physical processor
(the relative amount of processing units consumed), use
(purr0+purr1)/timebase0.

Binary compatibility
As with every release of AIX 5L, the maintenance of the binary compatibility is a
requirement. In a Micro-Partitioning LPAR, commands such as the
bindprocessor continue to work, albeit binding to the logical processor and not a
physical processor. This aspect could possibly cause problems for an application
or kernel extension, which is dependent on executing on a specific physical
processor. For example, the AIX 5L V5.3 Floating-Point Diagnostic Test unit
relied on the ability to bind itself to and execute the FP test unit to completion on
each physical processor in the system.
238 Advanced POWER Virtualization on IBM Eserver p5 Servers

Another example is the bindintcpu command, which enables an administrator to
bind bus interrupt levels to specific processors. In Micro-Partitioning, AIX 5L V5.3
supports it, and will bind interrupts to logical processors. However, it will have no
effect on the original intent of this command, which was to control the physical
distribution of interrupts. The impact will be no absolute control over the routing
of interrupts to physical processors when running in Micro-Partitioning mode. We
do not expect this to be a significant risk because that type of physical resource
management does not make sense in a Micro-Partitioning environment, and
workloads that require specific distribution of interrupts probably would not be
candidates for running in a Micro-Partitioning environment.

There could also be an impact on third-party performance tools due to resulting
inconsistent or erroneous statistics, unless those tools become Micro-Partitioning
aware.

7.1.2 Dynamic re-configuration
Dynamic operations enable the addition or removal of resources from a logical
partition without rebooting.

A dynamic remove operation on a CPU may fail for various reasons; the most
common reason for a removal failure is because a process is bound to a
processor. To provide more information to the user, the cpupstat command was
added. It helps to identify processes bound to logical processors. Example 7-4
shows that the cpupstat command first checks WLM classes, then rset
attachments, and finally the logical processor number 2. If a process is bound to
a processor, it can be unbound with the bindprocessor command. The highest
bind ID is removed if the processor dynamic removal operation succeeds.

Example 7-4 cpupstat output

cpupstat -i 2
0 WLM classes have single CPU rsets with CPU ID 2.
0 processes have single CPU rset attachments with CPU ID 2.
0 processes are bound to bind ID 2.

7.1.3 Existing performance commands enhancement
Due to simultaneous multithreading, Micro-Partitioning, and the ability to
dynamically change some parameters, it was necessary to make some changes
to the old tools. (See 8.1, “Performance commands” on page 258.)

If simultaneous multithreading is enabled or in a Micro-Partitioning environment,
the vmstat, iostat, and sar commands automatically use the new PURR-based
data and formula for %user, %sys, %wait, and %idle.
 Chapter 7. AIX 5L Version 5.3 operating system support 239

In Micro-Partitioning mode, new metrics are displayed, Example 7-5 shows the
traditional output of vmstat command run on a dedicated partition.

Example 7-5 vmstat on a dedicated partition

vmstat 2

System configuration: lcpu=2 mem=1024MB

kthr memory page faults cpu
----- ------------ ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 0 56057 196194 0 0 0 0 0 0 3 68 191 0 0 99 0
 0 0 56058 196192 0 0 0 0 0 0 2 6 183 0 0 99 0

Example 7-6 shows the same vmstat command run on a micro-partition, adding
the columns pc (physical processor consumed) and ec (entitled capacity
consumed).

Example 7-6 vmstat on micro-partition

vmstat 2

System configuration: lcpu=6 mem=512MB ent=0.3

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
 0 0 46569 73370 0 0 0 0 0 0 1 73 149 0 1 99 0 0.00 1.5
 0 0 46577 73360 0 0 0 0 0 0 0 7 147 0 0 99 1 0.00 1.1

The following list gives the new metrics for each command:

� vmstat
– Number of physical processors consumed.
– Percentage of entitled capacity consumed.

� iostat
– Percentage of entitled capacity consumed.
– Percentage of physical processor consumed.

� sar
– Number of physical processors consumed.
– Percentage of entitled capacity consumed.

� topas
– Number of physical processors consumed.
– Percentage entitlement consumed.
– New display dedicated to logical processors.
240 Advanced POWER Virtualization on IBM Eserver p5 Servers

All of these tools have a new feature called dynamic configuration support. They
need it because we no longer work in a static environment with a fixed number of
processors and memory. This way the tools start by a new pre-header with the
configuration but if the configuration changes, there is a warning. The tool then
prints the current iteration line, followed by the summary line (in a sar case). The
tool shows a new configuration pre-header and the regular header for the tool
and continues. Obviously, each tool is monitoring a different set of configuration
parameters, but when running in a shared partition, they all monitor the
entitlement. In Example 7-7, while vmstat is running on a one logical processor
partition, a configuration change occurred. The warning message is displayed,
then the new configuration shows that a processor has been added.

Example 7-7 vmstat pre-header

vmstat 2

System configuration: lcpu=1 mem=1024MB

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 0 59481 193172 0 0 0 0 0 0 3 67 95 0 0 99 0
 0 0 59481 193172 0 0 0 0 0 0 4 12 94 0 0 99 0
1 0 59481 193172 0 0 0 0 0 0 3 17 97 0 0 99 0
System configuration changed. The current iteration values may be inaccurate.
 8 0 59741 192881 0 0 0 0 0 0 2 443 83 0 30 69 0

System configuration: lcpu=2 mem=1024MB

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 0 59773 192849 0 0 0 0 0 0 1 16 87 0 0 99 0
 0 0 59773 192849 0 0 0 0 0 0 0 7 90 0 0 99 0

The trace base tools filemon, netpmon, curt, and splat commands have been
updated to give accurate information about processor usage.

Another tool that needed modification was trace/trcrpt. In a simultaneous
multithreading environment, trace can optionally collect PURR register values at
each trace hook, and trcrpt can display elapsed PURR. The trace tool added
new trace hooks that enable the tracing of phantom interrupts. All trace-based
tools will adjust processor times using a preemption hook. In addition, most
POWER Hypervisor calls are traceable, so they will appear in trcrpt output.

Reporting tools curt and splat can optionally use the PURR values to calculate
processor times in a simultaneous multithreading environment. For splat the -p
 Chapter 7. AIX 5L Version 5.3 operating system support 241

option specifies the use of the PURR register. curt shows physical affinity and
phantom interrupt statistics when in a Micro-Partitioning environment. It also
shows the POWER Hypervisor call summary reports similar to system calls
reports, the number of preemptions, and the number of H_CEDE and
H_CONFER POWER Hypervisor calls for each individual logical processor, as
shown in Example 7-8.

Example 7-8 curt output - preemptions, H_CEDE and H_CONFER

Processor Summary processor number 0

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
=========== =========== =========== ===================
 0.02 1.59 1.64 APPLICATION
 0.08 5.26 5.43 SYSCALL
 7.03 471.38 486.24 HCALL
 0.19 12.43 12.82 KPROC (excluding IDLE and NFS)
 0.00 0.00 0.00 NFS
 1.10 73.50 75.81 FLIH
 0.04 2.77 2.86 SLIH
 0.02 1.39 1.44 DISPATCH (all procs. incl. IDLE)
 0.01 0.44 0.45 IDLE DISPATCH (only IDLE proc.)
----------- ---------- -------
 1.45 96.94 100.00 CPU(s) busy time
 0.05 3.06 IDLE
----------- ----------
 1.49 TOTAL

Avg. Thread Affinity = 1.00

Total number of process dispatches = 5
Total number of idle dispatches = 5

Total Physical CPU time (msec) = 8.64
Physical CPU percentage = 0.60
Physical processor affinity = 0.997590
Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).
 PHYSICAL CPU 0 : 415

Total number of preemptions = 415
Total number of H_CEDE = 415 with preeemption = 414
Total number of H_CONFER = 0 with preeemption = 0

Processor Summary processor number 1

 processing percent percent
 total time total time busy time
242 Advanced POWER Virtualization on IBM Eserver p5 Servers

 (msec) (incl. idle) (excl. idle) processing category
=========== =========== =========== ===================
 243.43 98.65 98.65 APPLICATION
 2.26 0.91 0.91 SYSCALL
 0.03 0.01 0.01 HCALL
 0.00 0.00 0.00 KPROC (excluding IDLE and NFS)
 0.00 0.00 0.00 NFS
 1.07 0.43 0.43 FLIH
 0.00 0.00 0.00 SLIH
 0.01 0.00 0.00 DISPATCH (all procs. incl. IDLE)
 0.01 0.00 0.00 IDLE DISPATCH (only IDLE proc.)
----------- ---------- -------
 246.77 100.00 100.00 CPU(s) busy time
 0.00 0.00 IDLE
----------- ----------
 246.77 TOTAL

Avg. Thread Affinity = 1.00

Total number of process dispatches = 5
Total number of idle dispatches = 2

Total Physical CPU time (msec) = 246.80
Physical CPU percentage = 19.74
Physical processor affinity = 0.997126
Dispatch Histogram for processor (PHYSICAL CPUid : times_dispatched).
 PHYSICAL CPU 1 : 348

Total number of preemptions = 348
Total number of H_CEDE = 2 with preeemption = 2
Total number of H_CONFER = 0 with preeemption = 0

MAPI
With the new POWER5 processors, it was necessary to update the PMAPI.

There is a new API for POWER5 processor called pm_initialize, which you must
use instead of the old pm_init API. With the updated PMAPI, there is a new way
to return event status and characteristics: by bit array instead of char. There is a
new shared characteristic for processors supporting simultaneous multithreading.
A shared event is controlled by a signal not specific to a particular thread’s
activity and sent simultaneously to both sets (one for each thread) of hardware
counters. There should be an average of counts across sibling threads. The
added processor features bit array in the pm_initialize has two bits currently
defined: the POWER Hypervisor mode and runlatch mode. Moreover,
pm_initialize can also retrieve the event table for another processor instead of the
old way in which we could only retrieve the tables for the current processor.
 Chapter 7. AIX 5L Version 5.3 operating system support 243

The new PMAPI now supports the M:N threading model, as opposed to the
previous 1:1 model. This new model enables mapping M user threads to N kernel
threads, and M is much bigger than N. There is a new set of APIs for third-party
calls (debugger) generically called pm_*_thread, which differs from the old
pm_*_thread interfaces in an additional argument to specify ptid. In 1:1 mode,
there is no need to specify the ptid, but if you specify it, the library will verify that
the specified pthread runs on the specified kernel thread. On the other hand, to
use the M:N mode, the ptid must always be specified. If ptid is not specified, then
there is the assumption that the pthread is currently undispatched. Regarding all
other APIs, they are unchanged but now work in M:N mode.

With this new API come some new commands, including pmlist and pmcycles.
pmlist is a utility to dump and search a processor’s event and group tables. It
currently supports text and spreadsheet output formats.The pmcycles command
uses the Performance Monitor cycle counter and the processor real-time clock to
measure the actual processor clock speed in MHz, as shown in Example 7-9.

Example 7-9 pmcycles output

pmcycles -m
Cpu 0 runs at 1656 MHz
Cpu 1 runs at 1656 MHz
Cpu 2 runs at 1656 MHz
Cpu 3 runs at 1656 MHz
Cpu 4 runs at 1656 MHz
Cpu 5 runs at 1656 MHz

GPROF
The new environment variable GPROF controls the gprof new mode that
supports multi-threaded applications.

GPROF=[profile:{process|thread}][,][scale:<scaling_factor>][,][file:{one|mu
lti|multithread}]

Here:

profile Indicates whether it will do thread-level or process-level
profiling.

scaling_factor Represents the granularity of the collected profiling data.

file Indicates whether it will generate a single or multiple
gmon.out files.

multi Creates a file for each process (for each fork or exec)
gmon.out.<progname>.<pid>.

multithread Creates a file for each pthread
gmon.out.<progname>.<pid>.Pthread<ptid> that can be
244 Advanced POWER Virtualization on IBM Eserver p5 Servers

used to look at one pthread at a time with gprof or
xprofiler.

The default values for gprof are process for the profile option, a scaling factor of
2 for process level and 8 for thread level (the thread level profiling consumes
considerably more memory), and one file for the output. Several flags enable
optional separate output into multiple files:

-g filename Writes the call graph information to the specified output
filename. It suppresses the profile information unless -p is
used.

-p filename Writes flat profile information to the specified output
filename. It suppresses the call graph information unless -g
is used.

-i filename Writes the routine index table to the specified output
filename. If this flag is not used, the index table goes either at
the end of the standard output or at the bottom of the
filename (or filenames) specified with -p and -g.

The format of data itself is unchanged but now it can be presented in multiple
sets in which the first set has cumulative data and the following sets have the
data per thread.

Graphical tools
As with text-based tools, the processor accounting for graphical tools has to be
changed to use the new metrics regarding the shared mode environment and
simultaneous multithreading. Graphics tools such as PTX® 3dmon, PTX xmperf,
and PTX jtopas have also been updated.

PTX 3dmon and xmperf
The most complete graphical tool, PTX, now uses PURR-based utilization
metrics and entitlement utilization. An example of a 3dmon display is shown in
Figure 7-2 on page 246, and xmperf Mini Monitor is shown in Figure 7-3 on
page 246.
 Chapter 7. AIX 5L Version 5.3 operating system support 245

Figure 7-2 3dmon monitoring two LPARs

Figure 7-3 xmperf Mini Monitor
246 Advanced POWER Virtualization on IBM Eserver p5 Servers

PTX jtopas
Shipping with PTX since May 2003, the graphical tool jtopas is a hot-resource
monitoring tool and a sibling of topas. jtopas starts with a predefined (no setup
needed) Swing GUI. In the main screen, it shows a set of system metrics and
hot-resource summaries similar to topas, with access to more detailed
information for each area. This is a generalization of the P, W, and L commands
of topas, which provide process, partition, and WLM detail reports. jtopas works
locally or remotely, and it can generate dynamic reports with up to seven days of
playback. It keeps data automatically for a week in seven rotating daily files,
enabling jtopas to generate reports by hour or by day. You can save these
reports in HTML format or in spreadsheet format. You can have a week-by-days
report and a day-by-hours report. jtopas is a Swing GUI–enabled application,
which means that you can minimize or move each window and all resources are
always available using the scroll bar. jtopas uses the xmtrend daemon.

Figure 7-4 jtopas default display
 Chapter 7. AIX 5L Version 5.3 operating system support 247

7.1.4 New performance commands
Some new tools have been added for performance tuning in simultaneous
multithreading or Micro-Partitioning environments.

The following list gives the main features of the lparstat, mpstat, and perfwb
commands:

� lparstat

– Information and statistics about the partition.

– Details about the configuration of the partition.

– Summary and detailed POWER Hypervisor statistics and information.

– lparstat command output changes depending on the partition mode, as
shown in Example 7-10 and Example 7-11.

In Micro-Partitioning, the real resource consumed by the user is the
percentage of CPU user (%user) times percentage of entitlement
consumed (entc%) times the entitlement (ent). In this case, 18.2% of
42.4% of 0.30 gives 2.3% of CPU consumed by the user.

The physical processor consumed (physc) is equal to the percentage of
%entc times ent.

Example 7-10 lparstat output in a dedicated partition

lparstat

System configuration: type=Dedicated mode=Capped smt=On lcpu=2 mem=1024

%user %sys %wait %idle
----- ---- ----- -----
 67.6 31.8 0.0 0.6

Example 7-11 lparstat output in Micro-Partitioning

lparstat

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 ent=0.30

%user %sys %wait %idle physc %entc lbusy app vcsw phint
----- ---- ----- ----- ----- ----- ------ --- ---- -----
 18.2 12.5 0.9 68.4 0.13 42.4 4.3 - 2747 3
248 Advanced POWER Virtualization on IBM Eserver p5 Servers

� mpstat

– Basic utilization metrics.

– Logical and physical processor metrics (in simultaneous multithreading
mode).

– Interrupt metrics.

– Logical processor affinity metrics.

– The mpstat command output changes depending on the partition mode.

� perfwb

– Dynamic process monitoring.

– Partition-wide metrics about processor and memory activity (Figure 7-5).

Figure 7-5 procmon partition-wide metrics
 Chapter 7. AIX 5L Version 5.3 operating system support 249

– Sorted list of processes, as shown in Figure 7-6.

Figure 7-6 procmon: sorted list of processes

– Columns can be added or removed, and sorted in ascending or
descending order. Actions can be performed on listed processes, such as
kill, renice, run performance commands, and obtain information.

– Part of the bos.perf.gtools fileset; start Performance Workbench with the
perfwb command to launch the procmon tool.

For more about performance commands, see 8.1, “Performance commands” on
page 258.
250 Advanced POWER Virtualization on IBM Eserver p5 Servers

7.1.5 Paging space
AIX 5L V5.3 introduces enhanced paging space management algorithms to
collect paging space as needed. They apply only to deferred page space
allocation policy. This management may be useful when paging space is almost
full, for example, due to dynamic memory removal. In that case, if the memory is
added back to the partition, the paging space will not be freed. This adds some
constraints on paging space although there is free real memory in the partition.

� Garbage collect paging space on re-pagein

This mechanism applies only to deferred page space allocation policy. A new
mechanism determines whether to free a disk block after a pagein operation,
depending on the free space remaining in the paging space.

� Garbage collect paging space scrubbing for in-memory frames

This mechanism tries to reclaim paging space disk blocks for pages that are
already in memory, if the free space that is available in the paging space
decreases under a tunable limit.

Tuning parameters for paging space garbage collection
Tuning on paging space parameters is performed with the vmo command. New
parameters include:

npsrpgmin Low paging space threshold for re-pagein garbage
collector to start.

npsrpgmax High paging space threshold for re-pagein garbage
collector to stop.

rpgclean Configures re-pagein garbage collector to be active when
a page is read or when a page is read or write.

rpgcontrol Enables or disables re-pagein garbage collector.

npssrubmin Low paging space threshold for garbage collector
scrubbing to start.

npsscrubnax High paging space threshold for garbage collector
scrubbing to stop.

scrubclean Configures garbage collector scrubbing to be active when
a page is read or when a page is read or write.

scrub Enables or disables garbage collector scrubbing.
 Chapter 7. AIX 5L Version 5.3 operating system support 251

7.1.6 Logical Volume Manager (LVM)
Several improvements have been made to the AIX 5L V5.3 Logical Volume
Manager that concern performance.

Scalable volume group
The new scalable volume group supports up to 1024 disks. This expands the
capacity of the volume groups but needs a substantially larger volume group
descriptor area (VGDA) and volume group status area (VGSA). Increasing
maximum logical volumes or maximum physical partitions per volume group from
the defaults toward the limits increases the amount of metadata (VGDA or VGSA)
that must be read or written during LVM operations. Every VGDA update
operation (creating a logical volume, changing a logical volume, adding a
physical volume, and so on) might take longer to run, as LVM keeps a copy of
metadata on each physical volume. In previous AIX 5L releases, the maximum
number of PPs was defined per disk; it is now defined per volume group. The
limits for each type of volume group are listed in Table 7-1.

Table 7-1 Maximum values for volume groups

Variable logical track group (LTG)
The LVM device driver breaks I/O into LTG-size chunks before passing the I/O to
the device driver of the underlying disks. LTG size is an attribute of the volume
group. In the previous release, LTG size was defined at volume group creation or
update; now it is determined at vary on time and will be dynamically updated if a
physical volume is added or removed in the volume group. AIX 5L V5.3 enables
the stripe size of a logical volume to be larger than the LTG size of the volume
group, which was not allowed previously. Also, AIX 5L V5.3 now supports larger
LTG sizes and stripe sizes. Valid LTG and stripe sizes are listed in Table 7-2.

Table 7-2 LTG and stripe sizes

VG type PVs LVs PPs PP size

Normal VG 32 256 1016 per disk 1 GB

Big VG 128 512 1016 per disk 1 GB

Scalable VG 1024 4096 2097152 per VG 128 GB

AIX release Valid LTG sizes Valid stripe sizes

AIX 5L V5.2 and
previous

128 KB, 256 KB,
512 KB, 1 MB

4 KB, 8 KB, 16 KB, 32 KB, 64 KB,
128 KB, 256 KB, 512 KB, 1 MB

AIX 5L V5.3 adds support for 2 MB,
4 MB, 8 MB, 16 MB

adds support for 2 MB, 4 MB, 8 MB,
16 MB, 32 MB, 64 MB, 128 MB
252 Advanced POWER Virtualization on IBM Eserver p5 Servers

Performance improvements
LVM metadata (VGDA and VGSA) must be stored in every single disk in a
volume group. To improve performance, AIX 5L V5.3 writes all metadata in
parallel. There is one thread for each disk in the volume group. Previously, some
commands that would read data, utilize a small piece, then read again, and
utilize a small piece. They now read the metadata once and keep it accessible
throughout the life of the command. Special focus was put on these commands:
extendvg, importvg, mkvg, varyonvg, chlvcopy, mklvcopy, lslv,and lspv.

Striped column
Prior to AIX 5L V5.3, there was no good way to extend a striped logical volume if
one of the disks was full. The workaround was to back up the data, delete the
striped logical volume, remake the logical volume with a larger stripe width, then
restore the data. Now, we can extend a striped logical volume even if one of the
disks is full. We do this by modifying the maximum number of physical volumes
for the new allocation, the upper bound. Prior to AIX 5L V5.3, the stripe width and
upper bound were required to be equal. In AIX 5L V5.3, the upper bound can be
a multiple of stripe width, where you can think of each stripe as a “column.” You
can use the extendlv command to extend a striped logical volume into the next
column. You can use extendlv -u to raise the upper bound and extend the
logical volume all in one operation (like a combined extendlv and chlv -u).

Volume group pbuf pools
The LVM uses a structure called pbuf to handle disk I/O. In previous versions,
pbuf pool was a system-wide resource; now each volume group gets its own pbuf
pool. To manage pbuf, we use the lvmo command, which displays and tunes
several volume group specific items:

pv_pbuf_count Number of pbufs added when a physical volume is added
to the volume group. It is tunable with the lvmo command,
and it takes effect immediately.

total_vg_pbufs Number of pbufs currently available for the volume group.
It is tunable with the lvmo command, and it takes effect at
varyonvg time.

max_vg_pbuf_count Maximum number of pbufs for this volume group. It is
tunable with lvmo command, takes effect at varyonvg
time.

pervg_blocked_io_count

Number of I/Os that were blocked due to lack of free pbufs
for this volume group. Can only be displayed; not tunable.
 Chapter 7. AIX 5L Version 5.3 operating system support 253

The lvmo command also displays the following system-wide items:

global_pbuf_count Minimum number of pbufs that are added when a physical
volume is added to any volume group. It is tunable with
the ioo command. It takes effect at varyonvg time.

global_blocked_io_count

System-wide number I/Os that were blocked due to lack of
free pbufs.

For more information about LVM, refer to the redbook AIX 5L Differences Guide
Version 5.3 Edition, SG24-7463

7.1.7 Virtual local area network (VLAN)
VLAN is a method to logically segment a physical network, which means that
only adapters belonging to a same VLAN can communicate. AIX 5L V5.3
supports virtual Ethernet technology, which enables communications between
logical partitions on the same system using a VLAN.

Shared Ethernet Adapter technology enables the logical partitions to
communicate with machines that are outside the system without any physical
Ethernet slots assign to the logical partition. The Shared Ethernet Adapter
creates a relationship between virtual Ethernet adapters and a real network
adapter. The Shared Ethernet Adapter is part of the optional Virtual I/O Server.

In a dedicated partition or micro-partition we can configure physical and virtual
adapters at the same time. Example 7-12 shows two types of adapters, the
physical ent0 and the virtual ent1. Each has a network address. The Device
Specific.(YL) field contains in one case (ent0) a real physical location code and
in the other case (ent1) a logical location code given by the Virtual I/O Server.

Example 7-12 Ethernet adapters

lsdev -Ccadapter
ent0 Available 02-08 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
ent1 Available Virtual I/O Ethernet Adapter (l-lan)

lscfg -vl ent0
ent0 U787A.001.DNZ00XY-P1-C2-T1 10/100 Mbps Ethernet PCI Adapter II (1410ff01)

 10/100 Mbps Ethernet PCI Adapter II:
 Part Number.................09P5023
 FRU Number..................09P5023
 EC Level....................H10971A
 Manufacture ID..............YL1021
 Network Address.............000D600A58A4
 ROM Level.(alterable).......SCU015
254 Advanced POWER Virtualization on IBM Eserver p5 Servers

 Product Specific.(Z0).......A5204209
 Device Specific.(YL)........U787A.001.DNZ00XY-P1-C2-T1

lscfg -vl ent1
ent1 U9111.520.10DDEDC-V2-C10-T1 Virtual I/O Ethernet Adapter (l-lan)

 Network Address.............C6BB3000200A
 Displayable Message.........Virtual I/O Ethernet Adapter (l-lan)
 Device Specific.(YL)........U9111.520.10DDEDC-V2-C10-T1

For more about VLAN, refer to 6.5, “Virtual Ethernet” on page 164.

7.1.8 EtherChannel
The EtherChannel technology is based on port aggregation, which means that
Ethernet adapters are aggregated together and belong to the same network.
They share the same IP address and the same hardware address. The
bandwidth of the EtherChannel adapter is increased due to the aggregation of
physical Ethernet adapters.

Prior to AIX 5L V5.3, addition or removal operations of a physical adapter
member of an EtherChannel was possible only if the interface was detached or
not configured. The interface also must be detached in order to modify
EtherChannel attributes.

With AIX 5L V5.3, the Dynamic Adapter Membership enables addition, removal,
and update operations at runtime. A failed Ethernet adapter can be replaced
without IP disruption.

A failover can be manually forced on the condition that the EtherChannel has a
working backup adapter. This is useful for recovering from a failover caused by a
failure. The recovery time to primary has been improved.

7.1.9 Partition Load Manager
Partition Load Manager for AIX 5L is a load manager that balances resources
(processor and memory) between partitions executing within the same physical
server.

To benefit from Partition Load Manager, the managed partitions must be running
AIX 5L V5.2 or AIX 5L V5.3. (Linux and i5/OS are not supported.) Partition Load
Manager works with both dedicated partitions and micro-partitions.

Partition Load Manager allocates resources to partitions according to rules
defined by the system administrators. In Partition Load Manager terminology,
 Chapter 7. AIX 5L Version 5.3 operating system support 255

these rules are called policies. The policies define how Partition Load Manager
assigns unused resources or resources from partitions with low usage to
partitions with a higher demand, improving the overall resource utilization of the
system.

Partition Load Manager is implemented using a client/server model. The server
part of Partition Load Manager is packaged as part of the Advanced Power
Virtualization feature of Sserver p5 servers. There is no special code to install
on client partitions that are managed by Partition Load Manager.

The Partition Load Manager client/server model is event-based, not
polling-based. The PLM server receives events each time one of its managed
partitions needs extra resources.

When the PLM server starts, it registers several events on each managed
partition. In order for Partition Load Manager to get system information and
dynamically reconfigure resources, it requires an SSH network connection from
the PLM server to the HMC. The Resource Management and Control (RMC)
services are responsible for gathering all of the status information on the
managed nodes. The RMC daemon exports system status attributes and
processes the reconfiguration requests from HMC. With this data and in
conjunction with the user-defined resource management policy, the PLM server
decides what to do each time a partition exceeds one of the thresholds defined in
the Partition Load Manager policies.

Partition Load Manager is presented in more detail in Chapter 10, “Partition Load
Manager” on page 373.
256 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 8. POWER5 system
performance

This chapter provides information about system performance and how to
diagnose a problem with a processor, memory, or I/O. We mainly focus on new
components introduced by the Sserver p5 architecture and virtualization.

The following topics are discussed:

� AIX 5L commands for performance analysis

� Performance and tuning on a system

8

© Copyright IBM Corp. 2005. All rights reserved. 257

8.1 Performance commands
Table 8-1 summarizes all of the AIX 5L commands described in this section.
These commands are used to show typical performance issues in this chapter.

Table 8-1 Commands summary

8.1.1 lparstat command
The lparstat command reports logical partition information and statistics as well
as POWER Hypervisor statistics. It displays on its first line a summary of the
partition configuration. Table 8-2 gives a summary for lparstat command (a +
sign means the command covers this topic).

Table 8-2 lparstat command summary

Command Function Main
measurement

Page
number

lparstat Logical partition information and
statistics

CPU, Hypervisor 258

mpstat Physical and logical processors
statistics

CPU 264

vmstat CPU and virtual memory monitoring CPU, memory 268

iostat System input/output device monitoring Disk I/O 270

sar Physical, logical processor, and I/O
monitoring

CPU 272

topas Displays system statistics dynamically. CPU, memory, I/O 275

xmperf Displays a great amount of system
statistics

CPU, memory, I/O 278

Command name lparstat

Interface type CLI

Updated or new command new

AIX 5L package bos.acct

Measurement
CPU
memory
disk I/O
network
POWER Hypervisor

+

+

258 Advanced POWER Virtualization on IBM Eserver p5 Servers

Usage
lparstat { -i | [-H | -h] [Interval [Count]] }

Most important flags
-i Displays information about the configuration of the logical partition.

-h Adds summary POWER Hypervisor information to the default output.

-H Displays detailed POWER Hypervisor information, including statistics
for each of the POWER Hypervisor calls.

Output examples
In the default mode and on a dedicated partition, the lparstat command shows
processor utilization in the usual manner (%user, %sys, %idle, %wait), as shown
in Example 8-1.

Example 8-1 lparstat default mode on a dedicated partition

lparstat 2

System configuration: type=Dedicated mode=Capped smt=On lcpu=2 mem=1024

%user %sys %wait %idle
----- ---- ----- -----
 99.2 0.7 0.0 0.0
 99.7 0.3 0.0 0.0
 99.8 0.2 0.0 0.0

In the default mode and on a micro-partition, lparstat adds the following
information to the output, as shown in Example 8-2 on page 260:

psize Number of online physical processors in the shared pool.

physc Shows the number of physical processor consumed.

%entc Shows the percentage of the entitled capacity consumed.

lbusy Shows the percentage of logical processors utilization that
occurred while executing at the user and system level.

app Shows the available processing capacity in the shared pool.

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+

Command name lparstat
 Chapter 8. POWER5 system performance 259

vcsw Number of virtual context switches that are the virtual processor
hardware preemptions.

phint Shows the number of phantom (targeted to another shared
partition in this pool) interruptions received.

Example 8-2 lparstat default mode on a micro-partition

lparstat

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=1
ent=0.30

%user %sys %wait %idle physc %entc lbusy app vcsw phint
----- ---- ----- ----- ----- ----- ------ --- ---- -----
 8.2 3.0 0.2 88.6 0.00 0.2 3.3 0.89 168708 148

An interval and a count can be added to the command to display statistics every
interval seconds for count iterations. In Example 8-3, the interval is 2 seconds
and the count is 5.

Example 8-3 lparstat monitoring

lparstat 2 5

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=1
ent=0.30

%user %sys %wait %idle physc %entc lbusy app vcsw phint
----- ---- ----- ----- ----- ----- ------ --- ---- -----
 70.2 14.1 0.0 15.6 0.53 175.9 23.4 0.00 2453 31
 62.6 19.8 0.0 17.6 0.49 161.7 18.9 0.08 2611 24
 67.6 16.8 0.0 15.6 0.35 117.9 14.8 0.23 2409 15
 52.6 20.5 0.0 26.8 0.27 88.6 11.4 0.27 2486 8
 61.5 21.2 0.0 17.4 0.32 106.3 11.9 0.22 2829 13

If the partition does not have shared processor pool utilization authority, the app
column will not be displayed (Example 8-4 on page 261). This option enables the
logical partition to collect information statistics from the managed system about
shared processing pool utilization. Shared processors are processors that are
shared between two or more logical partitions. The processors are held in the
shared processor pool and are shared among the logical partitions.
260 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-4 Logical partition without pool utilization authority

lparstat 2 5

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=1
ent=0.30

%user %sys %wait %idle physc %entc lbusy vcsw phint
----- ---- ----- ----- ----- ----- ------ ---- -----
 67.8 16.7 0.0 15.5 0.66 219.6 16.2 3343 3
 60.1 21.6 0.1 18.2 0.47 157.1 7.3 2402 2
 65.6 18.7 0.0 15.6 0.86 287.9 17.3 3714 2
 67.2 16.8 0.0 16.0 0.71 235.6 16.4 3411 2
 67.4 16.5 0.0 16.1 0.66 220.7 17.3 3299 2

To choose this option, connect to the Hardware Management Console (HMC),
edit the partition properties, click the Hardware tab and the Processor and
Memory tab, then select the Allow shared processor utilization authority
check box as in Figure 8-1.

Figure 8-1 Shared processor utilization authority activation
 Chapter 8. POWER5 system performance 261

The -h flag adds the percentage of time spent in POWER Hypervisor (%hypv)
and the number of POWER Hypervisor calls executed to the default output, as
shown in Example 8-5.

Example 8-5 lpartsta -h output

lparstat -h 2

System configuration: type=Shared mode=Capped smt=Off lcpu=2 mem=512 psize=2
ent=0.30

%user %sys %wait %idle physc %entc lbusy app vcsw phint %hypv hcalls
----- ---- ----- ----- ----- ----- ------ --- ---- ----- ----- ------
98.4 1.1 0.0 0.5 0.30 99.7 58.7 0.69 309 3 0.6 153
 98.0 1.1 0.0 0.9 0.30 99.3 55.5 0.69 303 1 0.5 146
 97.9 1.1 0.0 1.0 0.30 99.2 56.9 0.69 304 0 0.6 147
 93.7 1.1 0.0 5.2 0.28 95.0 58.4 0.70 292 0 0.6 143
 72.2 0.9 0.0 26.9 0.22 73.3 59.5 0.77 208 0 0.5 91
95.3 1.0 0.0 3.7 0.29 96.4 53.2 0.70 184 0 0.2 36
 86.9 1.0 0.0 12.2 0.26 88.0 55.9 0.72 258 0 0.4 100
 95.9 1.1 0.0 3.0 0.29 97.2 52.8 0.70 298 0 0.6 146
 98.1 1.0 0.0 0.9 0.30 99.4 56.4 0.69 312 1 0.5 157
 98.4 1.1 0.0 0.5 0.30 99.7 59.8 0.69 314 0 0.6 162
 97.4 1.1 0.0 1.5 0.30 98.7 55.6 0.69 303 0 0.6 157
 98.2 1.1 0.0 0.7 0.30 99.5 56.3 0.69 311 0 0.5 158

For information about the partition, such as minimum and maximum of CPU and
memory, partition type, and mode use lparstat -i as shown in Example 8-6 on
page 263.

The partition type can be one of the following:

Dedicated Processors are dedicated to the partition; simultaneous
multithreading is disabled.

Dedicated simultaneous multithreading
Processors are dedicated to the partition; simultaneous
multithreading is enabled.

Shared Partition is configured for Micro-Partitioning; simultaneous
multithreading is disabled.

Shared simultaneous multithreading
Partition is configured for Micro-Partitioning; simultaneous
multithreading is enabled.

For more information, see Chapter 3, “Simultaneous multithreading” on page 41.
262 Advanced POWER Virtualization on IBM Eserver p5 Servers

The partition mode can be:

Capped Partition is not allowed to consume idle cycles from the
shared pool. Dedicated LPAR is implicitly capped.

Uncapped Partition may use idle cycles from the shared pool if
needed.

For more about Micro-Partitioning mode, refer to Chapter 5, “Micro-Partitioning”
on page 93.

Example 8-6 lparstat -i output

lparstat -i
Node Name : LPARmicro
Partition Name : MicroPartitionAIX53
Partition Number : 4
Type : Shared-SMT
Mode : Uncapped
Entitled Capacity : 0.30
Partition Group-ID : 32772
Shared Pool ID : 0
Online Virtual CPUs : 3
Maximum Virtual CPUs : 5
Minimum Virtual CPUs : 2
Online Memory : 512 MB
Maximum Memory : 1024 MB
Minimum Memory : 128 MB
Variable Capacity Weight : 128
Minimum Capacity : 0.20
Maximum Capacity : 0.50
Capacity Increment : 0.01
Maximum Dispatch Latency : 17995218
Maximum Physical CPUs in system : 2
Active Physical CPUs in system : 2
Active CPUs in Pool : 1
Unallocated Capacity : 0.00
Physical CPU Percentage : 10.00%
Unallocated Weight : 0

Detailed information about the POWER Hypervisor calls are displayed with the
lparstat -H command (Example 8-7 on page 264) especially the cede and
confer values used by the operating system to return processor resources to the
hardware when it no longer has demand for it or when it is waiting on an event to
complete. In this example, time spent for cede is 99.2% of the total time spend in
the POWER Hypervisor.
 Chapter 8. POWER5 system performance 263

Example 8-7 lparstat -H output

lparstat -H 2 1

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=1
ent=0.30

 Detailed information on Hypervisor Calls

Hypervisor Number of %Total Time %Hypervisor Avg Call Max Call
 Call Calls Spent Time Spent Time(ns) Time(ns)

remove 6 0.0 0.0 268 647
read 2 0.0 0.0 50 449
nclear_mod 0 0.0 0.0 1 0
page_init 3 0.0 0.0 405 1989
clear_ref 0 0.0 0.0 1 0
protect 0 0.0 0.0 1 0
put_tce 141 0.0 0.2 689 2100
xirr 81 0.0 0.2 790 2791
eoi 80 0.0 0.1 449 927
ipi 0 0.0 0.0 1 0
cppr 80 0.0 0.0 221 434
asr 0 0.0 0.0 1 0
others 0 0.0 0.0 1 0
enter 11 0.0 0.0 250 874
cede 211 6.9 99.2 51344 70485
migrate_dma 0 0.0 0.0 1 0
put_rtce 0 0.0 0.0 1 0
confer 0 0.0 0.0 1 0
prod 151 0.0 0.1 338 1197
get_ppp 1 0.0 0.0 850 2583
set_ppp 0 0.0 0.0 1 0
purr 0 0.0 0.0 1 0
pic 1 0.0 0.0 125 758
bulk_remove 0 0.0 0.0 1 0
send_crq 70 0.0 0.1 777 2863
copy_rdma 0 0.0 0.0 1 0
get_tce 0 0.0 0.0 1 0
send_logical_lan 3 0.0 0.0 2178 4308
add_logicl_lan_buf 9 0.0 0.0 638 1279

8.1.2 mpstat command
The mpstat command collects and displays performance statistics for all logical
CPUs in the system. It can show up to 29 new metrics (when using -a option).
Table 8-3 on page 265 gives a summary of the mpstat command.
264 Advanced POWER Virtualization on IBM Eserver p5 Servers

Table 8-3 mpstat command summary

Usage
mpstat [{ -a | -d | -i | -s }] [-w] [interval [count]]

Most important flags
-d Displays detailed affinity and migration statistics for AIX 5L V5.3 threads.

-i Displays detailed interrupt statistics.

-s Displays simultaneous multithreading utilization report if simultaneous
multithreading is enabled.

The default mode shows:

� Utilization metrics (%user, %sys, %idle, %wait).

� Major and minor page faults (with and without disk I/O).

� Number of syscalls and interrupts.

� Dispatcher metrics, namely the number of migrations, voluntary and
involuntary context switches, logical processor affinity (percentage of
redispatches inside MCM), and run queue size.

� Fraction of processor consumed (simultaneous multithreading or
Micro-Partitioning only).

� Percentage of entitlement consumed (Micro-Partitioning mode only).

� Number of logical context switches (Micro-Partitioning mode only), meaning
the hardware preemptions.

Command name mpstat

Interface type CLI

Updated or new command new

AIX 5L package bos.acct

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
++
++
 Chapter 8. POWER5 system performance 265

Output examples
The default mode of the mpstat command shown in Example 8-8 displays the
following information to show activity for each logical processor:

mpc Total number of interprocessor calls.

cs Total number of logical processor context switches.

ics Total number of involuntary context switches.

mig Total number of thread migrations to another logical processor.

lpa Logical processor affinity. The percentage of logical processor
redispatches within the scheduling affinity domain 3 (same Multi-chip
Module).

At the end of the output, the U line displays the unused capacity, and the ALL line
is the sum of all virtual processors.

Example 8-8 mpstat default output

mpstat 2 2

System configuration: lcpu=6 ent=0.3

cpu min maj mpc int cs ics rq mig lpa sysc us sy wa id pc %ec lcs
 0 135 0 0 688 358 179 0 0 100 3343 38 57 0 4 0.04 12.0 295
 1 0 0 0 46 0 0 0 0 - 0 0 11 0 89 0.01 3.1 290
 2 0 0 0 188 100 50 0 0 100 0 1 51 0 47 0.00 0.9 179
 3 0 0 0 43 0 0 0 0 - 0 0 59 0 41 0.00 0.9 179
 4 0 0 0 56 308 157 0 1 100 9 0 69 0 31 0.00 1.3 215
 5 0 0 0 37 0 0 0 1 100 0 0 30 0 70 0.00 0.7 195
 U - - - - - - - - - - - - 0 81 0.24 81.3 -
ALL 135 0 0 1058 766 386 0 2 100 3352 5 9 0 86 0.06 18.9 676

-
 0 29 0 0 261 34 17 0 0 100 725 43 52 0 4 0.01 3.6 69
 1 0 0 0 14 0 0 0 0 - 0 0 12 0 88 0.00 0.9 69
 2 15 0 0 166 108 53 0 0 100 5 3 59 0 37 0.00 0.8 129
 3 0 0 0 15 0 0 0 0 - 0 0 29 0 71 0.00 0.5 129
 4 0 0 0 23 60 35 0 0 100 0 0 66 0 34 0.00 0.4 61
 5 0 0 0 13 0 0 0 0 - 0 0 20 0 80 0.00 0.2 59
 U - - - - - - - - - - - - 0 94 0.28 93.7 -
ALL 44 0 0 492 202 105 0 0 100 730 2 3 0 96 0.02 6.3 258

In the mpstat -d output shown in Example 8-9 on page 267, the rq column
shows the run queue size for each logical processor. The columns from S0rd to
S5rd show the percentage of thread redispatches within a scheduling affinity
domain. See the definition of “processor affinity” on page 105.
266 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-9 mpstat -d output

mpstat -d 2 1

System configuration: lcpu=6 ent=0.3

cpu cs ics bound rq push S3pull S3grd S0rd S1rd S2rd S3rd S4rd S5rd ilcs vlcs
 0 202 150 0 0 0 0 0 99.1 0.0 0.0 0.9 0.0 0.0 134 285
 1 5 1 0 0 0 0 0 0.0 100.0 0.0 0.0 0.0 0.0 0 411
 2 222 158 0 0 0 0 0 97.1 2.2 0.0 0.7 0.0 0.0 182 330
 3 28 15 0 0 0 0 0 93.3 6.7 0.0 0.0 0.0 0.0 0 520
 4 320 223 0 0 0 0 0 98.9 0.7 0.0 0.4 0.0 0.0 83 370
 5 11 9 0 0 0 0 0 86.7 13.3 0.0 0.0 0.0 0.0 2 452
ALL 788 556 0 0 0 0 0 97.1 2.4 0.0 0.5 0.0 0.0 200 1184

A logical partition receives different kinds of interrupts. Example 8-10 shows for
each logical processor the following interrupt metrics:

mpcs, mpcr Interrupts used to communicate between processors.

dev Number of hardware interrupts (external interrupts).

soft Number of software interrupts. (When a hardware interrupt takes
too much time to complete, a software interrupt is created to
finish the processing.)

dec Number of decrementer interrupts. The decrementer is the
register used to generate time-based interrupts. AIX 5L loads a
value in it, the processor decrements the register, and when it
reaches zero, an interrupt is sent.

ph Number of phantom interrupts (the number of device interrupts
received by the partition but targeted to another partition in the
pool). The OS simply returns those to POWER Hypervisor.

Example 8-10 mpstat -i output

mpstat -i 2 1

System configuration: lcpu=6 ent=0.3

cpu mpcs mpcr dev soft dec ph
 0 0 0 20 5 105 0
 1 0 0 23 0 10 0
 2 0 0 25 48 195 1
 3 0 0 24 0 11 0
 4 0 0 23 0 101 0
 5 0 0 21 0 11 0
ALL 0 0 136 53 433 1
 Chapter 8. POWER5 system performance 267

If simultaneous multithreading is enabled, the mpstat -s command displays
physical as well as logical processors usage, as shown in Example 8-11.
Physical processor Proc0 is busy at 17.80%, which is dispatched on logical
processor cpu0 (14.75%) and on logical processor cpu1 (3.05%). In this case,
cpu0 and cpu1 are hardware threads for proc0.

Example 8-11 mpstat -s output

mpstat -s 2 1

System configuration: lcpu=6 ent=0.3

 Proc0 Proc2 Proc4
 17.80% 16.24% 13.67%
 cpu0 cpu1 cpu2 cpu3 cpu4 cpu5
 14.75% 3.05% 13.51% 2.73% 11.18% 2.49%

8.1.3 vmstat command
The vmstat command reports statistics about kernel threads, virtual memory,
disks, traps and processor activity. Table 8-4 gives a summary for vmstat.

Table 8-4 vmstat command summary

Usage
vmstat [-fsviItlw] [Drives] [Interval [Count]]

Command name vmstat

Interface type CLI

Updated or new command update

AIX 5L package bos.acct

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

++
++
+

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
I/O server

+
+
+

268 Advanced POWER Virtualization on IBM Eserver p5 Servers

Most important flags
-t Prints the time stamp next to each line of output.

-v Writes to standard output various statistics maintained by the Virtual
Memory Manager.

Output examples
In Example 8-12, we are running vmstat on an uncapped partition with 0.3
processing unit. At the beginning the partition is idle, the processor consumed
(pc) is 0, and the percentage of entitlement consumed (ec) is 1.4%.

As activity begins on the partition, the percentage of CPU usage increases to
93% because the partition is uncapped and the processor pool is not fully
utilized. The percentage of entitlement consumed increases to 330% and the
processor consumed is nearly 1. This means that the partition is running on
almost a full processor although it has been given only 0.3 processing unit.

Example 8-12 Activity on uncapped partition shown by vmstat command

lparstat

System configuration: type=Shared mode=Uncapped smt=On lcpu=6 mem=512 psize=2
ent=0.30

%user %sys %wait %idle physc %entc lbusy app vcsw phint
----- ---- ----- ----- ----- ----- ------ --- ---- -----
 0.0 0.0 0.2 99.7 0.00 0.1 0.4 1.17 1063520 333

vmstat 5

System configuration: lcpu=6 mem=512MB ent=0.30

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
 0 0 46863 1408 0 0 0 0 0 0 0 32 139 0 0 99 0 0.00 1.4
 0 0 46865 1406 0 0 0 0 0 0 3 26 177 0 1 99 0 0.00 1.4
 1 0 46903 1368 0 0 0 0 0 0 1 1566 143 93 1 6 0 0.35 118.3
 1 0 46903 1368 0 0 0 0 0 0 1 4323 137 93 0 6 0 0.99 330.8
 1 0 46903 1368 0 0 0 0 0 0 0 4333 137 93 0 6 0 0.99 330.8
 1 0 46903 1368 0 0 0 0 0 0 0 4330 139 93 0 6 0 0.99 330.7
 1 0 46903 1368 0 0 0 0 0 0 0 4259 130 93 0 6 0 0.99 330.5
 1 0 46903 1368 0 0 0 0 0 0 1 4010 130 93 1 6 0 0.91 301.9
 1 0 46903 1368 0 0 0 0 0 0 0 2934 136 93 1 6 0 0.68 225.5
 1 0 46903 1368 0 0 0 0 0 0 0 3578 140 93 1 6 0 0.82 272.6
 1 0 46903 1368 0 0 0 0 0 0 1 2694 134 93 1 7 0 0.63 208.4
 Chapter 8. POWER5 system performance 269

 1 0 46865 1406 0 0 0 0 0 0 0 2311 136 93 1 6 0 0.53 177.6
 0 0 46865 1406 0 0 0 0 0 0 0 8 136 0 0 99 0 0.00 1.1
 0 0 46865 1406 0 0 0 0 0 0 0 10 142 0 0 99 0 0.00 1.2

8.1.4 iostat command
The iostat command is used for monitoring system input/output device loading.
Table 8-5 gives a summary of the iostat command.

Table 8-5 iostat command summary

Usage
iostat [-astTdmAPqQl] [Drives] [Interval [Count]]

Most important flags
-d Displays drive report only.

-t Displays tty/cpu report only.

-T Prints the time stamp next to each line of output.

Output examples
The iostat output in Example 8-13 on page 271 shows the two new columns:

%physc The percentage of physical processor consumed.

%entc The percentage of entitled capacity consumed.

Command name iostat

Interface type CLI

Updated or new command update

AIX 5L package bos.acct

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+

++

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+
+

270 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-13 iostat command

iostat 2 1

System configuration: lcpu=6 drives=2 ent=0.30

tty: tin tout avg-cpu: % user % sys % idle % iowait % physc % entc
0.0 25.0 58.4 22.6 19.1 0.0 0.5 182.4

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 40.0 440.4 110.6 0 880
cd0 0.0 0.0 0.0 0 0

The iostat command provides a new way to look at asynchronous I/O. You can
check the statistics of either legacy asynchronous I/O or POSIX asynchronous
I/O. You can use several flags:

-A Shows processor utilization and asynchronous I/O statistics.

-q Shows adapter individual queues and their request counts.

-Q Shows mounted file systems and their associated adapter queue
and request counts.

-P Is similar to -A option, but for the POSIX adapter extension data.

When using -A or -P, new columns replace the tty information (Example 8-14):

avgc Average global non-fastpath adapter request count per second for
the specified interval.

avfc Average fastpath request count per second for the specified interval.

maxg Maximum global non-fastpath adapter request count since the last
time it fetched this value.

maxf Maximum fastpath request count since the last time it fetched this
value.

maxr Maximum adapter I/O requests allowed on queue.

Example 8-14 iostat legacy adapter I/O

iostat -A 3 3

System configuration: lcpu=3 drives=3 ent=2.00

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow physc %entc
 0 0 0 0 4096 42.9 23.4 13.4 20.3 0.0 80.4

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 0.0 0.0 0.0 0 0
hdisk2 24.3 2293.4 573.4 6972 0
 Chapter 8. POWER5 system performance 271

hdisk1 98.0 32000.0 125.0 48640 48640

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow physc %entc
 0 0 0 0 4096 43.5 23.3 12.6 20.6 0.0 81.3

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 0.0 0.0 0.0 0 0
hdisk2 21.3 2328.0 582.0 6984 0
hdisk1 99.3 28832.3 127.3 42041 44456

aio: avgc avfc maxg maxf maxr avg-cpu: %user %sys %idle %iow physc %entc
 0 0 0 0 4096 43.0 23.5 13.2 20.3 0.0 80.9

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 0.0 0.0 0.0 0 0
hdisk2 24.0 2265.3 566.3 6796 0
hdisk1 98.3 28576.3 126.3 41785 43944

8.1.5 sar command
The sar command writes to standard output the contents of selected cumulative
activity counters in the operating system.

Table 8-6 gives a summary for the sar command.

Table 8-6 sar command summary

Important: Some system resources are consumed in maintaining disk I/O
history for iostat. Use the sysconfig subroutine or the System Management
Interface Tool (SMIT) to stop history accounting if it is not needed.

Command name sar

Interface type CLI

Updated or new command update

AIX 5L package bos.acct

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+

+

272 Advanced POWER Virtualization on IBM Eserver p5 Servers

Usage
sar [-Aabcdkmqruvwy] [Interval [Number]

Most important flags
-t Prints the time stamp next to each line of output.

-v Writes to standard output various statistics maintained by the Virtual
Memory Manager.

Output examples
The default output of sar in Example 8-15 shows the two new columns:

physc The number of physical processors consumed.

%entc The percentage of entitled capacity consumed.

Example 8-15 Default sar output

sar 2 5

AIX LPARmicro 3 5 00CDDEDC4C00 10/20/04

System configuration: lcpu=6 ent=0.30

11:28:00 %usr %sys %wio %idle physc %entc
11:28:02 70 16 0 15 0.67 224.1
11:28:04 62 20 0 18 0.47 156.0
11:28:06 68 17 0 15 0.78 258.6
11:28:08 66 18 0 16 0.78 258.9
11:28:10 68 16 0 16 0.65 216.9

Average 67 17 0 16 0.67 222.9

The -P ALL output for all logical processors view option of the sar command with
simultaneous multithreading enabled, or in Micro-Partitioning (Example 8-16 on
page 274) shows the physical processor consumed physc (delta PURR/delta
TB). This column shows the relative simultaneous multithreading split between
processors (the measurement of the fraction of time a logical processor was
getting physical processor cycles). When running in shared mode, sar displays

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+

Command name sar
 Chapter 8. POWER5 system performance 273

the percentage of entitlement consumed (%entc), which is ((PPFC/ENT)*100). This
gives relative entitlement utilization for each logical processor and enables
system average utilization calculation from logical processor utilization.

Example 8-16 Logical processor usage

sar -P ALL 2 2

AIX LPARmicro 3 5 00CDDEDC4C00 10/20/04

System configuration: lcpu=6 ent=0.30

11:30:25 cpu %usr %sys %wio %idle physc %entc
11:30:27 0 60 38 0 2 0.09 30.6
 1 0 2 0 98 0.02 7.2
 2 75 24 0 1 0.17 55.3
 3 0 1 0 99 0.03 11.4
 4 78 21 0 1 0.15 49.9
 5 0 2 0 98 0.03 9.5
 - 60 22 0 18 0.49 163.9
11:30:29 0 78 22 0 0 0.23 77.8
 1 0 1 0 99 0.04 14.9
 2 74 25 0 1 0.19 63.6
 3 0 1 0 99 0.03 9.8
 4 84 15 0 1 0.19 63.9
 5 0 1 0 99 0.03 8.9
 - 68 18 0 14 0.72 238.8

Average 0 73 26 0 1 0.16 54.3
 1 0 1 0 99 0.03 11.0
 2 74 25 0 1 0.18 59.5
 3 0 1 0 99 0.03 10.6
 4 82 17 0 1 0.17 56.9
 5 0 1 0 99 0.03 9.2
 - 65 19 0 16 0.60 201.4

Whenever the percentage of entitled capacity consumed is less than 100%, a
line beginning with U is added to represent the unused capacity (Example 8-17
on page 275).
274 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-17 Unused capacity displayed by sar command

sar -P ALL 2 1

AIX LPARmicro 3 5 00CDDEDC4C00 10/20/04

System configuration: lcpu=6 ent=0.30

11:31:22 cpu %usr %sys %wio %idle physc %entc
11:31:24 0 21 66 0 13 0.00 0.5
 1 0 11 0 89 0.00 0.1
 2 0 37 0 63 0.00 0.4
 3 0 5 0 95 0.00 0.2
 4 9 48 0 43 0.00 0.3
 5 0 4 0 96 0.00 0.2
 U - - 0 98 0.29 98.3
 - 0 1 0 99 0.01 1.7

8.1.6 topas command
The topas command reports selected statistics about the activity on the local
system. The command displays its output in a format suitable for viewing on an
80x25 character-based display.

Table 8-3 on page 265 gives a summary for the topas command.

Table 8-7 topas command summary

Command name topas

Interface type CLI

Updated or new command update

AIX 5L package bos.perf.tools

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+
+
+
+

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+
+

 Chapter 8. POWER5 system performance 275

Usage
topas [-dhimnpwcPLUDW]

Most important flags
-i Sets the monitoring interval in seconds. The default is 2 seconds.

-L Displays the logical partition display. This display reports data
similar to what is provided to mpstat and lparstat.

Output examples
The topas output as shown in Example 8-18 has been modified. In addition to
changes on the main screen, a new one dedicated to virtual processors has
been added. The new metrics have been applied, so processor utilization is
calculated using the new PURR-based register and formula when running in
simultaneous multithreading or Micro-Partitioning mode. When running in
Micro-Partitioning mode, topas automatically adds new information:

Physc The fractional number of processors consumed.

%Entc The percentage of entitled capacity consumed.

Example 8-18 topas output

Topas Monitor for host: LPARmicro EVENTS/QUEUES FILE/TTY
Wed Oct 20 14:20:07 2004 Interval: 2 Cswitch 4080 Readch 46.9M
 Syscall 15352 Writech 38.2M
Kernel 28.4 |######### | Reads 3386 Rawin 0
User 56.1 |################ | Writes 2383 Ttyout 302
Wait 0.4 |# | Forks 68 Igets 0
Idle 15.1 |##### | Execs 56 Namei 1145
Physc = 0.77 %Entc= 257.2 Runqueue 1.0 Dirblk 0
 Waitqueue 0.0
Network KBPS I-Pack O-Pack KB-In KB-Out
en0 39830.3 54316.0 3313.0 78470.1 194.7 PAGING MEMORY
lo0 0.0 0.0 0.0 0.0 0.0 Faults 15912 Real,MB 511
 Steals 0 % Comp 51.1
Disk Busy% KBPS TPS KB-Read KB-Writ PgspIn 0 % Noncomp 10.4
hdisk0 46.5 6583.3 144.3 12630.0 372.0 PgspOut 0 % Client 12.0
 PageIn 9
Name PID CPU% PgSp Owner PageOut 0 PAGING SPACE
ftpd 200756 8.3 0.9 root Sios 9 Size,MB 512
ksh 323618 0.0 0.6 root % Used 0.9
topas 290946 0.0 1.1 root NFS (calls/sec) % Free 99.0
gil 69666 0.0 0.1 root ServerV2 0
getty 270468 0.0 0.4 root ClientV2 0 Press:
rpc.lockd 237690 0.0 0.2 root ServerV3 0 "h" for help
syncd 94344 0.0 0.5 root ClientV3 0 "q" to quit
netm 65568 0.0 0.0 root
276 Advanced POWER Virtualization on IBM Eserver p5 Servers

IBM.CSMAg 274568 0.0 2.1 root
rmcd 262274 0.0 1.4 root
wlmsched 73764 0.0 0.1 root
sendmail 82016 0.0 0.9 root

The new LPAR screen (Example 8-19) is accessible with the -L command line
flag or by typing L while topas is running. It splits the screen in an upper section,
which shows a subset of lparstat metrics, and a lower section that shows a
sorted list of logical processors with mpstat columns. The %hypv and hcalls give
the percentage of time spent in POWER Hypervisor and the number of calls
made. The pc value is the fraction of physical processor consumed by a logical
processor. When in Micro-Partitioning there are additional metrics:

Psize Number of online physical processors in the pool.

physc Number of physical processors consumed.

%entc Percentage of entitlement consumed.

%lbusy Logical processor utilization.

app Available pool processors (the number of physical
processor available in the shared pool).

lcsw and vcsw Logical and virtual context switches per second over the
monitoring interval.

phint Number of phantom interrupts.

%hypv Shows the percentage of time spent in POWER
Hypervisor.

Example 8-19 Logical processors view using topas

Interval: 2 Logic al Partition: MicroPartitionAIAvWed Oct 20 14:23:51
2004
Psize: 1 Shared SMT ON Online Memory: 512.0
Ent: 0.30 Mode: UnCapped Online Logical CPUs: 6
Partition CPU Utilization Online Virtual CPUs: 3
%usr %sys %wait %idle physc %entc %lbusy app vcsw phint %hypv hcalls
 59 27 0 13 1.0 324.30 47.54 0.01 11807 9 0.0 0
===
LCPU minpf majpf intr csw icsw runq lpa scalls usr sys wt idl pc lcsw
Cpu0 0 0 824 224 220 1 100 25698 73 25 0 2 0.23 2043
Cpu1 0 0 785 2265 1137 1 100 3270 54 21 0 25 0.17 2089
Cpu2 0 0 985 509 337 0 100 4392 56 30 0 14 0.16 2099
Cpu3 0 0 728 943 568 1 100 3325 56 33 0 11 0.18 2064
Cpu4 0 0 777 230 223 0 100 10586 69 29 0 2 0.19 1725
Cpu5 0 0 635 41 26 1 100 43 0 29 0 70 0.05 1787
 Chapter 8. POWER5 system performance 277

8.1.7 xmperf command
Table 8-3 on page 265 shows a summary for the xmperf command.

Table 8-8 xmperf command summary

Usage
xmperf [-vauxz] [-h hostname]

Most important flags
-h Local host name (host to be the local host).

-o Configuration file, default is /$HOME/xmperf.cf.

Output examples
Figure 8-2 on page 279 shows the standard output of xmperf command, called Local
System Monitor. This console has eight monitors showing information about CPU
usage, disk access, network traffic, paging space occupancy, memory, and process
activity.

Command name xmperf

Interface type GUI

Updated or new command update

AIX package perfmgr.network, which is part of the
Performance Tool Box

Measurement
Processor
Memory
Disk I/O
Network
POWER Hypervisor

+
+
+
+

Environment
Dedicated partition
Micro-partition
Simultaneous multithreading
Virtual I/O Server

+
+
+

278 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 8-2 xmperf - Local System Monitor

System activity and processor utilization
In the following example, xmperf is used to show system activity and processor
usage. One logical uncapped micro-partition is created with three logical
processors, and the system has a pool size of two processors.

Figure 8-3 on page 281 shows system activity and CPU usage with several CPU
consuming tasks started in the partition. The first three diagrams show activity on
 Chapter 8. POWER5 system performance 279

processors cpu0, cpu1, and cpu2. The last part of the figure shows the whole
system activity (user) and the number of physical processor consumed (physc).

Three tasks are launched one after the other and then a partition is started:

1. The first task starts at 00:30 on cpu1. At this moment the system activity
increases to 100% and because only one mono thread task is running, only
one physical processor is consumed.

2. The second task starts at 01:00 on cpu0, the system activity remains at 100%
(it is obvious that the system cannot consume more), and almost a second
physical processor is consumed.

3. The third task starts at 01:30 on cpu2, the system activity remains at 100%,
and physical processor consumed stays around two because only two
processors were available in the shared pool.

4. At 02:00, a logical partition with one dedicated processor is started in the
same system. This removes processing units equivalent to one processor
from the micro-partition. At this point, three tasks are running in the partition,
each one on a distinct logical processor, and only one physical processor is
consumed. This means that each task is consuming one-third of a physical
processor.
280 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 8-3 Physical and logical processors usage

Redispatch activity
When a process is running on a server, by default it is not bound to a processor,
which means that it can run on any available processor. The POWER Hypervisor
dispatches virtual processors on physical processors, so a process may not stay
on the same processor all its life.

To illustrate this, the following case uses an uncapped micro-partition with three
virtual processors and one processor available in he shared pool.

A CPU-intensive job is started around 06:32 as shown in Figure 8-4 on
page 282. It is dispatched on cpu0, the partition activity increases to 100% (user)
 Chapter 8. POWER5 system performance 281

and it consumes one physical processor (physc). The job is then redispatched on
cpu1, cpu2, cpu0, cpu1, and cpu0. During all this run, the system is always 100%
busy and only one physical processor is used although a processor is available in
the pool, and the job is not running on the same processor all the time.

Figure 8-4 xmperf - process redispatch
282 Advanced POWER Virtualization on IBM Eserver p5 Servers

8.2 Performance tuning approach
A system may experience performance problems for many reasons, including
hardware problems, software problems, or human expectations.

In this section we mainly focus on hardware problems linked to the new
POWER5 architecture.

Performance analysis and tuning demands great skills, knowledge, experience,
and methodology. To determine which of the monitored values are high in a
particular environment, it is a good idea to gather data on the system during an
optimal performance state. This baseline information is useful for comparison
during a performance problem. The xmperf command can be used to collect
data. Screen shots of the topas command also provide a brief overview of all
major performance information.

8.2.1 Global performance analysis
To solve performance problems, the investigation to find the root cause will be
performed for the following categories:

� CPU-bound system on page 289
� Memory-bound system on page 294
� DISK I/O–bound system on page 296
� Network I/O–bound system on page 304

Figure 8-5 on page 284 gives the chronological order to follow when trying to
identify performance issues: First check the CPU, then the memory, the disk, and
finally the network.
 Chapter 8. POWER5 system performance 283

Figure 8-5 Global performance diagram

START

YIs the system
CPU bound?

N

Is the system
Memory bound?

Is the system disk
I/O bound?

Is the system
network I/O bound?

Y

Y

Y

N

N

N

Go to disk I/O
analysis diagram

Go to network I/O
analysis diagram

Go to memory
analysis diagram

Go to CPU
analysis diagram

The partition may not have
performance issues
284 Advanced POWER Virtualization on IBM Eserver p5 Servers

CPU–bound system
In a system that is CPU-bound, all the processors are 100% busy and some jobs
are waiting for CPU in the run queue. A system with 100% busy CPU with a large
run queue compared to the number of CPUs and more context switches than
usual has a good chance of becoming CPU-bound.

In Example 8-20, the system has two dedicated processors that are 99.8% busy,
a run queue of 4 (twice the number of processors), and 5984 context switches
(for everyday work, this system usually has around 500). This system is
CPU-bound.

Example 8-20 CPU-bound system

Topas Monitor for host: LPARdedicated EVENTS/QUEUES FILE/TTY
Wed Oct 27 15:24:31 2004 Interval: 2 Cswitch 5984 Readch 808
 Syscall 12132 Writech 8078.3K
Kernel 0.2 |# | Reads 1 Rawin 0
User 99.8 |############################| Writes 2035 Ttyout 309
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 5
 Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
en1 0.9 13.0 11.0 0.6 1.2
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 1023
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 26.0
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspIn 0 % Noncomp 4.0
 PgspOut 0 % Client 4.8
Name PID CPU% PgSp Owner PageIn 0
vpross 278618 25.0 15.4 root PageOut 0 PAGING SPACE
yes 291018 25.0 0.1 root Sios 0 Size,MB 512
ksh 286946 25.0 0.5 root % Used 0.8
ksh 241918 25.0 0.5 root NFS (calls/sec) % Free 99.1
topas 266278 0.0 1.1 root ServerV2 0
snmpmibd6 155772 0.0 0.7 root ClientV2 0 Press:
xmgc 45078 0.0 0.0 root ServerV3 0 "h" for help
netm 49176 0.0 0.0 root ClientV3 0 "q" to quit
IBM.CSMAg 262280 0.0 2.2 root
getty 258174 0.0 0.4 root
gil 53274 0.0 0.1 root
aixmibd 139414 0.0 0.6 root
syncd 65710 0.0 0.5 root
rpc.lockd 209122 0.0 0.2 root
nfsd 196776 0.0 0.2 root
lvmbb 86076 0.0 0.0 root
dog 90184 0.0 0.1 root
 Chapter 8. POWER5 system performance 285

Memory-bound system
System memory includes real memory and paging space. AIX 5L uses the
Virtual Memory Manager (VMM) to control real memory and paging space on the
system. The VMM maintains a list of free memory pages, and a page
replacement algorithm is used to determine which pages.

A memory-bound system has high memory occupancy and high paging space
activity. The activity of the paging space is given by the number of pages read
from disk to memory (page in) and number of pages written to disk (page out).

The amount of used memory and paging space activity can be obtained with the
topas command. In Example 8-21, the memory is 100% consumed (Comp,
Noncomp), paging space is 61% consumed (% Used), a lot of pages are written to
disk (PgspOut), and the system needs real memory, which is why VMM steals
pages (Steals). Because the system is using all of the memory and asking for
more, this partition is memory-bound.

Example 8-21 Memory-bound system

Topas Monitor for host: LPARdedicated EVENTS/QUEUES FILE/TTY
Wed Oct 27 18:19:37 2004 Interval: 2 Cswitch 998 Readch 12122
 Syscall 406 Writech 290
Kernel 4.1 |## | Reads 17 Rawin 0
User 64.1 |################## | Writes 0 Ttyout 290
Wait 4.0 |## | Forks 0 Igets 0
Idle 27.8 |######## | Execs 0 Namei 12
 Runqueue 1.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 1.0
en1 0.4 3.0 1.0 0.1 0.6
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 5039 Real,MB 1023
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 4963 % Comp 100.3
hdisk0 19.8 19863.0 419.9 444.0 39580.0 PgspIn 32 % Noncomp 0.5
 PgspOut 4946 % Client 0.6
Name PID CPU% PgSp Owner PageIn 56
perl 307230 25.0 1102.5 root PageOut 4946 PAGING SPACE
lrud 20490 0.0 0.1 root Sios 5016 Size,MB 512
telnetd 245904 0.0 0.2 root % Used 61.5
topas 266340 0.0 1.1 root NFS (calls/sec) % Free 38.4
rgsr 69756 0.0 0.0 root ServerV2 0
rmcd 229496 0.0 1.4 root ClientV2 0 Press:
init 1 0.0 0.6 root ServerV3 0 "h" for help
netm 49176 0.0 0.0 root ClientV3 0 "q" to quit
IBM.CSMAg 262280 0.0 2.2 root
getty 258174 0.0 0.4 root
gil 53274 0.0 0.1 root
aixmibd 139414 0.0 0.6 root
286 Advanced POWER Virtualization on IBM Eserver p5 Servers

Disk I/O–bound system
This system has at least one busy disk, it cannot fulfill other requests, and
processes are blocked and waiting for the I/O operation to complete. Limitation
can be either physical or logical. Physical limitation involves hardware, such as
bandwidth of disks, adapters, and system bus. Logical limitations involve the
organization of the logical volumes on disks and LVM tunings and settings, such
as striping or mirroring. Example 8-22 shows a system with high-wait I/O at
86.6% (Wait), percentage of time that hdisk0 was active at 98.7% (Busy%) and
over five processes waiting for paging space operations to complete (Waitqueue).
This system is waiting for write operations on hdisk0, so it is disk I/O–bound.

Example 8-22 Disk I/O–bound system

Topas Monitor for host: LPARdedicated EVENTS/QUEUES FILE/TTY
Thu Oct 28 11:03:43 2004 Interval: 2 Cswitch 678 Readch 0
 Syscall 97 Writech 317
Kernel 1.1 |# | Reads 0 Rawin 0
User 12.4 |#### | Writes 0 Ttyout 317
Wait 86.6 |######################### | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 0
 Runqueue 2.5 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 5.6
en1 0.5 3.0 1.0 0.3 0.7
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 826 Real,MB 1023
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 99.7
hdisk0 98.7 2645.1 185.3 4.0 5220.0 PgspIn 0 % Noncomp 1.2
 PgspOut 652 % Client 0.5
Name PID CPU% PgSp Owner PageIn 0
perl 291012 0.0 983.2 root PageOut 652 PAGING SPACE
topas 266340 0.0 1.1 root Sios 588 Size,MB 512
getty 258174 0.0 0.4 root % Used 47.0
lrud 20490 0.0 0.1 root NFS (calls/sec) % Free 52.9
netm 49176 0.0 0.0 root ServerV2 0
vpross 303230 0.0 15.4 root ClientV2 0 Press:
IBM.CSMAg 262280 0.0 2.2 root ServerV3 0 "h" for help
gil 53274 0.0 0.1 root ClientV3 0 "q" to quit
syncd 65710 0.0 0.5 root
aixmibd 139414 0.0 0.6 root
rpc.lockd 209122 0.0 0.2 root
nfsd 196776 0.0 0.2 root
rgsr 69756 0.0 0.0 root
errdemon 73858 0.0 0.5 root
j2pg 77868 0.0 0.2 root
lvmbb 86076 0.0 0.0 root
dog 90184 0.0 0.1 root
hostmibd 94238 0.0 0.4 root
 Chapter 8. POWER5 system performance 287

Network I/O–bound system
In a system that is network I/O–bound, the bandwidth of at least one network
adapter is totally (or almost totally) used. Processes that need to send or receive
data must wait for other processes’ I/O to complete.

Example 8-23 shows a system using all of the bandwidth of its network adapter
and having some wait I/O. The maximum bandwidth of the network adapter
depends on its type.

Example 8-23 Network I/O–bound system

Topas Monitor for host: LPARdedicated EVENTS/QUEUES FILE/TTY
Fri Oct 29 14:36:34 2004 Interval: 2 Cswitch 1636 Readch 11.6M
 Syscall 422 Writech 11.6M
Kernel 11.0 |#### | Reads 185 Rawin 0
User 0.1 |# | Writes 186 Ttyout 267
Wait 13.8 |##### | Forks 0 Igets 0
Idle 75.1 |#################### | Execs 0 Namei 0
 Runqueue 1.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
en1 12285.3 10513.0 16175.0 472.3 23914.1
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 1023
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 23.5
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspIn 0 % Noncomp 33.8
 PgspOut 0 % Client 34.4
Name PID CPU% PgSp Owner PageIn 0
ftpd 266380 0.0 0.8 root PageOut 0 PAGING SPACE
topas 278692 0.0 1.1 root Sios 0 Size,MB 512
getty 245882 0.0 0.4 root % Used 0.8
aixmibd 204912 0.0 0.6 root NFS (calls/sec) % Free 99.1
rpc.lockd 159988 0.0 0.2 root ServerV2 0
nfsd 188590 0.0 0.2 root ClientV2 0 Press:
xmgc 45078 0.0 0.0 root ServerV3 0 "h" for help
netm 49176 0.0 0.0 root ClientV3 0 "q" to quit
IBM.CSMAg 241790 0.0 2.0 root
gil 53274 0.0 0.1 root
ftpd 250008 0.0 0.8 root
syncd 65710 0.0 0.5 root
rgsr 69758 0.0 0.0 root
errdemon 73858 0.0 0.5 root
j2pg 77866 0.0 0.2 root
288 Advanced POWER Virtualization on IBM Eserver p5 Servers

8.2.2 CPU analysis
Now that we know how to recognize a CPU-bound system, the flow chart in
Figure 8-6 helps determine the root cause for this activity.

Figure 8-6 CPU analysis diagram

Processor
dedicated LPAR ?

Check processor
activity

Add CPU

Y

N

Capped LPAR ?
Y

N

Other LPAR in
shared pool CPU

bound ?

Y

N

CPU performance
START

Check processor
activity

Perform partition
re-sizing

Add resources in
the system

Check processor
activity

Perform partition
re-sizing

Check processor
activity
 Chapter 8. POWER5 system performance 289

Identify CPU consumers
To understand why the partition is CPU-bound, we have to find the processes
that consume the most CPU using the ps command, as shown in Example 8-24.

The %CPU column gives the percentage of time the process has used the CPU
since the process started. In this example, three processes are using the CPU:
./vpross, yes, and ./loop. You must verify whether those processes are running
correctly and if they are using the usual amount of CPU.

Example 8-24 ps - most CPU consumers

ps aux|more
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 295058 49.7 5.0 15952 15980 pts/1 A 08:34:25 66:04 ./vpross
root 139278 20.0 0.0 152 156 pts/0 A 09:40:46 0:02 yes
root 262232 14.3 0.0 676 712 pts/0 A 10:12:03 0:04 ./loop
root 241790 0.2 1.0 2856 2548 - A 11:26:34 4:08 /usr/sbin/rsct/b
root 258174 0.0 0.0 464 488 - A 11:26:29 0:16 /usr/sbin/getty
root 53274 0.0 0.0 116 116 - A 11:24:25 0:12 gil
root 155888 0.0 0.0 960 960 - A 11:26:15 0:04 /usr/sbin/aixmib
root 65710 0.0 0.0 500 508 - A 11:25:41 0:04 /usr/sbin/syncd
root 172270 0.0 0.0 200 200 - A 11:26:22 0:02 rpc.lockd
root 209028 0.0 0.0 200 200 - A 11:26:21 0:02 nfsd
root 196726 0.0 0.0 444 464 - A 11:26:03 0:00 /usr/sbin/inetd
root 200844 0.0 0.0 1692 1296 - A 11:25:57 0:00 sendmail: accept
...

Dedicated LPAR
If applications really need processing power, then you may dynamically add a
processor (if any are available in the system) to the partition. To determine the
available processors in the system, connect to the HMC, edit the system
properties, and click the Processor tab. For example, in Figure 8-7 on page 291,
only 0.3 processors are available. A list of each partition with its amount of
processors used is given in the bottom of the figure.
290 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 8-7 System properties: Processors tab

If no processors are available, check the CPU usage of all other partitions in the
system to see whether you can free an unused processor. Then if all of the
processor resources are used, upgrade the system with new processors.

Capped LPAR
If an application really needs processing power and there is an available
processing unit in the system, you can increase the entitlement of the partition.
Example 8-25 on page 292 shows a capped partition with one logical processor,
an entitlement of 0.5 (ent) and 1.5 available processor pool size (app). Only one
process (testp) is requesting processing power and it consumes half a
processor (pc). In this case we can increase the entitlement up to 1.0, and the
processes will run faster.
 Chapter 8. POWER5 system performance 291

Example 8-25 Entitlement limited partition

lparstat 2 2

System configuration: type=Shared mode=Capped smt=Off lcpu=1 mem=512 psize=2
ent=0.50

%user %sys %wait %idle physc %entc lbusy app vcsw phint
----- ---- ----- ----- ----- ----- ------ --- ---- -----
 99.3 0.7 0.0 0.0 0.50 100.0 100.0 1.49 100 0
 98.6 0.9 0.0 0.5 0.50 99.5 100.0 1.49 100 0

vmstat 2 3

System configuration: lcpu=1 mem=512MB ent=0.5

kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa pc ec
 2 0 49165 72012 0 0 0 0 0 0 2 3079 142 99 1 0 0 0.50 100.2
 2 0 49167 72010 0 0 0 0 0 0 3 3031 142 99 1 0 0 0.50 99.8
 2 0 49167 72010 0 0 0 0 0 0 3 3030 142 99 1 0 0 0.50 100.0

ps aux|more
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 254108 43.8 0.0 152 156 pts/0 A 14:36:12 1:18 testp
root 172124 0.0 0.0 940 940 - A 14:29:38 0:00 /usr/sbin/aixmib
root 168030 0.0 0.0 532 504 - A 14:29:32 0:00 /usr/sbin/hostmi
root 163920 0.0 1.0 1156 1192 - A 14:29:29 0:00 /usr/sbin/snmpd
root 184422 0.0 0.0 676 700 - A 14:34:17 0:00 telnetd -a
root 180312 0.0 0.0 664 688 - A 14:29:41 0:00 /usr/sbin/muxatm
root 176218 0.0 0.0 1048 916 - A 14:29:35 0:00 /usr/sbin/snmpmi
...

If many processes request processing power, you can increase the number of
virtual processors (and the entitlement). Example 8-26 on page 293 shows a
capped partition with one logical processor, an entitlement of 1.0 (ent) and 0.99
available processor pool size (app). Two processes are requesting processing
power: testp and loop. They consume one physical processor (physc). Because
two processes are running on one physical processor, we can increase the
number of virtual processors in order to run each process on a distinct processor.
292 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-26 Logical processor limited partition

lparstat 2 2

System configuration: type=Shared mode=Capped smt=Off lcpu=1 mem=512 psize=2
ent=1.00

%user %sys %wait %idle physc %entc lbusy app vcsw phint
----- ---- ----- ----- ----- ----- ------ --- ---- -----
 99.4 0.6 0.0 0.0 1.00 100.1 100.0 0.99 0 1
 99.5 0.5 0.0 0.0 1.00 100.0 100.0 0.99 0 0

ps aux|more
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 229502 48.9 0.0 152 156 pts/0 A 16:21:00 0:23 testp
root 241812 37.4 0.0 152 156 pts/0 A 16:00:07 8:06 loop
root 237690 0.2 1.0 1852 1828 - A 15:55:10 0:01 /usr/sbin/rsct/b
root 172126 0.0 0.0 1048 916 - A 15:54:50 0:00 /usr/sbin/snmpmi
root 188572 0.0 0.0 200 200 - A 15:55:01 0:00 rpc.lockd
root 176216 0.0 0.0 940 940 - A 15:54:54 0:00 /usr/sbin/aixmib
root 180312 0.0 0.0 664 688 - A 15:54:57 0:00 /usr/sbin/muxatm
root 184422 0.0 0.0 676 700 - A 15:59:46 0:00 telnetd -a
root 168030 0.0 0.0 532 504 - A 15:54:47 0:00 /usr/sbin/hostmi
root 147588 0.0 0.0 720 756 pts/0 A 15:59:46 0:00 -ksh
...

Micro-partition
Verify whether other partitions can give some processing units or processors
back to the shared pool. For example, check whether idle processors are allowed
to be shared.

To select this option, connect to the HMC, edit the profile properties, click the
Processor tab, then select the Allow idle processors to be shared check box
as in Figure 8-8 on page 294. If this option is not selected, the unused
processors will not be available for other partitions when the partition is stopped,
but this also means that your partition is guaranteed to have its processor if
needed.

Check profile properties for capped and dedicated partitions to be sure that no
CPU resources are allocated but unused.
 Chapter 8. POWER5 system performance 293

Figure 8-8 Allow idle processors to be shared

In all of the previous cases, if many processes need processors, you may enable
simultaneous multithreading. For more information, refer to Chapter 3,
“Simultaneous multithreading” on page 41.

8.2.3 Memory analysis
The goal of memory analysis is to determine which processes are making the
system memory-bound. Use ps or svmon to look for processes that are
consuming a lot of memory. In Example 8-27 on page 295, perl is the largest
memory consumer, with a total number of pages in real memory of 218933
(around 875 MB) and total number of pages reserved or used on paging space of
97963 (nearly 400 MB). The second application, vpross, uses only 48 MB of
memory and less than 7 MB of paging space; therefore the perl application is
the root cause of this memory problem.
294 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-27 svmon - process report

svmon -P|more

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 332008 perl 218933 4293 97963 318471 N N N

 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 7380 6 work working storage - 65536 0 0 65536
 1383 3 work working storage - 47302 0 18215 65515
 15389 7 work working storage - 44717 0 0 44717
 17388 4 work working storage - 38021 0 27528 65536
 21393 5 work working storage - 15031 0 50528 65536
 0 0 work kernel segment - 6843 4290 1621 8454
 3f8bd d work loader segment - 1352 0 71 3062
 29397 f work shared library data - 83 0 0 83
 d385 2 work process private - 32 3 0 32
 3362 1 clnt code,/dev/hd2:12435 - 16 0 - -
 2f374 a work working storage - 0 0 0 0
 3f37c 9 work working storage - 0 0 0 0
 3d37d 8 work working storage - 0 0 0 0

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 303122 vpross 12193 4293 1696 15465 N N N

 Vsid Esid Type Description LPage Inuse Pin Pgsp
Virtual
 0 0 work kernel segment - 6843 4290 1621 8454
 17368 2 work process private - 3913 3 4 3917
 3f8bd d work loader segment - 1352 0 71 3062
 1936f 1 pers code,/dev/lv00:83977 - 53 0 - -
 1136b f work shared library data - 32 0 0 32
 1336a - pers /dev/lv00:83969 - 0 0 - -

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 299170 IBM.CSMAgentR 8572 4306 1965 12130 N Y N

 Vsid Esid Type Description LPage Inuse Pin Pgsp
Virtual
 0 0 work kernel segment - 6843 4290 1621 8454
 3f8bd d work loader segment - 1352 0 71 3062
...
 Chapter 8. POWER5 system performance 295

On the Memory tab, determine whether the process is running correctly and
actually needs this amount of memory.

� If so, increase memory. This can be done by adding physical memory, or with
a dynamic operation if some memory is available in the system. To determine
available memory, connect to the HMC, edit the system properties, and click
the Memory tab. In Figure 8-9, 688 MB of memory is available in the system.

� If not, then check, debug, or tune the application.

Figure 8-9 System properties: Memory tab

8.2.4 Disk I/O analysis
When a system has been identified as having disk I/O performance problems,
you can find the source of the problem as shown in Figure 8-10 on page 297:

� For a dedicated device:
a. Check the dedicated adapter.
b. Check the dedicated disk.

� For a virtual device:
a. Check CPU on the Virtual I/O Server.
296 Advanced POWER Virtualization on IBM Eserver p5 Servers

b. Check adapter on Virtual I/O Server.
c. Check disk on Virtual I/O Server.

Figure 8-10 Disk I/O analysis diagram

VIO Server
CPU bound?

Disk I/O performance
START

Y

Move data or
disk to another

adapter
Add an adapter

Check VIO
Server with CPU

diagram

Is the disk
connected to

VSCSI?
Adapter bound?

Disk bound?

VIO Server
Adapter bound?

VIO Server
Disk bound?

Reorganize disk
Move data to
another disk

Move data or
move disks to

another adapter

Reorganize disk
Move data to
another disk

Y

Y

Y

Y

YN

N

NN

N

N

The partition may not be disk IO bound
Go back to the global performance diagram

The partition is not disk
IO bound
 Chapter 8. POWER5 system performance 297

Dedicated or virtual device
First check whether the disk is a physical disk belonging to the partition or a
virtual SCSI disk using the lscfg command. As shown in Example 8-28, hdisk0,
hdisk1, and hdisk2 are physical drives, and hdisk3 is a virtual SCSI drive. The
lsdev command shows the adapter to which the disk is connected.

Example 8-28 Physical and virtual disks

lsdev -Ccdisk
hdisk0 Available 02-08-00-3,0 16 Bit LVD SCSI Disk Drive
hdisk1 Available 02-08-00-4,0 16 Bit LVD SCSI Disk Drive
hdisk2 Available 02-08-00-5,0 16 Bit LVD SCSI Disk Drive
hdisk3 Available Virtual SCSI Disk Drive

lsdev -Cl hdisk0 -F parent
vscsi0

Dedicated device
If a dedicated device (a physical adapter allocated to the partition) is bound, first
check the adapter, then the disk.

Dedicated adapter
Use the iostat -a command to show the activity of a disk adapter. In
Example 8-29, the adapter sisscsia0 has a throughput of 28537 kilobytes per
second. Because the maximum bandwidth of an adapter depends on its type and
technology, compare the statistics given by iostat to the theoretical value to find
out the load percentage of the adapter. If the adapter is overloaded, try to move
some data to another disk on a distinct adapter, move a physical disk to another
adapter, or add a disk adapter.

Example 8-29 iostat - adapter statistics

iostat -a 5

System configuration: lcpu=1 drives=3

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 36.4 16.5 35.2 26.2 22.1

Adapter: Kbps tps Kb_read Kb_wrtn
sisscsia0 28537.3 132.1 72619 70424

Paths/Disk: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2_Path0 9.6 28537.3 132.1 72619 70424
hdisk0_Path0 0.0 0.0 0.0 0 0
hdisk1_Path0 0.0 0.0 0.0 0 0
298 Advanced POWER Virtualization on IBM Eserver p5 Servers

Dedicated disk
The disk may be bound simply because the data is not well-organized. Verify the
placement of logical volumes on the disk with the lspv command. If logical
volumes are fragmented across the disk as in Example 8-30, reorganize them
with reorgvg or migratepv.

Example 8-30 Fragmented logical volumes

lspv -p hdisk0
hdisk0:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
 1-3 used outer edge hd5 boot N/A
 4-13 used outer edge hd6 paging N/A
 14-49 free outer edge
 50-124 used outer edge fslv01 jfs2 /test2
125-125 used outer edge hd10opt jfs2 /opt
126-135 free outer edge
136-154 used outer edge hd10opt jfs2 /opt
155-165 free outer middle
166-166 used outer middle hd6 paging N/A
167-176 free outer middle
177-189 used outer middle hd6 paging N/A
190-199 used outer middle hd2 jfs2 /usr
200-210 used outer middle hd6 paging N/A
211-220 used outer middle hd2 jfs2 /usr
221-282 used outer middle hd6 paging N/A
283-283 used outer middle loglv00 jfslog N/A
284-287 free outer middle
288-291 used outer middle hd1 jfs2 /home
292-301 used outer middle hd3 jfs2 /tmp
302-307 used outer middle hd9var jfs2 /var
308-308 used center hd8 jfs2log N/A
309-316 used center hd4 jfs2 /
317-320 used center hd2 jfs2 /usr
321-330 used center hd10opt jfs2 /opt
331-380 used center hd2 jfs2 /usr
381-390 free center
391-460 used center hd2 jfs2 /usr
461-590 used inner middle hd2 jfs2 /usr
591-591 free inner middle
592-601 used inner middle hd6 paging N/A
602-613 free inner middle
614-688 used inner edge fslv02 jfs2 /test1
689-689 free inner edge
690-700 used inner edge hd6 paging N/A
701-712 free inner edge
713-722 used inner edge hd6 paging N/A
723-767 free inner edge
 Chapter 8. POWER5 system performance 299

If logical volumes are well-organized in the disks, the problem may come from
the file distribution in the file system. The fileplace command displays the file
organization as shown in Example 8-31. In this case, space efficiency is near
100%, which means that the file has few fragments and they are contiguous. To
increase a file system’s contiguous free space by reorganizing allocations to be
contiguous rather than scattered across the disk, use the defragfs command.

Example 8-31 fileplace output

fileplace -lv testFile

File: testFile Size: 304998050 bytes Vol: /dev/fslv00
Blk Size: 4096 Frag Size: 4096 Nfrags: 74463
Inode: 4 Mode: -rw-r--r-- Owner: root Group: system

 Logical Extent

 00000064-00000511 448 frags 1835008 Bytes, 0.6%
 00003328-00028511 25184 frags 103153664 Bytes, 33.8%
 00054176-00077759 23584 frags 96600064 Bytes, 31.7%
 00000048-00000063 16 frags 65536 Bytes, 0.0%
 00003312-00003327 16 frags 65536 Bytes, 0.0%
 00032760-00032767 8 frags 32768 Bytes, 0.0%
 00077760-00077767 8 frags 32768 Bytes, 0.0%
 00000044-00000047 4 frags 16384 Bytes, 0.0%
 00003296-00003308 13 frags 53248 Bytes, 0.0%
 00028512-00032735 4224 frags 17301504 Bytes, 5.7%
 00032768-00053725 20958 frags 85843968 Bytes, 28.1%

 74463 frags over space of 77724 frags: space efficiency = 95.8%
 11 extents out of 74463 possible: sequentiality = 100.0%

For more about disk performance, refer to the redbook AIX 5L Performance Tools
Handbook, SG24-6039.

Virtual device
If the bound device is a virtual SCSI disk, refer to 8.2.2, “CPU analysis” on
page 289 to check CPU activity on the Virtual I/O Server.

The following steps describe how to find a physical volume hosting a virtual disk
allocated to a partition:

1. Get the slot number of the virtual SCSI adapter for the partition as shown in
Example 8-32 on page 301.
300 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-32 Virtual SCSI adapter slot number

lsdev -Cl hdisk0 -F parent
vscsi0

lscfg -vl vscsi0
 vscsi0 U9111.520.10DDEDC-V4-C20-T1 Virtual SCSI Client Adapter

 Device Specific.(YL)........U9111.520.10DDEDC-V4-C20-T1

2. Check the partition profile on the HMC and collect the slot number of the
Virtual I/O Server that is associated with the slot number found previously in
the partition. To do this, connect to the HMC, edit the profile properties, click
the Virtual I/O tab, select the Client SCSI line, and click (Properties...) as
shown in Figure 8-11.

Figure 8-11 Virtual I/O adapters
 Chapter 8. POWER5 system performance 301

A new window displays the virtual SCSI adapter properties with slot numbers
(Figure 8-12).

Figure 8-12 Virtual SCSI Adapter Properties

3. Find the name of the disk that contains the partition’s data as shown in
Example 8-33 on page 303 by following these steps:

a. Find the virtual SCSI server adapter with the lsdev command.

b. Find the logical volume name with the lsmap command.

c. Find the volume group name with the lslv command.

d. Find the disk name with the lsvg command.
302 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-33 Virtual I/O Server commands to find a disk

$ lsdev -vpd|grep vhost.*C20
 vhost2 U9111.520.10DDEDC-V1-C20 Virtual SCSI Server Adapter

$ lsmap -vadapter vhost2
SVSA Physloc Client Partition
ID
--------------- -- ------------------
vhost2 U9111.520.10DDEDC-V1-C20 0x00000004

VTD vMicroPartAIX53
LUN 0x8100000000000000
Backing device MicroPartAIX53
Physloc

$ lslv MicroPartAIX53
LOGICAL VOLUME: MicroPartAIX53 VOLUME GROUP: rootvg_clients
LV IDENTIFIER: 00cddedc00004c000000000102a1f53e.4 PERMISSION:
read/write
VG STATE: active/complete LV STATE: opened/syncd
TYPE: jfs WRITE VERIFY: off
MAX LPs: 32512 PP SIZE: 32 megabyte(s)
COPIES: 1 SCHED POLICY: parallel
LPs: 96 PPs: 96
STALE PPs: 0 BB POLICY: non-relocatable
INTER-POLICY: minimum RELOCATABLE: yes
INTRA-POLICY: middle UPPER BOUND: 1024
MOUNT POINT: N/A LABEL: None
MIRROR WRITE CONSISTENCY: on/ACTIVE
EACH LP COPY ON A SEPARATE PV ?: yes
Serialize IO ?: NO
DEVICESUBTYPE : DS_LVZ

$ lsvg -pv rootvg_clients
rootvg_clients:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk1 active 1082 26 00..00..00..00..26

Virtual adapter
If the Virtual I/O Server is not CPU-bound, check the adapter activity. If many
disks experience performance problems on the same adapter, it may be
overloaded. In that case, move some of the data to another disk on a different
adapter (if any are available) or add a physical adapter.
 Chapter 8. POWER5 system performance 303

Virtual disk
If only one disk has a performance problem, verify the placement of logical
volumes on the disk on both sides on the Virtual I/O Server as shown in
Example 8-34 and on the partition using this virtual SCSI disk. If logical volumes
are fragmented across the disk, reorganize them with reorgvg or migratepv. For
more about virtual disks, refer to 6.8, “Virtual SCSI” on page 205.

Example 8-34 lspv - logical volume placement

$ lspv -pv hdisk1
hdisk1:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
 1-25 used outer edge rootvg_ll jfs N/A
 26-121 used outer edge MicroPartAIX53 jfs N/A
122-217 used outer edge rootvg_ll jfs N/A
218-433 used outer middle rootvg_aix53 jfs N/A
434-537 used center rootvg_aix53 jfs N/A
538-649 used center rootvg_sles9 jfs N/A
650-857 used inner middle rootvg_sles9 jfs N/A
858-865 used inner middle fs1_ll jfs N/A
866-985 used inner edge fs1_ll jfs N/A
986-1056 used inner edge rootvg_ll jfs N/A
1057-1082 free inner edge

For more about disk performance refer to the redbook AIX 5L Performance Tools
Handbook, SG24-6039.

8.2.5 Network I/O analysis
When a system has been identified as having network I/O performance
problems, the next point is to find where the problem comes from. Figure 8-13 on
page 305 shows the steps to follow on a disk I/O–bound system:

1. For a dedicated adapter, check the dedicated adapter statistics.

2. For a virtual adapter:

a. Virtual Ethernet adapter:

i. Check CPU utilization.

ii. Check physical adapter.

b. For a Shared Ethernet Adapter, check the adapter statistics.
304 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 8-13 Network I/O analysis diagram

Dedicated adapter
If the system is network I/O–bound because of a dedicated adapter, check it with
the netstat and entstat commands, and modify the configuration with no and
chdev. If the partition is using NFS, check the statistics with nfsstat.

For more details about network performance, refer to the redbook AIX 5L
Performance Tools Handbook, SG24-6039.

Is it a Shared
Ethernet Adapter ?

Network I/O performance
START

N

Check adapter
statistics and
configuration

Is it a physical
adapter ?

Is the VIO Server
CPU bound?

Is it a virtual
Ethernet adapter ?

Check VIO
Server activity

with CPU
diagram

Check adapter
statistics and

tuning

Y

Y

Y

Y

N

NN

Go back to start

Check adapter
statistics and

tuning
 Chapter 8. POWER5 system performance 305

Virtual adapter
A virtual adapter is provided by the Virtual I/O Server. It can be a virtual Ethernet
adapter or a Shared Ethernet Adapter. For more about the Virtual I/O Server,
refer to Chapter 6, “Virtual I/O” on page 143.

Virtual Ethernet adapter
If a virtual Ethernet adapter is bound, check the adapter statistics with entstat.
Check adapter memory use with netstat to validate that there is enough buffer
allocated to this adapter and confirm that the system is not memory-bound.

Verify the adapter configuration with lsattr as in Example 8-35. If the adapter is
only for communication between partitions using the same VLAN (no traffic going
outside the system), then the mtu can be increased to 64000.

Example 8-35 Network adapter parameters

lsattr -El en1
alias4 IPv4 Alias including Subnet Mask True
alias6 IPv6 Alias including Prefix Length True
arp on Address Resolution Protocol (ARP) True
authority Authorized Users True
broadcast Broadcast Address True
mtu 1500 Maximum IP Packet Size for This Device True
netaddr 9.3.5.150 Internet Address True
netaddr6 IPv6 Internet Address True
netmask 255.255.0.0 Subnet Mask True
prefixlen Prefix Length for IPv6 Internet Address True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
rfc1323 Enable/Disable TCP RFC 1323 Window Scaling True
security none Security Level True
state up Current Interface Status True
tcp_mssdflt Set TCP Maximum Segment Size True
tcp_nodelay Enable/Disable TCP_NODELAY Option True
tcp_recvspace Set Socket Buffer Space for Receiving True
tcp_sendspace Set Socket Buffer Space for Sending True

For more about VLAN, refer to 6.5, “Virtual Ethernet” on page 164.

Shared Ethernet Adapter
If the system is network I/O–bound because of a Shared Ethernet Adapter, check
it on the Virtual I/O Server with netstat, entstat, and modify the configuration
with chdev. Example 8-36 on page 307 shows Ethernet adapter statistics with
many errors and collisions reported.
306 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 8-36 entstat - Virtual I/O Server

$ entstat en3

ETHERNET STATISTICS (en3) :
Device Type: Shared Ethernet Adapter
Hardware Address: 00:09:6b:6b:05:b1
Elapsed Time: 0 days 0 hours 0 minutes 0 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 5656592 Packets: 4189578
Bytes: 7666680307 Bytes: 365071314
Interrupts: 0 Interrupts: 3841545
Transmit Errors: 359712 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0

Max Packets on S/W Transmit Queue: 98
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 2

Broadcast Packets: 1615551 Broadcast Packets: 1610367
Multicast Packets: 622570 Multicast Packets: 622568
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 0
Late Collision Errors: 359712 Receive Collision Errors: 0
Deferred: 207086 Packet Too Short Errors: 0
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter: 0
Single Collision Count: 191677 Receiver Start Count: 0
Multiple Collision Count: 48
Current HW Transmit Queue Length: 2

General Statistics:

No mbuf Errors: 0
Adapter Reset Count: 0
Driver Flags: Up Broadcast Running
 Simplex 64BitSupport

Network parameters such as thewall, tcp_sendspace, and tcp_recvspace can be
tuned with the optimizenet command. Information about available parameters
such as default, current, and range is shown in Example 8-37 on page 308.
 Chapter 8. POWER5 system performance 307

Example 8-37 Network parameters list

$ optimizenet -list

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

arptab_bsiz 7 7 7 1 32K-1 bucket_size R

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

arptab_nb 73 73 73 1 32K-1 buckets R

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

clean_partial_conns 0 0 0 0 1 boolean D

NAME CUR DEF BOOT MIN MAX UNIT TYPE

DEPENDENCIES

net_malloc_police 0 0 0 0 8E-1 numeric D

NAME CUR DEF BOOT MIN MAX UNIT TYPE

DEPENDENCIES

rfc1323 0 0 0 0 1 boolean C

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

route_expire 1 1 1 0 1 boolean D

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

tcp_pmtu_discover 1 1 1 0 1 boolean D

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

308 Advanced POWER Virtualization on IBM Eserver p5 Servers

tcp_recvspace 16K 16K 16K 4K 8E-1 byte C
 sb_max

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

tcp_sendspace 4K 16K 16K 4K 8E-1 byte C
 sb_max

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

thewall 128K 128K 128K 0 1M kbyte S

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

udp_recvspace 42080 42080 42080 4K 8E-1 byte C
 sb_max

NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES

udp_sendspace 9K 9K 9K 4K 8E-1 byte C
 sb_max

For more about Shared Ethernet Adapters, refer to 6.8, “Virtual SCSI” on
page 205.
 Chapter 8. POWER5 system performance 309

310 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 9. Application tuning

This chapter provides an introduction for Fortran and C/C++ programmers or
users who are interested in tuning their applications for POWER5. Although this
chapter assumes that the reader has a working knowledge of these concepts,
some sections are very well suited for those who are beginning to measure
applications performance and would like to start improving the performance of a
particular application. Also, it is important to point out that for POWER3 and
POWER4 an entire book was dedicated to providing a tuning guide. Here, much
of that work has been condensed into a single chapter. Therefore, we make
reference to those books as much as possible to preserve this chapter’s issues
that are related to POWER5.

In this chapter we cover the following major topics:

� Identification of the type of bottleneck and its location within the code

� Tuning using compiler flags

� Profiling the code to uncover performance bottlenecks

� General tuning for single processor performance

� Making use of highly optimized libraries

� General tuning for parallel performance

9

© Copyright IBM Corp. 2005. All rights reserved. 311

9.1 Performance bottlenecks identification
This section gives an overview of the basic steps that are required to localize
performance bottlenecks. In this chapter we assume that performance limitations
are not related to hardware but are a function of how an application was coded.
Our definitions of performance bottlenecks and code optimization terms follow:

Performance bottleneck
Sections of a code that tend to consume most of the user
time, elapsed time, or both (also referred to as real time or
wall-clock time) that, after careful analysis, require code
optimization.

Code optimization A series of steps that are required to modify a section or
sections of the code, manually or via the compiler, to
improve performance.

Elapsed time The time that it took the program to run from beginning to
end. This is the sum of all factors that can delay the
program, plus the program’s own attributed costs.

User time This is the time used by itself and any library routine that it
calls while it is attached to a processor.

System time The time used by system calls invoked by the program,
directly or indirectly.

In this definition, optimization falls into two categories:

� Code optimization using advanced compiler flags

In this type of optimization we simply rely on how much performance we can
gain by selecting the best combination of compiler flags for a particular
application.

� Hand-tuning

This type of optimization requires manually modifying the code to improve
performance. In an extreme case different methodology might be required.

Figure 9-1 on page 313 illustrates the basic steps that are required to localize
performance bottlenecks.
312 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 9-1 This flowchart illustrates the first step in applications tuning

The first step requires running the application and collecting data from some sort
of measurement. The simplest way to start analyzing an application is by looking
at timers. It does not require recompiling or modifying the code. The most

Run Application

CPU-bound?

M em ory-
bound?

I/O-bound?

N

N

START

Y

Y

N

Y

Start
M easurem ent

Collect
Data
 Chapter 9. Application tuning 313

common timing routines can be invoked at run time. Of course, carrying out
timing of certain routines inside the code requires recompiling and building the
program. These two techniques are covered in the next section.

9.1.1 Time commands, time utilities, and time routines
In this section we describe commands, utilities, and routines that may be used to
identify bottlenecks in the application. The set described here is by no means the
only set of tools available for performing a coarse analysis but we have found
them to be fairly common and easy to use. The commands described here are:

� time
� timex
� vmstat
� irtc
� rtc

The first and simplest set of commands are time and timex. They both print
elapsed time, user time, and system time of a command during execution in
seconds. In their simplest form they can be invoked as follows:

$/usr/bin/timex a.out

or

$/usr/bin/time a.out

A version of time that produces additional information corresponds to the C shell
built-in command. The following example illustrates the additional information
obtained with this built-in version:

%time a.out
%5.1u 0.1s 0:05 98% 137+91548k 0+0io 27pf+0w

Table 9-1 shows the meaning of the fields from the time C shell built-in version.

Table 9-1 time description fields

Field Description

5.1 u Number of seconds of user time

0.1 s Number of seconds of user time consumed by system calls invoked by the
program

0:05 Elapsed time

98% Total user time plus system time, as a percentage of elapsed time

137+9154
8 k

Average amount of shared memory used, plus average amount of
unshared data space used, in kilobytes
314 Advanced POWER Virtualization on IBM Eserver p5 Servers

Prior to providing empirical rules to classify the performance of a particular
application, we define CPU-bound, memory-bound, and I/O-bound applications:

CPU-bound When sections of the code dominate most of the run time
by performing processor calculations

Memory-bound When sections of the code dominate most of the run time
by memory issues or memory limitations

I/O-bound When sections of the code dominate most of the run by
performing I/O

The output provided by these simple commands can give an initial indication of
the type of bottleneck in our particular application. The following empirical rules
should be viewed as guidance for this classification:

� Excessively large user time can be an indication of a CPU-bound application
that might not be running optimally and requires tuning.

� The ratio between elapsed time and the user time (rWIO = elapsed time / user
time) may provide an indication of an I/O-bound application. A ratio larger
than 1 represents an imbalance between elapsed time and user time. For
certain cases this may be interpreted as a large I/O wait time. A ratio larger
than 2.5 is for us an empirical threshold in the I/O performance that must be
considered. In addition, the C shell built-in time function provides information
about the number of blocks of input and output, which can be an indication of
the amount of I/O that an application is performing for a particular run.

� In general, user time tends to be larger, by at least an order of magnitude,
than the system time. A large system time could be attributed to a
memory-bound program. If page faults plus number of swaps and the average
amount of shared memory used is large, this may help confirm suspicion of
memory-bound code.

In this chapter we briefly mention vmstat as an alternative way to get similar
information as in the case of time or timex. (See 8.1.3, “vmstat command” on
page 268 for more details.) On a system, vmstat can provide statistics about
kernel threads, virtual storage, disks, and CPU capacity. These systemwide
statistics are calculated as averages for values reported as percentages or sums.

0+0 io Number of blocks input and output operations

27pf+0w Page faults plus number of swaps

Attention: vmstat provides systemwide statistics.

Field Description
 Chapter 9. Application tuning 315

Example 9-1 illustrates an example in which a small program that performs a
matrix multiplication is monitored using vmstat.

Example 9-1 Example invoking vmstat

$ matmul.F2000

$ vmstat 1 10
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 1 2533495 1516953 0 0 0 0 0 0 445 1249 336 0 0 99 0
 0 0 2533499 1516949 0 0 0 0 0 0 447 3397 336 0 0 99 0
 0 0 2533499 1516949 0 0 0 0 0 0 445 3234 329 0 0 99 0
 0 0 2533499 1516949 0 0 0 0 0 0 444 3246 335 0 0 99 0
 1 0 2556989 1493459 0 0 0 0 0 0 449 3301 351 16 3 81 0
 1 0 2556989 1493459 0 0 0 0 0 0 444 3198 338 25 0 75 0
 1 0 2556989 1493459 0 0 0 0 0 0 447 3267 356 25 0 75 0
 7 0 2556989 1493459 0 0 0 0 0 0 446 3227 340 25 0 75 0
 2 0 2556993 1493455 0 0 0 0 0 0 448 3297 347 25 0 75 0
 2 0 2556993 1493455 0 0 0 0 0 0 446 3210 338 25 0 75 0

If fine-grain timing is required, see Example 9-2 and Example 9-3 on page 317
for templates for the use of irtc() and rtc(). These two functions require code
modification and recompilation.

IRTC This function returns the number of nanoseconds since the initial
value of the machine’s real-time clock.

Example 9-2 irtc() template

integer(8) T1, T2, IRTC

T1 = IRTC()

[your section of the code]

T2 = IRTC()
write(*,*)'Untuned loop took', (T2-T1)/1000000, 'msec'

end
316 Advanced POWER Virtualization on IBM Eserver p5 Servers

RTC The rtc function returns the number of seconds since the initial
value of the machine’s real-time clock.

Example 9-3 rtc() template

real*8 T1, T2, RTC

T1 = RTC()

[Your section of the code]

T2 = RTC()
write(*,*)'Untuned loop took', (T2-T1), 'sec'

end

9.2 Tuning applications using only the compiler
In this section we provide an overview of the compiler, selected features of the
XL Fortran, and XL C and C++ compiler that relates to the optimization of
applications running on POWER5 processors, and we examine some of the
compiler flags that are relevant for scientific and engineering applications.

The emphasis in this section is on illustrating the compiler capabilities to carry
out code optimization. This is what we consider the first step in the process of
code optimization. However, for many programmers who are not interested in
optimizing their applications further, this step usually turns out to be the last step.
In general, this is an important section for all programmers.

9.2.1 Compiler brief overview
Compiler technology represents a formidable challenge, in particular the
development of an optimizer that can tune any code.
 Chapter 9. Application tuning 317

The Toronto Portable Optimizer (TPO) is designed to operate on many source
languages for many target platforms. Figure 9-2 shows that TPO is a key
component in the overall compiler architecture.

Figure 9-2 IBM compiler architecture

IPA ObjectsIPA Objects

Other Other
ObjectsObjects

System System
LinkerLinker

Optimized Optimized
ObjectsObjects

Wcode+

EXE

DLL
PartitionsPartitions

TOBEYTOBEY

TPOTPO

C FEC FE C++ FEC++ FE FORTRAN FORTRAN
FEFE

Wcode

LibrariesLibraries

PDF infoPDF info

Wcode+

Link Step
Optimization

Instrumented
runs

Wcode
Wcode

Wcode

Wcode
318 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 9-3 delves deeper into the compiler architecture and shows the steps that
TPO goes through to optimize codes. This compiler is designed to optimize at
several levels:

� Expression
� Basic block
� Procedure
� Whole program

Some of the TPO strengths are:

� Deep analysis
� High-level program restructuring
� Portability
� Seamless product integration

Figure 9-3 Inside TPO compile time

DecodeDecode

IntraproceduralIntraprocedural
OptimizationsOptimizations

CollectionCollection

EncodeEncode

Wcode
from FE

Wcode
to BE

Control Flow Analysis
Constant Propagation
Copy Propagation
Alias Analysis
Dead Store Elimination

Store Motion
Redundant Condition Elimination
Loop Normalization
Loop Unswitching
Loop Unrolling

LoopLoop
OptimizationsOptimizations

Loop Fusion
Loop Distribution
Unimodular Trans
Unroll-and-jam

Scalar Replacement
Loop Parallelization
Loop Vectorization
Code Motion and Commoning

Control or
Alias Changed?
 Chapter 9. Application tuning 319

Figure 9-4 summarizes the details of loop optimization. Some of the techniques
that are illustrated are presented in this chapter, in particular, loop fusion and
loop unrolling.

Figure 9-4 Loop optimization overview in TPO

In general, compiler optimization strategies are mainly based on cost reduction
and exploitation of parallel facilities. More specifically:

� Reduce expected dynamic path length
� Reduce cost of accessing data memory
� Reduce cost of accessing instruction memory
� Exploit parallel facilities on the target platform to run instructions concurrently

It is important to understand that they will change the original code and the
programmer might need to be aware of the consequences and effects of code
re-ordering. Some of these techniques will be provided later as general rules for
hand-tuning code.

Intraprocedural
optimizations

Loop Nest
Canonization

High Level
Transformations

Parallel Loop
Outlining

Low Level
Transformations

Parallel Loops

Serial
Loops

Control Flow Optimization
Data Flow Optimization
Loop Normalization

Aggressive Copy Propagation
Maximal Loop Fusion

Code Sinking
Loop Nest Partitioning
Loop Interchange
Loop Unroll and Jam
Scalar Replacement
Loop Parallelization
Gather/Scatter

Index Set Splitting
Node Splitting
Inner Loop Distribution
Loop Vectorization
Prefetch Optimizations
Inner Loop Unrolling
Redundancy Elimination
Code Motion
320 Advanced POWER Virtualization on IBM Eserver p5 Servers

9.2.2 Most commonly used flags
In this section we look at the compiler flags that affect the performance of an
application. For a comprehensive list, visit the IBM AIX compiler information
center at:

http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp

It is important to always check answers as you increase the level of compiler
optimization or aggressivity. This is due to the fact that the compiler makes
certain assumptions about some of the statements in the code that can
potentially be optimized by rewriting that section of the code.

A typical example is the property of associativity in a product. At low levels of
compiler optimization (for example, -O2), XL Fortran will always evaluate a*b*c
starting from a, even if b*c has already being computed. Although more time will
be consumed, it is safer because the answer might be dependent on the order of
execution. As the level of optimization increases, some of these restrictions might
be eliminated.

Optimization level
A few basic rules to remember when using the compiler for optimization:

� Optmization requires additional compilation time.

� Optimization produces faster code; but always check answers, especially
when using aggressive levels of compiler optimization.

� By default, the compiler chooses -O0 or -qnoopt.

� Enable compiler optimization with -ON; where N is 0, 2, 3, 4, or 5
Example: $xlf -O3

Next, we discuss the different levels of compiler optimization regarding the
effects of performance flags on scientific and engineering applications.

Level 0: -O0
This option is recommended for debugging. It is the fastest way to compile the
program. It preserves program semantics. This is also useful to see the effect of
hand-tuning small kernels or certain loops.

Level 2: -O2
This is the same as -O. At this level, the compiler performs conservative
optimization. The optimization techniques used at this level are:

� Global assignment of user variables to registers, also known as graph
coloring register allocation
 Chapter 9. Application tuning 321

http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp

� Strength reduction and effective use of addressing modes

� Elimination of redundant instructions, also known as common subexpression
elimination

� Elimination of instructions whose results are unused or that cannot be
reached by a specified control flow, also known as dead code elimination

� Value numbering (algebraic simplification)

� Movement of invariant code out of loops

� Compile-time evaluation of constant expressions, also known as constant
propagation

� Control flow simplification

� Instruction scheduling (reordering) for the target machine

� Loop unrolling and software pipelining

Level 3: -O3
At this level the compiler performs more extensive optimization. This includes:

� Deeper inner-loop unrolling

� Better loop scheduling

� Increased optimization scope, typically to encompass a whole procedure

� Specialized optimizations (those that might not help all programs)

� Optimizations that require large amounts of compile time or space

� Elimination of implicit memory usage limits (equivalent to compiling with
qmaxmem=-1)

� Implies -qnostrict, which allows some reordering of floating-point
computations and potential exceptions

Level 4: -O4
At this level the compiler introduces more aggressive optimization and increases
the optimization scope to the entire program. This option includes:

� Includes -O3

� -qhot

Important: At this level -qnostrict is invoked by default. This implies:

� Reordering of floating-point computations

� Reordering or elimination of possible exceptions (such as division by zero,
overflow)
322 Advanced POWER Virtualization on IBM Eserver p5 Servers

� -qipa

� -qarch=auto

� -qtune=auto

� -qcache=auto

Level 5: -O5
At this level the compiler introduces more aggressive optimization. This option
includes:

� Includes -O4

� -qipa=level=2

Machine-specific flags
This set of flags is specific to a family architecture. The idea is to provide code
that is optimized for a particular architecture.

Table 9-2 Machine-specific flags

Important: If -O5 is specified on the compile step, then it should be specified
on the link step.

Option Description

-q32 For 32-bit execution mode.

-q64 For 64-bit execution mode.

-qarch Selects specific architecture for which instruction is generated

-qtune Biases optimization toward execution on a given processor, without
implying anything about the instruction set architecture to use as a target

-qcache Defines a specific cache or memory

Important: By default, the compiler generates code that runs on all supported
systems, but it might not be optimized for a particular system. This default is
true only for the low level of compiler optimization. As mentioned above, -O4
implies -qarch=auto, which generates code compatible with the machine used
for compilation (and not necessarily every supported architecture).
 Chapter 9. Application tuning 323

High-order transformations
-qhot optimization is targeted to improve the performance of loops and array
language. This may include:

� Loop optimization

– Loop-nest canonization

• Aggressive copy propagation to create more perfect loop nests

• Aggressive loop fusion to create larger loops and loop nests

• Code sinking to create more perfect loop nests

– High-level transformations (outer loops)

• Loop distribution to create more perfect loop nests

• Loop interchange for data locality and outermost parallelization

• Loop unroll-and-jam for data reuse

• Gather/scatter to create more perfect loop nests

• Peeling to eliminate loop-carried dependencies

• Identification and outlining of parallel loops

– Low-level transformations (Inner loops)

• Node splitting, scalar replacement, and automatic vectorization

• Inner loop distribution (sensitive to number of hardware streams)

• Gather/scatter and index set splitting to eliminate branches in inner
loops

The goals of high-order transformation are:

� Reducing the costs of memory access through the effective use of caches
and translation look-aside buffers

� Overlapping computation and memory access through effective utilization of
data-prefetching capabilities provided by the hardware

� Improving the utilization of processor resources through reordering and
balancing the usage instructions with complementary resource requirements
324 Advanced POWER Virtualization on IBM Eserver p5 Servers

Interprocedural analysis
-qipa enables the compiler to perform optimization across different files. In other
words, it provides analysis for the entire program. The interprocedural analysis
has the suboptions shown in Table 9-3.

Table 9-3 -qipa suboptions

Suboption Description

level=0 Automatic recognition of standard libraries.

Localization of statistically bound variables and procedures.

Partitioning and layout of procedures according to their calling
relationships, which is also referred to as their call affinity.

Expansion of scope for some optimizations, especially register
allocation.

level=1 Procedure inlining.

Partitioning and layout of static data according to reference affinity.

level=2 Whole-program alias analysis. This level includes the
disambiguation of pointer dereferences and indirect function calls,
and the refinement of information about the side effects of a
function call.

Intensive interprocedural optimizations. This can take the form of
value numbering, code propagation and simplification, code
motion into conditions or out of loops, elimination of redundancy.

Interprocedural constant propagation, dead code elimination,
pointer analysis.

Procedure specialization.
 Chapter 9. Application tuning 325

XL Fortran new and changed functionality
Some features have been added or improved in the XL Fortran compiler. We
provide a brief overview of this new functionality, and Table 9-4 shows some of
the new options.

Table 9-4 New options and suboptions

In addition, new options and suboptions that affect performance have been
added with the XL Fortran 9.1 compiler. Table 9-5 summarizes these newly
added options and suboptions. Some of the options presented in this table are
discussed in more detail in other sections.

Table 9-5 Changed options and suboptions

Options and suboptions Comments

-qflttrap=nanq Detects all NaN values handled or generated by
floating-point instructions, including those not
created by invalid operations.

-qport=nullarg Treats an empty argument, which is delimited by
a left parenthesis and a comma, two commas, or
a comma and a right parenthesis, as a null
argument.

-qmodule=mangle81 Provides compatibility with the V8.1 module
naming conventions for non-intrinsic modules.

-qsaveopt Saves the command-line options used for
compiling a source file in the corresponding
object file.

-qversion Provides the version and release for the invoking
compiler.

Option/Suboption Description

-qarch and -qtune These two options now provide support for POWER5
and PowerPC 970 architectures (pwr5 and ppc970).

-qshowpdf and -qpdf1 Provide additional call and block count profiling
information to an executable.

showpdf and mergepdf
utilities

Provide enhanced information about PDF-directed
compilation; mergepdf merges two or more PDF files.

-qdirecstorage Informs the compiler that a given compilation unit may
reference write-through-enabled or cache-inhibited
storage.
326 Advanced POWER Virtualization on IBM Eserver p5 Servers

9.2.3 Compiler directives for performance
After the compiler flags have been optimized, the programmer can still use highly
optimized libraries, compiler directives, or both to improve performance without
major changes to the code. (We cover highly optimized libraries in 9.6,
“Optimized libraries” on page 360.) This section concerns compiler directives, in
particular looking at directives for code tuning and hardware-specific directives
that potentially can help improve performance.

To identify a sequence of characters called trigger constants, XL Fortran uses the
-qdirective option:

-qdirective [=directive_list] | -qnodirective [=directive_list]

The compiler recognizes the default trigger constant IBM*. Table 9-6 on
page 328 provides a list of assertive, loop optimization, and hardware-specific
directives.

SWDIV and SWDIV_NOCHK
intrinsics

Provide software floating-point division algorithms.

FRE and FRSQRTES intrinsic Floating-point reciprocal estimate and floating-point
square root reciprocal.

POPCNT and POPCNTB
intrinsics

Provide set bit counts in registers for data objects.

POPPAR intrinsic Determines the parity for a data object.

Note: The compiler will use either fdiv or FRE, if computing with -qarch=pwr5,
and depending on which one it deems better. In particular, single block loops
will sometimes use fdiv rather than FRE and the expansion, because overall
latency is sometimes more important than parallelization.

Option/Suboption Description
 Chapter 9. Application tuning 327

Table 9-6 Assertive, loop optimization, and hardware-specific directives

Directive Type Description

ASSERT Assertive Provides characteristics of do loops
for further optimization;
requires -qsmp or -qhot

CNCALL Declares that no loop-carried
dependencies exist within any
procedure called from the loop;
requires -qsmp or -qhot

INDEPENDENT Must precede a loop, FORALL
statement; it specifies that the loop
can be executed and iterations in any
order without affecting semantics;
requires -qsmp or -qhot

PERMUTATION Specifies that the elements of each
array listed in the
integer_array_name_list have no
repeated values;
requires -qsmp or -qhot

BLOCK_LOOP Loop
optimization

Allows blocking inside nested loops;
requires -qhot or -qsmp

LOOPID Allows the assignment of a unique
identifier to loop within a scoping unit

STREAM_UNROLL Allows for a combination of software
prefetch and loop unrolling;
requires -qhot, -qipa=level=2, or
-qsmp, and -O4

UNROLL Allows loop unrolling where
applicable

UNROLL_AND_FUSE Allows loop unrolling and fuse where
applicable
328 Advanced POWER Virtualization on IBM Eserver p5 Servers

CACHE_ZERO Hardware-speci
fic

Invokes machine instruction dcbz;
sets the data cache block
corresponding to the variable
specified to zero

ISYNC Enables discarding of any prefetched
instructions after all preceding
instructions complete

LIGHT_SYNC Ensures that all stores prior to
LIGHT_SYNC complete before any
new instructions can be executed on
the processor that executed the
LIGHT_SYNC directive

PREFETCH_BY_STREAM Uses the prefetch engine to
recognize sequential access to
adjacent cache lines and then
requests anticipated lines from
deeper levels of memory hierarchy

PREFETCH_FOR_LOAD Prefetches data into the cache for
reading by way of a cache prefetch
instruction

PREFETCH_FOR_STORE Prefetches data into the cache for
writing by way of a cache prefetch
instruction

PROTECTED_UNLIMITED
_STREAM_SET_GO_FOR
WARD

Establishes an unlimited-length
protected stream that begins with the
cache line at the specified prefetch
variable and fetches from increasing
memory addresses

PROTECTED_UNLIMITED
_STREAM_SET_GO_BAC
KWARD

Fetches from decreasing memory
addresses

PROTECTED_STREAM_S
ET_GO_FORWARD

Establishes a limited-length
protected stream that begins with the
cache line at the specified prefetch
variable and fetches from increasing
memory

PROTECTED_STREAM_S
ET_GO_BACKWARD

Fetches from decreasing memory
addresses

Directive Type Description
 Chapter 9. Application tuning 329

Directives usage
In this section we provide a series of examples that illustrate how to apply some
of these compiler directives. Some of them are not difficult to implement in the
code, and others are more involved.

As we previously described, the ASSERT directive provides a way to specify that
a particular DO loop does not have dependencies. The assertion can take the
following forms:

� ITERCNT(n); where n specifies the number of iterations for a given DO loop.
n must be positive, scalar, and an integer initialization expression.

� NODEPS specifies that no loop dependencies exist within a particular DO
loop.

Example 9-4 ASSERT directive

c ASSERT Directive
 program dir1
 implicit none
 integer i,n, fun
 parameter (n = 100000)
 real*8 a(n)
 integer(8) t0, tfin, irtc

do i = 1,n
a(i) = rand()

end do
c ... start timer
 t0 = irtc()
!IBM* ASSERT (NODEPS)

PROTECTED_STREAM_C
OUNT

Sets the number of cache lines for
the specified limited-length stream

PROTECTED_STREAM_
GO

Starts to prefetch all limited-length
streams

PROTECTED_STREAM_S
TOP

Stops prefetching the specified
protected stream

PROTECTED_STREAM_S
TOP_ALL

Stops prefetching all protected
streams

Important: The ASSERT directive applies only to the DO loop following the
directive. It does not apply to nested DO loops.

Directive Type Description
330 Advanced POWER Virtualization on IBM Eserver p5 Servers

 do i = 1, n
 a(i) = a(i) * fun(i)
 end do
c ... time
 tfin = (irtc() - t0)/1000000
 write(6,*)'Time: ',tfin, 'msec.'
 stop
 end
C
 function fun(i)
 fun = i * i
 return
 end

In this example we used the idea of loop-carried dependencies (or data
dependency), because this concept is commonly used throughout this chapter.

Dependencies Current iteration requires data computed in some
previous iteration, or computes data for some subsequent
iteration.

An example in a loop with a(i) = a(i-1)*2 is that computing a(5) requires a(4).

The loop optimization directive is BLOCK_LOOP. This directive relies on a
well-known optimization technique called blocking. This directive separates large
iterations into smaller groups of iterations. The basic idea is to increase the
utilization of the submemory hierarchy. Note that in Example 9-5, L2_cache_size
and L3_cache_size must be assigned values corresponding to the cache of the
particular system where this example will be executed.

Example 9-5 BLOCK_LOOP directive

c BLOCK_LOOP Directive
 program dir4
 implicit none
 integer i,j,k,n
 integer L3_cache_size, L3_cache_block
 integer L2_cache_size, L2_cache_block
 parameter (n = 100)
 integer a(n,n), b(n,n), c(n,n)
 integer(8) t0, tfin, irtc
 do j = 1,n
 do i = 1,n
 a(i,j) = rand()
 b(i,j) = rand()
 enddo
 enddo
 do j = 1, n
 Chapter 9. Application tuning 331

 do i = 1, n
 c(i,j)=0.0
 enddo
 enddo
c ... start timer
 t0 = irtc()
!IBM* BLOCK_LOOP(L3_cache_size, L3_cache_block)
 do i = 1, n

!IBM* LOOPID(L3_cache_block)
!IBM* BLOCK_LOOP(L2_cache_size, L2_cache_block)
 do j = 1, n

!IBM* LOOPID(L2_cache_block)
 do k = 1, n
 c(i,j) = c(i,j) + a(i,k) * b(k,j)
 enddo
 enddo
 enddO
c ... time
 tfin = (irtc() - t0)/1000000
 write(6,*)'Time: ',tfin, 'msec.'
 call dummy (c,n)
 stop
 end
c

9.2.4 POWER5 compiler features
Some of the options and suboptions that perform specific optimization for the
POWER5 processor microarchitecture are:

� -qarch=pwr5
� -qtune=pwr5
� -qcache=auto

Also, the following intrinsics are included:

SWDIV Provides an algorithm to carry out division on POWER5.

SWDIV_NOCHK Similar to SWDIV except that checking for invalid
arguments is not performed.

FRE(S) Provides an algorithm to estimate the reciprocal of a
floating-point on POWER5; used for single-precision.

FRSQRTE(S) Provides an algorithm to eliminate the reciprocal of a
square root operation on POWER5; used for
single-precision floating point.
332 Advanced POWER Virtualization on IBM Eserver p5 Servers

POPCNT Used to count the number of set bits in a data object. The
resulting value is the number of bits set to ON or 1.

POPCNTB Used to count the number of set bits of each byte in a
register. The result is an INTEGER(4) in 32-bit mode or
iNTEGER(8) in 64-bit mode.

POPPAR Used to determine the parity for a data object. The result
is 1 if there is an odd number of bits set, or 0 if there is an
even number of bits set.

Compiler directives
XL Fortran 9.1 introduces a few new directives for POWER5. These streams are
protected from being replaced by any hardware-detected streams. The directives
correspond to:

� Valid for PowerPC 970 and POWER5:

PROTECTED_UNLIMITED_STREAM_SET_GO_BACKWARD

� Valid for PowerPC 970 and POWER5:

PROTECTED_STREAM_SET_GO_FORWARD

� Valid for POWER5:

PROTECTED_STREAM_SET_GO_BACKWARD
PROTECTED_STREAM_COUNT
PROTECTED_STREAM_GO
PROTECTED_STREAM_STOP
PROTECTED_STREAM_STOP_ALL

Example 9-6 illustrates the use of some of these directives and their performance
benefits. The performance improvement for n between 10 and 2000 oscillates
from a value of 2% to as large as 11%. In this four-stream case the prefetch
directives improve performance of short vector lengths.

Example 9-6 New POWER5 prefetch directives

c PROTECTED_STREAM_SET_FORWARD Directive
c PROTECTED_STREAM_COUNT Directive
 program dir8
 implicit none
 integer i,j,k,n,m,nopt2,ndim2,lcount
 parameter (n=2000)
 parameter (m=1000)
 parameter (ndim2 = 1000)
 real*8 x(n,ndim2),a(n,ndim2),b(n,ndim2),c(n,ndim2)
 integer(8) irtc, t0, tfin

do j = 1, ndim2
do i = 1, n
x(i,j) = rand()
 Chapter 9. Application tuning 333

a(i,j) = rand()
b(i,j) = rand()
c(i,J) = rand()
end do

end do
c ... start timer
 t0 = irtc()
 do k = 1, m
 lcount = 1 + n/16
 do j = ndim2, 1, -1
!IBM* PROTECTED_STREAM_SET_FORWARD(x(1,j),0)
!IBM* PROTECTED_STREAM_COUNT(lcount,0)
!IBM* PROTECTED_STREAM_SET_FORWARD(a(1,j),1)
!IBM* PROTECTED_STREAM_COUNT(lcount,1)
!IBM* PROTECTED_STREAM_SET_FORWARD(b(1,j),2)
!IBM* PROTECTED_STREAM_COUNT(lcount,2)
!IBM* PROTECTED_STREAM_SET_FORWARD(c(1,j),3)
!IBM* PROTECTED_STREAM_COUNT(lcount,3)
!IBM* EIEIO
!IBM* PROTECTED_STREAM_GO
 do i = 1, n
 x(i,j) = x(i,j) + a(i,j) * b(i,j) + c(i,j)
 enddo
 enddo
 call dummy(x,n)
 enddo
c ... time
 tfin = (irtc() - t0)/1000000
 write(6,*)'Time: ',tfin, 'msec.'
 stop
 end
c
 subroutine dummy(x,n)
c
 dimension x(n)
c
 return
 end

Recommended compiler flags
In the POWER3 tuning guide, the compiler flags recommended for POWER3 are:

-O3 -qarch=pwr3 -qtune=pwr3 [-qcache=auto] or
-O3 -qstrict -qarch==pwr3 -qtune=pwr3 [-qcache=auto]

For POWER4 the recommendation for starting compiler options is:

-O3 -qarch=pwr4 -qtune=pwr4
334 Advanced POWER Virtualization on IBM Eserver p5 Servers

In this POWER5 version, the recommendation is:

-O3 -qarch=auto -qtune=auto -qcache=auto

-O level The -O3 option provides conservative optimization and it is
currently used on most major scientific and engineering
applications. In some cases -O2 might be preferable over -O3,
particularly for very large applications where after extensive
testing the -O3 does not show better performance. Also, it is a
good starting point for somebody who is planning to optimize
the application using higher compiler levels of optimization
such as -O4 and -O5. When using -O3, the next step should be
to improve the level of compiler optimization by introducing
-qhot (also called higher-order transformations). The objective
of this option is to optimize loops. For very large scientific and
engineering applications, the use of -O4 or -O5 will most likely
have to be restricted to a few routines.

-qarch This option and suboptions present several possibilities to
choose from. The selection of the suboption depends on how
the binaries will be used. In our recommendation we assume
that the application will be built on the system where the
executables will be used. With -qarch=auto, the particular
architecture where the binaries are built will be recognized. If
only one architecture will be used, then -qarch=[pwr5] or
[pwr4], and so on is recommended. On the other hand, if only
one set of binaries will be used across all platforms, then you
might consider -qarch=com (or compile for ALL PowerPC
platforms by specifying -qarch=pwr).

-qtune Instruction selection, scheduling, and other implementation-
dependent performance enhancements for a specific
implementation of hardware architecture. We also recommend
this option as auto. Similar to the previous case, this option is
specific to the application (or where the executable will run).

Note: When running an application on more than one architecture, but the
desire is to tune it for a particular architecture, the combination of -qarch and
-qtune can be used.

Important: -qtune can improve performance but only has an effect when used
in combination with options that enable optimization.
 Chapter 9. Application tuning 335

-qcache We recommend this option as auto.

Finally, there are other options used by scientific and engineering applications
that might work for your particular application as well. These correspond to:

� -qstrict
� -qmaxmem
� -qfixed
� -q64

9.3 Profiling applications
In the beginning of this chapter when we introduced the flowchart to identify
application bottlenecks (Figure 9-1 on page 313), we learned as a first
approximation how to classify applications as CPU-bound, memory-bound, and
I/O bound. We now introduce a series of tools to help localize crucial sections in
the code. These crucial sections correspond to a section or sections of the code
that tend to dominate CPU utilization, and this is reflected in the user time.

9.3.1 Hardware performance monitor
A key feature of this utility is its ability to provide hardware performance counters
information. It can provide very fine-grain information about how the application
that it being monitored takes advantage (or not) of the Power Architecture. This
utility is part of the IBM High Performance Computing Toolkit. This package
includes the following new software (and a new installation method):

� Watson Sparse Matrix Library (WSMP)
� Modular I/O Performance Tool (MIO)
� MPI Tracer™
� SHMEM Profiler
� OpenMP Profiler (PompProf)
� Graphical Interface tool with source code traceback (PeekPerf)
� New installation method via RPM modules (Linux)

This set of tools can be classified based on the type of performance that the
programmer is interested in analyzing. Based on the functionality of the different
utilities, the following components can be analyzed with this package:

� Hardware performance (HPM Toolkit)

– catch
– hpmcount
– libhpm
– hpmstat
336 Advanced POWER Virtualization on IBM Eserver p5 Servers

� Shared memory performance (DPOMP)

– pomprof

� Message-passing performance

– MP_profiler, MP_tracer
– TurboSHMEM, TurboMP

� Memory performance

– Sigma

� Performance visualization

– PeekPerf

� I/O performance

– MIO (modular I/O)

� Mathematics performance

– Watson sparse matrix (WSMP)

This toolkit can be obtain in one of these ways:

� Acquired as part of new procurement
� Acquired as part of ACTC performance tuning workshop
� License purchased directly from IBM Research

In this section we discuss the version of hpmcount that works on the POWER4
processor. The hpmcount usage for POWER4 is:

$hpmcount [-o <file>] [-n][-g <group>] <a.out>

For help and additional information from hpmcount:

$hpmcount [-h] [-c] [-l]

Table 9-7 hpmcount flags and description

Flag Description

-h Display all available flags and a brief description.

-c List all events from all counters.

-l List all the groups available on POWER4.

-o <file> Create an output file with all collected statistics called <file>.<pid>.
For parallel runs this flag generates one file for each process.

-n Force hpmcount not to send output to stdout.
Only active in combination with -o <file>.

-g <group> List selected groups
 Chapter 9. Application tuning 337

The groups that are available on POWER4 are extensive, and the valid groups go
from 0 to 60. Selecting the groups to analyze depends on the type of information
that is being searched, but the groups that have been recommended for
applications tuning are listed in Table 9-8. A complete listing of the groups for
POWER4 may be found in /usr/pmapi/lib/POWER4.gps.

Table 9-8 Selected set of groups for applications tuning

The output obtained from hpmcount can be divided into several sections:

1. This section prints the hpmcount version and the total elapsed time taken to
perform a particular run.

2. Prints the resource usage statistics.

3. Lists hardware counter information for the ones that hpmcount is following for
a particular run.

4. Performance of miscellaneous hardware features. On POWER4 this report
depends on the group that was selected at run time.

We do not describe each of the parameters printed by hpmcount, because most
are self-explanatory and they are defined in the hpmcount manual. Instead, the
following two examples illustrate how to use hpmcount for a simple performance
tuning exercise. Example 9-7 on page 339 shows a simple program in which the
double-nested loops have not been optimized (blocked) and therefore incurred
misses in L2, L3, and TLB. In other words, no data can be reused.

Group Information provided

5 pm_lsource, information on data source, counts of loads from L2,
L3, and memory

53 pm_pe_bench1, information for fp analysis, counts of cycles on
instructions, fixed-point operations, and FP operations (includes
divides, SQRT, FMA, and FMOV or FEST)

56 pm_pe_bench4, information for L1 and TLB analysis, counts of
cycles on instructions, TLB misses, loads, stores, and L1 misses

58 pm_pe_bench6, information for L3 analysis, counts of cycles on
instructions, loads from L3, and loads from memory

60 pm_hpmcount2, information for computation intensity analysis,
counts of cycles on instructions on FP operations (including divides,
FMA, loads, and stores)
338 Advanced POWER Virtualization on IBM Eserver p5 Servers

Example 9-7 Double-nested loop without blocking

program reuse
c
 IMPLICIT NONE
 integer ARRAY_SIZE
 parameter(ARRAY_SIZE = 25000)
 integer I, J, II, JJ
 real A(ARRAY_SIZE, ARRAY_SIZE)
 real B(ARRAY_SIZE, ARRAY_SIZE)
 real S, SS
 integer(8) T1, T2, IRTC
C***
C* Untuned Loop *
C***
 T1 = IRTC()

 DO J=1, ARRAY_SIZE
 DO I=1, ARRAY_SIZE
 S = S + A(I,J)*B(J, I)
 ENDDO
 ENDDO

 T2 = IRTC()
 write(*,*)'Untuned loop took', (T2-T1)/1000000, 'msec'

C Need to actually use the results of the calculations or else the
C optimizing compiler may just skip doing them...so we'll just
C print them. This will force the optimizer to actually do the work.
 print *, A(ARRAY_SIZE, ARRAY_SIZE), S

999 end
 Chapter 9. Application tuning 339

Example 9-8 shows a double-nested loop that has been optimized by blocking
both loops. In this case there is data reuse because this example is keeping data
in the different levels of cache. hpmcount helps show this.

Example 9-8 Tuned version of the reuse program

program reuse
c
 IMPLICIT NONE
 integer ARRAY_SIZE, NB
 parameter(ARRAY_SIZE = 25000, NB = 4)
 integer I, J, II, JJ
 real A(ARRAY_SIZE, ARRAY_SIZE), AA(ARRAY_SIZE, ARRAY_SIZE)
 real B(ARRAY_SIZE, ARRAY_SIZE), BB(ARRAY_SIZE, ARRAY_SIZE)
 real S, SS
 integer(8) T1, T2, IRTC
C***
C* Tuned Loop *
C***
 T1 = IRTC()

 DO JJ = 1, ARRAY_SIZE, NB
 DO II = 1, ARRAY_SIZE, NB
 DO J = J, JJ, MIN(ARRAY_SIZE,JJ+NB-1)
 DO I = II, MIN(ARRAY_SIZE,II+NB-1)
 SS = SS + AA(I,J)*BB(J,I)
 ENDDO
 ENDDO
 ENDDO
 ENDDO

 T2 = IRTC()
 write(*,*)'Tuned loop took', (T2-T1)/1000000, 'msec'

C Need to actually use the results of the calculations or else the
C optimizing compiler may just skip doing them...so we'll just
C print them. This will force the optimizer to actually do the work.
 print *, AA(ARRAY_SIZE, ARRAY_SIZE), SS

999 end
340 Advanced POWER Virtualization on IBM Eserver p5 Servers

We have selected only part of the hpmcount output in both cases, mainly the
section that illustrates the performance relating to L2, L3, and TLB using the two
versions of the code. Example 9-9 shows the hpmcount command for groups 5
and 56.

Example 9-9 hpmcount output for groups 5 and 56

$ hpmcount -g 5 reuse_u
Execution time (wall clock time): 170.883827 seconds
PM_DATA_FROM_L3 (Data loaded from L3) : 464363407
 PM_DATA_FROM_MEM (Data loaded from memory) : 151160443
 PM_DATA_FROM_L35 (Data loaded from L3.5) : 7981418
 PM_DATA_FROM_L2 (Data loaded from L2) : 29723097
 PM_DATA_FROM_L25_SHR (Data loaded from L2.5 shared) : 0
 PM_DATA_FROM_L275_SHR (Data loaded from L2.75 shared) : 4
 PM_DATA_FROM_L275_MOD (Data loaded from L2.75 modified) : 16
 PM_DATA_FROM_L25_MOD (Data loaded from L2.5 modified) : 0

 Total Loads from L2 : 29.723 M
 L2 load traffic : 3628.310 MBytes
 L2 load bandwidth per processor : 21.233 MBytes/sec
 L2 Load miss rate : 95.450 %
 Total Loads from L3 : 472.345 M
 L3 load traffic : 57659.280 MBytes
 L3 load bandwidth per processor : 337.418 MBytes/sec
 L3 Load miss rate : 24.244 %
 Memory load traffic : 18452.203 MBytes
 Memory load bandwidth per processor : 107.981 MBytes/sec

$ hpmcount -g 5 reuse_t
Execution time (wall clock time): 1.48904 seconds
PM_DATA_FROM_L3 (Data loaded from L3) : 16
 PM_DATA_FROM_MEM (Data loaded from memory) : 93
 PM_DATA_FROM_L35 (Data loaded from L3.5) : 10
 PM_DATA_FROM_L2 (Data loaded from L2) : 1167
 PM_DATA_FROM_L25_SHR (Data loaded from L2.5 shared) : 0
 PM_DATA_FROM_L275_SHR (Data loaded from L2.75 shared) : 10
 PM_DATA_FROM_L275_MOD (Data loaded from L2.75 modified) : 10
 PM_DATA_FROM_L25_MOD (Data loaded from L2.5 modified) : 0

 Total Loads from L2 : 0.001 M
 L2 load traffic : 0.145 MBytes
 L2 load bandwidth per processor : 0.097 MBytes/sec
 L2 Load miss rate : 9.112 %
 Total Loads from L3 : 0.000 M
 L3 load traffic : 0.003 MBytes
 L3 load bandwidth per processor : 0.002 MBytes/sec
 L3 Load miss rate : 78.151 %
 Memory load traffic : 0.011 MBytes
 Chapter 9. Application tuning 341

 Memory load bandwidth per processor : 0.008 MBytes/sec

$ hpmcount -g 56 reuse_u
Execution time (wall clock time): 170.550834 seconds
PM_DTLB_MISS (Data TLB misses) : 628854887
 PM_ITLB_MISS (Instruction TLB misses) : 149977
 PM_LD_MISS_L1 (L1 D cache load misses) : 930603848
 PM_ST_MISS_L1 (L1 D cache store misses) : 130067750
 PM_CYC (Processor cycles) : 231231424980
 PM_INST_CMPL (Instructions completed) : 20001760251
 PM_ST_REF_L1 (L1 D cache store references) : 2391568051
 PM_LD_REF_L1 (L1 D cache load references) : 7406257146

 Utilization rate : 93.272 %
 %% TLB misses per cycle : 0.272 %
 number of loads per TLB miss : 11.777
 Total l2 data cache accesses : 1060.672 M
 %% accesses from L2 per cycle : 0.459 %
 L2 traffic : 129476.513 MBytes
 L2 bandwidth per processor : 759.167 MBytes/sec
 Total load and store operations : 9797.825 M
 number of loads per load miss : 7.959
 number of stores per store miss : 18.387
 number of load/stores per D1 miss : 9.237
 L1 cache hit rate : 89.174 %
 MIPS : 117.277
 Instructions per cycle : 0.087

$ hpmcount -g 56 reuse_t
Execution time (wall clock time): 1.488173 seconds
PM_DTLB_MISS (Data TLB misses) : 452
 PM_ITLB_MISS (Instruction TLB misses) : 106
 PM_LD_MISS_L1 (L1 D cache load misses) : 1998
 PM_ST_MISS_L1 (L1 D cache store misses) : 4629
 PM_CYC (Processor cycles) : 2156932098
 PM_INST_CMPL (Instructions completed) : 1172053048
 PM_ST_REF_L1 (L1 D cache store references) : 237543426
 PM_LD_REF_L1 (L1 D cache load references) : 377625191

 Utilization rate : 99.710 %
 %% TLB misses per cycle : 0.000 %
 number of loads per TLB miss : 835453.962
 Total l2 data cache accesses : 0.007 M
 %% accesses from L2 per cycle : 0.000 %
 L2 traffic : 0.809 MBytes
 L2 bandwidth per processor : 0.544 MBytes/sec
 Total load and store operations : 615.169 M
 number of loads per load miss : 189001.597
 number of stores per store miss : 51316.359
342 Advanced POWER Virtualization on IBM Eserver p5 Servers

 number of load/stores per D1 miss : 92827.617
 L1 cache hit rate : 99.999 %
 MIPS : 787.578
 Instructions per cycle : 0.543

The execution time reported for the program that has the double-nested loop that
is not optimized (reuse_u) is approximately 180 seconds. The time for reuse_t
(optimized version) is only approximately 2 seconds. For this trivial example,
clearly this is an indication that there is a problem with that double-nested loop.

Further analysis of the hpmcount output reveals that the version that is not
optimized is not taking advantage of the memory hierarchy. A simple inspection
of some of the counters, such as: PM_DATA_FROM_L3,
PM_DATA_FROM_MEM, PM_DATA_FROM_L2, PM_LD_MISS_L1, and
PM_ST_MISS_L1 indicates that the version that is not optimized is not reusing
data and is incurring misses in a large number of caches.

9.3.2 Profiling utilities
This series of utilities is a set of tools that can help you find bottlenecks at a very
fine-grained level. Scientific and engineering applications consist of both the
actual code that performs simulations and system library calls and
system-specific routines. Normally when an application has not been optimized,
most of the CPU time is spent executing critical sections of the code, and these
critical sections are normally localized to a subroutine or a few loops. These
utilities are essential to finding these bottlenecks and filtering them from system
or kernel-related software. Although there might be other utilities, this section
focuses on tprof, gprof, and xprofiler.

tprof
In AIX 5L V3, tprof is part of the AIX Performance Toolbox. This utility reports
CPU usage for both individual programs and the system as a whole. It is useful to
identify sections of the code that are using CPU most heavily.

The raw data from tprof is obtained via the trace facility. In the following
examples, tprof was used in conjunction with a scientific application, namely
AMBER7. We previously introduced this life sciences application, so we
recommend reviewing 3.5, “Simultaneous multithreading performance” on
page 59 for an overview of AMBER7. In this example, we instrumented the
sander module:

$ tprof -z -u -p PID -x read sander
 Chapter 9. Application tuning 343

Example 9-10 tprof output obtained with the sander module

Process FREQ Total Kernel User Shared Other
======= ==== ===== ====== ==== ====== =====
/scratch/amber7/exe/sander 1 6978 3 6975 0 0
wait 2 957 957 0 0 0
IBM.CSMAgentRMd 1 87 2 0 85 0
/home/db2inst1/sqllib/adm/db2set 2 2 1 0 1 0
/home/db2as/das/bin/db2fm 2 2 2 0 0 0
/home/db2inst1/sqllib/bin/db2fm 1 1 1 0 0 0
/usr/sbin/muxatmd 1 1 1 0 0 0
/usr/bin/sh 1 1 1 0 0 0
======= ==== ===== ====== ==== ====== =====
Total 11 8029 968 6975 86 0

Process PID TID Total Kernel User Shared Other
======= === === ===== ====== ==== ====== =====
ch/amber7/exe/sander 348388 774299 6978 3 6975 0 0
wait 8196 8197 838 838 0 0 0
wait 12294 12295 119 119 0 0 0
IBM.CSMAgentRMd 163856 544779 87 2 0 85 0
/db2as/das/bin/db2fm 274632 782505 1 1 0 0 0
/db2as/das/bin/db2fm 274620 606215 1 1 0 0 0
/usr/bin/sh 188626 786589 1 1 0 0 0
t1/sqllib/adm/db2set 188620 786583 1 0 0 1 0
/usr/sbin/muxatmd 225408 344283 1 1 0 0 0
t1/sqllib/adm/db2set 188614 733255 1 1 0 0 0
st1/sqllib/bin/db2fm 266376 639199 1 1 0 0 0
======= === === ===== ====== ==== ====== =====
Total 8029 968 6975 86 0

 Total Samples = 8029 Total Elapsed Time = 71.74s

 Total Ticks For All Processes (USER) = 6975

User Process Ticks % Address Bytes
============= ===== ====== ======= =====
/scratch/amber7/exe/sander 6975 86.87 10000150 116478

 Profile: /scratch/amber7/exe/sander

 Total Ticks For All Processes (/scratch/amber7/exe/sander) = 6975

Subroutine Ticks % Source Address Bytes
========== ===== ====== ====== ======= =====
._log 3816 47.53 ib/libm/POWER/logF.c 93490 380
.egb 2118 26.38 _egb_.f d0ad0 4ea0
._exp 901 11.22 ib/libm/POWER/expF.c 16a70 2d0
.daxpy 89 1.11 daxpy.f 9c7c0 230
344 Advanced POWER Virtualization on IBM Eserver p5 Servers

.ephi 18 0.22 _ene_.f 8bd30 21c0

._sin 13 0.16 ib/libm/POWER/sinF.c ac90 200

._acos 6 0.07 b/libm/POWER/acosF.c 18470 2b0

.shake 5 0.06 _shake_.f f42f0 9e0

._cos 4 0.05 ib/libm/POWER/cosF.c aa70 220

.angl 4 0.05 _ene_.f 8a9b0 e00

.bond 1 0.01 _ene_.f 89330 e80

Profiling the sander module means that the trace facility is activated and
instructed to collect from the trace hook that records the contents of the
Instruction Address Register when a system-clock interrupt occurs. tprof reports
the distribution of address occurrences as ticks across the programs involved in
the workload.

Example 9-11 shows the output of tprof for the sander module. Note that one
the three most time-consuming routines correspond to logF.c, egb.f, and
expF.c. Furthermore, the two C routines are part of the libm, which can be easily
replaced by the equivalent routine in the Mathematical Acceleration Subsystem
(MASS) library.

Example 9-11 tprof output obtained with the sander module using MASS libraries

Process FREQ Total Kernel User Shared Other
======= ==== ===== ====== ==== ====== =====
/scratch/amber7/exe/sander_mass 1 5956 1 5954 1 0
wait 2 764 764 0 0 0
/home/db2inst1/sqllib/adm/db2set 1 1 1 0 0 0
======= ==== ===== ====== ==== ====== =====
Total 4 6721 766 5954 1 0

Process PID TID Total Kernel User Shared Other
======= === === ===== ====== ==== ====== =====
ber7/exe/sander_mass 356544 753849 5956 1 5954 1 0
wait 8196 8197 669 669 0 0 0
wait 12294 12295 95 95 0 0 0
t1/sqllib/adm/db2set 188632 786595 1 1 0 0 0
======= === === ===== ====== ==== ====== =====
Total 6721 766 5954 1 0

 Total Samples = 6721 Total Elapsed Time = 64.13s

 Total Ticks For All Processes (USER) = 5954

User Process Ticks % Address Bytes
============= ===== ====== ======= =====
/scratch/amber7/exe/sander_mass 5954 88.59 10000150 114238

 Profile: /scratch/amber7/exe/sander_mass
 Chapter 9. Application tuning 345

 Total Ticks For All Processes (/scratch/amber7/exe/sander_mass) = 5954

Subroutine Ticks % Source Address Bytes
========== ===== ====== ====== ======= =====
._log 4066 60.50 ib/libm/POWER/logF.c 90590 380
.egb 1555 23.14 _egb_.f cdbd0 4e60
vrsqrt 148 2.20 vrsqrt_p4.32s 7ef50 7a0
.daxpy 67 1.00 daxpy.f 998c0 230
.vexp 59 0.88 vexp_p4.32s d2a30 8e8
.ephi 16 0.24 _ene_.f 88e30 21c0
._cos 13 0.19 ib/libm/POWER/cosF.c aa70 220
._acos 11 0.16 b/libm/POWER/acosF.c 18470 2b0
.angl 9 0.13 _ene_.f 87ab0 e00
._sin 7 0.10 ib/libm/POWER/sinF.c ac90 200
.runmd 3 0.04 _runmd_.f e9a30 63c0

Here we see that one of the bottlenecks (the one coming from the expF.c routine)
has totally disappeared. We now show similar information with gprof and
xprofiler.

gprof
This utility enables you to look at code to identify its critical sections. gprof was
developed by GNU. The following steps are required to use gprof:

� Compile and link the application with profiling enabled.
� Run the application to generate a profile data file.
� Run gprof to analyze the data.

Rather than illustrating the use of gprof or tprof with a trivial example, we apply
it to the life sciences application AMBER7. The first step involves modifying the
script that compiles and builds the sander module. This is seen where we
included the -pg option.

This corresponds to Machine.ibm_aix modified to invoke either gprof or the
xprofiler:

########## LOADER/LINKER:
Use Standard options
setenv LOAD "xlf90 -bmaxdata:0x80000000 -pg "
Load with the IBM MASS & ESSL libraries
setenv LOADLIB " "
if ($HAS_MASSLIB == "yes") setenv LOADLIB "-L$MASSLIBDIR -lmassvp4 "
if ($VENDOR_BLAS == "yes") setenv LOADLIB "$LOADLIB -lblas "

Tip: Ensure that -pg is also included when the loader is invoked.
346 Advanced POWER Virtualization on IBM Eserver p5 Servers

if ($VENDOR_LAPACK == "yes") setenv LOADLIB "$LOADLIB -lessl "

little or no optimization:
setenv L0 "xlf90 -qfixed -c -pg"

modest optimization (local scalar):
setenv L1 "xlf90 -qfixed -O2 -c -pg"

high scalar optimization (but not vectorization):
setenv L2 "xlf90 -qfixed -O3 -pg -qmaxmem=-1 -qarch=auto -qtune=auto -c"

high optimization (may be vectorization, not parallelization):
setenv L3 "xlf90 -qfixed -O3 -pg -qmaxmem=-1 -qarch=auto -qtune=auto -c"

Example 9-11 on page 345 shows the output of tprof after replacing expF.c with
the vectorized version in the MASS library.

Example 9-12 Results of replacing expF.c with vectorized version

ngranularity: Each sample hit covers 4 bytes. Time: 90.27 seconds

 called/total parents
index %time self descendents called+self name index
 called/total children

 0.00 80.92 1/1 .__start [2]
[1] 89.6 0.00 80.92 1 .main [1]
 0.00 80.92 1/1 .runmd [3]
 0.00 0.00 1/1 .rdparm2 [26]

6.6s <spontaneous>
[2] 89.6 0.00 80.92 .__start [2]
 0.00 80.92 1/1 .main [1]

 0.00 80.92 1/1 .main [1]
[3] 89.6 0.00 80.92 1 .runmd [3]
 0.01 80.89 100/100 .force [4]
 0.02 0.00 100/100 .shake [20]
 0.00 0.00 1/366954097 ._log [6]
 0.00 0.00 300/1429 .timer_start [37]

 0.01 80.89 100/100 .runmd [3]
[4] 89.6 0.01 80.89 100 .force [4]
 26.21 54.04 100/100 .egb [5]
 0.20 0.29 200/200 .ephi [11]
 0.04 0.09 200/200 .angl [15]
 0.02 0.00 100/100 .bond [19]
 0.00 0.00 1300/1300 .get_stack [40]

 Chapter 9. Application tuning 347

 26.21 54.04 100/100 .force [4]
[5] 88.9 26.21 54.04 100 .egb [5]
 43.93 0.00 366954096/366954097 ._log [6]
 10.11 0.00 99723844/99723844 ._exp [7]
 0.00 0.00 225/1429 .timer_start [37]
 0.00 0.00 225/1429 .timer_stop [38]

 0.00 0.00 1/366954097 .runmd [3]
 43.93 0.00 366954096/366954097 .egb [5]
[6] 48.7 43.93 0.00 366954097 ._log [6]

 10.11 0.00 99723844/99723844 .egb [5]
[7] 11.2 10.11 0.00 99723844 ._exp [7]

6.6s <spontaneous>
[8] 8.2 7.42 0.00 .__mcount [8]

6.6s <spontaneous>
[9] 0.8 0.70 0.00 .daxpy [9]

6.6s <spontaneous>
[10] 0.7 0.62 0.00 .qincrement [10]

 0.20 0.29 200/200 .force [4]
[11] 0.5 0.20 0.29 200 .ephi [11]
 0.19 0.00 1618200/2075531 ._sin [14]
 0.06 0.00 809100/1266400 ._acos [17]
 0.05 0.00 1618200/1618231 ._cos [18]

6.6s <spontaneous>
[12] 0.3 0.25 0.00 .__stack_pointer [12]

6.6s <spontaneous>
[13] 0.3 0.25 0.00 .qincrement1 [13]

 0.00 0.00 31/2075531 .dihpar [25]
 0.05 0.00 457300/2075531 .angl [15]
 0.19 0.00 1618200/2075531 .ephi [11]
[14] 0.3 0.24 0.00 2075531 ._sin [14]

..............................

ngranularity: Each sample hit covers 4 bytes. Time: 90.27 seconds

 % cumulative self self total
348 Advanced POWER Virtualization on IBM Eserver p5 Servers

 time seconds seconds calls ms/call ms/call name
 48.7 43.93 43.93 366954097 0.00 0.00 ._log [6]
 29.0 70.14 26.21 100 262.10 802.50 .egb [5]
 11.2 80.25 10.11 99723844 0.00 0.00 ._exp [7]
 8.2 87.67 7.42 .__mcount [8]
 0.8 88.37 0.70 .daxpy [9]
 0.7 88.99 0.62 .qincrement [10]
 0.3 89.24 0.25 .__stack_pointer [12]
 0.3 89.49 0.25 .qincrement1 [13]
 0.3 89.73 0.24 2075531 0.00 0.00 ._sin [14]
 0.2 89.93 0.20 200 1.00 2.47 .ephi [11]
 0.1 90.03 0.10 .EndIORWFmt [16]
 0.1 90.12 0.09 1266400 0.00 0.00 ._acos [17]
 0.1 90.17 0.05 1618231 0.00 0.00 ._cos [18]
 0.0 90.21 0.04 200 0.20 0.63 .angl [15]
 0.0 90.23 0.02 100 0.20 0.20 .bond [19]
 0.0 90.25 0.02 100 0.20 0.20 .shake [20]
 0.0 90.26 0.01 15149 0.00 0.00 .cvtloop [22]

xprofiler
This utility is a graphical tool that enables you to perform profiling of your code.
The output is similar to the other two tools, except that xprofiler is more flexible
and more powerful for analyzing large applications. The procedure to build and
run the application with xprofiler enabled is similar to gprof. After this is done,
just invoke xprofiler:

$ xprofiler

When xprofiler has started, all you have to do to start displaying information
related to your application is to select your executable and the gmon.out file.

xprofiler can also produce a flat profile as part of its functionality. Figure 9-5 on
page 350 shows the flat profile for the AMBER7 run.
 Chapter 9. Application tuning 349

Figure 9-5 Flat profile produced using xprofiler

Of the tools that can be utilized to analyze the performance of scientific and
engineering applications, xprofiler provides a powerful utility with a friendly
interface that can help expedite the localization of critical sections in the code. If
there is no access to the source code, tprof provides a good alternative for
obtaining information about a running application by attaching to the process ID.

9.4 Memory management
In this section explore the importance of data locality to code optimization.
Figure 9-6 on page 351 shows how memory hierarchy is organized on POWER5.
Previous chapters have provided detailed descriptions of each of the
components.
350 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 9-6 Memory hierarchy

The POWER architecture has several layers where your application can access
data. The important message from Figure 9-6 that we demonstrate throughout
this chapter is that the closer the data is to the registers, the more efficiently your
application will perform.

Scientific and engineering applications are floating-point intensive programs. The
architectural features that are of the highest direct relevance from the figure are:

� All three levels of cache
� Translation lookaside buffer (not shown in Figure 9-6)

Data prefetch streaming and superscalar floating-point units also affect memory
performance.

9.5 Optimization of critical sections in the code
This is a very extensive topic and we do not attempt to cover all of the possible
techniques to optimize scientific and engineering applications. Instead we focus
our attention on certain techniques that tend to benefit the POWER architecture.

LSU1

L1 CACHE

L2 CACHE

L3 CACHE

MEMORY

D
IS

KS

FXU1 FPU0 FPU1FXU0LSU0 BXU CRL

Shared
Executing

Units

Sp
ee

d

Si
ze

Memory
Hierarchy
 Chapter 9. Application tuning 351

A good example of this is matrix multiplication. In the past, we managed to
achieve approximately 60% of peak performance via matrix multiplication
routines. Now with the advent of POWER5, which has more rename registers, it
is possible to achieve near-peak performance with a well-optimized routine.

In this section we try to illustrate some simple techniques using standard
examples and an example of matrix multiplication. We look at matrix
multiplication from an over-simplistic point of view, which does not show good
performance, but from this example we provide a Fortran version that compares
well with a highly optimized version of matrix multiplication routines.

Before doing that, it is important to recall a series of general optimization rules
that can improve the performance of critical sections of the code within scientific
and engineering applications. To make better use of memory, keep in mind that
whenever possible data should be accessed sequentially. In a loop, this is called
accessing memory with unity stride or stride of 1. In large applications, loops
usually tend to grow in size as operations are carried out within the loop. If
possible, try to keep the loop small and manageable—the smaller the loop the
better. It is important to avoid expensive operations, such as divide, square-root,
and exponential. If this type of transcendental function is required for the code,
consider using the MASS library, which is explained in 9.6.1, “MASS Library” on
page 361. In a loop, if statements and calls to subroutines tend to introduce data
dependency and usually inhibit optimization. The following are less common
problems that we only mention here:

� Avoid using EQUIVALENCE for critical variables.

� Avoid implicit type conversions.

� Try to reduce the number of arguments that are passed from the caller to the
callee.

� If multiple “if” statements are required, evaluate the most likely if statement
first. In other words, try to reduce the number of if statements that have to be
evaluated.

In general, the key to performance is to be able to map the application as close
as possible to the POWER Series architecture. The use of the POWER5 memory
hierarchy can be cleverly manipulated in an algorithm to gain efficiency. This may
include prefetching to facilitate accessing memory that is currently not in the
cache. Prefetching provides a mechanism for hiding memory latency due to
cache misses. We shall see that loop unrolling is very important to proper use of
the memory hierarchy. Simulation of higher precision arithmetic helps
performance, especially when this process is highly repetitive.
352 Advanced POWER Virtualization on IBM Eserver p5 Servers

9.5.1 General rules for optimization strategies
Code simplification:

� Eliminate unused or redundant computations.

� Use algebraic identities, when possible, to simplify expressions.

� Eliminate unnecessary branching.

� Move code to less-frequently executed points.

� Eliminate unnecessary procedure calls and pointer indirections.

Data memory cost:

� Eliminate redundant memory loads and stores.

� Data that is constantly used together should be stored in memory as close
together as possible.

� Reorganize loop structures to exploit data reuse and locality.

� Perform careful mapping of data to avoid cache and TLB interference.

� Overlap memory access and computation through software or hardware
prefetch.

Instruction memory cost:

� Reduce code size when possible.

� Limit inlining and loop unrolling to avoid excessive code growth.

� Maintain code for loops together and move non-loop code out.

� Move branches and their targets closer together.

Multiple instructions:

� Identify loops whose iterations can profitably run in parallel, and execute them
concurrently using a run-time schedule.

� Find primitive operations in loops that can be vectorized profitably, such as
divide and square root, and compute the vectors in a pipeline.

� Balance loop computations through loop unrolling to enable effective software
pipelining.

9.5.2 Array optimization
To take advantage of the memory hierarchy on POWER architected systems, the
first step requires understanding the multiple arrays used in the code and how
their elements will be used. In general, this is particularly true for numerically
 Chapter 9. Application tuning 353

intensive applications that spend a large amount of CPU performing repetitive
tasks, such as loading and storing data in arrays.

As in any popular Fortran or C textbook, we start by describing the difference in
the way elements in a matrix are stored between these two languages. For C
codes, matrix rows are stored contiguously. For Fortran codes, matrix columns
are stored contiguously.

4x4 Matrix with one-dimensional index in square brackets:

C: row-major order; matrix rows are stored contiguously

Fortran: column-major order; matrix columns are stored contiguously

Stride is relevant when addressing the elements of a matrix.

Stride The distance between successively accessed matrix elements in
successive loop iterations

Example 9-13 Do loop with two different strides

do i = 1, 200
 do j = 1, 500
 a(i,j) = 1.d0 !stride 500
 b(j,i) = 1.d0 !stride 1
 enddo
enddo

Important: Keep this ordering in mind to help the efficiency of your code.

Tip: Stride of 1 ensures sequential access to memory and provides best
performance.

a 1 1,() 1[] a 1 2,() 2[] a 1 3,() 3[] a 1 4,() 4[]
a 2 1,() 5[] a 2 2,() 6[] a 2 3,() 7[] a 2 4,() 8[]
a 3 1,() 9[] a 3 2,() 10[] a 3 3,() 11[] a 3 4,() 12[]
a 4 1,() 13[] a 4 2,() 14[] a 3 4,() 15[] a 4 4,() 16[]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
354 Advanced POWER Virtualization on IBM Eserver p5 Servers

Stride of 1 is beneficial because it ensures that after a line of cache has been
loaded, the next set of elements needed will be available in the same cache line.
This decreases the number of times that is required to go to memory hierarchy to
load data. On POWER5, the size of a cache line is 128 bytes. The implication of
this size is that for 32-bit words, strides larger than 32 will reduce performance
(and 16 for 64-bit words) since only one element can be fetched per cache line.
In addition, stride 1 will make use of the prefetch engine.

9.5.3 Loop optimization
The technique of loop optimization is basic for taking advantage of memory
hierarchy. A good example that is commonly used to illustrate multiple
optimization techniques is matrix multiplication. Optimizing the matrix
multiplication triple-nested loop has been discussed extensively, so we simply
summarize how this is done and show results with respect to POWER5.

Example 9-14 shows the typical triple-nested loop of the main kernel in a matrix
multiplication routine. The triple-nested loop comes from the following
expression:

Example 9-14 Matrix multiplication triple-nested loop

do i = 1, n
 do j = 1, n
 do k = 1, n
 c(i,j) = c(i,j) + a(j,k)*b(k,i)
 enddo
 enddo
 enddo

This loop has been written without any particular attention to an optimal
arrangement of the loop indices. In fact, optimizing all three loops for stride 1 may
not be possible. This makes matrix multiplication a good candidate for loop
unrolling.

C C A
T

B+=
 Chapter 9. Application tuning 355

Example 9-15 illustrates an implementation of a 2x2 loop unrolling.

Example 9-15 Matrix 2x2 loop unrolling

 do i = 1, l, 2
 do j = 1, m, 2
 s00 = zero
 s21 = zero
 s12 = zero
 s22 = zero
c
 do k = 1, n
 s11 = s11 + a(k,i)*b(k,j)
 s21 = s21 + a(k,i+1)*b(k,j)
 s12 = s12 + a(k,i)*b(k,j+1)
 s22 = s22 + a(k,i+1)*b(k,j+1)
 enddo
 c(i,j) = c(i,j) + s11
 c(i+1,j) = c(i+1,j) + s21
 c(i,j+1) = c(i,j+1) + s12
 c(i+1,j+1) = c(i+1,j+1) + s22
 enddo
 enddo

Table 9-9 shows the level of unrolling that has been reported as optimal for
different POWER series, including our findings that seem to work well for
POWER5.

Table 9-9 Optimal unrolling levels for some IBM POWER Series machines

The POWER1 had only a single floating-point unit, the 2x2 unrolling, which
achieved very good performance. The POWER2 and POWER3 have dual
floating-point units; for these systems, 4x4 appeared to be favored. The unrolling
reported for POWER4 is 4x5.

In addition to unrolling, block matrices must be able to make use of registers as
much as possible.

System Unrolling level

POWER1 2x2

POWER2™ 4x4

POWER3 4x4

POWER4 5x4

POWER5 4x4
356 Advanced POWER Virtualization on IBM Eserver p5 Servers

In order to carry out our performance measurements, we used a hand-tuned
version of DGEMM. This version is not publicly available. Table 9-10 on page 357
illustrates the performance of the different level of unrolling. Column 1, which is
used as reference, corresponds to a well-coded DGEMM version without
unrolling. The next set of columns illustrate the impact of the various unrolling
levels on POWER5. Note that in all of these cases, the blocking size was kept
constant at 256. The only variable was unrolling. The main difference between
4x4 unrolling and Sserver p5-4x4 unrolling is in the use of two extra compiler
directives in Sserver p5-4x4. One is to further unroll the innermost loop of the
matrix multiplication and the second one is to enhance prefetching.

A simple inspection of Table 9-10 shows that 4x4 is the technique that is best
suited for POWER5. Sserver p5-4x4 shows the additional benefit of using
compiler directives. The recommended version for square matrices is
Sserver p5-4x4.

Table 9-10 Performance of matrices with different unrolling levels

Dimension No unrolling 2X2 5X4 4X4 4X4 new

100 1,580 3,080 3,938 4,763 4,902

200 1,786 3,583 4,141 5,340 5,486

500 1,797 3,732 3,906 5,106 5,691

1000 1,848 3,835 3,522 5,166 5,944

2000 1,812 3,754 3,731 5,224 5,837

5000 1,355 3,622 3,809 5,320 6,028
 Chapter 9. Application tuning 357

Figure 9-7 shows the different techniques that were used to unroll the matrix. The
reference is the peak performance for this POWER5 running at 1.65 GHz. Again,
it is easy to see that Sserver p5-4x4 shows the best performance and is
remarkably close to peak performance. This is because POWER5 introduces
more rename registers.

Figure 9-7 Different techniques against peak performance

Next we examine the effect of blocking and large pages on matrix multiplication.
We looked at block sizes of 32, 64 96, 128, 160, 192, 224, and 256. Table 9-11
summarizes the performance of a matrix multiplication for a subset of these
sizes.

Table 9-11 Blocking and large pages’ effect on matrix multiplication

Dimension 32 64 128 256

100

Small pages 4,560 4,596 3,920 3,795

Large pages 4,588 4,880 4,917 4,902

500

Small pages 4,850 5,080 5,375 5,363

Large pages 5,030 5,232 5,679 5,691

1000

0

1000

2000

3000

4000

5000

6000

7000

0 2000 4000 6000

Matrix Dimension

M
Fl

op
/s
no unrolling

2x2

5x4

4x4

p5-4x4

Peak Perf.
358 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 9-8 shows the effect of different block sizes for three matrices with three
different dimensions. The dimensions that we have selected for the three square
matrices correspond to: 100x100, 1000x1000, and 10000x10000. From this plot
we have identified that for all of the matrices tested here, block sizes between
224 and 256 give the best results.

Figure 9-8 Matrix multiplication as a function of block size

Small pages 4,050 4,751 5,396 5,609

Large pages 4,391 5,103 5,843 5,944

2000

Small pages 3,629 4,810 5,249 5,483

Large pages 4,190 5,365 5,702 5,837

5000

Small pages 3,401 4,498 5,143 5,350

Large pages 4,068 5,082 5,906 6,028

10000

Small pages 3,448 4,490 4,923 5,098

Large pages 4,207 5,372 5,546 5,900

Dimension 32 64 128 256

0

1000

2000

3000

4000

5000

6000

32 64 96 128 160 192 224 256

Block Size

M
Fl

op
/s 100

1000
10000
 Chapter 9. Application tuning 359

The last figure in this section illustrates the effect of large pages on matrix
multiplication. Figure 9-9 shows that independent of the block size and
dimensions of the matrix, the large pages effect is proportional to the dimensions
of the matrixes. Although not shown in the table nor in the figure, we found that
the improvement measured in percentage difference (in going from small to large
pages) for matrixes was: 100x100, 200x200, 500x500, 1000x1000, 2000x200,
5000x5000, and 10000x10000 are 1%, 2%, 4%, 8%, 15%, 20%, and 22%,
respectively.

Figure 9-9 Large pages effect on performance for matrix multiplication

9.6 Optimized libraries
IBM provides collections of routines that have been fully optimized to a particular
architecture, in this case POWER5. As previously mentioned, the advantage of
using highly tuned libraries is that in many cases the code requires few changes
to take full advantage of these library functions. In this section, we show how
scientific applications can be customized to fully utilize these libraries. In this
section we cover two of them:

� MASS library:

http://www.ibm.com/support/docview.wss?uid=swg24007650

� ESSL library:

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html#essl_42

0

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300

Block Size

M
Fl

op
/s 64K Pages

4K Pages
360 Advanced POWER Virtualization on IBM Eserver p5 Servers

http://www.ibm.com/support/docview.wss?uid=swg24007650
http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html#essl_42

9.6.1 MASS Library
Figure 9-1 on page 313 presented a flowchart that illustrates how to analyze
applications performance. (A section is reproduced in Figure 9-10.) As part of the
steps in this flowchart, we mentioned that prior to attempting any hand tuning,
the programmer should rely on compiler flags, compiler directives and highly
optimized libraries. This chapter starts with the MASS libraries.

Figure 9-10 CPU-bound code might benefit from optimized libraries

MASS is a set of libraries of highly tuned mathematical intrinsic functions for C,
C++, and Fortran applications that are optimized for specific POWER
architectures. The MASS library consists of the scalar and vector libraries. The
MASS scalar library, libmass.a, contains an accelerated set of the most
frequently used math intrinsic functions in the AIX 5L system library libxlf90.a.
This library can be used under AIX 5L and Linux on the POWER5 family.

The second set of libraries correspond to the MASS vector library. The general
vector libraries, libmassv.a, libmassvp3.a (for POWER3), and libmassvp4.a (for
POWER4) contain functions that have been optimized. Table 9-12 on page 362
reproduces the vector table presented in:

http://www.ibm.com/support/docview.wss?rs=2021&context=SSVKBV&uid=swg27005374

It includes POWER5 performance.

The vector libraries libmassv.a, libmassvp3.a, and libmassvp4.a can be used
with either FORTRAN or C applications. When calling the library functions from
C, only call by reference is supported, even for scalar arguments. As with the

Important: In some cases MASS is not as accurate as the system library and
it might handle certain cases differently. We recommend always checking
answers when using any kind of optimized libraries for the first time.

CPU bound?

N

Y

Try using highly optimized
libraries where applicable,

such as MASS
 Chapter 9. Application tuning 361

http://www.ibm.com/support/docview.wss?rs=2021&context=SSVKBV&uid=swg27005374

scalar functions, the vector functions must be called with the IEEE rounding
mode set to round-to-nearest and with exceptions masked off. The accuracy of
the vector functions is comparable to that of the corresponding scalar functions in
libmass.a, though results may not be bit-wise identical.

The MASS vector Fortran source library enables application developers to write
portable vector codes. The source library, libmassv.f, includes Fortran versions of
all vector functions in the MASS vector libraries. The following performance table
lists estimates of the number of processor cycles per evaluation of a vector
element for the various MASS vector libraries. The estimates used vectors of
length 1000 so that the caches contain all the vectors. The columns labeled libm
give the results from using the functions in the MASS Fortran source code library
libmassv.f to call the functions in libxlf90.a. The Fortran source code was
compiled with IBM XLF compiler using the -O option. The columns labeled mass
show results of the same process, except they use libmass.a instead of libxlf90.a.
The columns labeled massv and vp4 list the results obtained with the libraries
libmassv.a and libmassvp4.a, respectively. Times are not given for functions in
the libmassvp4.a libraries that are identical to the functions in the libmassv
library. The results were measured on both POWER4 and POWER5 systems.

Results will vary with vector length. Entries in the table where the library function
does not exist or where the measurement was not done are blank.

Table 9-12 Vector library performance (cycles per evaluation, length 1000 loop)

POWER4 POWER5

Function Range libm mass massv vp4 libm mass massv vp4

vrec D 29* 11 5.1 29* 11 5.1

vsrec D 28* 7.6 3.9 23* 6.4 3.8

vdiv D 28* 14 5.8 29* 13 5.4

vsdiv D 30* 9.4 4.9 23* 8.8 4.8

vsqrt C 36* 17 7.1 36* 17 7.8

vssqrt C 36* 11 5.7 23* 10 5.4

vrsqrt C 64* 18 7.0 36* 17 8.0

vsrsqrt C 64* 11 5.6 23* 9.4 6.1

vexp D 91 42 14 11 168 47 12 11

vsexp D 105 45 10 8.9 192 50 8.9 8.6

vlog C 153 84 9.9 207 86 9.5
362 Advanced POWER Virtualization on IBM Eserver p5 Servers

vslog C 157 90 6.7 212 92 6.9

vlog10 C 158 90 10 207 93 9.8

vslog10 C 162 97 6.9 206 95 6.9

vsin B 56 24 7.2 14 66 24 6.8 13

vsin D 75 69 20 15 83 64 19 15

vssin B 57 26 5.5 11 67 25 5.2 10

vssin D 80 72 16 13 86 66 16 12

vcos B 54 23 6.6 15 66 22 6.3 13

vcos D 80 69 20 17 82 64 20 15

vscos B 57 27 5.4 11 66 24 4.9 10

vscos D 81 73 16 12 82 66 16 12

vsincos B 103 51 13 10 122 46 12 9.3

vsincos D 157 135 22 18 166 122 22 18

vssincos B 110 54 9.8 8.3 124 147 9.5 7.2

vssincos D 162 138 18 15 180 124 17 15

vcosisin B 105 50 12 10 123 45 12 9.4

vcosisin D 160 134 21 18 165 119 20 18

vscosisin B 107 51 9.9 8.3 124 47 9.7 7.2

vscosisin D 158 136 18 15 172 125 18 15

vtan D 172 73 19 185 67 18

vstan D 192 76 15 187 68 15

vatan2 D 722 139 59 24 64 136 48 25

vsatan2 D 738 146 48 15 772 142 47 15

vcosh D 195 53 14 242 54 13

vscosh E 176 55 13 244 56 12

vsinh D 275 68 15 372 67 13

vssinh E 293 73 14 359 74 12

POWER4 POWER5
 Chapter 9. Application tuning 363

vtanh F 307 80 19 329 78 18

vstanh E 282 84 17 355 85 15

vpow C 399 185 29 462 189 30

vspow G 396 190 17 462 193 17

vasin B 97 24 108 23

vsasin B 103 14 112 14

vacos B 104 24 108 23

vsacos B 107 14 114 14

vexpm1 D 169 12 197 12

vsexpm1 E 140 10 214 10

vlog1p H 202 13 221 12

vslog1p H 202 9.2 219 8.9

vdint D 40 6.6 46 6.4

vdnint D 39 8.9 43 7.8

* hardware instructions (in simple loop)

Range key:
A = 0,1
B = -1,1
C = 0,100
D = -100,100
E = -10,10
F = -20,20
G = 0,10
H = -1,100

1500 MHz POWER4 (GQ)

1650 MHz POWER5 (GR)

POWER4 POWER5
364 Advanced POWER Virtualization on IBM Eserver p5 Servers

Accuracy data for the scalar and vector libraries
In some cases, MASS is not as accurate as the system library libm.a, and it may
handle edge cases differently (sqrt(Inf)), for example). Table 9-13 provides
sample accuracy data for the libm, libmass, libmassv, and libmassvp4 libraries.
The numbers are based on the results for 10,000 random arguments chosen in
the specified ranges (except for some of the libmassvp4 functions that were
tested more extensively; see range F in the table). Real*16 functions were used
to compute the errors. There may be portions of the valid input argument range
for which accuracy is not as good as illustrated in the table. Also, accuracies may
vary from values in the table when argument values are used that are not
represented in the table.

The entries in the percent correctly rounded (PCR) column were obtained by
counting the number of correctly rounded results out of 10,000 samples with
random argument. A result is correctly rounded when the function returns the
IEEE 64-bit value that is closest to the exact (infinite-precision) result.

Table 9-13 MASS library accuracy (MASS 41)

function range libxlf90 libmass libmassv libmassvp3 libmassvp4

PCR MaxE PCR MaxE PCR MaxE PCR MaxE PCR MaxE

rec D 100.00* .50* 100.00 .50 100.00 .50 99.95 .51

srec D 100.00* .50* 92.47 .66 99.97 .50 99.92 .50

div D 100.00* .50* 74.78 1.32 74.78 1.32 74.77 1.32

sdiv D 100.00* .50* 100.00 .50 .74.49 1.35 74.47 1.35

sqrt A 100.00 .50 96.59 .58 96.42 .60 86.86 .96 86.86 .96

ssqrt A 100.00 .50 100.00 .50 87.64 .79 83.80 1.01 83.80 1.01

rsqrt A 88.52 .98 98.60 .54 97.32 .62 97.84 .55 97.84 .55

srsqrt A 100.00 .50 100.00 .50 86.39 .82 89.66 .86 89.66 .86

exp D 99.95 .50 96.55 .63 96.58 .63 96.58 .63 96.58 .63

sexp D 100.00 .50 100.00 .50 98.87 .52 98.87 .52 98.87 .52

log C 99.99 .50 99.69 .53 99.45 .89 99.45 .89 99.45 .89

slog C 100.00 .50 100.00 .50 99.99 .50 99.99 .50 99.90 .50

log10 C 64.63 1.56 64.58 1.56 99.29 1.03 99.29 1.03 99.29 1.03

slog10 C 100.00 .50 100.00 .50 99.99 .50 99.99 .50 99.99 .50

sin B 81.31 .91 96.88 .80 97.28 .72 97.28 .72 92.87 1.35
 Chapter 9. Application tuning 365

sin D 86.03 .94 83.88 1.36 83.85 1.27 83.85 1.27 83.07 1.33

ssin B 100.00 .50 100.00 .50 99.95 .50 99.95 .50 99.85 .51

ssin D 100.00 .50 100.00 .50 99.73 .51 99.73 .51 99.73 .51

cos B 92.95 1.02 92.20 1.00 93.19 .88 91.19 .88 86.15 1.11

cos D 86.86 .93 84.19 1.33 84.37 1.33 84.37 1.33 83.17 1.33

scos B 100.00 .50 100.00 .50 99.35 .51 99.35 .51 99.57 .51

scos D 100.00 .50 100.00 .50 99.82 .51 99.82 .51 99.82 .51

tan D 99.58 .53 64.51 2.35 54.31 2.71 54.31 2.71 54.31 2.71

stan D 100.00 .50 100.00 .50 98.11 .68 98.11 .68 98.11 .68

atan2 D 74.66 1.59 86.02 1.69 84.01 1.67 84.01 1.67 84.00 1.67

satan2 D 100.00 .50 100.00 .50 100.00 .50 100.00 .50 98.76 .62

cosh D 95.64 .97 92.73 1.04 57.56 2.09 57.56 2.09 57.56 2.09

scosh E 100.00 .50 100.00 .50 99.08 .52 99.08 .52 99.08 .52

sinh D 94.78 1.47 98.54 1.45 82.53 1.58 82.53 1.58 82.53 1.58

ssinh E 100.00 .50 100.00 .50 98.75 .53 98.75 .53 98.75 .53

tanh F 96.97 2.53 91.30 1.85 58.57 2.98 58.57 2.98 58.57 2.98

stanh E 100.00 .50 100.00 .50 89.44 .74 89.44 .74 89.44 .74

pow C 99.95 .50 96.58 .63 97.04 .58 97.04 .58 97.04 .58

spow G 100.00 .50 100.00 .50 99.16 .52 99.16 .52 99.16 .52

acos B 99.44 .59 84.72 1.85 84.72 1.85 84.72 1.85

sacos B 100.00 .50 99.06 .55 99.06 .55 99.06 .55

asin B 98.82 .61 68.52 1.95 68.52 1.95 68.52 1.95

sasin B 100.00 .50 97.66 .56 97.66 .56 97.66 .56

expm1 D 95.58 .98 98.58 .98 98.58 .98 98.58 .98

sexpm1 E 100.00 .50 100.00 .50 100.00 .50 100.00 .50

log1p H 99.91 .97 99.56 1.29 99.56 1.29 99.56 1.29

slog1p H 100.00 .50 100.00 .50 100.00 .50 100.00 .50

dint D 100.00 .00 100.00 .00 100.00 .00 100.00 .00

dnint D 100.00 .00 100.00 .00 100.00 .00 100.00 .00

function range libxlf90 libmass libmassv libmassvp3 libmassvp4
366 Advanced POWER Virtualization on IBM Eserver p5 Servers

For information about performance for each of the MASS library functions, visit
the MASS library page at:

http://www.ibm.com/support/docview.wss?uid=swg24007650

Example 9-16 shows how the vector MASS library can be implemented for a
scientific application such as AMBER, replacing 1/sqrt with vrsqrt.

Example 9-16 MASS vector library example

icount = 0
 do 25 j=i+1,natom
c
 xij = xi - x(3*j-2)
 yij = yi - x(3*j-1)
 zij = zi - x(3*j)
 r2 = xij*xij + yij*yij + zij*zij
 if(r2.gt.cut) go to 25
c
 icount = icount + 1
 jj(icount) = j
 r2x(icount) = r2
c
 25 continue
c
c
#ifdef MASSLIB
 call vrsqrt(vectmp1, r2x, icount)
#else
 do j=1,icount
 vectmp1(j) = 1.d0/sqrt(r2x(j))
 end do
#endif

atan B 99.82 .51 92.58 1.78

atan D 99.98 .50 98.86 1.72

* Indicates hardware instruction was used.
PCR = percentage correctly rounded
MaxE = Maximum observed error in ulps

Range key:
A = 0, 1
B = -1, 1
C = 0, 100

D = -100, 100
E = -10, 10
F = -20, 20
G = 0, 10

function range libxlf90 libmass libmassv libmassvp3 libmassvp4
 Chapter 9. Application tuning 367

http://www.ibm.com/support/docview.wss?uid=swg24007650

Table 9-14 shows the performance improvement from using the MASS libraries.
The case presented in this table corresponds to the Generalized Born myoglobin
simulation. This protein has 2,492 atoms and is run with a 20A cutoff and a salt
concentration of 0.2 M, with nrespa=4 (long-range forces computed every 4 steps.)

Table 9-14 AMBER7 performance with the sqrt vector MASS routine

In this particular example, the MASS libraries are used in only three locations in
the routine that is using most of the CPU time, one time for exp() and two for
sqrt(). The table illustrates that by performing these simple substitutions there is
an almost 15% improvement in single processor performance.

9.6.2 ESSL library
In this section we look at performance improvements using highly optimized
library routines, in this case the IBM Engineering and Scientific Subroutine
Library (ESSL). Find more information at the ESSL Web site at:

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html

Figure 9-11 CPU-bound code might benefit from optimized libraries

This is a state-of-the-art collection of mathematical routines. The ESSL family of
subroutines for AIX 5L and Linux contains:

� Basic Linear Algebra Subprograms (BLAS)
� Linear Algebraic Equations
� Eigensystem Analysis
� Fourier Transforms

Elapsed time in seconds

Without vector MASS With vector MASS

68 79

CPU bound?

N

Y

Try using highly optimized
libraries where applicable,

such as ESSL
368 Advanced POWER Virtualization on IBM Eserver p5 Servers

http://publib.boulder.ibm.com/clresctr/windows/public/esslbooks.html

To illustrate that ESSL provides the best performance we used ESSL Version
4.2, which is available for AIX 5L 5.3 for POWER5. This version requires XL
Fortran Enterprise Edition Version 9.1 for AIX 5L and the XL Fortran Enterprise
Edition Run-Time Environment Version 9.1 for AIX 5L. For this test we use
DGEMM, which has been extensively optimized for L1 and L2 caches. The
results from ESSL are compared against the hand-tuned Fortran version of
DGEMM presented in previous sections. Table 9-15 summarizes the results for
DGEMM ESSL and DGEMM Fortran.

Table 9-15 DGEMM routine optimized in the ESSL library

These results are also summarized in Figure 9-12. All benchmarks were carried
out on an IBM Sserver p5 system with a clock speed of 1.65 GHz. The only
case in which the Fortran version has a slight advantage over ESSL is for
small-square matrixes, in this case 100x100. In all other cases, the version of
DGEMM in ESSL outperforms the Fortran version by as much as 5%.

Figure 9-12 DGEMM optimized routine in ESSL versus Fortran version

Dimension Fortran ESSL

100 4902 4403

200 5486 5494

500 5691 5893

1000 5944 6126

2000 5837 6140

5000 6028 6124

10000 5900 6105

0

1000

2000

3000

4000

5000

6000

7000

M
Fl

op
/s

100 200 500 1000 2000 5000 10000

Fortran
ESSL
 Chapter 9. Application tuning 369

The ESSL DGEMM routine is consistently higher than 90% of peak performance
for matrixes with rank higher than 500. Peak performance for this particular
POWER5 is 6.6 Gigaflops per second.

9.7 Parallel programming general concepts
Parallel computing involves dividing a task into smaller and more manageable
blocks and distributing these blocks, in our case, among processors (physical or
logical processors). In parallel computing, scientific and engineering applications
are very important. They can take full advantage of a system with multiple
processors, such as the IBM POWER5 server. In order to take full advantage of
all of the power of a system with many or few processors, it is necessary to
consider the following issues:

� Parallel algorithms

To be able to make use of all of the processors that are available on
POWER5, we need algorithms that can be efficiently parallelized.

� Parallel languages

To implement a parallel algorithm, a parallel language is required. AIX 5L and
Linux on POWER5 support the most common parallel paradigms.

� Parallel programming tools

This may involve evaluating performance of a particular application. As in the
previous sections, this can answer questions such as how efficiently
applications are taking advantage of the POWER5 architecture. In addition,
parallel programming tools may involve interfaces that assist programmers
debugging and shielding them from any low-level machine characterization.

� Parallel compiler programming

As compilers become more sophisticated and more information regarding the
behavior of applications is put into the compiler, chances to provide
programmers with automatic parallelization become greater.

Metrics
Generally for parallel applications, performance is a function of more parameters
than for serial applications. Performance depends on the characteristics of the
input, and basic considerations such as number of processors, memory, and
370 Advanced POWER Virtualization on IBM Eserver p5 Servers

processor communication are very important. The optimal combination of all of
these variables defines good scalability. In this book we define scalability as:

Scalability A measurement of how close an application performs
proportional to the number of processors. It is expressed
as parallel speedup.

To measure parallel speedup, we rely on elapsed time. (See 9.1, “Performance
bottlenecks identification” on page 312.) The parallel time is not just the
cumulative time for the parallel regions; it is the elapsed time from beginning to
end of the simulation. In effect, this definition includes sequential and parallel
regions. In scientific and engineering applications this is the most practical way to
define it. The parallel speedup is defined as follows:

Parallel speedup A measurement that reflects scalability or the ability of an
application to reduce the time to solution proportional to
the number of processors:

Efficiency is simply where p is the number of processors.

S Tsequential
Tparallel

----------------------------------=

e S
p
----=
 Chapter 9. Application tuning 371

372 Advanced POWER Virtualization on IBM Eserver p5 Servers

Chapter 10. Partition Load Manager

A general presentation of Partition Load Manager is provided in chapters 3 and 6
of Advanced POWER Virtualization on IBM eServer p5 Servers Introduction and
Basic Configuration, SG24-7940. Chapter 3 contains a description of the general
behavior of Partition Load Manager, and Chapter 6 has a detailed explanation of
Partition Load Manager installation and configuration.

10
© Copyright IBM Corp. 2005. All rights reserved. 373

10.1 When and how should I use Partition Load
Manager?

Partition Load Manager for AIX 5L is a load manager that provides automated
processor and memory resource management across dynamic LPAR–capable
logical partitions running AIX 5L V5.2 or AIX 5L V5.3. Partition Load Manager
allocates resources to partitions as requested, within the constraints of a
user-defined policy. It assigns resources from partitions with low usage to
partitions with a higher demand, improving the overall resource utilization of the
system. Partition Load Manager works with both dedicated partitions and
micro-partition environments.

Partition Load Manager is an optional feature of most IBM Sserver p5 servers.
(It is standard in p-590 and p-595 models.) In many cases, you can run your
server satisfactorily without Partition Load Manager. First, this section shows
how Partition Load Manager relates to other workload management tools
available. This section then describes the cases where you would want to take
advantage of Partition Load Manager. Finally, it provides best practices for
deploying Partition Load Manager.

Although it is possible to manage the resources of a Virtual I/O Server with
Partition Load Manager, this requires manual setup of Partition Load Manager so
that the restricted shell (rsh) can be used on this partition. We therefore do not
recommend that you perform this kind of resource management.

10.1.1 Partition Load Manager and other load-balancing tools
The POWER Hypervisor provides some built-in features to automatically allocate
physical CPU resources. AIX 5L also provides load-balancing possibilities using
Workload Manager (WLM). In this section, we compare these tools with Partition
Load Manager.

Partition Load Manager versus POWER Hypervisor resource
allocation

For dedicated partitions and capped micro-partitions, the POWER Hypervisor
deals with resource allocation only at boot time and during dynamic LPAR
operations generated from the HMC. At boot time, the POWER Hypervisor

Note: Partition Load Manager can be used to manage AIX 5L V5.2 and V5.3
and Virtual I/O Server partitions. Partition Load Manager does not currently
manage i5/OS or Linux partitions.
374 Advanced POWER Virtualization on IBM Eserver p5 Servers

checks for available resources and presents the booting partition with either its
desired amount of resources, if available, or a smaller amount if not. After the
partition is booted, the POWER Hypervisor will not modify the resources that are
allocated to the partition unless a system administrator issues commands from
the (Hardware Management Console) HMC.

Furthermore, if dedicated partitions (that are defined on the servers) are not
booted, their unused processors will be moved by the POWER Hypervisor to the
free processor pool for use by micro-partitions, and given back to the dedicated
partitions when they are booted.

For uncapped micro-partitions, AIX 5L V5.3 provides an additional resource load
balancing: As shown in Chapter 5, “Micro-Partitioning” on page 93, a partition’s
unused processor time is given to other partitions when the kernel calls the
H-cede or H-confer POWER Hypervisor calls. This freed processor time is then
shared between the uncapped micro-partitions. This resource management is
limited to processors and does not balance memory.

After partitions are booted, the POWER Hypervisor makes sure that each
partition gets its share of resources as defined on the HMC:

� Memory and number of physical processors for dedicated partitions

� Memory, processing units, and number of virtual processors for
micro-partitions

� Possibly additional processing power for uncapped micro-partitions

But the POWER Hypervisor does not dynamically modify these resource shares
by itself.

Partition Load Manager adds a level of automation in the allocation of resources.
It dynamically changes the amount of resources given to each partition.

Partition Load Manager versus Workload Manager
Partition Load Manager and WLM can be used concurrently. There is no overlap
in their scope:

� The scope of Partition Load Manager is the set of hardware resources
(processors and memory) that are configured in a physical server. Partition
Load Manager dynamically allocates these physical resources to partitions.

� The scope of WLM is the set of resources (processor, memory, and disk I/O)
within one partition. WLM dynamically allocates these resources among the
processes running within one partition.

Because WLM allocates resources according to configuration files that contain
relative values (percentage or shares) and not absolute values, WLM can work
 Chapter 10. Partition Load Manager 375

independently of the allocation of resources by Partition Load Manager to a
partition.

Consider this (very simplified) example. A partition contains two processes, P1
and P2, that are managed by WLM, so that P1 gets three shares of CPU and P2
gets two shares. Initially, the partition is allocated two physical processors, so P1
is using 60% of two processors (1.2 processor) and P2 is using 40% of two
processors (0.8 processor). Later on, if processors become unused in the server
and the partition is given three extra processors by Partition Load Manager, P1
will get 60% of five processors (three processors), and P2 will get two
processors. The WLM priorities defined by shares are kept unchanged, and each
process gets more physical resources thanks to the Partition Load Manager
action, without any need to modify the WLM settings. In other words, WLM
manages percentages of available resources given by Partition Load Manager.

10.1.2 When to use Partition Load Manager
Partition Load Manager provides an automated way to move processing power
and memory between dynamic LPAR–capable logical partitions. The
Sserver p5 servers support two types of partitions (dedicated partitions and
micro-partitions), and Partition Load Manager provides slightly different benefits
in each case. The following sections presents situations in which Partition Load
Manager can be used, first for managing dedicated partitions, then to manage
micro-partitions.

Partition Load Manager for dedicated partitions
In dedicated partitions, Partition Load Manager is a replacement for the manual
dynamic LPAR reallocation of resources that a system administrator performs
using the HMC. Rather than having to monitor partitions for lack or excess of
computing resources, the system administrator can define, in a configuration file,
thresholds for the use of these resources by the partitions. Partition Load
Manager monitors the actual resources utilization against these thresholds, and
automatically moves some resources from the partition with a low demand for
these resources to the partition with a high demand.

If your system contains partitions with a fairly constant workload and equal
relative priority, Partition Load Manager may offer little benefit. However, if you
manually reconfigure your partitions using the HMC DPLAR feature, or if your
partitions have a changing resource demand over time, Partition Load Manager
can help you. Here are a few examples.

Partitions with unpredictable workload peaks
You may decide to consolidate onto a large Sserver p5 server several
applications that are running on independent servers. Each independent server
376 Advanced POWER Virtualization on IBM Eserver p5 Servers

is sized with enough processors and memory to satisfy the application peak
loads, but these resources are unused a significant part of the time. Because the
peaks of all applications are statistically spread over time, you can install a new
server with fewer overall computing resources. Each application now runs in its
own partition, for which you define a minimum, a desired, and a maximum
amount of processing power and memory. When all partitions are booted, they
are each given their desired amount of resources (assuming the sum of desired
values is less than the overall server capacity). The amount of resources that are
allocated to each partition will not change when one partition reaches a peak of
activity. By activating Partition Load Manager with one configuration file using the
same minimum/desired/maximum thresholds as those defined in the HMC, the
partition with a peak of activity automatically takes advantage of the unused
resources.

Partitions with time-based priorities
Assume that a server has two partitions that must be given different priority over
time:

� For example, one partition is providing interactive service to end users, and
we want to give priority to this partition only when the end users are awake.
The other partition processes batch-type jobs and we want to give it priority at
night, even though some end users may access the system.

� Another example of such a scenario is with one application that processes
weekly reports and will get most of the server resources on Saturdays and
Sundays, and another application that produces the data during the week.

In these cases, we can define two Partition Load Manager configurations that will
be activated at different times. Here is an example that uses an eight-way server
with 32 GB of memory:

1. On the HMC, we defined partitions P1 and P2 with the same amount of
resources, so they can each use up to seven processors and 28 GB of
memory, as shown in Table 10-1.

Table 10-1 Partitions resources definition on the HMC

2. We defined two Partition Load Manager configurations for each of the time
periods (night/day and weekdays/weekends). Table 10-2 on page 378 shows
the settings of the resources in Partition Load Manager for the time period
when partition P2 will have priority over P1.

Minimum Desired Maximum

Processors 1 2 7

Memory 4 8 28
 Chapter 10. Partition Load Manager 377

Table 10-2 Resource allocations for time period 1

The table for the other time period gives the opposite values to each partition.
With these values, we guarantee that the partition with the highest priority gets at
least five processors (and as many as seven). The partition with the low priority
could go to as little as one processor if the other partition has a very high
resource demand. Furthermore, compared to not using Partition Load Manager,
this configuration adds some flexibility to the configuration within each time
period, because the memory and processing resource of each partition can still
fluctuate. For example, if the high-priority partition does not use all of its
processing resource, the low-priority partition will be able to use up to three
processors automatically.

Partition Load Manager does not provide a time-based reconfiguration feature.
The change of configuration at the boundary between the two time periods is
implemented using (for example) the cron command to load a new configuration
file in the PLM manager.

When you plan to activate several Partition Load Manager policies over time
using low-minimum and high-maximum values in the partition profiles on the
HMC, allow for more flexibility with the Partition Load Manager policies because
these (HMC profile) values bound the values that can be used in the Partition
Load Manager policy.

Partitions subsets: multiple clients
In this scenario, a large server is used to host applications belonging to several
clients. Each client has paid for a fixed amount of resources, and each client
needs to run several partitions.

In this case, you can take advantage of the Partition Load Manager concept of
partition group.

A group is allocated a number of processors and a chunk of memory. Partition
Load Manager reallocates these resources among the partitions belonging to
this group. At least one group must be defined, and the simplest way to use
Partition Load Manager is to gather all managed partitions within the same
group.

Minimum Desired Maximum

P1 Processors 1 2 3

Memory 4 8 12

P2 Processors 5 6 7

Memory 20 24 28
378 Advanced POWER Virtualization on IBM Eserver p5 Servers

When managing multiple clients, a better way is to define for each client a group
that is allocated exactly the resources that the clients pays for. For example, the
server contains 64 processors, and one client pays to use 16 processors. If the
client needs five partitions, the client can then define the Partition Load Manager
configuration file with one group owning these 16 processors. All of these client
partitions belong to this group. The client can then configure the policies
according to his preferences for allocation of free resources between his own
partitions. This would have no impact on the allocation of the remaining 48
processors belonging to other clients.

Partition Load Manager with micro-partitions
The scenarios described previously for dedicated partitions are also valid for
micro-partitions. But there are other cases specific to micro-partitioning in which
you may want to use Partition Load Manager.

Splitting the shared pool
All processors that will be used by micro-partitions belong to only one shared
pool. By using the Partition Load Manager groups, you can divide the shared
pool into several subsets, so that processor entitlement and number of virtual
processors resource balancing by Partition Load Manager is performed only
within each group. This is similar to “Partitions subsets: multiple clients” on
page 378.

To be more accurate about the behavior of the system when multiple groups are
created, each with a maximum entitled capacity: Partition Load Manager
distributes that capacity among the partitions within that group, but if any of the
running partitions in the system is uncapped, then unused CPU cycles from any
Partition Load Manager group can be given to the uncapped partition, whether it
is within or outside the Partition Load Manager group. If a client creates a
Partition Load Manager group and defines a maximum of five for the entitlement,
if any of those partitions is uncapped, that group can (technically) run with more
than an entitlement of five, because the POWER Hypervisor can assign unused
cycles from other partitions outside of our group.

Partition Load Manager does not prevent the POWER Hypervisor from trying to
optimize overall system throughput.

Partitions with concurrent peak loads
Several services may have their workload peaks at the same time, with a
workload profile similar to those presented in Figure 5-17 on page 130 and
Figure 5-18 on page 131. If these services are running in partitions of the same
Sserver p5 server, they will compete for resources. The business case for sizing
the server may have used the planned over-commit strategy described in 5.3.6,
“Micro-Partitioning planning guidelines” on page 133. This is because some of
 Chapter 10. Partition Load Manager 379

these services are not business-critical, and there is no justification for affording
a system that can handle all applications workload peaks during small periods
but be underutilized for long periods.

Partition Load Manager can help to allocate the systems resources to the
partitions that have the highest business priority while only providing the other
partitions with leftover resources. There are two parameters that the system
administrator can use for this purpose: cpu_guaranteed and cpu_shares (These
parameters are described in Section 10.2.3, “Configuration file and tunables” on
page 386).

� The cpu_guaranteed parameter represents an absolute value of processing
power that a partition is guaranteed to be allocated only if it needs it. If the
partition runs below this guaranteed amount, the remaining capacity is
available for the other partitions. By setting these parameters to a high value
for all partitions that are considered critical, you ensure them that this
processing power is available, whatever the workload of the other partitions.

� The cpu-shares parameter represents a relative value of processing power. It
is used only to allocate the CPU resources in excess of the sum of the
guaranteed CPU resources, between the partitions that need extra power.
Using a higher value of cpu_share for high-priority partition than for lower-
priority partitions enables prioritizing the distribution of the extra processing
power that cannot be allocated otherwise.

Let us take an example of how to use a combination of these parameters. We
assume that a system runs 10 micro-partitions with 10 CPUs in the free pool
(total entitlement equal to 1000). Five partitions have high priority and are
allocated a guaranteed CPU power of 180. The five partitions with low priority are
assigned only 20 guaranteed CPU power units. If all partitions experience a
workload peak except one of the high-priority partitions, which is idle, each
partition is given its guaranteed power, and there are 180 units left to distribute
among them. It is then the value of each partition’s cpu_share that defines how to
distribute this remaining power among the nine competing partitions.

Managing the number of virtual processors
The processing power of a micro-partition is defined by two parameters:

� Its entitlement (or percentage of one physical processor processing capacity)
� Its number of virtual processors

For an uncapped partition, the maximum processing power is reached when the
POWER Hypervisor has allocated to this partition an entitlement equivalent to its
allocated number of virtual processors running at 100%. If there are still some
idle processors in the server, the micro-partition cannot use them and this
unused processing power is wasted because the POWER Hypervisor will not
380 Advanced POWER Virtualization on IBM Eserver p5 Servers

automatically add virtual processors to the partition. To take advantage of the
available processing power, you must:

� Define the uncapped partition with a large maximum number of virtual
processors.

� Define Partition Load Manager policies that add virtual processors to the
partition when the entitlement exceeds a threshold (default is 80% of potential
entitlement).

Assuming that the uncapped partition has been booted with its desired number
of processors, when it reaches a peak of activity and if there is free processing
capacity in the free processor pool, the POWER Hypervisor gives the partition
extra CPU cycles to the limit of its current number of virtual processors. In
addition to the POWER Hypervisor action, Partition Load Manager monitors
several thresholds, and if one is crossed, Partition Load Manager receives a
message (through RMC), and starts increasing the partition entitled capacity and
number of virtual processors, up to the maximum number defined in the HMC for
the partition. AIX 5L automatically takes into account the extra processors.

In a similar way, you can define the low-utilization threshold that lowers the
number of virtual processors used by a partition when it has a low processing
activity.

No rule is valid for all application profiles, but in general, for the same overall
CPU entitlement, the performance of a micro-partition is better with a small
number of virtual processors running with a high CPU utilization, than with a
large number of virtual processors running at a low CPU utilization.

Many factors can influence this behavior. For example, an application that is not
programmed to use parallelism or AIX 5L V5.3 software, simultaneous
multithreading does not benefit from the availability of multiple processors. If this
application were run on a physical SMP system, it would not take advantage of
the physical processors. In the same way, when running on a micro-partition, it
would not take advantage of the multiple virtual processors. On a micro-partition,
you can improve the throughput by reducing the number of virtual processors:
the POWER Hypervisor will spend less time dispatching these virtual processors
and AIX 5L will spend less time trying to allocate processes to the processors.

If your create uncapped partitions on your system and your workload profile is
such that processing resources could be moved from partition to partition, we
recommend that you start deploying Partition Load Manager with the default
values of the processor/entitlement ratios. Then, you can start changing the
ratios to find the best fit for your applications.
 Chapter 10. Partition Load Manager 381

Managing the memory
All of the scenarios that we just described were related to reallocation of
processing power. Partition Load Manager can also reallocate physical memory
between partitions, and the scenarios we presented can also apply to memory
resource balancing.

10.1.3 How to deploy Partition Load Manager
When you have chosen to use Partition Load Manager, decide where to install
the PLM manager. Here are a few considerations to take into account:

� Currently, the PLM server can run only on AIX 5L, so you cannot use the HMC
as the Partition Load Manager. You need to find an AIX 5L server, and it can
be either a dedicated server or a partition on a POWER4 processor–based or
POWER5 processor–based system.

� Partition Load Manager does not require a dedicated AIX 5L instance. It can
run on a system that is also running other applications.

� One Partition Load Manager instance manages only partitions within one
physical server (one central processor complex, or CPC). However, you can
run multiple Partition Load Manager instances on the same AIX 5L system. If
you plan to manage partitions in many physical servers, you may want to
centralize all Partition Load Manager management functions within the same
AIX 5L instance to provide a single point of control for all Partition Load
Manager operations in your computer environment.

� Partition Load Manager uses very few processing resources. It uses
Resource Management and Control (RMC) to communicate between the
Partition Load Manager and the managed partitions. When Partition Load
Manager is activated, it sets up monitoring of threshold values on each
managed partition. When a threshold is reached, the managed partition
sends an event through RMC to the management server, which takes the
appropriate action. The Partition Load Manager does not poll the managed
partitions. You can find an example of resource requirements for a PLM
server in 10.4.1, “Partition Load Manager resource requirements” on
page 396.

� The Partition Load Manager can run in one of the partitions that it manages.

With these considerations, we propose a few recommended configurations:

� For a server farm or a large computing center, it is likely that some existing
AIX 5L servers are dedicated to infrastructure support. These could be the
control workstation of a PSSP1 cluster, the Management Station of a CSM2
cluster, a software repository such as a NIM3 server, or a monitoring server

1 PSSP: Parallel System Support Program
2 CSM: Cluster Systems Management
382 Advanced POWER Virtualization on IBM Eserver p5 Servers

such as Tivoli® TEC or TMR. The Partition Load Manager management
function requires very few processor cycles, memory, and disk space, so it
can be implemented on one of these infrastructure servers as long as it has
IP connectivity to all managed partitions. This solution has the advantage of
providing a single point of control for all operations related to Partition Load
Manager.

� For managing partitions in a single physical server, an inexpensive PLM
server can be instantiated by dedicating a small micro-partition. The
necessary disk space can be provided by a virtual disk exported from a
Virtual I/O Server (logical volume). The IP connection with the managed
partitions can be implemented through virtual Ethernet in memory VLAN, so
that no hardware Ethernet adapters is required. One Physical Ethernet
adapter would be needed for communication with the HMC, unless a put
Shared Ethernet Adapter can provide this connectivity.

� An even less expensive configuration is to install the Partition Load Manager
management function on one of the partitions running applications.

The choice then depends on the operations guidelines of each site.

10.2 More about Partition Load Manager installation and
setup

Chapter 6 of Advanced POWER Virtualization on IBM ̂p5 Servers
Introduction and Basic Configuration, SG24-7940. includes a detailed
explanation of basic Partition Load Manager installation and configuration.

In this redbook, we present more advanced installation and configuration options.
First, we briefly describe how Partition Load Manager works before we
investigate configuration details.

10.2.1 Overview of Partition Load Manager behavior
Partition Load Manager involves three (types of) entities:

� The PLM server that executes the Partition Load Manager code and decides
resource reallocation actions.

� The managed partitions, which can request more or fewer resources.

� The HMC that drives the physical server that hosts the managed partitions.
The HMC actually performs the resource reallocation actions decided by the
PLM manager.

3 NIM: The Network Installation Manager feature of AIX
 Chapter 10. Partition Load Manager 383

The Partition Load Manager resource manager is the server part of this
client-server model and it runs on AIX 5L V5.2 and AIX 5L V5.3. When it starts, it
uses RMC services to register several events on every client partition that will be
managed by Partition Load Manager. For Partition Load Manager to obtain
system information and dynamically reconfigure resources, it requires an SSH
network connection from the PLM manager to the HMC, as well as IP
connectivity between the PLM manager, the HMC, and the managed partitions.
The RMC services are responsible for gathering all of the status information. The
RMC daemon exports system status attributes and processes reconfiguration
requests from the HMC. With this data and in conjunction with the user-defined
resource management policy, Partition Load Manager decides what to do. Every
time a partition exceeds a threshold, Partition Load Manager receives an RMC
event. When a node requests additional resources, Partition Load Manager
determines whether the node can accept additional resources. If so, Partition
Load Manager conducts a search for available resources. It then checks the
policy file in order to see if a partition is more or less deserving of the resources.
Only then, Partition Load Manager allocates the requested resources.

Partition Load Manager uses a Micro-Partitioning entitlement model with a
guaranteed or desired amount of resources, amount of shares, and (optional)
minimum and maximum amounts. (The guaranteed amount of resources is the
amount guaranteed to a partition when demanded.) It can get the resources from
the free pool if they are available and the amount does not exceed its maximum,
take underutilized resources from other partitions, or take utilized resources from
partitions that are over their guaranteed resource. The allocated resource will
vary between minimum and maximum values defined in the Partition Load
Manager configuration file. For a partition to be allocated resources above the
guaranteed amount, Partition Load Manager must know its share amount
(relative priority versus other partitions priority). This amount is a factor between
1 and 255. The formula to calculate the ratio of resources allocated to each
partition is (shares of the partition) / (sum of shares from competing partitions).

Partition Load Manager manages partitions within groups. Each partition must be
a member of a group, and at least one group must be defined in the Partition
Load Manager policy. One PLM server can manage independent groups of
partitions but it cannot share resources across groups. It cannot take unused
resources in one group in order to satisfy a demand for resources by another
group. The partitions belonging to a group must be of the same type: either
micro-partitions or dedicated partitions. One group may contain both capped and
uncapped partitions. Partition Load Manager manages the entitled processor
capacity, memory, and number of virtual processors for both capped and
uncapped partitions.

System administrators must set up Partition Load Manager partition definitions in
a way that is compatible with the HMC policy definition. The Partition Load
384 Advanced POWER Virtualization on IBM Eserver p5 Servers

Manager cannot decrease a partition’s minimum below the HMC’s minimum, nor
can it increase a partition’s maximum over the HMC’s maximum. Partition Load
Manager will use the HMC partition definition minimum, desired, and maximum
partition resource values as Partition Load Manager minimum, guaranteed, and
maximum values if not specified in the Partition Load Manager policy. If the
Partition Load Manager minimum and maximum values are not within the range
defined on the HMC, Partition Load Manager will use an effective range defined
by the intersection of the ranges defined on the HMC and in the Partition Load
Manager configuration file.

10.2.2 Management versus monitoring modes
Partition Load Manager can execute in two modes: management and monitoring
modes, which are analogous to the WLM active and passive modes.

� In monitoring mode, Partition Load Manager receives through RMC a request
from partitions for resource reallocation when thresholds are reached.
Partition Load Manager appends an entry in its log for each received RMC
message but does not take action.

� In management mode, Partition Load Manager takes action for each RMC
message, according to the policies defined in the configuration file.

If you do not have a test environment on which to define the best Partition Load
Manager settings for your environment, if your production environment is critical,
or if you do not have a thorough understanding of the partitions workload profile,
we recommend that you start using Partition Load Manager in monitoring mode
only, with the default configuration values. You can then run it for a significant
time duration (one day, for example), and then analyze the log, looking for the
frequency at which Partition Load Manager would take actions.

You can also use the xplstat command to recognize workload patterns. When
you understand the workload profile of the managed partitions, you can decide
which values to use in the Partition Load Manager configuration files.

Partition reconfiguration is not an instantaneous action, especially for dedicated
processor or memory migration between partitions. You may not want to
generate such an action to respond to a very short activity peak, when you know
that the resources would no longer be needed in the following seconds.

Note: Because Partition Load Manager does not take action when in
monitoring mode, a request for additional resources will not be satisfied, and
the requesting partition will repeat the request until it no longer needs extra
resources. When analyzing the log, you should only take into account the
resource need changes.
 Chapter 10. Partition Load Manager 385

10.2.3 Configuration file and tunables
The system administrator who decides about deploying Partition Load Manager
has only two ways of defining Partition Load Manager behavior:

1. The values that are set in the Partition Load Manager configuration file.

2. The arguments that are given to the xlplm command (used to start Partition
Load Manager).

The xlplm command is addressed in 10.3, “Managing and monitoring with
Partition Load Manager” on page 390.

The Partition Load Manager configuration file is also called policy file in the
Partition Load Manager documentation and on the Web System Management
panels. You must create at least one policy file for each CPC on which you want
to manage partitions. Policy files are ASCII files with a formal syntax. The policy
file can be created (and modified) either through Web System Management
panels or by using a text editor (vi, emacs).

If you start Partition Load Manager using a policy file with an incorrect syntax,
Partition Load Manager startup will fail. If Partition Load Manager is already
running and you try to load a new policy with an incorrect syntax, Partition Load
Manager will continue executing with the previously loaded policy.

The policy file contains different variables, called attributes, which are grouped in
several sections, each with a different scope: global to one CPC, global for a
group of partitions, or specific to one partition. Tunables, a subset of the
attributes, define Partition Load Manager behavior. Tunables can be set at a
system-wide level, and optionally overridden for some groups or partitions.
Example 10-1 shows a policy for a physical server on which two partitions are
managed by Partition Load Manager.

Example 10-1 Partition Load Manager policy file

#Example PLM policy file.

globals:
 hmc_host_name = p5hmc1
 hmc_user_name = hscroot
 hmc_cec_name = p5Server1

example:
 type = group
 cpu_type = shared

Note: When you edit the file manually, take care to respect the syntax.
386 Advanced POWER Virtualization on IBM Eserver p5 Servers

 cpu_maximum = 2
 mem_maximum = 0

p5_1test1:
 type = partition
 group = example
 cpu_guaranteed = 0.3
 cpu_maximum = 0.6
 cpu_minimum = 0.1
 cpu_shares = 2
 cpu_load_high = 0.3
 cpu_load_low = 0.2
 cpu_free_unused = yes

p5_1test3:
 type = partition
 group = example
 cpu_guaranteed = 0.3
 cpu_maximum = 0.5
 cpu_minimum = 0.1
 cpu_shares = 2

Partition Load Manager can read the definition of partition on the HMC using
SSH. When starting managed partitions, Partition Load Manager reads the
definition of all partitions to extract default values for these attributes. Then
Partition Load Manager reads the Policy file to override the HMC-defined values.

We now discuss some of the attributes.

cpu_minimum, cpu_guaranteed, cpu_maximum,
memory_minimum, memory_guaranteed, memory_maximum

The values are optional. If not present, Partition Load Manager accesses the
definition of the partition in the HMC and extracts the values of minimum,
desired, and maximum values for the CPU or memory to set these values.

You can set these attributes to values different from the HMC values.

For example, the HMC minimum value is defined as the minimum amount of
resources needed to start a partition. However, you may know that if the partition
is only given that amount of resources, its performance is degraded. In this case,
you may want to define a Partition Load Manager cpu_minimum with a higher
value than the HMC minimum, so that Partition Load Manager will never make

Note: Partition Load Manager never overwrites a partition profile in the HMC.
 Chapter 10. Partition Load Manager 387

the partition work with bad performance. In other words, the HMC value is the
bare minimum of resources needed to run the partition, while the Partition Load
Manager minimum is the lowest reasonable value for acceptable performance.

Let us take another example. The HMC desired memory is the size of memory a
partition will be allocated at boot time, when the system has enough memory
resources for all partitions to be started. When running, the partition may run
perfectly well with less memory. For example, an FTP server needs memory to
load the files requested by FTP clients, but no longer needs this memory when
the files are sent. Because there is no memory clean-up in AIX 5L, the memory
used for these files will remain occupied. By setting the memory_guaranteed
value to the same value as memory_minimum, you enable Partition Load
Manager to request the partition to release the memory it no longer needs, to
give it to other partitions with real needs for memory.

group
This tunable must appear in each partition stanza. One partition can belong to
only one group.

cpu_shares
When Partition Load Manager is not managing an uncapped partition, the
POWER Hypervisor allocates unused processor time to the uncapped partition
according to the current active weight of the partition, defined by the value of the
partition weight as defined on the HMC.

When the uncapped partition is managed by Partition Load Manager, its current
active weight is overridden by the cpu_shares value defined on the Partition Load
Manager policy file.

cpu_shares defines the relative priority of the partitions. Unused resources are
allocated to partitions that have their guaranteed (desired) amount or more, in
the ratio of their share value to the number of active shares.

The default value of the HMC-defined weight is 128, and the default of the
cpu_shares value is 1, so it is important to make sure that all partitions within a
Partition Load Manager group use a current active weight set from the same
source: the HMC definition of Partition Load Manager policy file.

Tip: There is a concept of group in the HMC that can be used when defining
the partition. If you plan to use Partition Load Manager groups, we
recommend that you do not use the HMC-defined groups.
388 Advanced POWER Virtualization on IBM Eserver p5 Servers

hmc_command_wait
As mentioned before, the reallocation of resources is not immediate. It takes
some time for the HMC to ask a partition to release a CPU, move it from one
partition to another, and then tell the target partition to activate the CPU. The
hmc_command_wait attribute is the delay Partition Load Manager waits when
asking the HMC to perform an operation, before determining that the HMC failed
to process the request. If you have already used the dynamic LPAR feature, you
can set up this attribute to the value of the dynamic reconfiguration timeout used
for dynamic LPAR operations on your system.

cpu_load_low, cpu_load_high
These tunables are the threshold values beyond which Partition Load Manager
decides that a partition has unneeded CPU or not enough CPU. The difference
between these two values must be greater than 0.1 (entitlement measured as a
fraction of one processor capacity). When reaching such a threshold, dedicated
partitions give or receive one dedicated processor, while a micro-partition gives
or receives an amount of entitled capacity defined by the ec_delta tunable. When
adding capacity, ec_delta is a percentage of current capacity, while for removing
capacity, ec_delta is a percentage of the resulting capacity.

The metric for these two tunables is the average number of runnable threads per
processor. This is the value you would obtain when dividing the r column of the
vmstat command (or the runq_sz column of the sar -q command, or the load
average field of the uptime command) by the number of logical processors of the
partitions. You can also find this value in the rq field of the new AIX 5L V5.3
mpstat -d command.

cpu_free_unused, mem_free_unused
These tunables define whether unneeded resources are taken from a partition
when they are detected as unneeded (when set to yes), or only when another
partition needs them (when set to no).

Immediately returning unused resources to the free pool improves the time to
complete resource allocation to another partition. However, it decreases the
performance of the partition that returns the resources if it needs extra resources
later on.

Therefore, these values should be set to yes for partitions that seldom use extra
resources and to no for partitions that have frequent peaks of resource utilization.

ec_per_vp_min, ec_per_vp_max
These are the two tunables to use to have Partition Load Manager automatically
change the number of virtual processors of a micro-partition. Partition Load
Manager does not directly handle this number because virtual processor addition
 Chapter 10. Partition Load Manager 389

and removal is triggered by capacity changes. When entitlement must be added
or removed, if the reallocation of entitled capacity results in crossing the
ec_per_vp_min or ec_per_vp_max threshold, then virtual processors are also
added or removed from the partition.

mem_util_low, mem_util_high, mem_pgstl_high
These tunables are the threshold values beyond which Partition Load Manager
decides a partition has unneeded or insufficient memory.

To be considered as a memory requester, the partition must reach both
mem_util_high and mem_pgstl_high. There is no lower limit for the page steal
rate.

The unit used to measure mem_util_low and mem_util_high are is a percentage
of memory. The memory utilization of the partition is defined as:

pct = ((memory pages - free pages) / memory pages) * 100

memory pages and free pages are the values returned by the vmstat -v
command.

The unit that is used to measure mem_pgstl_high is a number of page steals per
second. The value compared to the mem_pgstl_high threshold is the value
returned in the fr field of the vmstat command.

10.3 Managing and monitoring with Partition Load
Manager

There is a single point of control for configuring, managing, and operating
Partition Load Manager: the PLM manager. The Partition Load Manager policy
and log files are stored on the PLM server. Partition Load Manager commands
can only be used on the PLM server. There are no Partition Load Manager
commands that can be used from the HMC or the Partition Load Manager
managed partitions.

Partition Load Manager can be operated in two ways:

1. The UNIX way, using the AIX 5L command line interface to edit the policy
files, browse the logs, start and stop Partition Load Manager, and so on.

2. The GUI way using Web System Management to access the PLM server.

Note: There is no SMIT panel to configure and operate Partition Load
Manager.
390 Advanced POWER Virtualization on IBM Eserver p5 Servers

Operating Partition Load Manager is very simple, as it has only two commands:

xlplm Used to start, stop, modify, or query Partition Load Manager.

xlpstat Used to display statistics about the managed partitions.

Web System Management provides the equivalent functions in a graphical
environment.

10.3.1 Managing multiple partitions
We have mentioned that one Partition Load Manager policy file controls
partitions that must all run on the same CPC, and that one PLM manager can
manage several partitions executing onto different physical servers. Let us be
more accurate about how this works.

We will call:

PLM server The AIX 5L instance in which the Partition Load
Manager code has been installed.

PLM server instance The server part of the Partition Load Manager
client/server relationship: The clients are the managed
partitions.

On the PLM server, you can start several PLM server instances by using the
xlplm command several times, with different policy files.

One PLM server instance executes only one policy file at a time, and therefore
manages only partitions within the same CPC.

The way to start a PLM server instance is to use the xlplm command with the -S
(Start) argument, and the name of a policy file:

xlplm -S -p policy_file

This command start a server instance which will be named default. If you want to
start multiple PLM server instances from the same PLM server, you need to give
a name to each PLM server instance:

xlplm -S -p policy_file server_instance_name

Each policy file starts with a global stanza containing the host name of the HMC
that manages a CPC and the name of the CPC as seen from the HMC. For each
set of managed partitions, you may want to use a different set of Partition Load

Note: Each PLM server instance executes under AIX 5L as an xlplmd
daemon.
 Chapter 10. Partition Load Manager 391

Manager policies (for example, to change the Partition Load Manager behavior
with the time of day). A good practice is therefore to create policy file names and
PLM server names according to mnemonic naming conventions.

A simple example is:

<Server_Instance_Name> =:: <HMC_shortname><CEC_name>
<Policy_Name> =:: <Server_Instance><Suffix>

If you type two commands in a row, you know that you have applied the third
policy defined for the second CPC managed by your first HMC, and the fourth
policy defined for the first CPC managed by the second HMC.

xlplm -S -p hmc1cec2policy3 hmc1cec2
xlplm -S -p hmc2cec1policy4 hmc2cec1

In the same way, you should use a meaningful name for the log files. There is one
log file per PLM server instance.

You can start two PLM server instances to manage partitions that are hosted on
the same CPC. This can be useful for examples when two different system
administration teams manage different sets of partitions on one system. Each
team can have full control of its own Partition Load Manager policy file.

Using the xlplm command with -Q (Query) displays the policy used for each PLM
server controlled from one PLM manager:

xlplm -Q Shows all active instance names.

xlplm -Q server_instance_name Shows all details for one instance.

10.3.2 Extra tips about the xlplm command
The xlplm command has multiple arguments and flags. Refer to the official
documentation for an extensive explanation of this command.

Here are a few:

-C The -C (Check) flag is used to verify the syntax of a policy
file. It is useful when the file has been edited manually
instead of through Web System Management. The -C flag
does not check the policy file tunables consistency versus
the values defined in the HMC.

-M The -M (Modify) flag enables the system administrator to
dynamically load a new policy, to ask for writing the log in
a different log file, or to switch from monitoring to
managing mode. This flag can be used when the xlplm
392 Advanced POWER Virtualization on IBM Eserver p5 Servers

command is called by a crontab, for example, when
time-based policies must be used.

The Modify flag can be used to change resources groups.
For example, if a system is intensively used during
daytime and all partitions are competing for resources, it
can be a good practice to define multiple groups and to
gather partitions by workload type, so that each partition
is sure to have a fair share of the resources. This
improves the overall system throughput. However, if the
system is underused at night, optimizing the throughput is
no longer a critical issue. It can then be better to gather all
partitions in one large group, so that if one partition has a
burst of activity, it can use all available resources. In this
case, the policy helps improve the response time of one
partition rather than the overall throughput.

-Q -f By default, the -Q (query) option displays the intersection
of the min and max range as defined in the HMC and in
the Partition Load Manager policy file. When used with
the -f flag, the command returns the values defined in the
Partition Load Manager policy file.

-Q -v The -v (verbose) option, when used with the -Q option,
provides extra information. In particular, this is the option
to use to see whether the policy is used in management
or monitoring mode, and to see the thresholds set for
each partition and group.

10.3.3 Examples of Partition Load Manager commands output
This section shows some examples of Partition Load Manager command output.
Example 10-2 displays the output of the xlplm query command when used in
command line mode.

Example 10-2 xlplm query

xlplm -v -Q benchtest
PLM Instance: benchtest

 CEC Name Server-9117-570-SN105428C
 Mode manage
 Policy /etc/plm/policies/testBenchmark
 Log /var/test.out
 HMC Host isvlab064.austin.ibm.com
 HMC User hscroot

GROUP: Benchmark1
 Chapter 10. Partition Load Manager 393

 CUR MAX AVAIL RESVD MNGD
 CPU: 2.77 4.00 1.23 0.00 Yes
 MEM: 14336 0 0 0 No

 CPU TYPE: shared

 basil.austin.ibm.com

 RESOURCES:
 CUR MIN GUAR MAX SHR
 CPU: 1.72 0.10 1.00 4.00 128
 MEM: 7168 1024 7168 15360 1

 TUNABLES:
 INTVL FRUNSD LOADLO LOADHI DELTA PGSTL
 CPU: 3 1 0.75 1.00 20% -
 MEM: 6 0 50% 90% 16 0

 MIN MAX
 PER VP CAP: 0.74 0.90

 sage.austin.ibm.com

 RESOURCES:
 CUR MIN GUAR MAX SHR
 CPU: 1.04 0.10 1.00 4.00 128
 MEM: 7168 1024 7168 15360 1

 TUNABLES:
 INTVL FRUNSD LOADLO LOADHI DELTA PGSTL
 CPU: 3 1 0.75 1.00 20% -
 MEM: 6 0 50% 90% 16 0

 MIN MAX
 PER VP CAP: 0.74 0.90

#

You can also use Web System Management tool to manage Partition Load
Manager. Figure 10-1 on page 395 shows where to find Partition Load Manager
in the Web System Management navigation area.
394 Advanced POWER Virtualization on IBM Eserver p5 Servers

Figure 10-1 Partition Load Manager management using Web System Management

Figure 10-2 and Figure 10-3 on page 396 show the partitions processor statistics
and memory statistics, respectively.

Figure 10-2 Partition Load Manager processor statistics using Web System Management
 Chapter 10. Partition Load Manager 395

Figure 10-3 Partition Load Manager memory statistics using Web System Management

10.4 Partition Load Manager performance impact
The performance aspect of Partition Load Manager is twofold: the resource
requirement needed to run the PLM server, and the impact of Partition Load
Manager actions on managed partitions performance.

10.4.1 Partition Load Manager resource requirements
The Partition Load Manager function is provided on the server by the xlplmd
daemon. Here are some measurements of this daemon’s resource requirements.

� We set up an environment in which Partition Load Manager manages two
partitions, and we configure it so that Partition Load Manager receives three
RMC events every minute. Example 10-3 shows how you can use the tail
command to monitor the Partition Load Manager log and see these events.

Example 10-3 Checking the Partition Load Manager log

tail -f test.out
<04/06/70 17:38:40> <PLM_TRC> Event notification of CPUZone low for Benchmark1 .
<04/06/70 17:39:05> <PLM_TRC> Event notification of CPUZone low for Benchmark2 .
<04/06/70 17:39:20> <PLM_TRC> Event notification of CPUZone low for Benchmark1 .
<04/06/70 17:39:34> <PLM_TRC> Event notification of CPUZone low for Benchmark2 .
<04/06/70 17:40:00> <PLM_TRC> Event notification of CPUZone low for Benchmark1 .
<04/06/70 17:40:14> <PLM_TRC> Event notification of CPUZone low for Benchmark2 .
<04/06/70 17:40:40> <PLM_TRC> Event notification of CPUZone low for Benchmark1 .
<04/06/70 17:40:54> <PLM_TRC> Event notification of CPUZone low for Benchmark2 .
396 Advanced POWER Virtualization on IBM Eserver p5 Servers

In a stable environment, the frequency of these events would be much lower.

� Under these conditions, Partition Load Manager uses approximately 1.4 MB
of memory, as shown in Example 10-4. Column RSS displays the size (in 1 KB
units) of the real memory used by xlplmd.

Example 10-4 Memory utilization for the Partition Load Manager daemon

ps xvg 344232
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 344232 - A 0:00 66 1288 1396 xx 78 120 0.0 0.0 xlplmd
b
#

� We also use the ps command to measure the amount of processing
resources used by the Partition Load Manager daemon. Example 10-5 shows
that after managing partitions for 1.5 hours, Partition Load Manager has only
used 11 seconds of CPU time. It also shows that the percentage of memory
and CPU used by the daemon is not measurable (percentage equal to 0).

Example 10-5 Processing ressources needed by Partition Load Manager

ps -o uid,pid,pmem,etime,time,pcpu,comm -p 405676
UID PID %MEM ELAPSED TIME %CPU COMMAND
 0 405676 0.0 01:29:36 00:00:11 0.0 xlplmd
#

The Partition Load Manager daemon does not generate any significant disk or
network activity.

Conclusion
The resources that are required to run the Partition Load Manager daemon are
not a criteria for deciding where to instantiate the PLM server. It can run on any
existing AIX 5L system with no visible impact on this system performance.

10.4.2 Partition Load Manager impact on managed partitions
Besides the Partition Load Manager commands described in Section 10.3,
“Managing and monitoring with Partition Load Manager” on page 390, one way of
visualizing the effect of Partition Load Manager is to use the AIX 5L V5.3
Performance Toolbox (PTX).

Figure 10-4 on page 398 shows a PTX window while CPU-intensive programs
are executing. A four-way p5-570 is split in two uncapped micro-partitions, called
Basil and Sage. Sage is the partition where a benchmark program is run (the
benchmark partition). This benchmark consists of many processes running in
parallel, so that it can take advantage of as many logical processors as are given
 Chapter 10. Partition Load Manager 397

to the partition. Basil is the monitoring partition. It runs the PLM server and the
PTX management program (xmperf). It is also loaded with dummy programs to
show the impact on the benchmark partition of varying workload in the other
partitions.

Figure 10-4 Partition Load Manager impact on number of virtual processors

A B

AB

Note: To help readers whose copies of this book are printed in black and
white, we have annotated the figure. The arrow with the circled A points to the
blue line, and the arrow with the circled B points to the red line. The blue line
presents many peaks, and the red line looks like stairs.
398 Advanced POWER Virtualization on IBM Eserver p5 Servers

The screen has three parts (also called instruments in PTX terminology):

� The top part shows the workload of the monitoring partition. It has two lines:

– The blue line displays the run queue.

– The red line displays the number of virtual processors.

� The middle part shows the workload of the benchmark partition. It also
displays the run queue size and the number of virtual processors using the
same graphical conventions as the top part.

� The bottom part shows the CPU utilization of the benchmark partitions. It
shows the percentage of CPU time spent in user, kernel, wait, or idle mode.

In each part, the X-axis represents time, with a scale using a 24h base time
representation.

The figure demonstrates that Partition Load Manager will adjust the number of
virtual processors allocated to a partition according to resources needed and the
amount of available resources in the server. Partition Load Manager also adjusts
the CPU entitlement, but for the sake of clarity of the diagram, we have chosen to
plot only two values (run queue size and number of virtual processors):

� Initially, both partitions have only one processor, because this is the minimum
as defined in the Partition Load Manager policy, and there is no activity.

� Shortly before 14h58, the benchmark is started on Sage, and Basil is nearly
idle. Partition Load Manager notices the need for extra resources of Sage,
and gradually increases its number of allocated virtual processors up to the
maximum (4) to use all resources in the server.

� Around 15h00, the workload on Basil increases (due to starting some
CPU-intensive programs).

� Around 15h01, Partition Load Manager notices that Basil’s resource need is
persistent, and it starts increasing its entitlement and number of virtual
processors (set to 2).

� At the same time, because all resources in the system are used, Partition
Load Manager decreases the entitlement of Sage. Because the ratio of
entitlement per processor falls below the ec_per_vp_min threshold, Partition
Load Manager removes one virtual processor from Sage.

� At 15h02, the system is stable. Both partitions are running CPU-intensive
applications. Since they are defined with the same thresholds, tunables, and
priority in the policy file, Partition Load Manager allocates two virtual
processors to each of the partitions.
 Chapter 10. Partition Load Manager 399

400 Advanced POWER Virtualization on IBM Eserver p5 Servers

Related publications

The publications that are listed in this section are considered particularly suitable
for a more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 403. Note that some of the documents referenced here may
be available in softcopy only.

� Advanced POWER Virtualization on IBM ̂p5 Servers Introduction
and Basic Configuration, SG24-7940

� AIX 5L Differences Guide Version 5.3 Edition, SG24-7463

� AIX 5L Performance Tools Handbook, SG24-6039

� AIX Logical Volume Manager, From A to Z: Introduction and Concepts,
SG24-5432

� The Complete Partitioning Guide for IBM ̂pSeries Servers,
SG24-7039

� IBM ̂pSeries Facts and Features, G320-9878

� IBM ̂pSeries Sizing and Capacity Planning, SG24-7071

� Logical Partitions on IBM PowerPC: A Guide to Working with LPAR on
POWER5, SG24-8000

� Managing AIX Server Farms, SG24-6606

� The POWER4 Processor Introduction and Tuning Guide, SG24-7041

� A Practical Guide for Resource Monitoring and Control (RMC), SG24-6606

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and
Tuning Guide, SG24-5155

� Understanding IBM ̂pSeries Performance and Sizing, SG24-4810
© Copyright IBM Corp. 2005. All rights reserved. 401

Other publications
These publications are also relevant as further information sources:

� “IBM POWER5 Chip: A Dual-Core Multithreaded Processor,” Ron Kalla,
Balaram Sinharoy, Joel M. Tendler, IBM, IEEE micro, March/April 2004 (Vol.
24, No. 2) pp. 40-47.

� “Performance Workloads in a Hardware Multi-threaded Environment,” by Bret
Olszewski and Octavian F. Herescu

http://www.hpcaconf.org/hpca8/sites/caecw-02/s3p2.pdf

� “IBM ̂POWER4 System Microarchitecture,” J. M. Tendler, J. S.
Dodson, J. S. Fields, Jr., H. Le, and B. Sinharoy, IBM Journal of Research and
Development, Vol. 46, No. 1, 2002, pp 5-26.

� “Simultaneous Multi-threading: A Platform for Next-Generation Processors,”
Eggers, Emer, Levy, Lo, Stamm, Tullsen, IEEE micro, September/October
1997 (Vol. 17, No. 5), pp. 12-19.

� Electronic Service Agent for pSeries and RS/6000 User’s Guide

ftp://ftp.software.ibm.com/aix/service_agent_code/AIX/svcUG.pdf

� Electronic Service Agent for pSeries Hardware Management Console User’s
Guide

ftp://ftp.software.ibm.com/aix/service_agent_code/HMC/HMCSAUG.pdf

� “An Introduction to Virtualization,” Amit Singh

http://www.kernelthread.com/publications/virtualization/index.html

� “AIX 5L Support for Micro-Partitioning and SMT”, L. Browning

http://www.ibm.com/servers/aix/whitepapers/aix_support.pdf

� Sanger Institute Human Genome Server

http://www.ensembl.org/Homo_Sapiens/

� Fluent, Inc.

http://www.fluent.com

� The GNU Profiler by J. Fenlason and Richard. Stallman

http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html

Online resources
These Web sites are also relevant as further information sources:

� Simultaneous Multithreading Project
402 Advanced POWER Virtualization on IBM Eserver p5 Servers

ftp://ftp.software.ibm.com/aix/service_agent_code/AIX/svcUG.pdf
ftp://ftp.software.ibm.com/aix/service_agent_code/HMC/HMCSAUG.pdf
http://www.hpcaconf.org/hpca8/sites/caecw-02/s3p2.pdf
http://www.ibm.com/servers/aix/whitepapers/aix_support.pdf
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html
http://www.kernelthread.com/publications/virtualization/index.html
http://www.ensembl.org/Homo_Sapiens/
http://www.fluent.com

http://www.cs.washington.edu/research/smt/index.html

� IBM AIX 5L home page

http://www.ibm.com/servers/aix/

� AIX Toolbox for Linux applications

http://www.ibm.com/servers/aix/products/aixos/linux/download.html

� Software for AIX 5L

http://www.ibm.com/servers/aix/products/

� CUoD process, brief explanation

http://www.ibm.com/support/docview.wss?uid=tss1fq102449

� IBM Configurator for e-business (IBM internal site)

http://w3.ibm.com/transform/crm/crmsite.nsf/public/config

� IBM ̂pSeries LPAR documentation and references Web site

http://www.ibm.com/servers/eserver/pseries/lpar/resources.html

� AIX and Linux training

http://www.technonics.com

� Linux on eServer p5 and pSeries information

http://www.ibm.com/servers/eserver/pseries/linux/

� Microcode Discovery Service information

http://techsupport.services.ibm.com/server/aix.invscoutMDS

� OpenSSH Web site

http://www.openssh.com

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications, and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support
 Related publications 403

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/support/docview.wss?uid=tss1fq102449
http://www.ibm.com/servers/aix/
http://www-1.ibm.com/servers/aix/products/aixos/linux/download.html
http://w3.ibm.com/transform/crm/crmsite.nsf/public/config
http://www-1.ibm.com/servers/aix/products/
http://www-1.ibm.com/servers/eserver/pseries/lpar/resources.html
http://www.ibm.com/servers/eserver/pseries/linux/
http://techsupport.services.ibm.com/server/aix.invscoutMDS
http://www.openssh.com
http://www.cs.washington.edu/research/smt/index.html
http://www.technonics.com

IBM Global Services

ibm.com/services
404 Advanced POWER Virtualization on IBM Eserver p5 Servers

http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Numerics
3dmon command 245

A
Address Resolution Protocol (ARP) 188
address translation 30–31

effective to real address translation (ERAT) 88
adjustable thread priorities 50
AIX 5L V5.2 234
AIX 5L V5.3 35, 96, 122, 127, 218, 384, 396

3dmon command 245
bindintcpu command 239
chlvcopy command 253
commands

lparstat 83
cpuinfo structure 237
extendlv command 253
extendvg command 253
gprof command 244
importvg command 253
ioo command 254
iostat command 237, 239–240, 270
jtopas command 247
Logical Volume Manager

max_vg_pbuf_count 253
pb_pbuf_count 253
pervg_blocked_io_count 253
total_vg_pbufs 253

lparstat command 91, 248, 258
lslv command 253
lspv command 253
lvmo command 253
mklvcopy command 253
mkvg command 253
mpstat command 249, 264
Object Data Manager (ODM) 174
Partition Load Manager 255

xlplm command 391
xlpstat command 391

perfwb command 249
sar command 237, 239–240, 272
sysconfig subroutine 272
thread priorities 56
© Copyright IBM Corp. 2005. All rights reserved.
topas command 237, 240, 276
trace command 241
trcrpt command 241
varyonvg command 253
vmo command 251
vmstat command 237, 239–240, 268
xmperf command 245, 278

AIX commands
bosboot 49
cfgmgr 208
curt 124
lsdev 207
lsmap 208
mkdev 207
mksysb 152
mpstat 108, 114
no 174
smtctl 48, 117
trace 112
vmstat 117, 125

AMBER 60
AMBER7 60

benchmark tests 65
Application Binary Interface (ABI) 78
application tuning 3, 6

B
benchmarks

simultaneous multithreading 61–71
Berkeley sockets 175
bindprocessor command 238
BLAST 60

benchmark tests 68
Branch History Tables (BHT) 16

C
cache affinity 108
cache hit 22–23
cache miss 22–23
caches

L1 data cache 22
L1 instruction cache 21
replacement policy 22
 405

Capacity on Demand 6
definition 2

Capped mode See Micro-Partitioning
capped mode

chlvcopy command 253
Command/Response Queue (CRQ) 149, 212
Condition Register (CR) 19
Count Register (CTR) 19
course grain threading 43
critical data forwarding (CDF) 23

D
dead gateway detection 159
decision support systems (DSS) 132
decrementer 85
dedicated processor partition 97
dedicated processor partitions 94
dingle-threaded execution mode

null state 46
Direct Memory Access (DMA) 80
dispatch wheel 105
Dual Chip Modules (DCMs) 36
dynamic power management 33
dynamic resource balancing (DRB) 44, 49

E
effective to real address translation (ERAT) 88
entitled capacity 89
Error Correction Control (ECC) 25
EtherChannel 255
extendlv command 253
extendvg command 253

F
fine-grain threading 43
Firmware

Open Firmware 75
firmware

low-level 75
system 75

Fixed-Point Exception Register (XER) 19
Floating-point Register (FPR) 19
Floating-point Status and Control Register (FPSCR)
19
FLUENT 60

benchmark tests 70
FLUENT rating 70

four-way set associative 23

G
Gaussian03 59

benchmark tests 61
General Purpose Register (GPR) 19
gprof command 244
gratuitous ARP 159
guaranteed capacity 134

H
Hardware Maintenance Console (HMC) 97
Hardware Management Console (HMC) 80
hardware multithreading 43
Hardware Page Table (HPT) 86
higher availability

LVM mirroring 161
multipath I/O 162
multipath routing 159

high-performance computing 59
hosted partition 206
hosting partition 206
hyperthreading 237
Hypervisor calls

H_CEDE 76
H_CONFER 76
H_PROD 76

Hypervisor decrementer 76
Hypervisor mode 51, 76

I
i5/OS 75
IBM Subsystem Device Driver (SDD) 218
IEEE 754 19
IEEE 802.1Q VLAN 165
importvg command 253
initiator 206
instruction cache 45
instruction cracking in POWER5 17
instruction translation facility 45
Internet Protocol (IP) 188

ipforwarding 186
involuntary context switches 124
ioo command 254
iostat command 239–240, 270
iSeries Partition Licensed Internal Code (PLIC) 75
406 Advanced POWER Virtualization on IBM Eserver p5 Servers

J
jtopas command 247

K
kernel locks 122

L
L1 cache 21–23

cache line size 21
L1 data cache 22
L1 instruction cache 21
L2 cache 11, 25–26

cache size 25
line size 25

L3 cache 11, 27–28
cache line size 27
cache size 27

Least Recently Used (LRU) replacement policy 22
Level 2 (L2) cache

store gathering 25
Link Register (LR) 19
Linux 48, 58, 75

on pSeries 403
load miss queue (LMQ) 23
locking considerations 121
Logical I/O Bus Number (LIOBN) 80
Logical LAN Switch 171
logical processor 96
logical processors 107
Logical Remote Direct Memory Access (LRDMA)
150, 214
logical states, virtual processor 77
logical volume

limitations 155
low-level firmware 75
lparstat command 83, 91, 248, 258
LRDMA

See Logical Remote Direct Memory Access
(LRDMA)

lslv command 253
lspv command 253
LTG 252
LVM 252
LVM mirroring 161
lvmo command 253

M
MAC address

See Media Access Control (MAC) address
Machine State Register (MSR) 88
Media Access Control (MAC) address 169
memory affinity considerations 126
Memory Mapped I/O (MMIO) 88
memory wall 41
Merged Logic DRAM (MLD) 21
Micro-Partitioning 93

application considerations 128
cache affinity 108
capped mode 101
capped partitions 89
dedicated processor partition 97
dedicated processor partitions 94
definition 1
dispatch wheel 105
entitled capacity 89
guaranteed capacity 134
idle partition considerations 127
implementation 96
logical processor 96
phantom interrupts 112
physical processor 97
server consolidation 95
server provisioning 96
shared processor partitions 95
slow clock ticks 128
uncapped mode 101
uncapped partition weighting 104
uncapped partitions 89
uncapped weight 101
variable capacity weighting 104
virtual processor 95, 97

maximum number 98
virtual server farms 96

mklvcopy command 253
mkvg command 253
mpstat command 249, 264
Multi-Chip Modules (MCMs) 36
multipath I/O 162, 218
multipath routing 159
multiple operating system support 145
multithreading

course grain multithreading 43
multithreading technology 10
 Index 407

N
Neighbor Discovery Protocol (NDP) 188
netperf benchmark 174

TCP_RR 175
TCP_STREAM 175

NIM on Linux (NIMoL) 152
no-operation (nop) instruction 51
NVRAM 79

O
Object Data Manager (ODM) 174, 210
Open Firmware 75, 79, 147, 212

device nodes 147
device tree 104, 147

properties of 148
virtual host bridge 148
virtual interrupt source controller 148

OSI Layer 2 network bridge 187
OSI-Layer 2 171

P
page frame table 79
Page Table Entry (PTE) 79
Partition Load Manager 7, 124, 255

xlplm command 391
xlpstat command 391

PCI adapters 75
performance bottleneck 3
performance considerations

virtual Ethernet 174
Vitual I/O Server 190

Performance Monitor Support 80
performance tools

3dmon command 245
gprof command 244
ioo command 254
iostat command 239–240, 270
jtopas command 247
lparstat command 248, 258
lvmo command 253
mpstat command 249, 264
perfwb command 249
sar command 239–240, 272
topas command 240, 276
trace command 241
trcrpt command 241
vmo command 251
vmstat command 239–240, 268

xmperf command 245, 278
performance tuning

memory affinity considerations 126
rPerf numbers 139

perfwb command 249
phantom interrupts 112
physical Ethernet

sizing guidelines 202
physical mirroring 218
physical processor 97
POSIX 271
Power Architecture 17
POWER Hypervisor 44, 119, 212–213, 374

debugger support 80
decrementer 31
definition 1
device nodes 147
dump support 80
Hypervisor calls

H_CEDE 76
H_CONFER 76
H_PROD 76

Hypervisor decrementer 76
Hypervisor mode 76
Machine Check Interrupt 77
managed device classes 145
memory considerations 85
memory migration support 80
page frame table 79
partition managed class 146
performance monitor support 80
support 76
System (Hypervisor) Call Interrupt 78
System Reset Interrupt 77
Translation Control Entry (TCE) 80
virtual I/O support 85
virtual terminal support 80

POWER4 10, 44
POWER4 architecture 73, 87, 89, 94
POWER5 9–40

address translation 30–31
architecture 10–31
Branch History Tables (BHT) 16
branch prediction 16
cache comparison 30
chip design 12
CR 19
CTR 19
decrementer 85
408 Advanced POWER Virtualization on IBM Eserver p5 Servers

Dual Chip Modules (DCMs) 36
dynamic power management 33
exceptions 20
FPRs 19
FPSCR 19
FPU 11
FXU 11
Global Completion Table (GCT) 18
GPRs 19
group dispatch 17
IDU 11
IFU 11
instruction cracking 17
instruction decoding and preprocessing 17
instruction execution 19
Instruction Fetch Address Register (IFAR) 15
Instruction Fetch Buffers (IFBs) 17
instruction fetching 15
instruction group 17
instruction pipelines 14
instruction size 15
issue queues 17, 20
ISU 11
L1 cache 21–23

cache line size 21
L1 data cache 22
L1 instruction cache 21
L2 cache 11, 25–26

cache size 25
line size 25

L3 cache 11, 27–28
cache line size 27
cache size 27

link stack 17
load reorder queue 17
LR 19
LSU 11
Machine State Register (MSR) 88
maximum outstanding branches 17
MC 11
Merged Logic DRAM (MLD) 21
Multi-Chip Modules (MCMs) 36
multithreading technology 10
register renaming 18
Rename Mapper 18
store reorder queue 17
superscalar 18
Thread Status Register (TSR) 50
Time Base register 85

total execution units 20
XER 19

POWER5 architecture 111
decrementer interrupt 46
Hypervisor mode 51
instruction fetch address registers 45
no-operation (nop) instruction 51
Processor Utilization Resource Register (PURR)
34
rPerf numbers 139
snoozing 48
supervisor mode 51
user mode 51

POWER5 description
address registers 45
dynamic feedback 44
dynamic thread switching capabilities 44
software controlled thread priority 44
thread switching capabilities 44

PowerPC 88
PowerPC Application Binary Interface (ABI) 78
PowerPC Architecture 17
PowerPC AS architecture (V2.02) 10
processor affinity 108
processor pools 96
Processor Utilization Resource Register (PURR)
34

R
RDMA

See Remote DMA (RDMA)
Redbooks Web site 403

Contact us xv
register renaming in POWER5 18
Reliable Command/Response Transport 213
Remote DMA (RDMA) 149
Remote DMA TCE Table (RTCE) 213
Resource Management and Control (RMC) 256,
382

daemon 256, 382
rPerf numbers 139
Run-Time Abstraction Services (RTAS) 75

S
sar command 239–240, 272
SCSI Command Data Blocks (CDBs) 214
SCSI Remote DMA Protocol (SRP) 214
segment lookaside buffer 88
 Index 409

server consolidation 95
server provisioning 96
Shared Ethernet Adapter 7, 186, 254, 306

controlling threading 204
CPU sizing 199
sizing guidelines 197

shared processor partitions 95
guidelines 133

silicon-on-insulator (SOI) 10
simultaneous multithreading 10, 12, 41–72

benchmarks 61–71
definition 2
dynamic feedback 44
dynamic thread switching 44
effect on processor usage 117
hardware thread prioritization 44
IC pipeline stage 45
IF pipeline stage 45
instruction cache 45
performance benefits 59
scheduling 55
snooze and snooze delay 47
software considerations 55
software controlled thread priority 44
software thread prioritization 44
threads 41
translation facility 45
two instruction streams 44

single-threaded execution mode 46
dormant state 46

slice 27
slow clock ticks 128
smtctl command 48
snoozing 48
software controlled thread priority 44
SRP Informational Units (IUs) 214
superscalar 18, 43
supervisor mode 51
SVG 252
sysconfig subroutine 272
system firmware 75
System Licensed Internal Code (SLIC) 75
System Reset Interrupt 77
system tuning 3

T
tagged packets

See virtual LAN (VLAN) tagged packets

Technology Independent Machine Interface (TIMI)
75
thread switching capabilities 44
Time Base 85
Time Function History Scheduling (TFHS) algorithm
89
topas command 240, 276
TotalStorage Enterprise Storage Subsystem (ESS)
218
trace command 241
Translation Control Entry (TCE) 80, 149
translation lookaside buffer 88
Transmission Control Protocol (TCP) 175
trcrpt command 241
Two-way set associative 21

U
Uncapped mode

See Micro-Partitioning
uncapped mode

untagged packets 166
User Datagram Protocol (UDP) 175
user mode 51

V
variable capacity weight 104
varyonvg command 253
VGDA 252
VGSA 252
victim cache 27
virtual adapters 145
virtual Ethernet 7, 163

as a boot device 170
benefits 170
communication with external networks 168
Hypervisor switch implementation 171
implementation guidelines 185
inter-partition communication 164
interpartition communication 167
IPv6 support 170
limitations and considerations 171
MAC addresses 169
MTU sizes 170
netperf benchmark 174
performance considerations 174
Shared Ethernet Adapter functionality 186
transmission speed 170
trunk adapter 171
410 Advanced POWER Virtualization on IBM Eserver p5 Servers

virtual host bridge 148, 210
virtual I/O

Command/Response Queue 149
definition 1
multi-path I/O 218

Virtual I/O Server 152
chdev command 205
command line interface 152
dead gateway detection 159
help command 153
hosted partitions 206
hosting partition 206
implementation guidelines 196
installation 152
interactive mode 153
ioscli command 153
limitations and considerations 155
lsdev command 204
network interface backup 157
padmin account 153, 204
performance results 191
restricted Korn shell 153
traditional mode 153

virtual input/output 85
infrastructure 147
LRDMA 150
Remote DMA (RDMA) 149
virtual Ethernet 163
virtual SCSI 205

virtual interrupt source controller 148
virtual LAN

AIX 5L support 165
definition 1
overview 164

virtual LAN (VLAN) 164
communication with external networks 168
IEEE VLAN header 171
implementation guidelines 185
port virtual LAN ID 166
tagged packets 166

virtual memory management (VMM) 90
virtual processor 89, 95, 97

maximum number 98
reasonable settings 103
time slice 120

virtual processor states
expired 77
not-runnable 77
runnable 77

running 77
virtual processors 85

dispatch latency 90
locking considerations 121
states of 104

entitlement expired 104
not-runnable 104
runnable 104
running 104

virtual SCSI 7, 205–206
AIX device configuration 210
bandwidth 224
client adapter 206
command tag queueing 216
configuration example 228
configuring for redundancy 217
hosted partitions 206
hosting partitions 206
LVM mirroring 218
memory descriptor mapping 214
multi-path I/O 218
performance considerations 220
physical mirroring 218
Reliable Command/Response Transport 212
SCSI Remote DMA Protocol (SRP) 214
target 206
virtual host bridge 210
virtual SCSI

server adapter 206
virtual server farms 96
virtualization

definition 1
importance of 2
memory affinity considerations 126

vmo command 251
vmstat command 239–240, 268
Voluntary context switching 124

W
Web System Management tool 394
weight, uncapped 101
Workload Manager 6, 374

X
xlplm command 391
xlpstat command 391
xmperf command 245, 278
 Index 411

412 Advanced POWER Virtualization on IBM Eserver p5 Servers

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Advanced POW
ER Virtualization on IBM

E
s
e
r
v
e
r p5 Servers: Architecture and Perform

ance Considerations

®

SG24-5768-01 ISBN 0738492388

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Advanced POWER Virtualization
on IBM Eserver p5 Servers:
Architecture and Performance Considerations

Detailed description
of the POWER5
architecture

In-depth analysis of
Advanced POWER
Virtualization
features

Performance
analysis and
application tuning

This IBM Redbook addresses the issues surrounding
performance of the IBM System p5 and IBM Sserver p5
systems. Many features that have been introduced in these
systems are discussed in this book.

The new systems use the POWER5 processors, which consist
of a dual processor core with each core supporting two
hardware threads of execution. This technology is referred to
as simultaneous multithreading. We provide an in-depth look
into the POWER5 processor architecture.

The POWER Hypervisor has been enhanced, so detailed
descriptions of POWER Hypervisor and Hypervisor system
calls are given.

This book also covers the concepts of virtual processors,
virtual storage, and virtual networking, which are also part of
the new systems.

With all of these new technologies and features, system
administrators must realize the performance impact they may
have. We look at these performance issues by providing the
results of performance tests that were conducted in the
course of writing.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Notices
	Trademarks

	Preface
	The specialists who wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Virtualization technology
	Chapter 1. Introduction
	1.1 Performance tuning redefined
	1.1.1 Understanding performance
	1.1.2 Performance considerations

	Chapter 2. IBM POWER5 architecture
	2.1 Introduction
	2.2 Chip design
	2.3 POWER5 enhancements
	2.4 POWER5 instruction pipelines
	2.4.1 Instruction fetching
	2.4.2 Branch prediction
	2.4.3 Instruction decoding and preprocessing
	2.4.4 Group dispatch
	2.4.5 Register renaming
	2.4.6 Instruction execution

	2.5 Caches
	2.5.1 Level 2 (L2) cache
	2.5.2 Level 3 (L3) cache
	2.5.3 Summary of caches on POWER5
	2.5.4 Address translation resources

	2.6 Timing facilities
	2.7 Dynamic power management
	2.8 Processor Utilization Resource Register (PURR)
	2.9 Large POWER5 SMPs
	2.10 Summary

	Chapter 3. Simultaneous multithreading
	3.1 What is multithreading?
	3.2 POWER5 simultaneous multithreading features
	3.2.1 Dynamic switching of thread states
	3.2.2 Snooze and snooze delay

	3.3 Controlling priority of threads
	3.3.1 Dynamic resource balancing (DRB)
	3.3.2 Adjustable thread priorities
	3.3.3 Thread priority implementation

	3.4 Software considerations
	3.4.1 Simultaneous multithreading aware scheduling
	3.4.2 Thread priorities on AIX 5L V5.3
	3.4.3 Thread priorities on Linux
	3.4.4 Cache effects

	3.5 Simultaneous multithreading performance
	3.5.1 Engineering and scientific applications
	3.5.2 Simultaneous multithreading benchmarks

	3.6 Summary

	Chapter 4. POWER Hypervisor
	4.1 POWER Hypervisor implementation
	4.1.1 POWER Hypervisor functions
	4.1.2 Micro-Partitioning extensions
	4.1.3 POWER Hypervisor design

	4.2 Performance considerations

	Chapter 5. Micro-Partitioning
	5.1 Partitioning on the IBM eServer p5 systems
	5.2 Micro-Partitioning implementation
	5.2.1 Virtual processor dispatching
	5.2.2 Phantom interrupts

	5.3 Performance considerations
	5.3.1 Micro-Partitioning considerations
	5.3.2 Locking considerations
	5.3.3 Memory affinity considerations
	5.3.4 Idle partition consideration
	5.3.5 Application considerations in Micro-Partitioning
	5.3.6 Micro-Partitioning planning guidelines

	5.4 Summary

	Chapter 6. Virtual I/O
	6.1 Introduction
	6.2 POWER Hypervisor support for virtual I/O
	6.2.1 Virtual I/O infrastructure
	6.2.2 Types of connections

	6.3 The IBM Virtual I/O Server
	6.3.1 Providing high availability support

	6.4 Virtual Serial Adapter (VSA)
	6.5 Virtual Ethernet
	6.5.1 Virtual LAN
	6.5.2 Virtual Ethernet connections
	6.5.3 Benefits of virtual Ethernet
	6.5.4 Limitations and considerations
	6.5.5 POWER Hypervisor switch implementation
	6.5.6 Performance considerations
	6.5.7 VLAN throughput at different processor entitlements
	6.5.8 Comparing throughput of VLAN to physical Ethernet
	6.5.9 Comparing CPU utilization
	6.5.10 Comparing transaction rate and latency
	6.5.11 VLAN performance
	6.5.12 VLAN implementation guidelines

	6.6 Shared Ethernet Adapter
	6.6.1 Shared Ethernet Adapter performance
	6.6.2 Request/response time and latency

	6.7 Implementation guidelines
	6.7.1 Guidelines for Shared Ethernet Adapter sizing
	6.7.2 Guidelines for physical Ethernet sizing
	6.7.3 Control of threading in the Shared Ethernet Adapter

	6.8 Virtual SCSI
	6.8.1 Client and server interaction
	6.8.2 AIX 5L V5.3 device configuration for virtual SCSI
	6.8.3 Interpartition communication
	6.8.4 Disk considerations
	6.8.5 Configuring for redundancy
	6.8.6 Performance considerations
	6.8.7 Sizing a virtual SCSI server

	6.9 Summary

	Part 2 Virtualization support and tuning
	Chapter 7. AIX 5L Version 5.3 operating system support
	7.1 Introduction
	7.1.1 Processors
	7.1.2 Dynamic re-configuration
	7.1.3 Existing performance commands enhancement
	7.1.4 New performance commands
	7.1.5 Paging space
	7.1.6 Logical Volume Manager (LVM)
	7.1.7 Virtual local area network (VLAN)
	7.1.8 EtherChannel
	7.1.9 Partition Load Manager

	Chapter 8. POWER5 system performance
	8.1 Performance commands
	8.1.1 lparstat command
	8.1.2 mpstat command
	8.1.3 vmstat command
	8.1.4 iostat command
	8.1.5 sar command
	8.1.6 topas command
	8.1.7 xmperf command

	8.2 Performance tuning approach
	8.2.1 Global performance analysis
	8.2.2 CPU analysis
	8.2.3 Memory analysis
	8.2.4 Disk I/O analysis
	8.2.5 Network I/O analysis

	Chapter 9. Application tuning
	9.1 Performance bottlenecks identification
	9.1.1 Time commands, time utilities, and time routines

	9.2 Tuning applications using only the compiler
	9.2.1 Compiler brief overview
	9.2.2 Most commonly used flags
	9.2.3 Compiler directives for performance
	9.2.4 POWER5 compiler features

	9.3 Profiling applications
	9.3.1 Hardware performance monitor
	9.3.2 Profiling utilities

	9.4 Memory management
	9.5 Optimization of critical sections in the code
	9.5.1 General rules for optimization strategies
	9.5.2 Array optimization
	9.5.3 Loop optimization

	9.6 Optimized libraries
	9.6.1 MASS Library
	9.6.2 ESSL library

	9.7 Parallel programming general concepts

	Chapter 10. Partition Load Manager
	10.1 When and how should I use Partition Load Manager?
	10.1.1 Partition Load Manager and other load-balancing tools
	10.1.2 When to use Partition Load Manager
	10.1.3 How to deploy Partition Load Manager

	10.2 More about Partition Load Manager installation and setup
	10.2.1 Overview of Partition Load Manager behavior
	10.2.2 Management versus monitoring modes
	10.2.3 Configuration file and tunables

	10.3 Managing and monitoring with Partition Load Manager
	10.3.1 Managing multiple partitions
	10.3.2 Extra tips about the xlplm command
	10.3.3 Examples of Partition Load Manager commands output

	10.4 Partition Load Manager performance impact
	10.4.1 Partition Load Manager resource requirements
	10.4.2 Partition Load Manager impact on managed partitions

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

