<|lI!

IBM XL Fortran Enterprise Edition for AIX, V111

Language Reference

SC23-5832-00

<|lI!

IBM XL Fortran Enterprise Edition for AIX, V111

Language Reference

SC23-5832-00

Note!
Before using this information and the product it supports, be sure to read the general information under

First Edition

This edition applies to IBM XL Fortran Enterprise Edition for AIX, V11.1 (Program number 5724-S72) and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

© Copyright International Business Machines Corporation 1990, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document.

Who should read this document

How to use this document

How this document is organized .

Conventions and terminology used in this

document . .

Related information
IBM XL Fortran pubhcatrons .
Standards and specifications documents
Other IBM publications .

Technical support . .

How to send your comments .

Chapter 1. XL Fortran for AIX
Language standards .

Fortran 2003

Fortran 95 .

Fortran 90

IBM Extensions .

Other standards and standards documents

Chapter 2. XL Fortran Language
Fundamentals .
Characters .
Names
Statements .

Statement keywords

Statement labels .
Lines and source formats .

Fixed source form

Free source form.

IBM free source form .

Conditional compilation . .o
Order of statements and execution sequence
Data types.

Type declaration: type parameters and spec1f1ers

Determining Type
Data objects
Constants .
Automatic objects
Polymorphic entities
Definition status of variables
Allocation status.
Storage classes for varrables
Typeless literal constants .
Hexadecimal constants
Octal constants .
Binary constants.
Hollerith constants .
Using typeless constants .

Chapter 3. Intrinsic Data Types
Integer .

Real .

Complex

© Copyright IBM Corp. 1990, 2007

. Xi

. xi
. xi
. Xl

. Xii
. XV
. XV
. Xvi
. Xvii
. Xvii
. Xvii

NNNN R - -,

NN u

11

.13

. 14

.15

16

.17
.18
.18
.18
.19
. 26
. 26
. 28
. 28
.29
. 30
. 30
.31

. 35
.35
. 36
.39

Logical .

Character .
Examples of character constants
Character substrings

Byte .

Vector .

Pixel. .

Unsigned .

Chapter 4. Derived Types.
Syntax of a derived type . .
Component and procedure accessrblhty
Default initialization

Sequence derived types

Extensible derived types . .
Abstract types and deferred brndrngs
Structure components .

Examples of references to structure components

Allocatable components
Procedure pointer component
Component order
Derived type Values
Type-bound procedures
Syntax of a type-bound procedure
Specific binding .
Generic binding .
Final binding .
Procedure overriding .
Finalization .
The finalization process
When finalization occurs .

Determining declared type for derrved types .
Example of determining type with derived types
An example with different component names .

Structure constructor
Examples of Structure Constructors

Chapter 5. Array concepts
Arrays . .
Bounds of a dlmensmn
Extent of a dimension . .
Rank, shape, and size of an array
Array declarators
Explicit-shape arrays S
Examples of explicit-shape arrays .
Automatic arrays
Adjustable arrays
Pointee arrays
Assumed-shape arrays.
Examples of assumed-shape arrays
Deferred-shape arrays .
Allocatable arrays
Array pointers
Assumed-size arrays .
Examples of assumed-size arrays .

. 40
.41
.43
.43
. 44
. 45
. 46
. 46

. 47
.48
.49
.49
. 51
. 51
. 52
. 53

54

. 55
. 56
. 57
. 58
. 58
. 58
. 59
. 61
. 62
. 63
. 65
. 65
. 65
. 66

. 67
. 67
. 69

.71
.71
.71
.72
.72
.73
.73
.74
.74
.75
.75
.75
. 76
.76
.77
. 78
. 78
. 80

iii

Array elements .
Array element order
Array sections
Subscript triplets
Vector subscripts .
Array sections and substrmg ranges .
Array sections and structure components
Rank and shape of array sections .
Array constructors . .
Syntax of an array constructor .
Rules for array constructors . .
Implied-DO list for an array constructor
Expressions involving arrays

Chapter 6. Expressions and
assignment. e e
Introduction to expressions and assignment

Primary .

Constant expressions . .
Examples of constant expressions .
Initialization expressions .

Specification expressions . .o
Examples of specification expressions.

Operators and expressions
Arithmetic.

Character.

General

Logical

Primary .

Relational .o .
Extended intrinsic and deflned operatlons
How expressions are evaluated

Precedence of operators .

Using BYTE data objects.

Intrinsic assignment .

Arithmetic conversion
WHERE construct . .o

Interpreting masked array a551gnments
FORALL construct. .

Interpreting the FORALL construct .
Data pointer assignment. .

Examples of pointer assignment .
Procedure pointer assignment .

Integer pointer assignment . .
Example of integer pointer a551gnment

Chapter 7. Execution Control

Statement blocks

ASSOCIATE Construct

DO construct .
The terminal statement .

DO WHILE construct.
Example .

IF construct .
Example . .

SELECT CASE construct
Examples.

SELECT TYPE construct
Examples.

Associate names

iv XL Fortran Language Reference

. 80
. 81
. 82
. 83
. 85
. 85
. 86
. 88
. 88
. 88
. 89
. 90
.90

. 93

. 93
. 93
. 94
. 95
. 95
. 96
.97
. 98
. 98

. 100
. 101
. 102
. 104
. 105
. 106
. 107
. 107
. 110
. 110
. 112
. 113
. 115
. 120
. 122
. 123
. 126
. 126
. 127
. 127

. 129
. 129
. 129
. 131
. 131
. 135
. 135
. 136
. 137
. 137
. 139
. 139
. 141
. 142

Branching

Chapter 8. Program units and
procedures
Scope . .
The scope of a name .
Association .
Host association
Use association .
Construct Association
Pointer association .
Integer pointer association .
Program units, procedures, and subprograms
Internal procedures
Interface concepts .
Interface blocks.
Example of an mterface block
Generic interface blocks .
Unambiguous generic procedure references

Extending intrinsic procedures with generic

interface blocks.
Defined operators .
Defined assignment . .
User-defined derived- type Input/ Output
procedures .
Abstract interface . . .
Example of an abstract 1nterface .
Main program .
Modules . .
Example of a module
Block data program unit. . .
Example of a block data program unit .
Function and subroutine subprograms .
Declaring procedures .
Procedure references .
Intrinsic procedures

Conflicts between intrinsic procedure names

and other names
Arguments .

Actual argument specrﬁcatron
Argument association

%VAL and %REF .

Intent of dummy arguments

Optional dummy arguments

The passed-object dummy argument

Restrictions on optional dummy arguments not

present .
Length of character arguments
Variables as dummy arguments .
Allocatable objects as dummy arguments .
Pointers as dummy arguments
Procedures as dummy arguments
Asterisks as dummy arguments
Resolution of procedure references
Rules for resolving procedure references to
names .
Recursion
Pure procedures
Examples.
Elemental Procedures.
Examples.

. 142

. 145
. 145
. 146
. 150
. 150
. 151
. 152
. 152
. 154
. 154
. 155
. 156
. 158
. 160
. 16l
. 161

. 163
. 163
. 165

. 166
. 169
. 169
. 170
171
. 173
. 174
. 175
. 175
. 176
. 177
. 179

. 180
. 180
. 180
. 183
. 184
. 185
. 186
. 186

. 186
. 187
. 188
. 190
. 191
. 192
. 193
. 193

. 194
. 195
. 196
. 197
. 198
. 199

Chapter 9. XL Fortran Input/Output

Records .
Formatted records
Unformatted records .
Endfile records .
Files
Definition of an external frle
File access methods
Units .
Connection of a un1t
Data transfer statements. .
Asynchronous Input/Output . . .
Advancing and nonadvancing Input/ Output
User-defined derived-type Input/Output
procedure interfaces . .
User-defined derived-type Input/ Output .
File position before and after data transfer.
Conditions and IOSTAT values
End-of-record conditions
End-of-file conditions.
Error conditions

Chapter 10. Input/Output formattlng
Format-directed formatting .
Complex editing
Data edit descriptors .
Control edit descriptors . .
Character string edit descriptors .
Effective list items. .
Interaction of Input/ Output hsts and format
specifications
Comma-separated Input/ Output
Data edit descriptors . .
A (Character) Editing.
B (Binary) Editing .
E, D, and Q (Extended Prec1s1on) Edrtlng
DT Editing . o
EN Editing .
ES Editing
F (Real without Exponent) Edltlng
G (General) Ed1t1ng
H Editing
I (Integer) Ed1t1ng
L (Logical) Editing.
O (Octal) Editing . .
Q (Character Count) Edltmg
Z (Hexadecimal) Editing
Control edit descriptors .
/ (Slash) Editing
: (Colon) Editing
$ (Dollar) Editing .
BN (Blank Null) and BZ (Blank Zero) Echtlng
DC and DP (Decimal) Editing . .
P (Scale Factor) Editing . .
RC, RD, RN, RP, RU, and RZ (Round) Edltlng
S, SP, and SS (Sign Control) Editing .
T, TL, TR, and X (Positional) Edltlng
List-directed formatting .
Value separators
List-directed input.
List-directed output .

201

. 201
. 201
. 202
. 202
. 202
. 202
. 203
. 205
. 205
. 206
. 207

209

. 210
. 210
. 212
. 214
. 214
. 215
. 215

223

. 223
. 223
. 223
. 228
. 229
. 230

. 231
. 232
. 233
. 233
. 234
. 235
. 237
. 237
. 239
. 240
. 241
. 243
. 244
. 245
. 245
. 247
. 248
. 250
. 250
. 251
. 251

251

. 252
. 253

254

. 254
. 255
. 256
. 256
. 257
. 258

Namelist formatting .
Namelist input .
Namelist output

. 260
. 260
. 265

Chapter 11. Statements and attributes 269

Attributes
ABSTRACT .
ALLOCATABLE
ALLOCATE .
ASSIGN .
ASSOCIATE. . .
ASYNCHRONOUS
AUTOMATIC
BACKSPACE

BIND . .
BLOCK DATA .
BYTE .

CALL .

CASE . .
CHARACTER .
CLASS

CLOSE

COMMON .
COMPLEX .
CONTAINS .
CONTINUE .

CYCLE

DATA . .
DEALLOCATE .
Derived Type
DIMENSION

DO. . . .

DO WHILE . .
DOUBLE COMPLEX .
DOUBLE PRECISION
ELSE .

ELSE IF
ELSEWHERE

END

END (Construct)
END INTERFACE .
END TYPE .
ENDFILE.

ENTRY .
ENUM/END ENUM .
EQUIVALENCE

EXIT

EXTERNAL .

FLUSH

FORALL . .o
FORALL (construct) .
FORMAT.
FUNCTION .

GO TO (assigned) .
GO TO (computed)

GO TO (unconditional) .

IF (arithmetic) .
IF (block).
IF (logical)
IMPLICIT
IMPORT .

. 272
. 273
. 274
. 275
. 278
. 279
. 280
. 282
. 283
. 285
. 286
. 287
. 290
. 292
. 294
. 299
. 301
. 303
. 307
. 312
. 313
. 313
. 314
. 318
. 320
. 322
. 323
. 325
. 326
. 329
. 332
. 333
. 333
. 335
. 336
. 339
. 341
. 341
. 343
. 347
. 348
. 351
. 352
. 353
. 355
. 358
. 360
. 362
. 365
. 366
. 367
. 368
. 369
. 370
. 371
. 373

A\

INQUIRE.
INTEGER
INTENT .
INTERFACE.
INTRINSIC .
LOGICAL
MODULE
NAMELIST .
NULLIFY.

OPEN .
OPTIONAL .
PARAMETER
PAUSE

POINTER (Fortran 90)
POINTER (integer)
PRINT. .
PRIVATE .
PROCEDURE
PROCEDURE declaratlon
PROGRAM .
PROTECTED
PUBLIC .

READ.

REAL .

RECORD.
RETURN .
REWIND.

SAVE . .
SELECT CASE .
SELECT TYPE .
SEQUENCE .
Statement Function
STATIC

STOP . .
SUBROUTINE .
TARGET .

TYPE . .
Type Declaration .
Type Guard .

USE

VALUE

VECTOR .
VIRTUAL
VOLATILE .
WAIT .

WHERE .
WRITE

Chapter 12. Directives.

Comment and noncomment form directives .

Comment form directives

Noncomment form directives .
Directives and optimization

Assertive directives .

Directives for Loop Optumzatlon
Detailed directive descriptions.

ASSERT .

BLOCK_LOOP .

CNCALL.

COLLAPSE .

EJECT .

vi XL Fortran Language Reference

. 374
. 383
. 387
. 389
. 392
. 393
. 397
. 398
. 399
. 400
. 407
. 409
. 410
. 410
. 412
. 414
. 416
. 418
. 419
. 422
. 422
. 424
. 425
. 435
. 439
. 441
. 442
. 444
. 446
. 447
. 448
. 449
. 451
. 452
. 453
. 456
. 457
. 461
. 467
. 468
. 472
. 473
. 473
. 474
. 476
. 478
. 481

. 489
. 489
. 489
. 491
. 492
. 492
. 492
. 492
. 492
. 494
. 496
. 497
. 498

INCLUDE
INDEPENDENT
#LINE .

LOOPID .
MEM_DELAY .
NEW .

NOVECTOR.
PERMUTATION
@PROCESS .
SNAPSHOT .
SOURCEFORM.
STREAM_UNROLL .
SUBSCRIPTORDER
UNROLL.
UNROLL_AND FUSE

Chapter 13. Hardware-specific
directives .

CACHE_ZERO.

DCBFL

EIEIO .

ISYNC.

LIGHT_SYNC .

PREFETCH .

PROTECTED STREAM .

Chapter 14. Intrinsic procedures .
Classes of intrinsic procedures.
Inquiry intrinsic functions .
Elemental intrinsic procedures.
System inquiry intrinsic functions
Transformational intrinsic functions .
Intrinsic subroutines .
Data representation models.
Integer bit model .
Integer data model
Real data model

Detailed descriptions of intrinsic procedures .

ABORT() .

ABS(A) o

ACHAR(I, KIND) .

ACOS(X)

ACOSD(X)

ADJUSTL(STRING)
ADJUSTR(STRING)

AIMAG(Z), IMAG(Z)

AINT(A, KIND)

ALIGNX(K,M) .

ALL(MASK, DIM)
ALLOCATED(X)

ANINT(A, KIND) .

ANY(MASK, DIM)

ASIN(X) .

ASIND(X) .
ASSOCIATED(POINTER, TARGET) .
ATAN(X) . .
ATAND(X)

ATAN2(Y, X)

ATAN2D(Y, X) .

BIT_SIZE(]) .

. 498
. 500
. 503
. 505
. 506
. 506
. 507
. 508
. 509
. 509
. 511
. 512
. 513
. 515
. 517

. 519
. 519
. 519
. 520
. 520
. 520
. 521
. 524

. 529
. 529
. 529
. 529
. 530
. 531
. 531
. 531
. 531
. 532
. 533
. 534
. 534
. 535
. 536
. 536
. 537
. 537
. 538
. 538
. 539
. 540
. 540
. 541
. 542
. 543
. 544
. 544
. 545
. 546
. 547
. 547
. 548
. 549

BTEST(I, POS) .

CEILING(A, KIND)

CHAR(, KIND)

CMPLX(X, Y, KIND) .
COMMAND_ARGUMENT_COUNTY() .
CONJG(Z) S
COS(X)

COSD(X)

COSH(X)

COUNT(MASK, DIM, KIND) .
CPU_TIME(TIME) .
CSHIFT(ARRAY, SHIFT, DIM)
CVMGx(TSOURCE, FSOURCE, MASK)

DATE_AND TIME(DATE TIME, ZONE, VALUES)

DBLE(A) .

DCMPLX(X, Y)

DIGITS(X)

DIM(X, Y)

DOT_PRODUCT(VECTOR_A, VECTOR_B)
DPROD(X, Y)

EOSHIFT(ARRAY, SHIFT, BOUNDARY DIM)

EPSILON(X)

ERF(X) .

ERFC(X) .

EXP(X)

EXPONENT(X) .
EXTENDS_TYPE_OF(A, MOLD) .
FLOOR(A, KIND) .
FRACTION(X) .

GAMMA(X) S
GETENV(NAME, VALUE)
GET_COMMAND(COMMAND, LENGTH,
STATUS) .
GET_COMMAND_ARGUMENT(NUMBER,
VALUE, LENGTH, STATUS) .
GET_ENVIRONMENT_VARIABLE(NAME,

VALUE, LENGTH, STATUS, TRIM_NAME) .

HFIX(A) .
HUGE(X) .
IACHAR(C, KIND)
IAND(, J)
IBCLR(I, POS) .
IBITS(I, POS, LEN)
IBSET(I, POS)
ICHAR(C, KIND) .
IEOR(,])

ILEN(I)

IMAG(Z)

INDEX(STRING, SUBSTRING BACK KIND)

INT(A, KIND) .

INT2(A) .

IOR(, J) . .
IS_IOSTAT_END(I)
IS_IOSTAT_EOR(I)

ISHFT(I, SHIFT)

ISHFTC(I, SHIFT, SIZE) .
KIND(X) . .
LBOUND(ARRAY, DIM, KIND) .
LEADZ(I) o
LEN(STRING, KIND)
LEN_TRIM(STRING, KIND)

. 550
. 551
. 552
. 553
. 554
. 554
. 555
. 556
. 556
. 557
. 558
. 559
. 560

562

. 563
. 564
. 565
. 566
. 566
. 567
. 568
. 569
. 570
. 571
. 572
. 572
. 573
. 574
. 575
. 575
. 576

. 577

. 578

. 579
. 580
. 581
. 582
. 582
. 583
. 584
. 584
. 585
. 586
. 587
. 587
. 588
. 588
. 589
. 590
. 591
. 592
. 592
. 593
. 594
. 594
. 595
. 596
. 596

LGAMMA (X) o
LGE(STRING_A, STRING_B) .
LGT(STRING_A, STRING_B) .
LLE(STRING_A, STRING_B)

LLT(STRING_A, STRING_B)

LOC(X) o

LOG(X)

LOG10(X) o

LOGICAL(L, KIND) .

LSHIFT(I, SHIFT) .

MATMUL(MATRIX_A, MATRIX_B, MINDIM)
MAX(A1, A2, A3, ...) . S
MAXEXPONENT(X) . .
MAXLOC(ARRAY, DIM, MASK, KIND) o
MAXLOC(ARRAY, MASK, KIND)
MAXVAL(ARRAY, DIM, MASK) or
MAXVAL(ARRAY, MASK) .
MERGE(TSOURCE, FSOURCE, MASK)
MIN(A1, A2, A3, ..) . o
MINEXPONENT(X) . .
MINLOC(ARRAY, DIM, MASK, KIND) or
MINLOC(ARRAY, MASK, KIND).
MINVAL(ARRAY, DIM, MASK) or
MINVAL(ARRAY, MASK)

MOD(A, P) .

MODULO(A, D) .
MOVE_ALLOC(FROM, TO) . . .
MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)
NEAREST(X,S) . . .
NEW_LINE(A) .

NINT(A, KIND)

NOT(I)

NULL(MOLD) .

NUM_PARTHDS()
NUMBER_OF_PROCESSORS(DIM) .
NUM_USRTHDS(). .

PACK(ARRAY, MASK, VECTOR)

POPCNT(I) . o
POPPAR(])

PRECISION(X) .

PRESENT(A) .
PROCESSORS_SHAPE()

PRODUCT(ARRAY, DIM, MASK) or
PRODUCT(ARRAY, MASK)

QCMPLX(X, Y) .

QEXT(A)

RADIX(X)

RAND()
RANDOM_NUMBER(HARVEST)

RANDOM_SEED(SIZE, PUT, GET, GENERATOR)

RANGE(X) .

REAL(A, KIND)

REPEAT(STRING, NCOPIES) .
RESHAPE(SOURCE, SHAPE, PAD, ORDER) .
RRSPACING(X) S
RSHIFT(I, SHIFT) .

SAME_TYPE_AS(A,B)

SCALE(X]) .

SCAN(STRING, SET, BACK, KIND)
SELECTED_CHAR_KIND(NAME)
SELECTED_INT_KIND(R) .

Contents

. 597
. 598
. 599
. 599
. 600
. 601
. 601
. 603
. 603
. 604
. 604
. 607
. 608

. 608

. 610
. 611
. 612
. 613

. 614

. 616
. 617
. 618
. 619
. 619
. 620
. 621
. 622
. 622
. 623
. 624
. 625
. 626
. 626
. 627
. 628
. 629
. 630
. 630

. 631
. 633
. 634
. 634
. 635
. 635

636

. 637
. 638
. 639
. 640
. 641
. 642
. 642
. 643
. 644
. 645
. 645

vii

SELECTED_REAL_KIND(P, R)
SET_EXPONENT(X,I)
SHAPE(SOURCE, KIND)

SIGN(A, B) . .
SIGNAL(I, PROC)

SIN(X)

SIND(X) .

SINH(X) . .

SIZE(ARRAY, DIM, KIND) .
SIZEOF(A) .

SPACING(X)

SPREAD(SOURCE, DIM, NCOPIES)
SQRT(X) . S
SRAND(SEED)

SUM(ARRAY, DIM, MASK) or SUM(ARRAY

MASK)
SYSTEM(CMD, RESULT)

SYSTEM_CLOCK(COUNT, COUNT_ RATE

COUNT_MAX).

TAN(X)

TAND(X)

TANH(X)

TINY(X) .

TRANSFER(SOURCE, MOLD, SIZE)
TRANSPOSE(MATRIX) .
TRIM(STRING) .
UBOUND(ARRAY, DIM, KIND) .
UNPACK(VECTOR, MASK, FIELD)
VERIFY(STRING, SET, BACK, KIND)

Chapter 15. Hardware-specific
intrinsic procedures
FCFI(I)

FCTID(X).

FCTIDZ(X) .

FCTIW(X)

FCTIWZ(X) .

FMADD(A, X, Y) .
EMSUB(A, X, Y)

FNABS(X) .
FNMADD(A, X, Y)
FNMSUB(A, X, Y) .

FRE(X)

FRES(X) .

FRIM(A) .

FRIN(A) .

FRIP(A)

FRIZ(A) .

FRSQRTE(X).

FRSQRTES(X)

FSEL(X,Y,Z) .

MTFSF(MASK, R) .
MTFSFI(BF, 1)

MULHY(RA, RB) .
POPCNTB(I)

ROTATELI(RS, IS, SHIFT MASK)
ROTATELM(RS, SHIFT, MASK) .
SETFSBO(BT) :
SETFSB1(BT)

SFTI(M, Y)

SWDIV(X,Y).

viii XL Fortran Language Reference

. 646
. 647
. 648
. 648
. 650
. 650
. 651
. 652
. 652
. 653
. 654
. 655
. 656
. 657

. 658
. 659

. 660
. 662
. 663
. 663
. 664
. 664
. 666
. 666
. 667
. 668
. 669

. 671
. 671
. 671
. 672
. 672
. 673
. 673
. 674
. 674
. 675
. 675
. 676
. 676
. 677
. 677
. 678
. 678
. 678
. 679
. 679
. 680
. 680
. 681
. 681
. 682
. 682
. 683
. 683
. 684
. 684

SWDIV_NOCHK(X,Y)
TRAP(A, B, TO)

. 685
. 686

Chapter 16. VMX intrinsic procedures 687

VEC_ABS(ARG) .
VEC_ABSS(ARG1).
VEC_ADD(ARG1, ARG2)
VEC_ADDC(ARGI, ARG2) .
VEC_ADDS(ARG1, ARG2) .
VEC_ALL_EQ(ARGI, ARG2) .
VEC_ALL_GE(ARG1, ARG2) .
VEC_ALL_GT(ARG1, ARG2) .
VEC_ALL_IN(ARG1, ARG2)
VEC_ALL_LE(ARG1, ARG2)
VEC_ALL_LT(ARG1, ARG2)
VEC_ALL_NAN(ARGI).
VEC_ALL_NE(ARG1, ARG2) .
VEC_ALL_NGE(ARG1, ARG2)
VEC_ALL_NGT(ARG1, ARG2)
VEC_ALL_NLE(ARG1, ARGY).
VEC_ALL_NLT(ARGI1, ARG2).
VEC_ALL_NUMERIC(ARG]) .
VEC_AND(ARG1, ARG2)
VEC_ANDC(ARG1, ARG2).
VEC_ANY_EQ(ARGI, ARGY) .
VEC_ANY_GE(ARGI, ARG2) .
VEC_ANY_GT(ARG1, ARG2) .
VEC_ANY_LE(ARGI, ARG2) .
VEC_ANY_LT(ARG1, ARG2) .
VEC_ANY_NAN(ARG1)
VEC_ANY_NE(ARGI1, ARG?) .
VEC_ANY_NGE(ARG1, ARG2)
VEC_ANY_NGT(ARG1, ARG2)
VEC_ANY_NLE(ARG1, ARG2)
VEC_ANY_NLT(ARG1, ARG2)
VEC_ANY_NUMERIC(ARGI).
VEC_ANY_OUT(ARG1, ARG2)
VEC_AVG(ARG1, ARG2)
VEC_CEIL(ARG]).. .
VEC_CMPB(ARGI, ARG2) .
VEC_CMPEQ(ARGI, ARG2)
VEC_CMPGE(ARG1, ARG2)
VEC_CMPGT(ARG1, ARG2)
VEC_CMPLE(ARG1, ARG2)
VEC_CMPLT(ARG1, ARG2)
VEC_CONVERT(V, MOLD).
VEC_CTF(ARG1, ARG2).
VEC_CTS(ARGI, ARG2).
VEC_CTU(ARGI1, ARG2)
VEC_DSS(ARG1) .
VEC_DSSALL .

VEC_DST(ARGI1, ARG2, ARGB)
VEC_DSTST(ARG1, ARG2, ARG3)
VEC_DSTSTT(ARG1, ARG2, ARG3) .
VEC_DSTT(ARG1, ARG2, ARG3).

VEC_EXPTE(ARG1) .
VEC_FLOOR(ARG]) .
VEC_LD(ARG1, ARG2) .
VEC_LDE(ARG1, ARG2)
VEC_LDL(ARG1, ARG2)
VEC_LOGE(ARG1)

. 687
. 687
. 688
. 688
. 689
. 689
. 690
. 690
. 691
. 691
. 692
. 692
. 692
. 693
. 693
. 694
. 694
. 695
. 695
. 696
. 696
. 696
. 697
. 697
. 698
. 698
. 699
. 699
. 700
. 700
. 701
. 701
. 701
. 702
. 702
. 703
. 704
. 704
. 705
. 705
. 706
. 706
. 707
. 707
. 708
. 708
. 708
. 709
. 709
. 709
. 710
. 710
. 711
. 711
. 712
. 712
. 713

VEC_LVSL(ARG1, ARG2)713

VEC_LVSR(ARG1,ARG2)714
VEC_MADD(ARG1, ARG2, ARG3)714
VEC_MADDS(ARGI, ARG2)715
VEC_MAX(ARG1,ARG2)715
VEC_MERGEH(ARGI, ARG2).716
VEC_MERGEL(ARG1, ARG2).716
VECMFVSCR.717
VEC_MIN(ARGL, ARG2)717
VEC_MLADD(ARGI, ARG2, ARG3). 718
VEC_MRADDS(ARG1, ARG2, ARG3)718
VEC_MSUM(ARGI, ARG2, ARG3)719
VEC_MSUMS(ARG1, ARG2, ARG3).719
VEC_MTVSCR(ARGL)72
VEC_MULE(ARGL, ARG2).720
VEC_MULO(ARG1, ARG2).721
VEC_NMSUB(ARG1, ARG2, ARG3).721
VEC_NOR(ARG1,ARG2)72
VEC_OR(ARGI, ARG2)72
VEC_PACK(ARGI,ARG2)723
VEC_PACKPX(ARG1,ARG2)723
VEC_PACKS(ARG1, ARG2)724
VEC_PACKSU(ARGI, ARG2)724
VEC_PERM(ARGI, ARG2, ARG3)75
VEC_RE(ARG1)75
VEC_RL(ARGL,ARG2)72
VEC_ROUND(ARG1)72
VEC_RSQRTE(ARG1).727
VEC_SEL(ARG1, ARG2, ARG3)727
VEC_SL(ARGL,ARG2)728
VEC_SLD(ARG1, ARG2, ARG3)728
VEC_SLL(ARGI, ARG2).729
VEC_SLO(ARGI, ARG2)729
VEC_SPLAT(ARG1, ARG2).730
VEC_SPLAT S8(ARG1)730
VEC_SPLAT S16(ARG1).731
VEC_SPLAT S32(ARG1).731
VEC_SPLAT US(ARG1).731
VEC_SPLAT U16(ARG1)732
VEC_SPLAT_U32(ARGl)732
VEC_SR(ARGL,ARG2)733
VEC_SRA(ARGI, ARG2)733
VEC_SRL(ARG1, ARG2).734
VEC_SRO(ARG1, ARG2) 7
VEC_ST(ARG1, ARG2, ARG3).73
VEC_STE(ARGI1, ARG2,ARG3)73
VEC_STL(ARGI1, ARG2, ARG3)73
VEC_SUB(ARG1, ARG2).737
VEC_SUBC(ARG1, ARG2)737
VEC_SUBS(ARG1, ARG2)738
VEC_SUM2S(ARG1, ARG2)738
VEC_SUMA4S(ARG1, ARG2)739
VEC_SUMS(ARG1, ARG2)739
VEC_TRUNC(ARG1).740
VEC_UNPACKH(ARGI).740
VEC_UNPACKL(ARG1).74
VEC_XOR(ARG1, ARG2)74

Chapter 17. Language mteroperablllty
features. 743
Interoperability of types VL <

Intrinsic types743
Derived types . . oo ... 743
Interoperability of Varlables e T744
Interoperability of common blocks 744
Interoperability of procedures.745
The ISO_C_BINDING module.745
Constants for use as kind type parameters . . 745
Character constants747
Other constants.747
Types747
Procedures747
Binding labels749

Chapter 18. The ISO_FORTRAN_ENV

intrinsicmodule 751
CHARACTER STORAGE SIZE75
ERROR UNIT75
FILE_. STORAGE SIZE75
INPUT_UNIT75
IOSTAT END75
IOSTAT EOR T2
NUMERIC_STORAGE_ SIZE753
OUTPUT_UNIT753

Chapter 19. Floating-point control and

inquiry procedures 755

fpgets fpsets.755

Efficient floating-point Control and mqurry

procedures 756
xIf_fp_util Floatmg Pomt Procedures758

IEEE Modules and support.76l
Compiling and exception handling 762
General rules for implementing IEEE modules 762
IEEE Derived data types and constants. . . . 763
IEEE Operators.765
IEEE PROCEDURES765
Rules for floating-point status 781
Examples.78

Chapter 20. Service and utility

procedures - 785
General service and utility procedures78
List of service and utility procedures 786
alarm_(time, func).786
bic. (X1, X2).787
bis_(X1,X2).787
bit (X1,X2).788
clock_() 788
ctime_(STR, TIME)788
date() Lo e e T789
dtime_(dtime_: struct) Lo e T789
etime_(etime_struct)79
exit_(exit_status)79
fdate_(str)79
fiosetup_(unit, command, argument) ... 079
flush_(lunit).79
ftell_(lunit)79
ftello4_(lunit)793
getarg(ilecl).79
getewd_(name).79

Contents 1X

getfd(lunit) .
getgid_() .
getlog_(name) .
getpid_() .

getuid_() .
global_timef()
gmtime_(stime, tarray)
hostnm_(name).
iargc() . .
idate_(idate_: struct)
ierrno_() .

irand().

irte()
itime_(itime_struct)
jdate() .

lenchr_(str) .
Inblnk_(str) .
Itime_(stime, tarray) .
mclock() .

gsort_(array, len, isize, Compar)
gsort_down(array, len, isize)
gsort_up(array, len, isize)

rtc()
setrteopts(cl)
sleep_(sec)
time_()

timef(). .
timef_delta(t)
umask_(cmask).

X XL Fortran Language Reference

. 794
. 794
. 795
. 795
. 795
. 796
. 796
. 796
. 797
. 797
. 798
. 798
. 798
. 799
. 799
. 799
. 800
. 800
. 801
. 801
. 802
. 802
. 803
. 803
. 804
. 804
. 804
. 805
. 805

usleep_(msec)
xI__trbk().

Chapter 21. Extensions for source
compatibility.
Record structures . .
Declaring record structures
Storage mapping .
Union and map. .o
Examples of union and map

Appendix A. Compatibility across
standards .

Fortran 90 compatibility .

Obsolescent features .

Deleted features

Appendix B. ASCIl and EBCDIC
character sets .

Notices
Trademarks and service marks

Glossary

Index .

. 805
. 806

. 807
. 807
. 808
. 810
. 811
. 812

. 815
. 816
. 816
. 818
. 819

. 827
. 829

. 831

. 841

About this document

This document, which is part of the XL Fortran documentation suite, describes the
syntax, semantics, and IBM® implementation of the Fortran programming language
on the AIX® operating system. Although XL Fortran implementations conform to
Fortran 95, parts of Fortran 2003, and other specifications maintained by the ISO
standards for the Fortran programming language, they also incorporate many
extensions to the core language. These extensions have been implemented with the
aims of enhancing usability in specific operating environments, assuring
compatibility with other compilers, and supporting new hardware capabilities.

Who should read this document

This document is a reference for users who already have experience programming
in Fortran. Users new to Fortran can still use this document to find information on
the language and features unique to XL Fortran; however, it does not aim to teach
programming concepts nor to promote specific programming practices.

How to use this document

While this document covers both standard and implementation-specific features of
XL Fortran, it does not include information on the following topics, which are
covered in other documents:

* Installation, system requirements, last-minute updates: see the |XL Fortran|
[[nstallation Guidd and product README.

* Overview of XL Fortran features: see the [Getting Started with XL Fortran}

¢ Compiler setup, compiling and running programs, compiler options, diagnostics:
see the [XL Fortran Compiler Referencel

* Optimizing, porting, OpenMP and SMP programming: see the |[XL Fortran
[Optimization and Programming Guide]

* Operating system commands related to the use of the compiler: AIX Commands
Reference, Volumes 1 - 6 and the AIX information center.

How this document is organized

The following lists group information into sections that provide detail on particular
language topics and implementations:

* XL Fortran language elements:

- [Fundamentals of the XL Fortran language]

[[ntrinsic Data Types|

— [Expressions and assignment|

[Execution controll

[Program units and procedures|
[Understanding XL Fortran Input/Output
[[Input/Output formatting]

— [Statements and attributes|

© Copyright IBM Corp. 1990, 2007 xi

- |General directives|

[[ntrinsic procedures|

[Language interoperability features|

[The ISO_FORTRAN_ENV intrinsic module|

[Extensions for source compatibility]

* Procedures that provide hardware-related functionality, and additional features
for those already familiar with the Fortran language:

— [Floating-point control and inquiry procedures|

— [Hardware—specific directives|

— [Hardware—specific intrinsic procedures|

— [Service and utility procedures|

* The appendices provide information on [compatibility across standards| for users
of earlier versions of Fortran, and the [ASCII and EBCDIC character sets|
mapping table.

Conventions and terminology used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

Table 1. Typographical conventions

Typeface

Indicates

Example

italics

Parameters or variables whose
actual names or values are to be
supplied by the user. Italics are
also used to introduce new terms.

The maximum length of the
trigger_constant in fixed source form
is 4 for directives that are continued
on one or more lines.

underlining

The default setting of a parameter
of a compiler option or directive.

nomaf | maf

monospace

Examples of program code,
command strings, or user-defined
names.

Also, specify the following runtime
options before running the program,
with a command similar to the
following: export
XLFRTEOPTS="err_recovery=no:
langlv1=90std"

UPPERCASE
bold

Fortran programming keywords,
statements, directives, and intrinsic
procedures.

The ASSERT directive applies only to
the DO loop immediately following
the directive, and not to any nested
DO loops.

lowercase bold

Lowercase programming keywords
and library functions, compiler
intrinsic procedures, file and
directory names, examples of
program code, command strings,
or user-defined names.

If you specify -O3, the compiler
assumes -qhot=level=0. To prevent
all HOT optimizations with -O3, you
must specify -qnohot.

Qualifying elements (icons and bracket separators)

This document uses marked bracket separators to delineate large blocks of text and
icons to delineate small segments of text as follows:

xil XL Fortran Language Reference

Table 2. Qualifying elements

Bracket

separator text |Icon Meaning

Fortran 2003 The text describes an IBM XL Fortran implementation of
the Fortran 2003 standard.

Fortran 95 The text describes an IBM XL Fortran implementation of
the Fortran 95 standard.

IBM extension The text describes a feature that is an IBM XL Fortran
extension to the standard language specifications.

Syntax diagrams

Throughout this document, diagrams illustrate XL Fortran syntax. This section will
help you to interpret and use those diagrams.

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.
The »—— symbol indicates the beginning of a command, directive, or statement.

The — symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The »— symbol indicates that a command, directive, or statement is continued
from the previous line.

The —>< symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the |— symbol and end with
the —| symbol.

IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.

Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

* Required items are shown on the horizontal line (the main path):

»>—keyword—required_argument ><

¢ Optional items are shown below the main path:

A\
A

»»>—keyword
I—optf ional_argumen t—l

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and]). For example, [UNIT=]u

* If you can choose from two or more items, they are shown vertically, in a stack.

About this document ~ Xiii

If you must choose one of the items, one item of the stack is shown on the main
path.

Y
A

»—keyword—Erequired_argument]
required_argumen t2—|

If choosing one of the items is optional, the entire stack is shown below the
main path.

»»—keyword «
i:zpt ional_argument]:l

ptional_argument2

An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

v

»»—keyword

repeatable_argument >

The item that is the default is shown above the main path.

efault_argumen t—l
»»>—keyword lternate_argument > <

Keywords are shown in nonitalic letters and should be entered exactly as shown.

Variables are shown in italicized lowercase letters. They represent user-supplied
names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

xiv XL Fortran Language Reference

(1) (_‘

char_constant I—GJ A name_list <
i
d

»>—EXAMPLE

Notes:

1 IBM extension

Interpret the diagram as follows:

* Enter the keyword EXAMPLE.

* EXAMPLE is an IBM extension.

* Enter a value for char_constant.

* Enter a value for a or b, but not for both.
* Optionally, enter a value for c or d.

* Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

* Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

Examples

The examples in this document, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

Related information
The following sections provide information on documentation related to XL
Fortran:
+ [IBM XL Fortran publications”]
* |“Standards and specifications documents” on page xvil

* [“Other IBM publications” on page xviil

IBM XL Fortran publications
XL Fortran provides product documentation in the following formats:
* README files

README files contain late-breaking information, including changes and
corrections to the product documentation. README files are located by default
in the XL Fortran directory and in the root directory of the installation CD.

* Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the [[BM XL Fortran Enterprise Edition for AIX, V11.1|
[[nstallation Guidd

¢ Information center

The information center of searchable HTML files can be launched on a network
and accessed remotely or locally. Instructions for installing and accessing the

About this document XV

online information center are provided in the [[BM XL Fortran Enterprise Edition|
Ifor AIX, V11.1 Installation Guide, The information center is also viewable on the
Web at |http:/ /publib.boulder.ibm.com/infocenter /comphelp /v9v111/index.jsp}

¢ PDF documents

PDF documents are located by default in the /usr/lpp/xlf/doc/LANG/pdf/
directory, where LANG is one of en_US or ja_JP. The PDF files are also available
on the Web at Ihttp: / /www.ibm.com/software/awdtools/fortran/xIfortran/ |

|!ibrarz]

The following files comprise the full set of XL Fortran product manuals:

Table 3. XL Fortran PDF files

PDF file
Document title name Description
IBM XI. Fortran Enterprise |install.pdf Contains information for installing XL Fortran
Edition for AIX, V11.1 and configuring your environment for basic
[nstallation Guide) compilation and program execution.

. GC23-5834-00|

IGetting Started with IBM| getstart.pdf |Contains an introduction to the XL Fortran

XL Fortran_Enterprise] product, with information on setting up and

Edition for AIX, V11.1) configuring your environment, compiling and

GC23-5835-00] linking programs, and troubleshooting
compilation errors.

IBM XL Fortran Enterprisd |cr.pdf Contains information about the various

Edition for AIX, V11.1| compiler options and environment variables.

Compiler Reference)
SC23-5833-00

IBM XL Fortran Enterprise |lr.pdf Contains information about the Fortran

Edition for AIX, V11.1 programming language as supported by IBM,

Language Reference) including language extensions for portability

5C23-5832-00] and conformance to non-proprietary standards,
compiler directives and intrinsic procedures.

IBM XL Fortran Enterprisd |opg.pdf Contains information on advanced

Edition for AIX, VI1.1| programming topics, such as application

Optimization and) porting, interlanguage calls, floating-point

Programming Guide)| operations, input/output, application

SC23-5836-00| optimization and parallelization, and the XL

Fortran high-performance libraries.

To read a PDF file, use the Adobe® Reader. If you do not have the Adobe
Reader, you can download it (subject to license terms) from the Adobe Web site
at |http://www.adobe.com

More documentation related to XL Fortran including redbooks, white papers,
tutorials, and other articles, is available on the Web at:

Ihttp: / /www.ibm.com/software/awdtools/fortran/xlfortran/ library|

Standards and specifications documents

XL Fortran is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this document.

* American National Standard Programming Language FORTRAN, ANSI X3.9-1978.
* American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
* ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

xvi XL Fortran Language Reference

http://publib.boulder.ibm.com/infocenter/comphelp/v9v111/index.jsp
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/library

* Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.

s Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991 (E).

* Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:1997. (This document uses its informal name, Fortran 95.)

* Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2004. (This document uses its informal name, Fortran 2003.)

* Information technology - Programming languages - Fortran - Enhanced data type
facilities, ISO/IEC JTC1/SC22/WG5 N1379.

* Information technology - Programming languages - Fortran - Floating-point exception
handling, ISO/IEC JTC1/SC22/WG5 N1378.

 Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

e OpenMP Application Program Interface Version 2.5, available at
[http:/ / www.openmp.org]

Other IBM publications

* AIX Commands Reference, Volumes 1 - 6, SC23-4888

* AIX Technical Reference: Base Operating System and Extensions, Volumes 1 & 2,
S5C23-4913

* AIX National Language Support Guide and Reference, SC23-4902
* AIX General Programming Concepts: Writing and Debugging Programs, SC23-4896
* AIX Assembler Language Reference, SC23-4923

All AIX documentation is available at [http:/ /publib.boulder.ibm.com /|
[infocenter /pseries/v5r3 /index.jsp}

* ESSL for AIX V4.2 Guide and Reference, SA22-7904, available at
[http: / /publib.boulder.ibm.com /infocenter /clresctr/index.jsp)

Technical support

Additional technical support is available from the XL Fortran Support page at
lhttp:/ /www.ibm.com/software /awdtools / fortran/xlfortran/support] This page
provides a portal with search capabilities to a large selection of technical support
FAQs and other support documents.

If you cannot find what you need, you can send e-mail to compinfo@ca.ibm.com.

For the latest information about XL Fortran, visit the product information site at
Ihttp: / /www.ibm.com/software/awdtools/fortran/ xlfortranl

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this document or any other XL
Fortran documentation, send your comments by e-mail to compinfo@ca.ibm.com.

Be sure to include the name of the document, the part number of the document,

the version of XL Fortran, and, if applicable, the specific location of the text you
are commenting on (for example, a page number or table number).

About this document ~ XVii

http://www.openmp.org
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp
http://www.ibm.com/software/awdtools/fortran/xlfortran/support
http://www.ibm.com/software/awdtools/fortran/xlfortran

xviil XL Fortran Language Reference

Chapter 1. XL Fortran for AIX

The |XL Fortran Language Referencelis part of a documentation suite that offers
information on installing and using the IBM XL Fortran compiler on AIX. This
document defines the syntax, semantics, and restrictions you must follow to write
valid XL Fortran programs.

Fortran (FORmula TRANslation) is a high-level programming language primarily
useful for engineering, mathematical, and scientific applications involving numeric
computations.

XL Fortran implements Fortran 95, many features of Fortran 2003, and other
language specifications maintained by the ISO standards for the Fortran
programming language, and also incorporates many extensions to the core
language. These extensions have been implemented with the aims of enhancing
usability in specific operating environments, assuring compatibility with other
compilers, and supporting new hardware capabilities. In theory, a program that
compiles correctly on one standards-conforming compiler will compile and execute
correctly under all other conforming compilers, insofar as hardware differences
permit.

The compiler detects most non-conformities to the XL Fortran language rules, but
may not detect some syntactic and semantic combinations. The compiler cannot
detect all combinations for performance reasons, or because the nonconformance is
only detectable at run time. XL Fortran programs that contain these undiagnosed
combinations are not valid, whether or not the programs run as expected.

Language standards

This section briefly summarizes the XL Fortran language standard implementations
it follows.The |Qualifying elements| section contains details on how XL Fortran
marks language standard specific information.

Fortran 2003

Segments of this document contain information based on the Fortran 2003
Standard. The standard is open to continual interpretation, modification and
revision. IBM reserves the right to modify the behavior of any features of this
product to conform with future interpretations of this standard.

The Fortran standard committees respond to questions of interpretation about
aspects of Fortran. Some questions can relate to language features already
implemented in the XL Fortran compiler. Any answers given by these committees
relating to these language features can result in changes to future releases of the
XL Fortran compiler, even if these changes result in incompatibilities with previous
releases of the product.

Some of the major new features in Fortran 2003 are:

* [Derived type enhancements|

* Object-oriented programming support: [type extension] Jtype-bound procedures|
[type finalization] [abstract] and [generid interfaces, [polymorphism| and [PASS|
attribute.

© Copyright IBM Corp. 1990, 2007 1

+ Scoping and data manipulation enhancements: |allocatable components|
OLATILE attribute, MAX, MIN, MAXLOC, MINLOC, MAXVAL and MINVALJ
intrinsics for character type

« Input/Output enhancements: [User defined derived type I/0} [asynchronous|
h

ransfer| including the WAIT statement
* Subroutine enhancements: [VALUE| attribute, [Procedure pointers| deferred
HARACTER|length

* Support for IEEE Floating Point Standard (IEEE 1989)
+ [Interoperability with the C programming language|

* Support for international usage: [access to ISO 10646 4-byte characters|

Fortran 95

The Fortran 95 language standard is upward-compatible with the FORTRAN 77
and Fortran 90 language standards, excluding |deleted features| Some of the
improvements provided by the Fortran 95 standard are:

* |Default initialization}
* [ELEMENTAL| procedures.
e The [FORALL| construct statement.

* [POINTER|initialization.
* [PURE] functions.
* [Specification expressions|

Fortran 90

Fortran 90 offers many new features and feature enhancements to FORTRAN 77.
The following topics outline some of the key features that Fortran 90 brings to the
FORTRAN 77 language:

* |Array enhancements|

* [Control construct enhancements|

¢ [Derived type

+ [Dynamic behavior|

* [Free source form|

.

+ [Parameterized data types}

* [Procedure enhancements}

* [ointerd

IBM Extensions

An IBM extension generally modifies a rule or restriction from a given standards
implementation. In this document, IBM extensions to the Fortran 2003, Fortran 95,
and Fortran 90 standards. These are marked as indicated in |Qualifying elements|
section.

Other standards and standards documents

OpenMP API Version 2.5
The OpenMP API provides additional features which you can use to supplement
the existing FORTRAN 77, Fortran 90 and Fortran 95 language standards.

2 XL Fortran Language Reference

The OpenMP Architecture Review Board (ARB) responds to questions of
interpretation about aspects of the APL. Some of these questions can relate to
interface features implemented in this version of the XL Fortran compiler. Any
answers given by this committee relating to the interface can result in changes in
future releases of the XL Fortran compiler, even if these changes result in
incompatibilities with previous releases of the product.

You can find information pertaining to the implementation of OpenMP API Version
2.5 in the following sections:

* |OpenMP environment variables|in the [XL Fortran Optimization and Programming]
Guide]

* [SMP Directives|in the [XL Fortran Optimization and Programming Guide|

Standards documents

XL Fortran is designed according to the standards listed in the

section. You can refer to these standards for precise definitions of some
of the features found in this document.

Chapter 1. XL Fortran for AIX 3

4 XL Fortran Language Reference

Chapter 2. XL Fortran Language Fundamentals

This section describes the fundamental aspects of an XL Fortran application. Refer
to the following headings for more information:

e [“Characters”

+ [“Names” on page 6|

+ [“Statements” on page 7|

* [“Lines and source formats” on page 7|

[‘Order of statements and execution sequence” on page 14|

+ [“Data types” on page 15|

[‘Data objects” on page 17]

[“Typeless literal constants” on page 28|

Characters
The XL Fortran character set consists of letters, digits, and special characters:

Table 4. The XL Fortran character set

Letters Digits | Special Characters

Blank

Tab

Equal sign

Plus sign

Minus sign

Asterisk

Slash

Left parenthesis
Right parenthesis
Right square bracket
Left square bracket
Comma

Decimal point / period
Currency symbol
Apostrophe

: Colon

! Exclamation point
Double quotation mark
Percent sign
Ampersand

Semicolon

Question mark

Less than

Greater than
Underscore

OWOoONOTOTPREWNF—EO
+

ErxACUHIOTMOO®>

N<X<X=Z<=C—HW»WoO vo =

I —m xS Q D OO T
v e~~~ % 1

N X = < < ct+twn 30T O >

- .

2 o°

V A v

The characters have an order known as a collating sequence, which is the
arrangement of characters that determines their sequence order for such processes
as sorting, merging, and comparing. XL Fortran uses American National Standard
Code for Information Interchange (ASCII) to determine the ordinal sequence of
characters. See |[Appendix B, “ASCII and EBCDIC character sets,” on page 819|for a
complete listing of the ASCII character set.

refers to blanks and tabs. The significance of white space depends on

the source format. See [“Lines and source formats” on page 7| for details.

© Copyright IBM Corp. 1990, 2007 5

A lexical token is a sequence of characters with an indivisible interpretation that
forms a building block of a program. A lexical token can be a keyword, name,
literal constant (not of type complex), operator, label, delimiter, comma, equal sign,
colon, semicolon, percent sign, ::, or =>.

Names
A name is a sequence of any or all of the following elements:
* Letters (A-Z, a-z)
* Digits (0-9)
* Underscores (_)

. Dollar signs ($)

The first character of a name must not be a digit.

In Fortran 2003, the maximum length of a name is 63 characters. In Fortran 90 and
Fortran 95, the maximum length of a name is 31 characters.

| IBM Extension

In XL Fortran, the maximum length of a name is 250 characters. Although you can
begin a name with an underscore, the AIX operating system as well as the XL
Fortran compiler and libraries use reserved names that begin with underscores.

The compiler translates all letters in a source program into lowercase unless they
are in a character context. Character context refers to characters within character
literal constants, character-string edit descriptors, and Hollerith constants.

Note: When you specify the compiler option, the compiler does not
translate names to lowercase. For example, XL Fortran treats

ia Ia iA IA

the same by default, but treats lower and uppercase letters as distinct if you
specify -qmixed.

| End of IBM Extension

A name can identify entities such as:
* A variable

* A constant

* A procedure

* A derived type

* A construct

+ A|[CRITICAL construct

* A program unit

* A common block
* A namelist group

A subobject designator is a name followed by one or more selectors such as array
element selectors, array section selectors, component selectors, and substring
selectors. A subobject designator identifies the following items in a program unit:

¢ Anlarray element

6 XL Fortran Language Reference

e Anlarray sectio

* Alcharacter substring|
* Alstructure component|

Statements

A Fortran statement is a sequence of lexical tokens. Statements are used to form
program units.

| IBM Extension |

The maximum length of a statement in XL Fortran is 34 000 characters.

| End of IBM Extension |

See [Statements and Attributes| for more information on statements supported by
XL Fortran.

Statement keywords

A statement keyword is part of the syntax of a statement. A sequence of characters
is not reserved in all contexts. A statement keyword is interpreted as an entity
name if the keyword is used in such a context.

Statement labels

A statement label is a sequence of one to five digits, one of which must be
nonzero, that you can use to identify statements in a Fortran scoping unit. In fixed
source form, a statement label can appear anywhere in columns 1 through 5 of the
initial line of the statement. In free source form, such column restrictions do not

apply.

| IBM Extension |

XL Fortran ignores all characters that appear in columns 1 through 5 on fixed
source form continuation lines.

| End of IBM Extension |

Giving the same label to more than one statement in a [scoping unit| causes

ambiguity, and the compiler generates an error. White space and leading zeros are
not significant in distinguishing between statement labels. You can label any
statement, but a statement label reference can only refer to an executable statement
or a statement. The statement making the reference and the statement
referenced must be in the same scoping unit for the reference to resolve.

Lines and source formats

A line is a horizontal arrangement of characters. A column is a vertical
arrangement of characters, where each character, or each byte of a multibyte
character, in a given column shares the same horizontal line position.

| IBM Extension |

Because XL Fortran measures lines in bytes, these definitions apply only to lines
containing single-byte characters. Each byte of a multibyte character occupies one

Chapter 2. XL Fortran Language Fundamentals 7

column.

| End of IBM Extension

The kinds of lines are:

Initial line Is the first line of a statement.

Continuation line | Continues a statement beyond its initial line.

Comment line Does not affect the executable program and can be used for
documentation. The comment text continues to the end of a line.
Although comment lines can follow one another, a comment line cannot
be continued. A line of all white space or a zero-length line is a
comment line without any text. Comment text can contain any
characters allowed in a character context.

If an initial line or continuation line is not continued, or if it is continued
but not in a character context, an inline comment can be placed on the
same line, to the right of any statement label, statement text, and
continuation character that may be present. An exclamation mark (!)
begins an inline comment.

Conditional Indicates that the line should only be compiled if recognition of
compilation line |conditional compilation lines is enabled. A conditional compilation
sentinel should appear on a conditional compilation line. For more
information, see [Conditional compilation|

Debug Line Indicates that the line is for debugging code (for fixed source form only).
In XL Fortran the letter D or X must be specified in column 1. For more

information, see [Debug line

Directive line Provides instructions or information to the compiler in XL Fortran. For
more information, see |[Comment form directives

| IBM Extension |

In XL Fortran, source lines can be in fixed source form or free source form format.
Use the [SOURCEFORM] directive to mix source formats within the same program
unit. Fixed source form is the default when using the 77, fort77, xIf, xIf_r, or
xIf_r7 invocation commands. Fortran 90 free source form is the default when using
the x1£f90, x1f90_r, x1f90_r7, x1£95, x1f95_r, x1f95_r7, x1£2003, or x1f2003_r invocation
commands.

See |Compiling XL Fortran Programs|in the [XL Fortran Compiler Referencd for details
on invocation commands.

| End of IBM Extension |

Fixed source form

| IBM Extension |

A fixed source form line is a sequence of 1 to 132 characters. The default line size
is 72 characters. This is also the Fortran standard line size. You can change the
default using the |-qfixed=right _margin| compiler option. In XL Fortran there is no
limit to the number of continuation lines for a statement , but the statement cannot
be longer than 34 000 characters. Fortran 2003 limits the number of continuation
lines to 255, while Fortran 95 limits the number of continuation lines to 19.

8 XL Fortran Language Reference

In fixed source form, columns beyond the right margin are not part of the line and
you can use these columns for identification, sequencing, or any other purpose.

| End of IBM Extension |

Except within a character context, white space is insignificant. You can embed
white space between and within lexical tokens, without affecting the way the
compiler treats them.

| IBM Extension |

Tab formatting means that there is a tab character in columns 1 through 6 of an
initial line in XL Fortran, which directs the compiler to interpret the next character
as being in column 7.

| End of IBM Extension |

Requirements for lines and for items on those lines are:

* A comment line begins with a C, ¢, or an asterisk (*) in column 1, or is all white
space. Comments can also follow an exclamation mark (!), except when the
exclamation mark is in column 6 or in a character context.

* For an initial line without tab formatting:

— Columns 1 through 5 contain either blanks, a statement label, aDor
an X in column 1 optionally followed by a statement label.

— Column 6 contains a blank or zero.

— Columns 7 through to the right margin contain statement text, possibly
followed by other statements or by an inline comment.

| IBM Extension |

* For an initial line with tab formatting in XL Fortran:

— Columns 1 through 6 begin with either blanks, a statement label, or a D or an
X'in column 1, optionally followed by a statement label. You must follow this
with a tab character.

— If you specify the |-qxflag=oldtab| compiler option, all columns from the

column immediately following the tab character through to the right margin
contain statement text, possibly followed by other statements and by an inline
comment.

— If you do not specify -qxflag=oldtab compiler option, all columns from
column 7, which corresponds to the character after the tab, to the right
margin contain statement text, possibly followed by other statements and by
an inline comment.

| End of IBM Extension |

e For a continuation line:

— Column 1 must not contain C, ¢, or an asterisk. Columns 1 through 5 must
not contain an exclamation mark as the leftmost nonblank character.

| IBM Extension |

Column 1 can contain a D or an X which signifies a debug line in XL Fortran.
Otherwise, these columns can contain any characters allowed in a character

Chapter 2. XL Fortran Language Fundamentals 9

context; these characters are ignored.

| End of IBM Extension

— Column 6 must contain either a nonzero character or a nonwhite space
character. The character in column 6 is the continuation character.
Exclamation marks and semicolons are valid continuation characters.

— Columns 7 through to the right margin contain continued statement text,
possibly followed by other statements and an inline comment.

— Neither the statement or a statement whose initial line appears to be a
program unit END statement can be continued.

A semicolon separates statements on a single source line, except when appearing in
a character context, in a comment, or in columns 1 through 6. Two or more
semicolon separators that are on the same line and are themselves separated by
only white space or other semicolons are considered to be a single separator. A
separator that is the last character on a line or before an inline comment is ignored.
Statements following a semicolon on the same line cannot be labeled. Additional
statements cannot follow a program unit END statement on the same line.

Debug lines

| IBM Extension |

A debug line, allowed only for fixed source form, contains source code used for
debugging and is specified in XL Fortran by the letter D, or the letter X in column
1. The handling of debug lines depends on the or the compiler
options:

* If you specify the -qdlines option, the compiler interprets the D in column 1 as a
blank, and handles such lines as lines of source code. If you specify -qxlines ,
the compiler interprets the X in column 1 as a blank and treats these lines as
source code.

* If you do not specify -qdlines or -qxlines, the compiler handles such lines as
comment lines. This is the default setting.

If you continue a debugging statement on more than one line, every continuation
line must have a continuation character as well as a D or an X in column 1. If the
initial line is not a debugging line, you can designate any continuation lines as
debug lines provided that the statement is syntactically correct, whether or not you
specify the -qdlines or -qxlines compiler option.

| End of IBM Extension |

Example of fixed source form

C Column Numbers:
C 1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012

ITBM* SOURCEFORM (FIXED)
CHARACTER CHARSTR ; LOGICAL X I 2 statements on 1 line
DO 10 I=1,10
PRINT *,'this is the index',I ! with an inline comment
10 CONTINUE

CHARSTR="THIS IS A CONTINUED

X CHARACTER STRING"
I There will be 38 blanks in the string between "CONTINUED"

10 XL Fortran Language Reference

I and "CHARACTER". You cannot have an inline comment on
I the initial Tine because it would be interpreted as part
I of CHARSTR (character context).
100 PRINT %, IERROR

I The following debug Tines are compiled as source Tines if

! you use -qdlines

D IF (I.EQ.IDEBUG.AND.

D + J.EQ.IDEBUG) WRITE(6,*) IERROR

D IF (I.EQ.

D + IDEBUG)

D+ WRITE(6,*) INFO
END

Free source form

A free source form line can specify up to 132 characters on each line. In XL
Fortran, there is no limit to the number of continuation lines for a statement , but
the statement cannot be longer than 34 000 characters. Fortran 2003 limits the
number of continuation lines to 255, while Fortran 95 limits the number of
continuation lines to 39.

Items can begin in any column of a line, subject to the following requirements for
lines and items on those lines:

* A comment line is a line of white space or begins with an exclamation mark that
is not in a character context.

* An initial line can contain any of the following items, in the following sequence:
— A statement label.
— Statement text. Note that statement text is required in an initial line.
— Additional statements.
— The ampersand continuation character.
— An inline comment.

* If you want to continue an initial line or continuation line in a non-character
context, the continuation line must start on the first noncomment line that
follows the intial line or continuation line. To define a line as a continuation line,
you must place an ampersand after the statements on the previous
non-comment line.

* White space before and after the ampersand is optional, with the following
restrictions:

— If you also place an ampersand in the first nonblank character position of the
continuation line, the statement continues at the next character position
following the ampersand.

— If a lexical token is continued, the ampersand must immediately follow the
initial part of the token, and the remainder of the token must immediately
start after the ampersand on the continuation line.

* A character context can be continued if the following conditions are true:

— The last character of the continued line is an ampersand and is not followed
by an inline comment. If the rightmost character of the statement text to be
continued is an ampersand, you must enter a second ampersand as a
continuation character.

— The first nonblank character of the next noncomment line is an ampersand.

A semicolon separates statements on a single source line, except when the
semicolon appears in a character context or in a comment. Two or more separators
that are on the same line and are themselves separated by only white space or
other semicolons are considered to be a single separator. A separator that is the last

Chapter 2. XL Fortran Language Fundamentals 11

character on a line or before an inline comment is ignored. Additional statements
cannot follow a program unit statement on the same line.

White space

White space must not appear within lexical tokens, except in a character context or
in a format specification. You can freely insert white space between tokens to
improve readability, and white space must separate names, constants, and labels
from adjacent keywords, names, constants, and labels.

Certain adjacent keywords can require white space. The following table lists
keywords where white space is optional..

Table 5. Keywords where white space is optional

[END STRUCTURE
[END SUBROUTINE

END ASSOCIATE
END BLOCK DATA

‘END DO

END ENUM|

Example of free source form

1IBM* SOURCEFORM (FREE(F90))
!

! CoTumn Numbers:

! 1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012
DO I=1,20

PRINT =*,'this statement&
& is continued' ; IF (I.LT.5) PRINT =, I

ENDDO

EN&
&D I A Texical token can be continued

IBM free source form

| IBM Extension

An IBM free source form line or statement is a sequence of up to 34000 characters.
Items can begin in any column of a line, subject to the following requirements:

* A comment line begins with a double quotation mark in column 1, is a line of
all white space, or is a zero-length line. A comment line must not follow a
continued line. Comments can follow an exclamation mark except in a character
context.

* An initial line can contain any of the following items, in the following sequence:
— A statement label
— Statement text
— The minus sign continuation character
— An inline comment

* A continuation line immediately follows a continued line and can contain any of
the following items, in the following sequence:

12 XL Fortran Language Reference

— Statement text
— A continuation character

— An inline comment

If statement text on an initial line or continuation line is to continue, a minus sign
indicates continuation of the statement text on the next line. In a character context,
if the rightmost character of the statement text to continue is a minus sign, a
second minus sign must be entered as a continuation character.

Except within a character context, white space is insignificant. You can embed
white space between and within lexical tokens, without affecting how the compiler
treats those tokens.

Example of IBM free source form

IIBM+ SOURCEFORM (FREE(IBM))

" Column Numbers:

" 1 2 3 4 5 6 7
"'23456789012345678901234567890123456789012345678901234567890123456789012
DO I=1,10
PRINT *,'this is -
the index',I I There will be 14 blanks in the string
I between "is" and "the"
END DO
END

| End of IBM Extension

Conditional compilation

| IBM Extension

You can use sentinels to mark specific lines of an XL Fortran program for
conditional compilation. This allows you to port code that contains statements that
are only valid or applicable in an SMP environment to a non-SMP environment.

Syntax for conditional compilation

»>—cond_comp_sentinel—fortran_source_line ><

cond_comp_sentinel
is a conditional compilation sentinel defined by the current source form
and is either:
* 1%, C$, c$, or *$, for fixed source form, or
* 18, for free source form

fortran_source_line
is an XL Fortran source line

Chapter 2. XL Fortran Language Fundamentals 13

Conditional compilation rules

General rules:

A valid XL Fortran source line must follow the conditional compilation sentinel.

A conditional compilation line can contain the [EJECT} INCLUDE or noncomment
directives.

A conditional compilation sentinel must not contain embedded white space.

A conditional compilation sentinel must not follow a source statement or directive
on the same line.

If you are continuing a conditional compilation line, the conditional compilation
sentinel must appear on at least one of the continuation lines or on the initial line.

You must specify the compiler option for conditional compilation lines to
be recognized. To disable recognition of conditional compilation lines, specify the
-qnocclines compiler option.

Trigger directives take precedence over conditional compilation sentinels. For

example, if you specify the option, then lines that start with the

trigger, such as !$, will be treated as comment directives, rather than conditional
compilation lines.

Fixed source form rules:

Conditional compilation sentinels must start in column 1.

All rules for [fixed source form|line length, case sensitivity, white space,
continuation, tab formatting, and columns apply.

Free source form rules:

Conditional compilation sentinels can start in any column.

All rules for [free source form|line length, case sensitivity, white space, and
continuation apply. When you enable recognition of conditional compilation lines,
the conditional compilation sentinel two white spaces replace the conditional
compilation sentinel.

| End of IBM Extension

Order of statements and execution sequence

In the Statement order table, vertical lines delineate statements that you can
intersperse, while horizontal lines delineate statements that you cannot intersperse.
The numbers in the diagram reappear later in this document to identify groups of
statements that you can specify in a particular context.

Table 6. Statement order

PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA Statement

H USE Statements

IMPORT Statements

14 XL Fortran Language Reference

Table 6. Statement order (continued)

A DATA, FORMAT, and ENTRY | [H Derived-Type Definitions, Interface Blocks, Type
Statements Declaration Statements, Enumeration Definitions,
Procedure Declarations, Specification Statements,
IMPLICIT Statements, and PARAMETER Statements

[Executable constructs

CONTAINS Statement

B Internal Subprograms or Module Subprograms
Bl END Statement

Refer to [Chapter 8, “Program units and procedures,” on page 145/ or [Chapter 11|
[‘Statements and attributes,” on page 269| for more details on rules and restrictions
concerning statement order.

The normal execution sequence is the processing of references to specification
functions in any order, followed by the processing of executable statements in the
order they appear in a scoping unit.

A transfer of control is an alteration of the normal execution sequence. Some
statements that you can use to control the execution sequence are:

* Control statements like and @
« Input/output statements like READ|and [WRITE that contain an END=, ERR=,
or EOR= specifier.

When you reference a procedure that is defined by a subprogram, the execution of
the program continues with any specification functions referenced in the scoping
unit of the subprogram that defines the procedure. The program resumes with the
first executable statement following the [ENTRY} [FUNCTION]| or SUBROUTINE]
statement that defines the procedure. When you return from the subprogram,
execution of the program continues from the point at which the procedure was
referenced or to a statement referenced by an alternate return specifier.

In this document, any description of the sequence of events in a specific transfer of
control assumes that no event, such as an error or the execution of a
statement, changes that normal sequence.

Data types

A data type consists of a name, a set of valid values, constants used as a way to
denote those values, and a set of operations to manipulate those values. The two
categories of data types are [Intrinsic types|and [Derived types|

A derived type is a composite data type that can contain both intrinsic and derived
data types.

Intrinsic types and their operations are predefined and always accessible. The two
classes of intrinsic types are numeric and nonnumeric, with a number of types
comprising each class.

Table 7. Intrinsic Types

Numeric Intrinsic Types Nonnumeric Intrinsic Types
[nteger,

Chapter 2. XL Fortran Language Fundamentals 15

Table 7. Intrinsic Types (continued)

Numeric Intrinsic Types Nonnumeric Intrinsic Types

Eorpie]
Eda

Notes:
1. IBM Extension.

Type declaration: type parameters and specifiers

This is an overview section on declaring the type of an entity. The |Statements
section contains the particular syntax details and rules for derived and intrinsic

type declarations.

XL Fortran provides one or more representation methods for each intrinsic data
type. You can optionally specify this representation method with a kind type
parameter value, using kind_param in your type declaration statement. This value
can indicate:

* The range for the data type.
* The decimal precision and exponent range for the data type.
* The decimal precision and exponent range for the data type.

* The representation method for the data type.
¢ The representation method for the data type.

The [BYTE|intrinsic type does not have a kind type parameter.

A length type parameter specifies the number of characters for entities of type
character.

A type specifier denotes the type of all entities declared in a type declaration
statement. The INTEGER| [REAL} [COMPLEX} [LOGICAL)| and [CHARACTER| type
specifiers can include a kind_selector, that specifies the kind type parameter.

For example, here are some common ways you can declare a 4-byte integer:
* INTEGER(@4)

* INTEGER(KIND=4)

* INTEGER, where the default integer size is set to 4 bytes.

This document references 4-byte integers as INTEGER(4).

See for details on using type specifiers.

Applicable intrinsic procedures
For objects of an intrinsic type, the [KIND]intrinsic procedure returns the kind type
parameter of its argument.

You can use the intrinsic procedure to determine the length type parameter of
a character object.

16 XL Fortran Language Reference

| IBM Extension |

The [SIZEOF intrinsic function returns the size of a data object in bytes.
| End of IBM Extension |

You can use a type parameter inquiry to identify the type parameter value of a
data object.

Two examples of a type parameter inquiry are:
foo%kind
foo%len

Determining Type

Each user-defined function or named entity has a data type. The type of an entity
accessed by host or use association is determined in the host scoping unit or
accessed module, respectively. The type of a name is determined, in the following
sequence, in one of three ways:

1. Explicitly, in one of the following ways:

* From a specified type declaration statement (see [“Type Declaration” on page]
for details).

* For function results, from a specified type statement or its FUNCTION
statement.

2. Implicitly, from a specified [IMPLICIT]| type statement.

3. Implicitly, by predefined convention. By default (that is, in the absence of an
IMPLICIT type statement), if the first letter of the name is I, J, K, L, M, or N, the
type is default integer. Otherwise, the type is default real.

In a given scoping unit, if a letter, dollar sign, or underscore has not been specified
in an IMPLICIT statement, the implicit type used is the same as the implicit type
used by the host scoping unit. A program unit and interface body are treated as if
they had a host with an IMPLICIT statement listing the predefined conventions.

The data type of a literal constant is determined by its form.

Data objects

A data object is a variable, constant, or subobject of a constant.

A variable can have a value and can be defined or redefined during execution of
an executable program. A variable can be:

* A scalar variable name
* An array variable name
* A subobject

A subobject of a variable is a portion of a named object that you can reference or
define. A subobject can be:

e An array element.
e An array section
* A character substring

* A structure component

Chapter 2. XL Fortran Language Fundamentals 17

A subobject of a constant is a portion of a constant. The referenced portion can
depend on a variable value.

Constants

A constant has a value and cannot be defined or redefined during execution of an
executable program. A constant with a name is a named constant. You can use
either the statement or the attribute to provide a constant
with a name. A constant without a name is a literal constant. A literal constant can
be of intrinsic type or typeless. A typeless constant can be:

* Hexadecimal
e QOctal

* Binary

* Hollerith

The optional kind type parameter of a literal constant can only be a digit string or
a scalar integer named constant.

A signed literal constant can have a leading plus or minus sign. All other literal
constants must be unsigned. These constants do not have a leading sign. The value
zero is neither positive nor negative. You can specify zero as signed or unsigned.

Automatic objects

An automatic object is a data object dynamically allocated within a procedure. This
object is a local entity of a subprogram and can have a nonconstant character
length, a nonconstant array bound, or both. An automatic object is not a dummy
argument.

An automatic object always has the controlled [automatic storage] class.

You can not specify an automatic object in any of the following statements:

.

:

- [EQUIVALENCH
.

Also, automatic objects can not have the AUTOMATIC| [PARAMETER| [SAVE, or
attributes. You can not initialize or define an automatic object with an
initialization expression in a type declaration statement, but an automatic object
can have a default initialization. An automatic object must not appear in the
specification part of a main program or module.

Polymorphic entities

| Fortran 2003

A polymorphic entity is a data entity that is able to be of differing types during
program execution. The type of a data entity at a particular point during execution
of a program is its dynamic type. The declared type of a data entity is the type
that it is declared to have, either explicitly or implicitly.

You use the CLASS type specifier to declare polymorphic objects. If the CLASS

type specifier contains a type name, the declared type of a polymorphic object is
that type.

18 XL Fortran Language Reference

You can use the CLASS(*) specifier to declare an unlimited polymorphic object. An
unlimited polymorphic entity is not declared to have a type. It is not considered to
have the same declared type as any other entity, including another unlimited
polymorphic entity.

A nonpolymorphic entity is type-compatible only with entities of the same type.
For a polymorphic entity, type compatibility is based on its declared type: a
polymorphic entity that is not unlimited polymorphic is type-compatible with
entities of the same type or any of its extensions. Even though an unlimited
polymorphic entity is not considered to have a declared type, it is type-compatible
with all entities.

An entity is said to be type-compatible with a type if it is type-compatible with
entities of that type. An entity is type-, kind-, and rank-compatible (TKR) with
another entity if the first entity is type-compatible with the second, the kind type
parameters of the first entity have the same values as corresponding kind type
parameters of the second, and both entities have the same rank.

Only components of the declared type of a polymorphic object may be designated
by component selection.

A polymorphic allocatable object may be allocated to be of any type with which it
is type-compatible. A polymorphic pointer or dummy argument may, during
program execution, be associated with objects with which it is type-compatible.

The following table lists the dynamic type of objects.
Table 8. Dynamic type of objects

Object Dynamic type

Allocated allocatable polymorphic object The type with which the object was
allocated.

Associated polymorphic pointer The dynamic type of the pointer’s target.

Nonallocatable nonpointer polymorphic The dynamic type of dummy’s associated

dummy argument actual argument.

Unallocated allocatable The allocatable object’s declared type.

Disassociated pointer The pointer’s declared type.

Entity identified by an associate name The dynamic type of the selector with which
the object is associated.

Nonpolymorphic object The object’s declared type.

| End of Fortran 2003

Definition status of variables

A variable is either defined or undefined, and its definition status can change
during program execution. A named constant has a value and cannot be defined or
redefined during program execution.

Arrays (including sections), structures, and variables of character, complex or
derived-type are objects made up of zero or more subobjects. Associations can be
established between variables and subobjects and between subobjects of different
variables.

Chapter 2. XL Fortran Language Fundamentals 19

* An object is defined if all of its subobjects are defined. That is, each object or
subobject has a value that does not change until it becomes undefined or until it
is redefined with a different value.

* A derived type scalar object is defined if and only if all of its nonpointer
components are defined.

* A complex or character scalar object is defined if and only if all of its subobjects
are defined.

* If an object is undefined, at least one of its subobjects is undefined. An
undefined object or subobject cannot provide a predictable value.

Variables are initially defined if they are specified to have initial values by DATA
statements, type declaration statements, or STATIC statements. Variables with the
BIND attribute that are initialized by means other than Fortran are also initially
defined. In addition, default initialization can cause a variable to be initially
defined. Zero-sized arrays and zero-length character objects are always defined.

All other variables are initially undefined.

Events causing definition
The following events will cause a variable to become defined:

1. Execution of an intrinsic assighment statement other than a masked array

assignment statement or FORALL assignment statement
causes the variable that precedes the equal sign to become defined.

Execution of a defined assignment statement may cause all or part of the
variable that precedes the equal sign to become defined.

2. Execution of a masked array assignment statement or FORALL
assignment statement may cause some or all of the array elements in
the assignment statement to become defined.

3. As execution of an input statement proceeds, each variable that is assigned a
value from the input file becomes defined at the time that data are transferred
to it. Execution of a WRITE statement whose unit specifier identifies an
internal file causes each record that is written to become defined.

As execution of an asynchronous input statement proceeds, the variable does
not become defined until the matching WAIT statement is executed.

4. Execution of a DO statement causes the DO variable, if any, to become
defined.

| Fortran 95

5. Default initialization may cause a variable to be initially defined.

| End of Fortran 95

6. Beginning of execution of the action specified by an implied-DO list in an
input/output statement causes the implied-DO variable to become defined.

7. Execution of an ASSIGN statement causes the variable in the statement to
become defined with a statement label value.

8. A reference to a procedure causes the entire dummy argument data object to
become defined if the dummy argument does not have INTENT(OUT), and
the entire corresponding actual argument is defined with a value that is not a
statement label.

A reference to a procedure causes a subobject of a dummy argument that does
not have INTENT(OUT) to become defined if the corresponding subobject of
the corresponding actual argument is defined.

20 XL Fortran Language Reference

Execution of an input/output statement containing an IOSTAT= specifier
causes the specified integer variable to become defined.

Fortran 2003

Execution of an input/output statement containing an IOMSG= specifier
causes the specified character variable to become defined when an error,

End of Fortran 2003

Execution of a READ statement containing a SIZE= specifier causes the

Execution of a READ or WRITE statement in XL Fortran containing an ID=
specifier causes the specified integer variable to become defined.

Execution of a WAIT statement in XL Fortran containing a DONE= specifier

causes the specified logical variable to become defined.
Execution of a synchronous READ or WRITE statement in XL Fortran

containing a NUM= specifier causes the specified integer variable to become

Execution of an asynchronous READ or WRITE statement containing a
NUM= specifier does not cause the specified integer variable to become

defined. The integer variable is defined upon execution of the matching WAIT

Execution of an INQUIRE statement causes any variable that is assigned a
value during the execution of the statement to become defined if no error

When a character storage unit becomes defined, all associated character

When a numeric storage unit becomes defined, all associated numeric storage
units of the same type become defined, except that variables associated with

the variable in an ASSIGN statement become undefined when the ASSIGN

statement is executed. When an entity of type DOUBLE PRECISION becomes

defined, all totally associated entities of double precision real type become

A nonpointer scalar object of type nondefault integer, real other than default
or double precision, nondefault logical, nondefault complex, nondefault
character of any length, or nonsequence type occupies a single unspecified
storage unit that is different for each case. A pointer that is distinct from oth
pointers in at least one of type, kind, and rank occupies a single unspecified

er

storage unit. When an unspecified storage unit becomes defined, all associated

When a default complex entity becomes defined, all partially associated

When both parts of a default complex entity become defined as a result of

partially associated default real or default complex entities becoming defined,

When all components of a numeric sequence structure or character sequence

structure become defined as a result of partially associated objects becoming

9.
|
10.
end-of-file or end-of-record occurs.
11.
specified integer variable to become defined.
12.
13.
14.
defined.
statement.
15.
condition exists.
16.
storage units become defined.
defined.
unspecified storage units become defined.
17.
default real entities become defined.
18.
the default complex entity becomes defined.
19.
defined, the structure becomes defined.
20.

Execution of an ALLOCATE or DEALLOCATE statement with a STAT=
specifier causes the variable specified by the STAT= specifier to become

Chapter 2. XL Fortran Language Fundamentals

21

defined.

21.

Fortran 2003 |

If an error condition occurs during the execution of an ALLOCATE or
DEALLOCATE statement that has an ERRMSG= specifier, the errmsg-variable
becomes defined.

End of Fortran 2003 |

22.
23.

24.

25.

26.

27.

Allocation of a zero-sized array causes the array to become defined.

Invocation of a procedure causes any automatic object of zero size in that
procedure to become defined.

Execution of a pointer assignment statement that associates a pointer with a
target that is defined causes the pointer to become defined.

Invocation of a procedure that contains a nonpointer, nonallocatable,
automatic object, causes all nonpointer default-initialized subcomponents of
the object to become defined.

Invocation of a procedure that contains a nonpointer nonallocatable
INTENT(OUT) dummy argument causes all nonpointer default-initialized
subcomponents of the object to become defined.

Allocation of an object of a derived type where a nonpointer component is
initialized by default initialization, causes the component and its subobjects to
become defined.

28.

Fortran 95 |

In a FORALL statement or construct used in Fortran 95, the index-name
becomes defined when the index-name value set is evaluated.

End of Fortran 95 |

29.

30.

31.

32.

33.

IBM Extension |

If a THREADPRIVATE nonpointer nonallocatable variable that does not
appear in a COPYIN clause is defined on entry into the first parallel region,
each new thread’s copy of the variable is defined.

If a THREADPRIVATE common block that does not appear in a COPYIN
clause is defined on entry into the first parallel region, each new thread’s copy
of the variable is defined.

For THREADPRIVATE variables that are specified in a COPYIN clause, each
new thread duplicates the master thread’s definition, allocation and
association status of these variables. Therefore, if the master thread’s copy of a
variable is defined on entry to a parallel region, each new thread’s copy of the
variable will also be defined.

For THREADPRIVATE common blocks that are in a COPYIN clause, each
new thread duplicates the master thread’s definition, allocation and
association status of the variables in these common blocks. Therefore, if the
master thread’s copy of a common block variable is defined on entry to a

parallel region, each new thread’s copy of the common block variable will also
be defined.

When a variable is specified in a FIRSTPRIVATE clause of a PARALLEL,
PARALLEL DO, DO, PARALLEL SECTIONS, PARALLEL WORKSHARE,
SECTIONS, or SINGLE directive, each new thread duplicates the master

22 XL Fortran Language Reference

34.

thread’s definition and association status of the variable. Therefore, if the
master thread’s copy of a variable is defined on entry to a parallel region,
each new thread’s copy of the variable will also be defined.

For each variable, or variable inside a common block, specified in a
COPYPRIVATE clause, then after the execution of the code enclosed in the
SINGLE construct and before any threads in the team have left the construct,
all copies of the variable become defined as follows:

e If the variable has the POINTER attribute, then copies of the variable in
other threads in the team have the same pointer association status as the
copy of the variable belonging to the thread that executed the code enclosed
in the SINGLE construct.

* If the variable does not have the POINTER attribute, then copies of the
variable in other threads in the team have the same definition as the copy

of the variable belonging to the thread that executed the code enclosed in
the SINGLE construct.

End of IBM Extension |

Events causing undefinition
The following events will cause a variable to become undefined:

1.

When a variable of a given type becomes defined, all associated variables of
different type become undefined. However, when a variable of type default
real is partially associated with a variable of type default complex, the
complex variable does not become undefined when the real variable becomes
defined and the real variable does not become undefined when the complex
variable becomes defined. When a variable of type default complex is partially
associated with another variable of type default complex, definition of one
does not cause the other to become undefined.

Execution of an ASSIGN statement causes the variable in the statement to
become undefined as an integer. Variables that are associated with the variable
also become undefined.

If the evaluation of a function may cause an argument of the function or a
variable in a module or in a common block to become defined, and if a
reference to the function appears in an expression in which the value of the
function is not needed to determine the value of the expression, the argument
or variable becomes undefined when the expression is evaluated.

The execution of a RETURN statement or END statement within a
subprogram causes all variables that are local to its scoping unit, or that are
local to the current instance of its scoping unit for a recursive invocation, to
become undefined, except for the following:
a. Variables with the SAVE or STATIC attribute.
b. Variables in blank common.
€. According to Fortran 90, variables in a named common block that appears
in the subprogram and appears in at least one other scoping unit that is
making either a direct or indirect reference to the subprogram. XL
Fortran does not undefine these variables, unless they are part of a
threadlocal common block.
Variables accessed from the host scoping unit.
According to Fortran 90, variables accessed from a module that also is
referenced directly or indirectly by at least one other scoping unit that is

making either a direct or indirect reference to the subprogram. XL
Fortran does not undefine these variables.

Chapter 2. XL Fortran Language Fundamentals 23

10.

11.

12.

13.

14.

f. According to Fortran 90, variables in a named common block that are
initially defined and that have not been subsequently defined or redefined.

XL Fortran does not undefine these variables[1em 4
When an error condition or end-of-file condition occurs during execution of
an input statement, all of the variables specified by the input list or
namelist-group of the statement become undefined.

When an error condition, end-of-file condition, or end-of-record condition
occurs during execution of an input/output statement and the statement
contains any implied-DO lists, all of the implied-DO variables in the
statement become undefined.

Execution of a defined assignment statement may leave all or part of the
variable that precedes the equal sign undefined.

Execution of a direct access input statement that specifies a record that has not
been written previously causes all of the variables specified by the input list
of the statement to become undefined.

Execution of an INQUIRE statement may cause the NAME=, RECL=,
NEXTREC=, and POS= variables to become undefined.

When a character storage unit becomes undefined, all associated character
storage units become undefined.

When a numeric storage unit becomes undefined, all associated numeric
storage units become undefined unless the undefinition is a result of defining
an associated numeric storage unit of different type (see (1) above).

When an entity of double precision real type becomes undefined, all totally
associated entities of double precision real type become undefined.

When an unspecified storage unit becomes undefined, all associated
unspecified storage units become undefined.

A reference to a procedure causes part of a dummy argument to become
undefined if the corresponding part of the actual argument is defined with a
value that is a statement label value.

When an allocatable entity is deallocated, it becomes undefined. Successful
execution of an ALLOCATE statement for a nonzero-sized object for which
default initialization has not been specified causes the object to become
undefined.

Execution of an INQUIRE statement causes all inquiry specifier variables to
become undefined if an error condition exists, except for the variable in the

IOSTAT= or IOMSG= specifier, if any.

When a procedure is invoked:

a. An optional dummy argument that is not associated with an actual
argument is undefined.

b. A nonpointer dummy argument with INTENT(OUT) and its associated
actual argument are undefined, except for nonpointer direct components
that have default initialization.

c. A pointer dummy argument with INTENT(OUT) and its associated actual
argument have an association status of undefined.

d. A subobject of a dummy argument is undefined if the corresponding
subobject of the actual argument is undefined.

e. The function result variable is undefined, unless it was declared with the
STATIC attribute and was defined in a previous invocation.

24 XL Fortran Language Reference

15.

When the association status of a pointer becomes undefined or disassociated,
the pointer becomes undefined.

16.

Fortran 95 |

When the execution of a FORALL statement or construct in Fortran 95 has
completed, the index-name becomes undefined.

End of Fortran 95 |

17.

18.

Fortran 2003 |

When execution of a RETURN or END statement causes a variable to become
undefined, any variable of type C_PTR becomes undefined if its value is the
C address of any part of the variable that becomes undefined.

When a variable with the TARGET attribute is deallocated, any variable of
type C_PTR becomes undefined if its value is the C address of any part of the
variable that is deallocated.

End of Fortran 2003 |

19.

20.

21.

22.

23.

24.

25.

26.

IBM Extension |

When a variable is specified in either the PRIVATE or LASTPRIVATE clause
of a PARALLEL, PARALLEL DO, DO, PARALLEL SECTIONS, PARALLEL
WORKSHARE, SECTIONS or SINGLE directive, each new thread’s copy of
the variable is undefined when the thread is first created.

When a variable is specified in a FIRSTPRIVATE clause of a PARALLEL,
PARALLEL DO, DO, PARALLEL SECTIONS, PARALLEL WORKSHARE,
SECTIONS or SINGLE directive, each new thread duplicates the master
thread’s definition and association status of the variable. Therefore, if the
master thread’s copy of a variable is undefined on entry to a parallel region,
each new thread’s copy of the variable will also be undefined.

When a variable is specified in the NEW clause of an INDEPENDENT
directive, the variable is undefined at the beginning of every iteration of the
following DO loop.

When a variable appears in asynchronous input, that variable becomes
undefined, and remains undefined, until the matching WAIT statement is
reached.

If a THREADPRIVATE common block or a THREADPRIVATE variable is
specified in a COPYIN clause, each new thread duplicates the master thread’s
definition, allocation and association status of the variables. Therefore, if the
master thread’s copy of a variable is undefined on entry to a parallel region,
each new thread’s copy of the variable will also be undefined.

If a THREADPRIVATE common block variable or a
THREADPRIVATE variable has the ALLOCATABLE attribute, the allocation
status of each copy created will be not currently allocated.

If a THREADPRIVATE common block variable or a THREADPRIVATE
variable has the POINTER attribute with an initial association status of
disassociated through either default or explicit initialization, each copy will
have an association status of disassociated. Otherwise the association status of
each copy is undefined.

If a THREADPRIVATE common block variable or a THREADPRIVATE
variable has neither the ALLOCATABLE nor the POINTER attribute and is

Chapter 2. XL Fortran Language Fundamentals 25

initially defined through default or explicit initialization, each copy has the
same definition. Otherwise, each copy is undefined.

| End of IBM Extension |

Allocation status

The allocation status of an allocatable object is one of the following during
program execution:

* Not currently allocated, which means that the object has never been allocated or
that the last operation on it was a deallocation.

¢ Currently allocated, which means that the object has been allocated by an
ALLOCATE statement and has not been subsequently deallocated.

| IBM Extension |

* Undefined, which means that the object does not have the SAVE or STATIC
attribute and was currently allocated when execution of a RETURN or END
statement resulted in no executing scoping units having access to it.

In XL Fortran, undefined status is only available when you use the
-qx1f90=noautodealloc option.

| End of IBM Extension |

If the allocation status of an allocatable object is currently allocated, the object may
be referenced and defined. An allocatable object that is not currently allocated must
not be referenced or defined. If the allocation status of an allocatable object is
undefined, the object must not be referenced, defined, allocated, or deallocated.

When the allocation status of an allocatable object changes, the allocation status of
any associated allocatable object changes accordingly.

In the Fortran standard, the allocation status of an allocatable object that is
declared in the scope of a module is processor dependent if it does not have the
SAVE attribute and was currently allocated when execution of a RETURN or END
statement resulted in no executing scoping units referencing the module.

| IBM Extension |

In XL Fortran, the allocation status of such an object remains currently allocated.

| End of IBM Extension |

Storage classes for variables

| IBM Extension |

Note: This section pertains only to storage for variables. Named constants and
their subobjects have a storage class of literal.

Fundamental storage classes
All variables are ultimately represented by one of five storage classes:

Automatic for variables in a procedure that will not be retained once the
procedure ends. Variables reside in the stack storage area.

26 XL Fortran Language Reference

Static for variables that retain memory throughout the program. Variables
reside in the data storage area. Uninitialized variables reside in the
bss storage area.

Common for common block variables. If a common block variable is
initialized, the whole block resides in the data storage area;
otherwise, the whole block resides in the bss storage area.

Controlled Automatic
for automatic objects. Variables reside in the stack storage area. XL
Fortran allocates storage on entry to the procedure and deallocates
the storage when the procedure completes.

Controlled for allocatable objects. Variables reside in the heap storage area.
You must explicitly allocate and deallocate the storage.

Secondary storage classes
None of the following storage classes own their own storage, but are associated
with a fundamental storage class at run time.

Pointee is dependent on the value of the corresponding integer pointer.

Reference parameter
is a dummy argument whose actual argument is passed to a
procedure using the default passing method or %REF.

Value parameter
is a dummy argument whose actual argument is passed by value
to a procedure.

For details on passing methods, see [“%VAL and %REF” on page 184

Storage class assignment
Variable names are assigned storage classes in one of the following ways:

1. Explicitly:
¢ Dummy arguments have an explicit storage class of reference parameter or
value parameter. See [“%VAL and %REF” on page 184] for more details.

* Pointee variables have an explicit storage class of pointee.
* Variables for which the STATIC attribute is explicitly specified have an
explicit storage class of static.

* Variables for which the AUTOMATIC attribute is explicitly specified have an
explicit storage class of automatic.

* Variables that appear in a COMMON block have an explicit storage class of
common.

* Variables for which the SAVE attribute is explicitly specified have an explicit
storage class of static, unless they also appear in a COMMON statement, in
which case their storage class is common.

* Variables that appear in a DATA statement or are initialized in a type
declaration statement have an explicit storage class of static, unless they also
appear in a COMMON statement, in which case their storage class is
common.

* Function result variables that are of type character or derived have the
explicit storage class of reference parameter.

* Function result variables that do not have the SAVE or STATIC attribute
have an explicit storage class of automatic.

* Automatic objects have an explicit storage class of controlled automatic.

Chapter 2. XL Fortran Language Fundamentals 27

* Allocatable objects have an explicit storage class of controlled.

A variable that does not satisfy any of the above, but that is equivalenced with
a variable that has an explicit storage class, inherits that explicit storage class.

A variable that does not satisfy any of the above, and is not equivalenced with
a variable that has an explicit storage class, has an explicit storage class of static
if:

* A SAVE statement with no list exists in the scoping unit or,

* The variable is declared in the specification part of a main program.
2. Implicitly:

If a variable does not have an explicit storage class, it can be assigned an

implicit storage class as follows:

* Variables whose names begin with a letter, dollar sign or underscore that
appears in an IMPLICIT STATIC statement have a storage class of static.

* Variables whose names begin with a letter, dollar sign or underscore that
appears in an IMPLICIT AUTOMATIC statement have a storage class of
automatic.

In a given scoping unit, if a letter, dollar sign or underscore has not been
specified in an IMPLICIT STATIC or IMPLICIT AUTOMATIC statement, the
implicit storage class is the same as that in the host.

Variables declared in the specification part of a module are associated with the
static storage class.

A variable that does not satisfy any of the above but that is equivalenced with
a variable that has an implicit storage class, inherits that implicit storage class.

3. Default:

All other variables have the default storage class:

e Static, if you specified the -qsave=all compiler option.

e Static, for variables of derived type that have default initialization specified,
and automatic otherwise if you specify the —qsave=defaultinit compiler
option.

* Automatic, if you specified the -qnosave compiler option. This is the default
setting.

See in the [XL Fortran Compiler Reference for details on the

default settings with regard to the invocation commands.

| End of IBM Extension |

Typeless literal constants

A typeless constant does not have an intrinsic type in XL Fortran. Hexadecimal,
octal, binary, and Hollerith constants can be used in any situation where intrinsic
literal constants are used, except as the length specification in a type declaration
statement (although typeless constants can be used in a type_param_value in
[CHARACTER type declaration| statements). The number of digits recognized in a
hexadecimal, octal, or binary constant depends on the context in which the
constant is used.

Hexadecimal constants

The form of a hexadecimal constant is:

28 XL Fortran Language Reference

A\
A

X >—hexadecimal _number—’
Z]_[”—hexadec imal_number—”—|
>—hexadecimal number—’ X:l_
"—hexadecimal_number—" :I_[Z

Z—hexadecimal_number

hexadecimal_number
is a string composed of digits (0-9) and letters (A-F, a-f).
Corresponding uppercase and lowercase letters are equivalent.

The Znn...nn form of a hexadecimal constant can only be used as a data
initialization value delimited by slashes. If this form of a hexadecimal constant is
the same string as the name of a constant you defined previously with the
‘ attribute, XL Fortran recognizes the string as the named constant.

If 2x hexadecimal digits are present, x bytes are represented.

See [“Using typeless constants” on page 31| for information on how XL Fortran
interprets the constant.

Examples of hexadecimal constants

7'0123456789ABCDEF'
Z"FEDCBA9876543210"
7'0123456789aBcDeF"
70123456789aBcDeF ! This form can only be used as an initialization value

Octal constants

The form of an octal constant is:

>>- O—E’ —octal_number—’ <
”—octal_number—”—lj
>—octal_number—’ 0
"—octal_number—"

octal_number
is a string composed of digits (0-7)

Because an octal digit represents 3 bits, and a data object represents a multiple of 8
bits, the octal constant may contain more bits than are needed by the data object.
For example, an INTEGER(2) data object can be represented by a 6-digit octal
constant if the leftmost digit is 0 or 1; an INTEGER(4) data object can be
represented by an 11-digit constant if the leftmost digit is 0, 1, 2, or 3; an
INTEGER(8) can be represented by a 22-digit constant if the leftmost digit is 0 or
1.

See |“Using typeless constants” on page 31| for information on how the constant is
interpreted by XL Fortran.

Examples of octal constants

0'01234567"
"01234567"0

Chapter 2. XL Fortran Language Fundamentals 29

Binary constants

The form of a binary constant is:

»> B—E’ —binary_number—’ ><
"—b inary_number—”—lj
>—binary_number—’ :l—B
"—binary_number—"

binary_number is a string formed from the digits 0 and 1

If 8x binary digits are present, x bytes are represented.

See [“Using typeless constants” on page 31| for information on how XL Fortran
interprets the constant.

Examples of binary constants

B"10101010"
'10101010'B

Hollerith constants

The form of a Hollerith constant is:

»>—n—H-—character_string >

A Hollerith constant consists of a nonempty string of characters capable of
representation in the processor and preceded by nH, where n is a positive unsigned
integer constant representing the number of characters after the H. n cannot specify
a kind type parameter. The number of characters in the string may be from 1 to
255.

Note: If you specify nH and fewer than n characters are specified after the n, any
blanks that are used to extend the input line to the right margin are
considered to be part of the Hollerith constant. A Hollerith constant can be
continued on a continuation line. At least n characters must be available for
the Hollerith constant.

XL Fortran also recognizes escape sequences in Hollerith constants, unless the
-qnoescape compiler option is specified. If a Hollerith constant contains an escape
sequence, n is the number of characters in the internal representation of the string,
not the number of characters in the source string. (For example, 2H\"\" represents
a Hollerith constant for two double quotation marks.)

XL Fortran provides support for multibyte characters within character constants,
Hollerith constants, H edit descriptors, character-string edit descriptors, and
comments. This support is provided through the -qmbcs option. Assignment of a
constant containing multibyte characters to a variable that is not large enough to
hold the entire string may result in truncation within a multibyte character.

30 XL Fortran Language Reference

Support is also provided for Unicode characters and filenames. If the environment
variable LANG is set to UNIVERSAL and the -qmbcs compiler option is specified,
the compiler can read and write Unicode characters and filenames.

See |[“Using typeless constants”| for information on how the constant is interpreted
by XL Fortran.

Using typeless constants

The data type and length of a typeless constant are determined by the context in
which you use the typeless constant. XL Fortran does not convert the data type
and length until you use them and context is understood.

If you compile your program with the -qctyplss compiler option, character
initialization expressions follow the rules that apply to Hollerith constants.

A typeless constant can assume only one of the intrinsic data types.

When you use a typeless constant with an arithmetic or logical unary operator,
the constant assumes a default integer type.

When you use a typeless constant with an arithmetic, logical, or relational binary
operator, the constant assumes the same data type as the other operand. If both
operands are typeless constants, they assume a type of default integer unless
both operands of a relational operator are Hollerith constants. In this case, they
both assume a character data type.

When you use a typeless constant in a concatenation operation, the constant
assumes a character data type.

When you use a typeless constant as the expression on the right-hand side of an
assignment statement, the constant assumes the type of the variable on the
left-hand side.

When you use a typeless constant in a context that requires a specific data type,
the constant assumes that data type.

When you use a typeless constant as an initial value in a DATA statement,
STATIC statement, or type declaration statement, or as the constant value of a
named constant in a PARAMETER statement, or when the typeless constant is
to be treated as any noncharacter type of data, the following rules apply:

— If a hexadecimal, octal, or binary constant is smaller than the length expected,
XL Fortran adds zeros on the left. If it is longer, the compiler truncates on the
left.

— If a Hollerith constant is smaller than the length expected, the compiler adds
blanks on the right. If it is longer, the compiler truncates on the right.

— If a typeless constant specifies the value of a named constant with a character
data type having inherited length, the named constant has a length equal to
the number of bytes specified by the typeless constant.

When a typeless constant is treated as an object of type character (except when
used as an initial value in a DATA, STATIC, type declaration, or component
definition statement), the length is determined by the number of bytes
represented by the typeless constant.

When you use a typeless constant as part of a complex constant, the constant
assumes the data type of the other part of the complex constant. If both parts are
typeless constants, the constants assume the real data type with length sufficient
to represent both typeless constants.

When you use a typeless constant as an actual argument, the type of the
corresponding dummy argument must be an intrinsic data type. The dummy
argument must not be a procedure, pointer, array, object of derived type, or
alternate return specifier.

Chapter 2. XL Fortran Language Fundamentals 31

* When you use a typeless constant as an actual argument, and:
— The procedure reference is to a generic intrinsic procedure,
— All of the arguments are typeless constants, and

— There is a specific intrinsic procedure that has the same name as the generic
procedure name,

the reference to the generic name will be resolved through the specific
procedure.

* When you use a typeless constant as an actual argument, and:
— The procedure reference is to a generic intrinsic procedure,
— All of the arguments are typeless constants, and

— There is no specific intrinsic procedure that has the same name as the generic
procedure name,

the typeless constant is converted to default integer. If a specific intrinsic
function takes integer arguments, the reference is resolved through that specific
function. If there are no specific intrinsic functions, the reference is resolved
through the generic function.

* When you use a typeless constant as an actual argument, and:
— The procedure reference is to a generic intrinsic procedure, and

— There is another argument specified that is not a typeless constant,

the typeless constant assumes the type of that argument. However, if you specify
the compiler option -qport=typlssarg, the actual argument is converted to
default integer. The selected specific intrinsic procedure is based on that type.

* When you use a typeless constant as an actual argument, and the procedure
name is established to be generic but is not an intrinsic procedure, the generic
procedure reference must resolve to only one specific procedure. The constant
assumes the data type of the corresponding dummy argument of that specific
procedure. For example:

INTERFACE SUB
SUBROUTINE SUB1(A)
REAL A
END SUBROUTINE
SUBROUTINE SUB2(A, B)
REAL A, B
END SUBROUTINE
SUBROUTINE SUB3(I)
INTEGER I
END SUBROUTINE
END INTERFACE
CALL SUB('C0600000'X, '40066666'X) ! Resolves to SUB2

CALL SUB('00000000'X) ! Invalid - ambiguous, may
I resolve to either SUB1 or SUB3

* When you use a typeless constant as an actual argument, and the procedure
name is established to be only specific, the constant assumes the data type of the
corresponding dummy argument.

* When you use a typeless constant as an actual argument, and:

— The procedure name has not been established to be either generic or specific,
and

— The constant has been passed by reference,

the constant assumes the default integer size but no data type, unless it is a
Hollerith constant. The default for passing a Hollerith constant is the same as if
it were a character actual argument. However, using the compiler option

32 XL Fortran Language Reference

-qctyplss=arg will cause a Hollerith constant to be passed as if it were an integer
actual argument. See |[“Resolution of procedure references” on page 193] for more
information about establishing a procedure name to be generic or specific.

* When you use a typeless constant as an actual argument, and:

— The procedure name has not been established to be either generic or specific,

and

— The constant has been passed by value,

the constant is passed as if it were a default integer for hexadecimal, binary, and

octal constants.

If the constant is a Hollerith constant and it is smaller than the size of a default
integer, XL Fortran adds blanks on the right. If the constant is a Hollerith
constant and it is larger than 8 bytes, XL Fortran truncates the rightmost
Hollerith characters. See [“Resolution of procedure references” on page 193| for
more information about establishing a procedure name to be generic or specific.

* When you use a typeless constant in any other context, the constant assumes the
default integer type, with the exception of Hollerith constants. Hollerith
constants assume a character data type in the following situations:

— An H edit descriptor

— A relational operation with both operands being Hollerith constants

— An input/output list

 If a typeless constant is to be treated as a default integer but the value cannot be
represented within the value range for a default integer, the constant is
promoted to a representable kind.

* A kind type parameter must not be replaced with a logical constant even if
-qintlog is on, nor by a character constant even if -qctyplss is on, nor can it be a

typeless constant.

Examples of typeless constants in expressions

INT=B'1'
RL4=X"1"
INT=INT + 0'
RLA=INT + B'
INT=RL4 + Z'
ARRAY(0'1')=

= e

.0

LOGICAL(8) LOG8
L0G8=B'1'

Binary constant is default integer
Hexadecimal constant is default real
Octal constant is default integer
Binary constant is default integer
Hexadecimal constant is default real
Octal constant is default integer

Binary constant is LOGICAL(8), LOG8 is .TRUE.

Chapter 2. XL Fortran Language Fundamentals 33

34 XL Fortran Language Reference

Chapter 3. Intrinsic Data Types

Intrinsic types and their operations are predefined and always accessible. The two
classes of intrinsic types are numeric and nonnumeric, with a number of types
comprising each class.

Table 9. Intrinsic Types

Numeric Intrinsic Types Nonnumeric Intrinsic Types
e

[Beal

[Complex

BridE Bytd

Notes:

1. IBM Extension.

XL Fortran also supports which are composite data types that can

contain both intrinsic and derived types.

Integer

| IBM Extension

The Range of integer values table contains the range of values that XL Fortran can
represent using the integer data type.

Table 10. Range of integer values

Kind parameter Range of values
1 -128 through 127
2 -32 768 through 32 767
4 -2 147 483 648 through 2 147 483 647
8 -9 223 372 036 854 775 808 through 9 223 372 036 854 775 807

XL Fortran sets the default kind type parameter to 4. The kind type parameter is
equivalent to the byte size for integer values. Use the -qintsize compiler option to
change the default integer size to 2, 4, or 8 bytes. Note that the -qintsize option
similarly affects the default logical size.

| End of IBM Extension |

The integer type specifier must include the [INTEGER| keyword.

The form of a signed integer literal constant is:

© Copyright IBM Corp. 1990, 2007 35

—

»—El—d' igit >
+ |—_—kind _paramJ

kind_param
is either a digit-string or a scalar-int-constant-name

A signed integer literal constant has an optional sign, followed by a string of
decimal digits containing no decimal point and expressing a whole number,
optionally followed by a kind type parameter. A signed, integer literal constant can
be positive, zero, or negative. If unsigned and nonzero, the constant is assumed to
be positive.

If kind_param is specified, the magnitude of the literal constant must be
representable within the value range permitted by that kind_param.

| IBM Extension

If no kind_param is specified in XL Fortran, and the magnitude of the constant
cannot be represented as a default integer, the constant is promoted to a kind in
which it can be represented.

XL Fortran represents integers internally in two’s-complement notation, where the
leftmost bit is the sign of the number.

| End of IBM Extension

Example of integer constants

0 ! has default integer size
-173_2 ! 2-byte constant
9223372036854775807 ! Kind type parameter is promoted to 8

Real

| IBM Extension

The following table shows the range of values that XL Fortran can represent with
the real data type:

Kind Approximate Absolute | Approximate Absolute | Approximate Precision
Parameter Nonzero Minimum Maximum (decimal digits)
4 1.175494E-38 3.402823E+38 7
8 2.225074D-308 1.797693D+308 15
16 2.225074Q-308 1.797693Q+308 31

XL Fortran sets the default kind type parameter to 4. The kind type parameter is
equivalent to the byte size for real values. Use the -qrealsize compiler option to

change the default real size to 4 or 8 bytes. Note that the -qrealsize option affects
the default complex size.

36 XL Fortran Language Reference

XL Fortran represents REAL(4) and REAL(8) numbers internally in the ANSI/IEEE
binary floating-point format, which consists of a sign bit (s), a biased exponent (e),
and a fraction (f). The REAL(16) representation is based on the REAL(8) format.

REAL (4)

Bit no. O....|....1....]....2....]....3.
seeeeeeeef fIFfffffffffffffffffff

REAL(8)

Bit no. O....|....1....]....2.c]3] 5e L L6e L
seeeeeeeeeeefff

REAL(16)

Bit no. 0....]....leoou]eei2eiin] e 3] eeiden o5l]l
seeeeeeeeeeef fffffffffffffffffffffffffffffffifffifffifffiffffffe

Bit no. .|....7....] 8 | 9 | 0 | 1 | 2

ISTAMHETRTIES H T A S
The definition of intrinsic RANGE is INT(MIN(LOG10 (HUGE (X)), -LOG1O(TINY(X)))).

For REAL(8) numbers, the HUGE intrinsic returns 0x7FEFFFFFFFFFFFFF and the
TINY intrinsic returns 0x0010000000000000. As a result, we have
INT(MIN(308.254715559916747, 307.652655568588784)), and therefore the range is
307. Note that the LOG scale is not symmetric on both ends of the exponent.

The IBM format of REAL(16) numbers is composed of two REAL(8) numbers of
different magnitudes that do not overlap. That is, the binary exponents differ by at
least the number of fraction bits in a REAL(8).

For REAL(16), the RANGE intrinsic returns the range of the numbers that have
both REAL(8) numbers normalized. Consequently, for REAL(16) numbers, the
HUGE intrinsic returns 0x7FEFFFFFFFFFFFFF7COFFFFFFFFFFFFF and the TINY
intrinsic returns 0x03600000000000000000000000000000. As a result, we have
INT(MIN(3068.25471555991674389886862819788120,
291.69806579839777816211298898803388)), where the range is 291.

308 is the lowest or highest exponent that can be represented in the REAL(8) or
REAL(16) numbers.

This ANSI/IEEE binary floating-point format also provides representations for
+infinity, -infinity, and NaN (not-a-number) values. A NaN can be further classified
as a quiet NaN (NaNQ) or a signaling NaN (NaNS). See [[mplementation details of
[XL Fortran floating-point processing| for details on the internal representation of
NaN values.

| End of IBM Extension |

A real type specifier must include either the REAL keyword or the DOUBLE
PRECISION keyword. The precision of DOUBLE PRECISION values is twice that
of default real values. See ["REAL” on page 435|and ["DOUBLE PRECISION” on|
for details on declaring entities of type real.

The forms of a real literal constant are:
* A basic real constant optionally followed by a kind type parameter

* A basic real constant followed by an exponent and an optional kind type
parameter

* An integer constant (with no kind_param) followed by an exponent and an
optional kind type parameter

Chapter 3. Intrinsic Data Types 37

A basic real constant has, in order, an optional sign, an integer part, a decimal
point, and a fractional part. Both the integer part and fractional part are strings of
digits; you can omit either of these parts, but not both. You can write a basic real
constant with more digits than XL Fortran will use to approximate the value of the
constant. XL Fortran interprets a basic real constant as a decimal number.

The form of a real constant is:

y
Yy

Y digit exponent >

Y digit .
— + — |—exponent—|

A4 digitl
—Ydigit
:‘ \\’—JJ |—exponent—|
Y digit

l—_—kind _param—|

T
o+

exponent

E digit_string <
ED} E + }
Q -

kind_param is either a digit-string or a scalar-int-constant-name

digit_string denotes a power of 10. E specifies a constant of type default real, unless
you also include a kind_param, which overrides the default type. D specifies a
constant of type default DOUBLE PRECISION. Q specifies a constant of

type REAL(16) in XL Fortran.

If both exponent and kind_param are specified, the exponent letter must be E. If D or
Q is specified, kind_param must not be specified.

A real literal constant that is specified without an exponent and a kind type
parameter is of type default real.

Example of integer constants
+0.
+5.432E02_16 1543.2 in 16-byte representation

38 XL Fortran Language Reference

7.E3

3.4Q-301
| Extended-precision constant

Complex

A complex type specifier must include one of the following:
* The COMPLEX keyword.

. The DOUBLE COMPLEX keyword[m 4

See [“COMPLEX” on page 307|and ["DOUBLE COMPLEX” on page 326| for details
on declaring entities of type complex.

| IBM Extension |

The following table shows the corresponding values for the kind type parameter
and the length specification when the complex type specifier has the COMPLEX
keyword:

Kind Type Parameter i Length Specification j
COMPLEX() COMPLEX*j
4 8
8 16
16 32

In XL Fortran, the kind type parameter specifies the precision of each part of the
complex entity, while the length specification specifies the length of the whole
complex entity.

| End of IBM Extension |

The kind of a complex constant is determined by the kind of the constants in the
real and imaginary parts.

The precision of DOUBLE COMPLEX values is twice that of default complex
values.

Scalar values of type complex can be formed using complex constructors. The form
of a complex constructor is:

»—(

A\
A

expression——, expression)

A complex literal constant is a complex constructor where each expression is a pair
of initialization expressions. Variables and expressions can be used in each part of
the complex constructor as an XL Fortran extension.

In Fortran 95 you are only allowed to use a single signed integer, or real literal

constant in each part of the complex constructor. In Fortran 2003, you can also use
a named constant.

Chapter 3. Intrinsic Data Types 39

If both parts of the literal constant are of type real, the kind type parameter of the
literal constant is the kind parameter of the part with the greater precision, and the
kind type parameter of the part with lower precision is converted to that of the
other part.

If both parts are of type integer, they are each converted to type default real. If one
part is of type integer and the other is of type real, the integer is converted to type
real with the precision of the real part.

See [“COMPLEX” on page 307|and ["DOUBLE COMPLEX” on page 326| for details
on declaring entities of type complex.

Each part of a complex number has the same internal representation as a real
number with the same kind type parameter.

Examples of complex constants

(3_2,-1.86) ! Integer constant 3 is converted to default real
! for constant 3.0.

(45Q6,6D45) ! The imaginary part is converted to extended
! precision 6.Q45.

(1+1,2+2) I Use of constant expressions. Both parts are
! converted to default real.

Logical

| IBM Extension |

The following table shows the values that XL Fortran can represent using the
logical data type:

Kind parameter Values Internal (hex) Representation
1 .TRUE. 01
.FALSE. 00
2 TRUE. 0001
FALSE. 0000
4 .TRUE. 00000001
.FALSE. 00000000
8 .TRUE. 0000000000000001
.FALSE. 0000000000000000

Note: Any internal representation other than 1 for .TRUE. and 0 for .FALSE. is
undefined.

XL Fortran sets the default kind type parameter to 4. The kind type parameter is
equivalent to the byte size for logical values. Use the -qintsize compiler option to
change the default logical size to 2, 4, or 8 bytes. Note that the -qintsize option
similarly affects the default integer size. Use —qintlog to mix integer and logical
data entities in expressions and statements.

The -qport=clogicals option allows you to instruct the compiler to treat all nonzero
integers used in logical expressions as TRUE. In order to use the -qport=clogicals
option, you must also specify the -qintlog option.

| End of IBM Extension |

40 XL Fortran Language Reference

The logical type specifier must include the LOGICAL keyword. See ["'LOGICAL”
‘

n page 393| for details on declaring entities of type logical.

The form of a logical literal constant is:

.TRUE. ><
.FALSE —| l—_—kind_param—|

kind_param
is either a digit-string or a scalar-int-constant-name

A logical constant can have a logical value of either true or false.

| IBM Extension |

You can also use the abbreviations T and F (without the periods) for .TRUE. and
.FALSE., respectively, but only in formatted input, or as initial values in DATA
statements, STATIC statements, or type declaration statements. A kind type
parameter cannot be specified for the abbreviated form. If T or F has been defined
as a named constant, it is treated as that named constant rather than the logical
literal constant.

| End of IBM Extension |

Example of a logical constant

.FALSE. 4
.TRUE.

Character

The character type specifier must include the CHARACTER keyword. See
[‘"CHARACTER” on page 294| for details on declaring entities of type character.

The form of a character literal constant is:

>

>—character_string—’ ><
l—kind_par‘am—_—I l—”—character_string—”—l

kind_param
is either a digit-string or a scalar-int-constant-name

| IBM Extension |

XL Fortran supports a kind type parameter value of 1, representing the ASCII
collating sequence.

| End of IBM Extension |

Character literal constants can be delimited by double quotation marks as well as
apostrophes.

Chapter 3. Intrinsic Data Types 41

character_string consists of any characters capable of representation in XL Fortran,
except the new-line character, because it is interpreted as the end of the source line.
The delimiting apostrophes (") or double quotation marks (") are not part of the
data represented by the constant. Blanks embedded between these delimiters are
significant.

If a string is delimited by apostrophes, you can represent an apostrophe within the
string with two consecutive apostrophes (without intervening blanks). If a string is
delimited by double quotation marks, you can represent a double quotation mark
within the string with two consecutive double quotation marks (without
intervening blanks). The two consecutive apostrophes or double quotation marks
will be treated as one character.

You can place a double quotation mark within a character literal constant delimited
by apostrophes to represent a double quotation mark, and an apostrophe character
within a character constant delimited by double quotation marks to represent a
single apostrophe.

The length of a character literal constant is the number of characters between the
delimiters, except that each pair of consecutive apostrophes or double quotation

marks counts as one character.

A zero-length character object uses no storage.

| IBM Extension
In XL Fortran each character object requires 1 byte of storage.

For compatibility with C language usage, XL Fortran recognizes the following
escape sequences in character strings:

Escape Meaning

\b Backspace

\f Form feed

\n New-line

\r New-line

\t Tab

\O Null

\’ Apostrophe
(does not terminate a string)

\" Double quotation mark
(does not terminate a string)

A\ Backslash

\ X x, where x is any other character

To ensure that scalar character initialization expressions in procedure references are
terminated with null characters (\0) for C compatibility, use the -gnullterm
compiler option. (See [-qnullterm option|in the [XL Fortran Compiler Referencd for
details and exceptions).

42 XL Fortran Language Reference

All escape sequences represent a single character.

| End of IBM Extension |

If you do not want these escape sequences treated as a single character, specify the

-qnoescape compiler option. (See [-qescape option|in the [XL Fortran Compilen|
) The backslash will have no special significance.

The maximum length of a character literal constant depends on the maximum
number of characters allowed in a statement.

| IBM Extension |

If you specify the -qctyplss compiler option, character constant expressions are
treated as if they are Hollerith constants. See [“Hollerith constants” on page 30| for
information on Hollerith constants. For information on the -qctyplss compiler
option, see [-qctyplss Option|in the [XL Fortran Compiler Referencd

XL Fortran supports multibyte characters within character literal constants,
Hollerith constants, H edit descriptors, character-string edit descriptors, and
comments through the -qmbcs compiler option.

Support is also provided for Unicode characters and filenames. If the environment
variable LANG is set to UNIVERSAL and the -qmbcs compiler option is specified,
the compiler can read and write Unicode characters and filenames. See the
[Fortran Compiler Reference| for more information.

| End of IBM Extension |

Examples of character constants

Example 1:

" I Zero-length character constant.

Example 2:

1_"ABCDEFGHIJ" I Character constant of length 10, with kind 1.
| IBM Extension

Example 3:

"\"\2\ "\A567\\\\\ ! ! Character constant of length 10 "2'A567\\'.

| End of IBM Extension

Character substrings

A character substring is a contiguous portion of a character string (called a parent
string), which is a scalar variable name, scalar constant, scalar structure
component, or array element. A character substring is identified by a substring
reference whose form is:

Chapter 3. Intrinsic Data Types 43

scalar_variable_name (:)
array_element———— l—int_exprl —| l—int_exprZ—l

scalar_constant
scalar_struct_comp—

int_exprl and int_expr2
specify the leftmost character position and rightmost character position,
respectively, of the substring. Each is a scalar integer expression called a
substring expression.

The length of a character substring is the result of the evaluation of MAX(int_expr2
- int_exprl + 1,0).

If int_expr1 is less than or equal to int_expr2, their values must be such that:
e 1 =int_exprl < int_expr2 < length

where length is the length of the parent string. If int_expr1 is omitted, its default
value is 1. If int_expr2 is omitted, its default value is length.

| IBM Extension |
FORTRAN 77 does not allow character substrings of length 0. Fortran 90 and up
does allow these substrings. To perform compile-time checking on substring
bounds in accordance with FORTRAN 77 rules, use the compiler
option. For Fortran 90 compliance, To perform run-time checking
on substring bounds, use both the |-gcheck| option and the querosize| (or

option. (See the [XL Fortran Compiler Reference for more information.)

| End of IBM Extension |

A substring of an array section is treated differently. See|“Array sections and|
[substring ranges” on page 85

Examples of character substrings

CHARACTER(8) ABC, X, Y, Z
ABC = 'ABCDEFGHIJKL'(1:8) ! Substring of a constant

X = ABC(3:5) I X = 'CDE'
Y = ABC(-1:6) ! Not allowed in either FORTRAN 77 or Fortran 90
Z = ABC(6:-1) 1 Z =""valid only in Fortran 90

Byte

| IBM Extension |

The byte type specifier is the BYTE keyword in XL Fortran. See [“'BYTE” on page|
for details on declaring entities of type byte.

The BYTE intrinsic data type does not have its own literal constant form. A BYTE
data object is treated as an INTEGER(1), LOGICAL(1), or CHARACTER() data
object, depending on how it is used.

| End of IBM Extension |

44 XL Fortran Language Reference

Vector

| IBM Extension |

An entity you declare using the VECTOR keyword as part of a [type declaration|

tatement|is of a vector type. An entity of a vector type has the same type as
another entity if both entities are vectors that contain elements of the same type
and kind. Otherwise, the two entities are of different types. You must not include
vector objects in formatted 1/0.

A vector type can be any of the following:
* A|PIXEL| vector.
¢ An|[INTEGER|vector with elements that have a kind type parameter of 1, 2 or 4.

¢ An|UNSIGNED)| vector with elements that have a kind type parameter of 1, 2, or
4

* A|REAL]|vector with elements that have a kind parameter of 4.

A vector must only be declared if your -qarch setting specifies a VMX-enabled
architecture and you compile with -qenablevmx.

A vector is always a 16-byte entity. Consequently, an INTEGER(1) or
UNSIGNED(1) vector contains 16 elements. INTEGER(2), UNSIGNED(2), or
PIXEL, vectors contain 8 elements, while INTEGER(4), UNSIGNED(4), or REAL(4)
vectors contain 4 elements.

If the kind type parameter is not specified for elements of INTEGER, UNSIGNED
and REAL vectors, these elements have the default kind.

Vectors must be aligned on a 16-byte boundary. XL Fortran automatically aligns
vectors to 16 bytes, except in the following cases, where:

* The vector is a component of a sequence type or a record structure.

* The vector is a component of a derived type that has the BIND attribute and
you compile with the -qalign=bindc=packed or -qalign=bindc=bit_packed
options. This aligns the vector to a one-byte boundary.

¢ The vector is a member of a common block.

* The vector is storage associated with a member of a common block that does not
have a 16-byte boundary alignment.

Use the Vector Interlanguage Interoperability table to determine the corresponding XL
C/C++ vector type when passing vectors between XL C/C++ and XL Fortran.

Table 11. Vector interlanguage interoperability

XL Fortran vector type XL C/C++ vector type
VECTOR(INTEGER(1)) vector signed char
VECTOR(INTEGER(2)) vector signed short
VECTOR(INTEGER(4)) vector signed int, vector signed long
VECTOR(PIXEL) vector pixel

VECTOR(REAL(4)) vector float
VECTOR(UNSIGNED(1)) vector unsigned char
VECTOR(UNSIGNED(2)) vector unsigned short

Chapter 3. Intrinsic Data Types 45

Table 11. Vector interlanguage interoperability (continued)

XL Fortran vector type XL C/C++ vector type

VECTOR(UNSIGNED(4)) vector unsigned int, vector unsigned long

End of IBM Extension

Pixel
| IBM Extension
The PIXEL keyword specifies the pixel type. A pixel is a two-byte entity that the
compiler interprets in four parts. The first part consists of one bit. The remaining
three parts consist of 5 bits each. Pixel literals are not supported. You must specify
a pixel only as part of a [vector declaration}
| End of IBM Extension

Unsigned

| IBM Extension

The UNSIGNED keyword specifies the unsigned integer type. Use the -qintsize
compiler option to change the default integer size to 2, 4, or 8 bytes. The default
kind type parameter is 4. Unsigned integer literals are not supported. You must
specify the unsigned integer type only as part of a [vector declaration]

| End of IBM Extension

46 XL Fortran Language Reference

Chapter 4. Derived Types

A derived type is a composite data type that can contain both intrinsic and derived
data types. You can define a derived type using type definition. This definition
specifies the name of the derived type as well as type components and procedures.
In Fortran 95, a type definition must have at least one component and must not
contain procedures. In Fortran 2003, a type definition can have zero or more
components, and zero or more procedures. The components of a derived type can
be of any intrinsic type and can be of a previously defined derived type. These
components can be both direct and ultimate.

Direct components are:
¢ The components of that type

* The direct components of a derived type component without the
ALLOCATABLE or POINTER attributes

Ultimate components are:
* Components of intrinsic data type
¢ Components with the ALLOCATABLE or POINTER attribute

* The ultimate components of a derived type component without the
ALLOCATABLE or POINTER attribute

The type of a pointer component can be the same as the type containing the
component. Within a derived type, the names of components and procedures must
be unique, although the names can be the same as names outside the scope of the
derived type definition. Components that you declare to be type must
have length specifications that are constant specification expressions.

Fortran 2003 also allows components of type character to have deferred length if
the component also has the ALLOCATABLE or POINTER
attribute.

Nonpointer, nonallocatable array components must be declared with constant
dimension declarators. You must declare pointer and allocatable array components
with a deferred_shape_spec_list.

A component of a derived type must not appear as an input/output list item if
any ultimate component of the object cannot be accessed by the scoping unit of the
input/output statement, unless a user-defined input/output procedure
processes the derived-type object[F2003 4 A derived-type object must not appear in
a data transfer statement if the object has a component that is a pointer or
allocatable, unless a user-defined input/output procedure processes the object.

© Copyright IBM Corp. 1990, 2007 47

Syntax of a derived type

»>—DERIVED TYPE_statement |_ _| >
i:PRIVAT Eﬂ component_def stmt_block
SEQUENCE

> |_ _| END_TYPE statement ><
type_bound procedure_block

DERIVED_TYPE_statement
See|“Derived Type” on page 320 for syntax details.

PRIVATE
Specifies that default accessibility for the components of the derived type
are private. You can only specify one PRIVATE component statement for a
given derived type.

SEQUENCE
You can only specify one SEQUENCE statement. For details see
['SEQUENCE” on page 448|

component_def_stmt_block
Consists of one or more type declaration or procedure declaration
statements to define the components of the derived type. The type
declaration statements can specify only the DIMENSION,
ALLOCATABLE, PRIVATE, PUBLIC , and POINTER attributes.
See [TYPH and |[CLASS| for details on declaring components of a specified
derived type.

| Fortran 95

In addition, you can specify a default initialization for each component in
the definition of a derived type.

| End of Fortran 95

| Fortran 2003

type_bound_procedure_block
Consists of a CONTAINS statement, followed optionally by a PRIVATE
statement, and one or more procedure binding statements. PRIVATE
specifies that the default accessibility for the derived type bindings are
private, and you can only specify one PRIVATE binding statement for a
given derived type. See [CONTAINS” on page 312| and [“Type-bound]
[procedures” on page 58| for detailed syntax and additional information.

| End of Fortran 2003

END_TYPE_statement
Optionally contains the same type_name as specified on the TYPE
statement. For more information see ["END TYPE” on page 341

48 XL Fortran Language Reference

Component and procedure accessibility

The default accessibility of a component of a derived type is The
statement changes that default accessibility to private. You can only
specify a PRIVATE statement on a derived type definition if that definition is
within the specification part of a module.

If you define a type as PRIVATE, the following are accessible only within the
defining module:

* The type name.
e Structure constructors for the type.

* Any procedure that has a dummy argument or function result of the type.

You can use the PRIVATE or PUBLIC attribute on a component of the derived
type to override the default accessibility. You can only specify the PRIVATE or
PUBLIC attribute on a component if the type definition is within the specification
part of a module. If a component is private, the component name is accessible only
with the module containing the derived type definition, even if the derived type
itself is public.

| Fortran 2003 |

The default accessibility of a procedure binding is PUBLIC. The PRIVATE
statement changes that default accessibility to private. You can use the PRIVATE or
PUBLIC attribute on a procedure binding to override the default accessibility. If
the procedure binding is private, it is accessible only within the defining module,
even if the derived type itself is public.

| End of Fortran 2003 |

Default initialization

| Fortran 95 |

You can specify default initialization for a nonpointer using an equal sign followed
by an initialization expression, or by enclosing an initial_value_list in slashes.
Enclosing an initial_value_list in slashes can apply to components in a standard
derived type declaration, or those within a record structure.

For pointer default initialization, use an arrow (=>) and then a reference to the
NULL intrinsic with no arguments.

A data object specified with default initialization in the type definition is a named
data object with these characteristics:

1. The object is a derived type specifying default initialization for any of its direct
components.

2. The object does not have the ALLOCATABLE attribute.
3. The object is not use or host associated.

| IBM Extension |

4. The object is not a pointee.

| End of IBM Extension |

Chapter 4. Derived Types 49

A default initialization for a nonpointer, nonallocatable component takes
precedence over any default initialization appearing for any direct component of
the same type.

If a dummy argument with INTENT(OUT) is a derived type with default
initialization, the dummy argument must not be an assumed-size array. If you
specify that a nonpointer object has default initialization in a type definition, you
must not initialize that object with a DATA statement.

| IBM Extension

You can use a derived type data object with default initialization in a common
block as an IBM extension. The -qsave=defaultinit option causes default
initialization to imply the SAVE attribute.

| End of IBM Extension

Unlike explicit initialization, it is not necessary for a data object to have the SAVE
attribute for component default initialization to have an effect. You can specify
default initialization for some components of a derived type, but it is not necessary
for every component.

You can specify default initialization for a storage unit that is storage associated.
However, the objects or subobjects supplying the default initialization must be of
the same type. The objects or subobjects must also have the same type parameters
and supply the same value for that storage unit.

A direct component receives an initial value if you specify default initialization on
the corresponding component definition in the type definition, regardless of the
accessibility of that component.

For data objects that can undergo default initialization, their nonpointer
components are either initially undefined, or their corresponding default
initialization expressions define them. Their pointer components with default
initialization are initially disassociated, and all other pointer components are
initially undefined.

If you specify default initialization for a variable, and that variable has static
storage class, then default initialization occurs for that variable when your
application executes.

If you specify default initialization for a variable, and it is a function result, an
INTENT(OUT) dummy argument, or a local variable without the SAVE attribute,
then default initialization occurs when the procedure containing the variable’s
declaration executes.

Allocation of an object of a derived type in which you specify default initialization
for a component causes the component to:

¢ Become defined, if the component is a nonpointer
* Become disassociated, if the component is a pointer.

In a subprogram with an ENTRY statement, default initialization occurs only for
the dummy arguments that appear in the argument list of the procedure name the
ENTRY statement references. If a dummy argument has the OPTIONAL attribute,
default initialization occurs only if that dummy argument is actually present.

50 XL Fortran Language Reference

Module data objects of derived type with default initialization must have the
SAVE attribute to be a candidate for default initialization.

| End of Fortran 95

Sequence derived types

By default, the order of derived type component definitions does not imply a
storage sequence. However, if you include a statement, the derived
type becomes a sequence derived type. For a sequence derived type, the order of
the components specifies a storage sequence for objects you declare with this
derived type. If a component of a sequence derived type is of a derived type, that
derived type must also be a sequence derived type.

Attention:

Using sequence derived types can lead to misaligned data, which can adversely
affect the performance of your application. Use with discretion.

Extensible derived types

| Fortran 2003

An extensible type is a nonsequence noninteroperable derived type from which
you can extend new types. You cannot use record structure syntax to define an
extensible type. You can further classify an extensible type to be one or more of the
following:

Base type
Extends only itself and not another type.

Extended type
Extends not only itself, but all types for which its parent type is an
extension.

Parent type
Provides components and procedure bindings to all types that extend from
that type. A parent type is the extensible type from which an extended
type is derived

You define an extended type with the EXTENDS attribute. The EXTENDS
attribute specification includes the name of the parent type. For more information
on specifying the EXTENDS attribute see |“Derived Type” on page 320

An extended type includes all components and nonfinal procedure bindings of its
parent type. The extended type inherits these components and bindings from the

parent type.

The extended type also inherits inaccessible components and bindings from the
parent type. These components remain inaccessible in the extended type. A private
entity is inaccessible if the type that you extend is accessed through use
association.

A base type is not required to have any components or bindings. An extended type
is not required to have more components or bindings than the parent type.

Chapter 4. Derived Types 51

An extended type has a scalar, nonpointer, nonallocatable, parent component with
the same type as the parent. The name of this component is identical to the name
of the parent type, and has the same accessibility.

A component declared in an extended type cannot have the same name as any
component of the parent type.

Example of an extended type

TYPE :: POINT ! A base type
REAL :: X, Y
END TYPE POINT

TYPE, EXTENDS(POINT) :: COLOR_POINT ! An extension of TYPE(POINT)
INTEGER :: COLOR ! Components X and Y, and component name
END TYPE COLOR_POINT ! POINT, inherited from parent

In the example, the type COLOR_POINT inherits the components X and Y from parent
type POINT. The components retain all of the attributes they have in the parent
type. You can declare additional components and procedure bindings in the
derived type definition of the extended type. In the example of an extensible type,
the type COLOR_POINT has one additional component, COLOR. The type POINT is a
nonsequence type that is not an extension of another type and therefore a base
type. The type COLOR_POINT is an extended type, whose parent type is POINT.

COLOR_POINT has a parent component POINT. The parent component, POINT, is a
structure with the components X and Y. Components of the parent are inheritance
associated with the corresponding components inherited from the parent type. An
ancestor component of a type is the parent component of the type or an ancestor
component of the parent component. The ancestor component of COLOR_POINT is
the parent component POINT.

| End of Fortran 2003

Abstract types and deferred bindings

| Fortran 2003 |

An abstract type is a type with the ABSTRACT attribute. A nonpolymorphic object
must not be declared with an abstract type. A polymorphic object cannot be
allocated with a dynamic abstract type.

A binding with the DEFERRED attribute is a deferred binding. A deferred binding
defers the implementation of a procedure to extensions of the type. You can specify
a deferred binding only in an abstract type definition. The dynamic type of an
object cannot be abstract. Therefore, a deferred binding cannot be invoked. An
extension of an abstract type does not have to be abstract if that extension has no
deferred bindings.

If a type definition contains or inherits a deferred binding, the ABSTRACT
attribute must appear. If ABSTRACT appears, the type must be extensible.

Example of an abstract type

TYPE, ABSTRACT :: FILE_HANDLE
CONTAINS
PROCEDURE (OPEN_FILE), DEFERRED, PASS(HANDLE) :: OPEN

52 XL Fortran Language Reference

END TYPE

INTERFACE

SUBROUTINE OPEN_FILE(HANDLE)
CLASS(FILE_HANDLE), INTENT(IN):: HANDLE

END SUBROUTINE OPEN_FILE
END INTERFACE

| End of Fortran 2003

Structure components

Structure components can be of any explicit type, including derived type.
Procedure pointers can also be structure components.

Note: The case in which a structure component has a subobject that is an array or
array section requires some background information from [“Array sections”]
on page 82|and is explained in [“Array sections and structure components”|
on page 86.| The following rules for scalar structure components apply also

to structure components that have array subobjects.

You can refer to a specific structure component using a component designator. A
scalar component designator has the following syntax:

scalar_struct_comp:

»>—name >

|—(—int_expr_l ist—)J

»—Yseparator comp_name B] ><
(—int_expr_list—)

name is the name of an object of derived type

comp_name
is the name of a derived-type component

int_expr
is a scalar integer or real expression called a subscript expression

Separator
is% orp _mm_|.[_BM 4

The structure component has the same type, type parameters, and POINTER
attribute (if any) as the right-most comp_name. It inherits any INTENT, TARGET,
and PARAMETER attributes from the parent object.

Notes:
1. Each comp_name must be a component of the immediately preceding name or
comp_name.

2. The name and each comp_name, except the right-most, must be of derived type.

Chapter 4. Derived Types 53

3. The number of subscript expressions in any int_expr_list must equal the rank of
the preceding name or comp_name.

4. If name or any comp_name is the name of an array, it must have an int_expr_list.

If the declared type of the rightmost comp_name is of abstract type, the
structure component must be polymorphic.

6. The rightmost comp_name must be scalar.

o

In namelist formatting, a separator must be a percent sign.

If an expression has a form that could be interpreted either as a structure
component using periods as separators or as a binary operation, and an operator
with that name is accessible in the scoping unit, XL Fortran will treat the
expression as a binary operation. If that is not the interpretation you intended, you
should use the percent sign to dereference the parts, or, in free source form, insert
white space between the periods and the comp_name.

Examples of references to structure components
Example 1: Ambiguous use of a period as separator

MODULE MOD
STRUCTURE /S1/
STRUCTURE /S2/ BLUE
INTEGER I
END STRUCTURE
END STRUCTURE
INTERFACE OPERATOR(.BLUE.)
MODULE PROCEDURE BLUE
END INTERFACE
CONTAINS
INTEGER FUNCTION BLUE(RL, I)
RECORD /S1/ R1
INTENT(IN) :: R1
INTEGER, INTENT(IN) :: I
BLUE = RI%BLUE%I + I
END FUNCTION BLUE
END MODULE MOD

PROGRAM P
USE MOD
RECORD /S1/ R1
R1%BLUE%I = 17
I=13
PRINT *, R1.BLUE.I ! Calls BLUE(R1,I) - prints 30
PRINT =, R1%BLUE%I ! Prints 17
END PROGRAM P

Example 2: Mix of separators

STRUCTURE /S1/
INTEGER I

END STRUCTURE

STRUCTURE /S2/
RECORD /S1/ C

END STRUCTURE

RECORD /S2/ R

R.C%I = 17 ! OK
R%C.I =3 ! 0K
R.C.T =19 ! OK
END

Example 3: Percent and period work for any derived types

54 XL Fortran Language Reference

STRUCTURE /S/
INTEGER I, J
END STRUCTURE
TYPE DT
INTEGER I, J
END TYPE DT
RECORD /S/ R1
TYPE(DT) :: R2

R1.I = 17; R1%J = 13
R2.1 = 19; R2%J = 11
END

Allocatable components

| Fortran 2003 |

Allocatable components are defined as ultimate components just as pointer
components are. This is because the value (if any) is stored separately from the rest
of the structure, and this storage does not exist (because the object is unallocated)
when the structure is created. As with ultimate pointer components, variables
containing ultimate allocatable components are forbidden from appearing directly
in input/output lists, unless the variable is processed by a user-defined derived
type input/output procedure.

As with allocatable arrays, allocatable components are forbidden from storage
association contexts. So, any variable containing an ultimate, allocatable component
cannot appear in COMMON or EQUIVALENCE. However, allocatable
components are permitted in SEQUENCE types, which allows the same type to be
defined separately in more than one scoping unit.

Deallocation of a variable containing an ultimate allocatable component
automatically deallocates all such components of the variable that are currently
allocated.

In a structure constructor for a derived type containing an allocatable component,
the expression corresponding to the allocatable component must be one of the
following:

A reference to the intrinsic function NULL with no argument. The allocatable
component receives the allocation status of not currently allocated

* A variable that is itself allocatable. The allocatable component receives the
allocation status of the variable and, if it is allocated, the value of the variable. If
the variable is an array that is allocated, the allocatable component also has the
bounds of the variable.

* Any other expression. The allocatable component receives the allocation status of
currently allocated with the same value as the expression. If the expression is an
array, the allocatable component will have the same bounds.

For intrinsic assignment of those objects of a derived type containing an allocatable
component, the allocatable component of the variable on the left-hand-side receives
the allocation status and, if allocated, the bounds and value of the corresponding
component of the expression. This occurs as if the following sequence of steps is
carried out:

1. If the component of the variable is currently allocated, it is deallocated.

2. If the corresponding component of the expression is currently allocated, the
component of the variable is allocated with the same bounds. The value of the
component of the expression is then assigned to the corresponding component

Chapter 4. Derived Types 55

of the variable using defined assignment if the declared type of the component
has a defined assignment consistent with the component, and intrinsic
assignment for the dynamic type of that component otherwise.

An allocated ultimate allocatable component of an actual argument that is
associated with an INTENT(OUT) dummy argument is deallocated on procedure
entry so that the corresponding component of the dummy argument has an
allocation status of not currently allocated.

This ensures that any pointers that point to the previous contents of the allocatable
component of the variable become undefined.

Example

MODULE REAL_POLYNOMIAL_MODULE
TYPE REAL_POLYNOMIAL
REAL, ALLOCATABLE :: COEFF(:)
END TYPE
INTERFACE OPERATOR(+)
MODULE PROCEDURE RP_ADD RP, RP_ADD R
END INTERFACE
CONTAINS
FUNCTION RP_ADD R(P1,R)
TYPE (REAL_POLYNOMIAL) RP_ADD R, Pl
REAL R
INTENT(IN) P1,R
ALLOCATE (RP_ADD_R%COEFF (SIZE (P1%COEFF)))
RP_ADD R%COEFF = P1%COEFF
RP_ADD_R%COEFF(1) = P1%COEFF(1) + R
END FUNCTION
FUNCTION RP_ADD_RP(P1,P2)
TYPE (REAL_POLYNOMIAL) RP_ADD RP, P1, P2
INTENT(IN) P1, P2
INTEGER M
ALLOCATE (RP_ADD_RP%COEFF (MAX (SIZE (P1%COEFF), SIZE(P2%COEFF))))
M = MIN(SIZE(P1%COEFF), SIZE(P2%COEFF))
RP_ADD_RP%COEFF(:M) = P1%COEFF(:M) + P2%COEFF(:M)
IF (SIZE(P1%COEFF)>M) THEN
RP_ADD_RP%COEFF (M+1:) = P1%COEFF(M+1:)
ELSE IF (SIZE(P2%COEFF)>M) THEN
RP_ADD_RP%COEFF (M+1:) = P2%COEFF(M+1:)
END TF
END FUNCTION
END MODULE

PROGRAM EXAMPLE
USE REAL_POLYNOMIAL_MODULE
TYPE(REAL_POLYNOMIAL) P, Q, R

REAL_POLYNOMIAL((/1,1/)) ! Set Q to (X+1)

=P + Q! Polynomial addition
RINT %, 'Coefficients are: ', R%COEFF

| End of Fortran 2003

Procedure pointer component

| Fortran 2003

Syntax of a procedure pointer component

56 XL Fortran Language Reference

»»—PROCEDURE— () >

I—procedure_interface—l

k; : !
,—procedure_component_attr_spec_list—: :—I

»-procedure_entity_name |_ ><
=>—null init—l

procedure_interface
A declaration type specifier or the name of a procedure that has an explicit
interface.

procedure_component_attr_spec_list
Attributes from the following list:
* POINTER
* PASS
* NOPASS
* access_spec

procedure_entity_name
is the name of the procedure pointer that is being declared.

null_init
is a reference to the NULL intrinsic function.

The PASS attribute defines the [passed-object dummy argument| of the
procedure or procedure pointer component. When NOPASS is specified the

procedure has no passed-object dummy argument.

PASS or NOPASS shall not both appear in the same
procedure_component_attr_spec_list.

If the procedure pointer component has an implicit interface or has no arguments,
NOPASS shall be specified.

If PASS(arg-name) appears, the interface shall have a dummy argument named
arg-name which is the [passed-object dummy argumen

The passed-object dummy argument must not be a pointer, must not be allocatable,
and all its length type parameters must be assumed.

If neither PASS nor NOPASS is specified or PASS has no arg-name, the first
dummy argument is the passed-object dummy argument.

POINTER must be present in each procedure_component_attr_spec_list.

| End of Fortran 2003

Component order

Component order is the sequence of non-parent components of a derived type as
the sequence pertains to list-directed and namelist formatted input/output, and
structure constructors that do not use component keywords.

If a type is not an extended type, it's component order is the order of the
declarations of the components in the derived type definition. The component

order of an extended type consists of the component order of its

Chapter 4. Derived Types 57

parent type, followed by any additional components in the order of their
declarations in the extended derived type definition.

Derived type Values

The set of values of a particular derived type consists of all possible sequences of
the component values of its components. The following table lists component
values of different types of components.

Table 12. Component values

Component Component value
Pointer Pointer association
Unallocated allocatable component Allocation status

Allocated allocatable component

Allocation status, dynamic type and type
parameters, bounds and value

Nonpointer nonallocatable

Value

Notes:
1. Fortran 2003

Type-bound procedures

Fortran 2003

The procedure portion of a derived type definition allows you to bind specific
procedures, generic interfaces, and final subroutines to a type.

Syntax of a type-bound procedure

The syntax of the type-bound procedure portion of a derived type definition is as

follows:

»»>—CONTAINS B 7 Y —specific_binding
PRIVATE i:

generic_binding—
final_binding

CONTAINS

For more information see ['CONTAINS” on page 312|

PRIVATE

You can only specify a [PRIVATE|statement if the type definition is within

the specification part of a module.

specific_binding

Binds a procedure to the type, or specifies a deferred binding in an abstract

type. See [“Specific binding” on page 59|

generic_binding

Defines a generic interface. See [“Generic binding” on page 61]

58 XL Fortran Language Reference

final_binding
Defines a list of final subroutines. See [“Final binding” on page 62|

You can identify a procedure using a binding name in the scope of the type
definition, or an operator for a generic binding. The binding name is the name of a
procedure of the type name and is referred to in the same way as a component of
a type. For a specific binding, this name is the binding_name. For a generic binding
whose generic specification is generic_name, this name is the generic_name. A final
binding, or a generic binding whose generic specification is not generic_name, has
no binding name.

Specific binding

Syntax of a specific_binding
The form of specific binding is:

»»—PROCEDURE >
l—(—z'nterface_name—)—| i:,—attribute_l ist—::—

»—binding name »<
|—=>—p rocedure_nameJ

interface_name
defines the interface for the procedure. The interface_name must be the
name of an abstract interface or of a procedure that has an explicit
interface. If you specify an interface_name, you must not specify a
procedure_name. An interface-name can appear if and only if the binding
has the DEFERRED attribute

attribute
A binding can have one or more attributes, called binding attributes. The
same binding attribute cannot appear more than once for the same
binding. The list of binding attributes that you specify in an attribute_list
includes:

PASS Defines the [passed-object dummy argument| of the procedure.

NOPASS
Indicates that the procedure has no passed-object dummy
argument. If the interface of the binding has no dummy argument
of the type being defined, use NOPASS. PASS and NOPASS can
not both be specified for the same binding.

access_spec
Is PUBLIC or PRIVATE.

NON_OVERRIDABLE
Prevents a binding from being overridden in an extended type.
You must not specify NON_OVERRIDABLE for a binding with
the DEFERRED attribute.

DEFERRED
Marks the procedure as deferred. Deferred bindings must only be
specified for derived type definitions with the ABSTRACT

Chapter 4. Derived Types 59

attribute. A procedure with the DEFERRED binding attribute must
specify an interface_name. An overriding binding can have the
DEFERRED attribute only if the binding it overrides is deferred.
The NON_OVERRIDABLE and DEFERRED binding attributes
must not both be specified for the same procedure. See |”Abstracﬂ
types and deferred bindings” on page 52| and [“Procedure]
overriding” on page 63| for more information.

binding_name
is the name of a binding of a type.

procedure_name
defines the interface for the procedure as well as the procedure to be
executed when the procedure is referenced. The procedure_name must be the
name of an accessible module procedure or an external procedure that has
an explicit interface. If neither =>procedure_name nor interface_name appears,
the procedure_name is the same as the binding_name. If =>procedure_name
appears, you must specify the double-colon separator and an interface_name
must not be specified.

Passed-object dummy arguments
A passed-object dummy argument applies to a type-bound procedure, or a
procedure pointer component.

* If you specify PASS (arg-name) the interface of the procedure pointer component
or named type-bound procedure has a dummy argument with the same name as
arg-name. In this case, the passed-object dummy argument is the argument with
the given name.

* If you do not specify PASS or NOPASS, or specify PASS without arg-name, the
first dummy argument of a procedure pointer component or type-bound
procedure is the passed-object dummy argument.

The passed-object dummy argument must be a scalar, nonpointer, nonallocatable
dummy data object with the same declared type as the type being defined. The
dummy argument must be polymorphic if and only if the type being defined is
extensible.

In the example of a type-bound procedure with a specific binding, the type POINT
contains a type-bound procedure with a specific binding. LENGTH is the type-bound
procedure and POINT_LENGTH is the name of a module procedure.

Example of a type-bound procedure with a specific binding

TYPE :: POINT
REAL :: X, Y
CONTAINS
PROCEDURE, PASS :: LENGTH => POINT_LENGTH
END TYPE POINT

The module-subprogram-part of the same module:
REAL FUNCTION POINT_LENGTH (A, B)

CLASS (POINT), INTENT (IN) :: A, B
POINT_LENGTH = SQRT ((A%X - B%X)**2 + (A%Y - B%Y)#x2)

END FUNCTION POINT_LENGTH

60 XL Fortran Language Reference

Generic binding

Syntax of a generic_binding
The form of generic_binding is:

,—PRIVAT

»>—GENERIC j 1:—generic_spec—=>—binding_name_list———»«
E
,—PUBLIC

The generic_spec can be any of the following:
generic_name

OPERATOR (defined-operator)
The interface of each binding must be as specified in|“Defined operators”]

ASSIGNMENT(=)
The interface of each binding must be as specified in [“Defined assignment”

dtio_generic_spec
The interface of each binding must be as specified in |”User-defined|
[derived-type Input/Output procedure interfaces” on page 210

If the generic_spec is a generic_name, the generic_name cannot be the name of a
nongeneric binding of the type. The same generic_spec may be used in several
generic bindings within a single derived-type definition. In this case, every
occurrence of the same generic_spec must have the same accessibility. Each binding
name in the binding_name_list must be the name of a specific binding of the type.

When generic_spec is not a generic_name, each specific binding name in the
binding_name_list must have the passed-object dummy argument. You can only
specify one binding attribute, PRIVATE or PUBLIC. The following is an example
of a generic binding where generic_spec is ASSIGNMENT(=).

! See example of a procedure with a specific binding for definition of COLOR_POINT
TYPE, EXTENDS(color_point) :: point_info ! An extension of TYPE(COLOR_POINT)

REAL :: color_code

CONTAINS

PROCEDURE, NOPASS:: get _color_code

PROCEDURE :: infol => color_to_info

PROCEDURE :: pointl => point_to_info

GENERIC :: ASSIGNMENT(=) => infol, pointl
END TYPE point_info

CONTAINS

ELEMENTAL SUBROUTINE color_to_info(a, b)
CLASS (point_info), INTENT(OUT) :: a
TYPE(color _point), INTENT(IN):: b
a%color_point = b
a%color_code = get_color_code(b%color)

END SUBROUTINE

ELEMENTAL SUBROUTINE point_to_info(a, b)
CLASS(point_info), INTENT(OUT) :: a
TYPE(point), INTENT(IN):: b

Chapter 4. Derived Types 61

a%color_point = color_point(point=b, color=1)
a%color_code = get_color_code(1)
END SUBROUTINE

Final binding

Syntax of a final_binding

A derived type is finalizable if the derived type has any final subroutines or any
nonpointer, nonallocatable component with a type that is finalizable. A nonpointer
data entity is finalizable if the type of the entity is finalizable. The form of
final_binding is:

»—FINAL—L—_I—final_subroutine_name_l ist ><

FINAL
Specifies a list of final subroutines. A final subroutine can be executed
when a data entity of that type is finalized.

final_subroutine_name_list
A final_subroutine_name must be a module procedure with exactly one
dummy argument. That argument must be nonoptional and must be a
nonpointer, nonallocatable, nonpolymorphic variable of the derived type
being defined. All length type parameters are assumed. The dummy
argument cannot be INTENT(OUT). A final_subroutine_name must not be
one previously specified as a final subroutine for that type. A final
subroutine must not have a dummy argument with the same kind type
parameters and rank as the dummy argument of another final subroutine
of that type.

The following is an example of extended types with final subroutines:

Example of extended types with final subroutines

MODULE m
TYPE :: t1
REAL a,b
END TYPE
TYPE, EXTENDS(tl) :: t2
REAL,POINTER :: c(:),d(:)
CONTAINS
FINAL :: t2f
END TYPE
TYPE, EXTENDS(t2) :: t3
REAL,POINTER :: e
CONTAINS
FINAL :: t3f
END TYPE

CONTAINS
SUBROUTINE t2f(x) ! Finalizer for TYPE(t2)'s extra components
TYPE(t2) :: x

print %, 'entering t2f'
IF (ASSOCIATED(x%c)) then

print *, ' c allocated, cleaning up'
DEALLOCATE (x%c)
end if

62 XL Fortran Language Reference

IF (ASSOCIATED(x%d)) then
print =, ' d allocated, cleaning up'
DEALLOCATE (x%d)
end if
END SUBROUTINE
SUBROUTINE t3f(y) ! Finalizer for TYPE(t3)'s extra components
TYPE(t3) :: y

print %, 'entering t3f'
IF (ASSOCIATED(y%e)) then
print *, ' e allocated, cleanup up'
DEALLOCATE (y%e)
end if
END SUBROUTINE
END MODULE

program my_main
call calc_span
end program

EXAMPLE: subroutine calc_span
USE m
TYPE(t1) x1
TYPE(t2) x2
TYPE(t3) x3

allocate(x2%c(1:5), source=[1.0, 5.0, 10.0, 15.0, 20.0])
allocate(x3%e, source=2.0)

X2%C = x2%c + x3%e
print *, 'calcs are=', x2%C

I Returning from this subroutine does

! nothing to x1. It is not finalizable

! the Fortran compiler places calls to the finalizer's at the
! end of a subroutine for the Tocal variables of calc_span,

! as if the following calls were being made

! CALL t2f(x2)

! CALL t3f(x3)

! CALL t2f(x3%t2)

END SUBROUTINE

The output of the above program is:

calcs are= 3.000000000 7.000000000 12.00000000 17.00000000 22.00000000
entering t2f

c allocated, cleaning up

entering t3f

e allocated, cleanup up

entering t2f

Procedure overriding

If a nongeneric binding you specify in a type definition has the same binding
name as a binding inherited from the parent type, then the binding you specify in
the type definition overrides the binding inherited from the parent type.

The overriding binding and the overriden binding must satisfy the following
conditions:

* Both bindings have a passed-object dummy argument or neither does.
e If the overridden binding is pure, the overriding binding must also be pure.
* Both bindings are elemental or neither is.

Chapter 4. Derived Types 63

* Both bindings must have the same number of dummy arguments.
* DPassed-object dummy arguments, if any, must correspond by name and position.

* Dummy arguments that correspond by position must have the same names and
characteristics, except for the type of the passed-object dummy arguments.

* Both bindings must be subroutines or functions having the same result

characteristics.
* If the overridden binding is [PUBLIC| then the overriding binding cannot be
PRIVATE

Example of procedure overriding

TYPE :: POINT

REAL :: X, Y

CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_LENGTH
END TYPE POINT
TYPE, EXTENDS (POINT) :: POINT_3D

REAL :: Z

CONTAINS

PROCEDURE, PASS :: LENGTH => POINT_3D_LENGTH
END TYPE POINT_3D

The module-subprogram-part of the same module:

REAL FUNCTION POINT LENGTH (A, B)

CLASS (POINT), INTENT (IN) :: A, B

POINT LENGTH = SQRT ((A%X - B%X)**2 + (A%Y - B%Y)#%2)
END FUNCTION POINT LENGTH

REAL FUNCTION POINT_3D _LENGTH (A, B)
CLASS (POINT_3D), INTENT (IN) :: A
CLASS (POINT), INTENT (IN) :: B
SELECT TYPE(B)
CLASS IS (POINT_3D)
POINT_3D_LENGTH = SQRT((A%X-B%X)**2 + (A%Y-B%Y)*%2 + (A%Z-B%Z)**2)
RETURN
END SELECT
PRINT =, 'In POINT_3D_LENGTH, dynamic type of argument is incorrect.'
STOP
END FUNCTION POINT_3D

If a generic binding specified in a type definition has the same generic_spec that
does not satisfy the conditions as an inherited binding, it extends the generic

interface and must satisfy the requirements specified in [‘Unambiguous generid
[procedure references” on page 161

If a generic binding in a type definition has the same dtio_generic_spec as one
inherited from the parent, it extends the generic interface for the dtio_generic_spec
and must satisfy the requirements specified in [“Unambiguous generic procedure|
[references” on page 161/

A binding of a type and a binding of an extension of that type are correspond if:
* The extension binding is the same as the type binding.
* The extension binding overrides a corresponding binding

* The extension binding is an inherited corresponding binding.

| End of Fortran 2003

64 XL Fortran Language Reference

Finalization

| Fortran 2003 |

The finalization process

Only finalizable entities are finalized. When an entity is finalized, the following
steps are carried out in sequence:

1. If the dynamic type of the entity has a final subroutine whose dummy
argument has the same kind type parameters and rank as the entity being
finalized, it is called with the entity as an actual argument. Otherwise, if there
is an elemental final subroutine whose dummy argument has the same kind
type parameters as the entity being finalized, it is called with the entity as an
actual argument. Otherwise, no subroutine is called at this point.

2. Each finalizable component that appears in the type definition is finalized. If
the entity being finalized is an array, each finalizable component of each
element of that entity is finalized separately.

3. If the entity is of extended type and the parent type is finalizable, the parent
component is finalized.

If several entities are to be finalized as a result of one of the events that triggers
finalization, these entities can be finalized in any order.

A final subroutine must not reference or define an object that has already been
finalized. If the object is not finalized, it retains its definition status and is not
undefined.

When finalization occurs

Finalization occurs for the target of a pointer when the pointer is deallocated. If an
object is allocated through pointer allocation and later becomes unreachable
because all pointers to that object have had their pointer association status
changed, finalization on the object does not occur.

Finalization of an allocatable entity occurs with the entity is deallocated.

Finalization for a nonpointer, nonallocatable object that is not a dummy argument
or function result occurs immediately, before the object is undefined by the
execution of a RETURN or END statement. If the object is defined in a module
and no active procedures are still referencing the module, finalization does not take
place.

Finalization of a structure constructor referenced by an executable construct occurs
after execution of the innermost executable construct containing the reference.

Finalization for a function referenced by an executable construct takes place after
execution of the innermost executable construct containing the reference.

Finalization for the result of a function referenced by a specification expression in a
scoping unit takes place before the first statement in the scoping unit executes.

Finalization of a nonpointer, nonallocatable object that is an actual argument

associated with an INTENT(OUT) dummy argument occurs when a procedure
using the argument is invoked.

Chapter 4. Derived Types 65

Finalization of a variable in an intrinsic assignment statement takes place after
evaluation of the expression and before the definition of the variable.

Non-finalized entities

If program execution is terminated, either by an error, such as an allocation failure,
or by the execution of a STOP or END PROGRAM statement, entities existing
immediately prior to termination are not finalized.

A nonpointer, nonallocatable object that has the SAVE attribute or that you specify
in the main program is never finalized as a direct consequence of the execution of
a RETURN or END statement

| End of Fortran 2003

Determining declared type for derived types

Two data objects have the same derived type if they are declared with reference to
the same derived-type definition.

If the data objects are in different scoping units, they can still have the same
derived type. Either the derived-type definition is accessible via host or use
association, or the data objects reference their own derived-type definitions with
the following conditions:

e They were both declared using standard derived type declarations, both have
the same name, either both have the SEQUENCE property, or both have the
BIND attribute, and both have components that do not have PRIVATE
accessibility and agree in order, name and attributes; or

* They were declared using record structure declarations that were not unnamed,
the types have the same name, have no %FILL components and have
components that agree in order and attributes, and any %FILL components
appear in the same positions in both.

A derived-type definition that has the BIND attribute or the SEQUENCE property
is not the same as a definition declared to be private or that has components that
are private.

Example of determining type with derived types
PROGRAM MYPROG

TYPE NAME I Sequence derived type
SEQUENCE
CHARACTER(20) LASTNAME
CHARACTER(10) FIRSTNAME
CHARACTER(1) INITIAL
END TYPE NAME
TYPE (NAME) PER1

CALL MYSUB(PER1)
PER1 = NAME('Smith','John','K") ! Structure constructor
CALL MYPRINT(PER1)

CONTAINS
SUBROUTINE MYSUB(STUDENT) ! Internal subroutine MYSUB
TYPE (NAME) STUDENT ! NAME is accessible via host association

END SUBROUTINE MYSUB
END

66 XL Fortran Language Reference

SUBROUTINE MYPRINT (NAMES) ! External subroutine MYPRINT
TYPE NAME I Same type as data type in MYPROG
SEQUENCE
CHARACTER(20) LASTNAME
CHARACTER(10) FIRSTNAME
CHARACTER(1) INITIAL
END TYPE NAME
TYPE (NAME) NAMES I NAMES and PER1 from MYPROG
PRINT *, NAMES ! have the same data type
END SUBROUTINE

An example with different component names

MODULE MOD
STRUCTURE /S/
INTEGER I
INTEGER, POINTER :: P
END STRUCTURE
RECORD /S/ R
END MODULE
PROGRAM P
USE MOD, ONLY: R
STRUCTURE /S/
INTEGER J
INTEGER, POINTER :: Q
END STRUCTURE
RECORD /S/ R2
R =R2 ! OK - same type name, components have same attributes and
I type (but different names)
END PROGRAM P

Structure constructor

A structure constructor allows a scalar value of derived type to be constructed
from a list of values. A structure constructor must not appear before the definition
of the referenced derived type.

)

A\
A

»>—type name—(
|—componen t_spec_lis t—l

type_name
is the name of the derived type, which must not be abstract.

component_spec is:

> expr >a

|—componen t_keywo rd—=—|

| Fortran 2003

component_keyword
is the name of a component of the type.

| End of Fortran 2003 |

Chapter 4. Derived Types 67

expr is an expression. Expressions are defined under [Chapter 6, “Expressions|
fand assignment,” on page 93]

The type_name and all components of the type for which an expr appears must be
accessible in the scoping unit containing the structure constructor.

In the absence of a component keyword, each expr is assigned to the corresponding
component in component order. If a component keyword appears, the expr is
assigned to the component named by the keyword. For a nonpointer component,
the declared type and type parameters of the component and expr must conform in
the same way as for a variable and expression in intrinsic assignment. If necessary,
each value of intrinsic type is converted according to the rules of intrinsic
assignment to a value that agrees in type and type parameters with the
corresponding component of derived type. For a nonpointer nonallocatable
component, the shape of the expression must conform with the shape of the
component.

If a component_spec is provided for a component, no component_spec can be
provided for any component with which it is inheritance-associated. At most one
component_spec can be provided for a component.

If a component with default initialization has no corresponding expr, then the
default initialization is applied to that component.

The component_keyword = specifier may be omitted from a component_spec only if
the component_keyword = specifier has been omitted from each preceding
component_spec in the constructor.

A component that is a pointer can be declared with the same type that it is a
component of. If a structure constructor is created for a derived type containing a
pointer, the expression corresponding to the pointer component must evaluate to
an object that would be an allowable target for such a pointer in a pointer
assignment statement.

If a component of a derived type is allocatable, the corresponding constructor
expression will either be a reference to the intrinsic function NULL() with no
arguments, an allocatable entity, or will evaluate to an entity of the same rank. If
the expression is a reference to the intrinsic function NULL(), the corresponding
component of the constructor has a status of not currently allocated. If the
expression is an allocatable entity, the corresponding component of the constructor
has the same allocation status as that of allocatable entity and, if it is allocated, it
has the same bounds (if any) and value. Otherwise, the corresponding component
of the constructor has an allocation status of currently allocated, and has the same
bounds (if any) and value as the expression.

| IBM Extension |

If a derived type is declared using the record structure declaration and has any
%FILL component, the structure constructor for that type cannot be used.

If a derived type is accessible in a scoping unit and there is a local entity of class 1
that is not a derived type with the same name accessible in the scoping unit, the
structure constructor for that type cannot be used in that scope.

| End of IBM Extension |

68 XL Fortran Language Reference

Examples of Structure Constructors
Example 1:

MODULE PEOPLE
TYPE NAME
SEQUENCE I Sequence derived type
CHARACTER(20) LASTNAME
CHARACTER(10) FIRSTNAME
CHARACTER(1) INITIAL
END TYPE NAME

TYPE PERSON I Components accessible via use
I association
INTEGER AGE
INTEGER BIRTHDATE(3) I Array component
TYPE (NAME) FULLNAME ! Component of derived type
END TYPE PERSON
END MODULE PEOPLE

PROGRAM TEST1
USE PEOPLE
TYPE (PERSON) SMITH, JONES
SMITH = PERSON(30, (/6,30,63/), NAME('Smith','John','K"))
! Nested structure constructors

JONES%AGE = SMITH%AGE I Component designator
CALL TEST2
CONTAINS

SUBROUTINE TEST2
TYPE T
INTEGER EMP_NO
CHARACTER, POINTER :: EMP_NAME(:) ! Pointer component
END TYPE T
TYPE (T) EMP_REC
CHARACTER, TARGET :: NAME(10)

EMP_REC = T(24744,NAME) ! Pointer assignment occurs
END SUBROUTINE ! for EMP_REC%EMP_NAME

END PROGRAM

| Fortran 95

Example 2:

PROGRAM LOCAL_VAR
TYPE DT
INTEGER A
INTEGER :: B = 80
END TYPE

TYPE(DT) DT_VAR ! DT_VAR%B IS INITIALIZED
END PROGRAM LOCAL_VAR

Example 3:

MODULE MYMOD
TYPE DT
INTEGER :: A = 40
INTEGER, POINTER :: B => NULL()

END TYPE
END MODULE
PROGRAM DT_INIT
USE MYMOD
TYPE(DT), SAVE :: SAVED(8) ! SAVED%A AND SAVED%B ARE INITIALIZED
TYPE(DT) LOCAL(5) ! LOCAL%A LOCAL%B ARE INITIALIZED

END PROGRAM

Chapter 4. Derived Types

69

| End of Fortran 95

| Fortran 2003

Example 4:
PROGRAM NEW_LOCAL
TYPE DT
INTEGER :: A = 20
INTEGER :: B = 80
END TYPE

TYPE(DT):: DT VAR = DT()
TYPE(DT):: DT_VAR2 = DT(B=40)
TYPE(DT):: DT_VAR3 = DT(B=10, A=50)

PRINT =, 'DT_VAR =', DT_VAR
PRINT %, 'DT_VAR2=', DT_VAR2
PRINT =, 'DT_VAR3=', DT_VAR3
END PROGRAM NEW_LOCAL

I The expeceted output is :
DT_VAR = 20 80
DT_VAR2= 20 40
DT_VAR3= 50 10

End of Fortran 2003

70 XL Fortran Language Reference

Chapter 5. Array concepts

XL Fortran provides a set of features, commonly referred to as array language, that
allow you to manipulate arrays. This section provides background information on
arrays and array language:

e [“Arrays”

* [“Array declarators” on page 73]

* [“Explicit-shape arrays” on page 73|

+ |“Assumed-shape arrays” on page 75|

[‘Deferred-shape arrays” on page 76|

+ [“Assumed-size arrays” on page 78|

* [“Array elements” on page 80|

* |“Array sections” on page 82|

* |“Array constructors” on page 88|

* |[“Expressions involving arrays” on page 90|

Related information:

* Many statements in [Chapter 11, “Statements and attributes,” on page 269 |have
special features and rules for arrays.

* This section makes frequent use of the DIMENSION attribute. See
[“DIMENSION” on page 322

* A number of intrinsic functions are especially for arrays. These functions are
mainly those classified as [“Transformational intrinsic functions” on page 531

Arrays

An array is an ordered sequence of scalar data. All the elements of an array have
the same type and type parameters.

A whole array is denoted by the name of the array:

I In this declaration, the array is given a type and dimension

REAL, DIMENSION(3) :: A

I In these expressions, each element is evaluated in each expression
PRINT *, A, A+5, COS(A)

A whole array is either a named constant or a variable.

Bounds of a dimension

Each dimension in an array has an upper and lower bound, which determine the
range of values that can be used as subscripts for that dimension. The bound of a
dimension can be positive, negative, or zero.

| IBM Extension

In XL Fortran, the bound of a dimension can be positive, negative or zero within
the range -(2**31) to 2**31-1 in 32-bit mode. The 64-bit mode range for bounds is
-(2**63) to 2**63-1.

| End of IBM Extension

© Copyright IBM Corp. 1990, 2007 71

If any lower bound is greater than the corresponding upper bound, the array is a
zero-sized array, which has no elements but still has the properties of an array. The
return values for the intrinsic inquiry functions [LBOUND|and [UBOUND| for such
a dimension are one and zero, respectively.

When the bounds are specified in array declarators:

* The lower bound is a specification expression. If it is omitted, the default value
is 1.

* The upper bound is a specification expression or asterisk (*), and has no default
value.

Related information
» [“Specification expressions” on page 96|

Extent of a dimension

The extent of a dimension is the number of elements in that dimension, computed
as the value of the upper bound minus the value of the lower bound, plus one.

INTEGER, DIMENSION(5) :: X | Extent = 5
REAL :: Y(2:4,3:6) ! Extent in 1st dimension = 3
! Extent in 2nd dimension = 4

The minimum extent is zero, in a dimension where the lower bound is greater than
the upper bound.

| IBM Extension |

The theoretical maximum number of elments in an array is 2**31-1 elements in
32-bit mode, or 2**63-1 elements in XL Fortran 64-bit mode. Hardware addressing
considerations make it impractical to declare any combination of data objects with
a total size in bytes that exceeds this value.

| End of IBM Extension |

Different array declarators associated by common, equivalence, or argument
association can have different ranks and extents.

Rank, shape, and size of an array
The rank of an array is the number of dimensions it has:

INTEGER, DIMENSION (10) :: A ! Rank =1
REAL, DIMENSION (-5:5,100) :: B ! Rank = 2

Standard Fortran allows an array to have up to seven dimensions.

| IBM Extension |

An array can have up to twenty dimensions in XL Fortran.

| End of IBM Extension |

A scalar is considered to have rank zero.

The shape of an array is derived from its rank and extents. It can be represented as
a rank-one array where each element is the extent of the corresponding dimension:

INTEGER, DIMENSION (10,10) :: A ! Shape = (/ 10, 10 /)
REAL, DIMENSION (-5:4,1:10,10:19) :: B ! Shape = (/ 10, 10, 10 /)

72 XL Fortran Language Reference

The size of an array is the number of elements in it, equal to the product of the
extents of all dimensions:

INTEGER A(5) ! Size
REAL B(-1:0,1:3,4) ! Size

mn n
[AS)
*
w
*
S
1]
nNo
~

Array declarators

An array declarator declares the shape of an array.

You must declare every named array, and no scoping unit can have more than one
array declarator for the same name. An array declarator can appear in any of the
Compatible Statements and Attributes for Array Declarators table.

Table 13. Compatible statements and attributes for array declarators

|ALLOCATABLEI |AUTOMATIC| |COMMO Sl
. [POINTER (integer)|
[POINTER STATIC

[Type Declaration|

For example:

DIMENSION :: A(1:5) I Declarator is "(1:5)"
REAL, DIMENSION(1,1:5) :: B ! Declarator is "(1,1:5)"
INTEGER C(10) I Declarator is "(10)"

The form of an array declarator is:

»>—(—array_spec—) ><

array_spec is an array specification. It is a list of dimension declarators, each
of which establishes the lower and upper bounds of an array, or
specifies that one or both will be set at run time. Each dimension
requires one dimension declarator.

An array_spec is one of:
explicit_shape_spec_list
assumed_shape_spec_list
deferred_shape_spec_list
assumed_size_spec

Each array_spec declares a different kind of array, as explained in
the following sections.

Explicit-shape arrays

Explicit-shape arrays are arrays where the bounds are explicitly specified for each
dimension.

Chapter 5. Array concepts 73

— Explicit_shape_spec_list

-

v
|—Zower_bound—:—|

>

upper_bound ><

lower_bound, upper_bound
are [specification expressions|

If any bound is not constant, the array must be declared inside a subprogram. The
nonconstant bounds are determined on entry to the subprogram. If a lower bound
is omitted, its default value is one.

The rank is the number of specified upper bounds. The shape of an explicit-shape
dummy argument can differ from that of the corresponding actual argument.

The size is determined by the specified bounds.

The size of an explicit-shape dummy argument does not need to be the same as
the size of the actual argument, but the size of the dummy argument cannot be
larger than the size of the actual argument.

Examples of explicit-shape arrays

INTEGER A,B,C(1:10,-5:5) ! A1l bounds are constant
A=8; B=3
CALL SUB1(A,B,C)
END
SUBROUTINE SUB1(X,Y,Z)

INTEGER X,Y,Z(X,Y) ! Some bounds are not constant
END SUBROUTINE

Automatic arrays

An automatic array is an explicit-shape array you declare in a subprogram, that is
not a dummy argument or pointee array, and has at least one bound that is a
nonconstant specification expression. Evaluation of the bounds occurs on entry into
the subprogram and remain unchanged during execution of the subprogram.

Example of an automatic array

INTEGER X
COMMON X

X =10

CALL SUB1(5)
END

SUBROUTINE SUB1(Y)

INTEGER X

COMMON X

INTEGER Y

REAL Z (X:20, 1:Y) Automatic array. Here the bounds are made
available through dummy arguments and common
blocks, although Z itself is not a dummy
argument.

END SUBROUTINE
Related information

74 XL Fortran Language Reference

+ For general information about automatic data objects, see [“ Automatic objects”]
fon page 18 and [“Storage classes for variables” on page 26

Adjustable arrays

An adjustable array is an explicit-shape array dummy argument that has at least
one non-constant bound.

Example of an adjustable array

SUBROUTINE SUBI(X, Y)
INTEGER X, Y(X*3) ! Adjustable array. Here the bounds depend on a

! dummy argument, and the array name is also passed in.
END SUBROUTINE

Pointee arrays

| IBM Extension

Pointee arrays are explicit-shape or [assumed-size arrays|that can only appear in
[integer POINTER| statements.

The declarator for a pointee array can only contain variables if you declare the
array inside a subprogram, and any such variables must be:

¢ dummy arguments

* members of a common block
* use associated

* host associated

Evaluation of the bounds occurs on entry into the subprogram, and remain
constant during execution of that subprogram.

Compiling with the option relaxes the restrictions on which variables can

appear in an array declarator. Declarators in the main program can contain

variable names, and any specified nonconstant bounds are re-evaluated each time
you reference the array, so that you can change the properties of the pointee array

by changing the values of the variables used in the bounds expressions.

Example using -qddim to relax array declarator restrictions

@PROCESS DDIM
INTEGER PTE, N, ARRAY(10)
POINTER (P, PTE(N))
N=5

P = LOC(ARRAY(2))

PRINT *, PTE Print elements 2 through 6 of ARRAY

N=7 Increase the size
PRINT *, PTE Print elements 2 through 8 of ARRAY
END

| End of IBM Extension

Assumed-shape arrays

Assumed-shape arrays are dummy argument arrays where the extent of each
dimension is taken from the associated actual arguments.

Chapter 5. Array concepts

75

— Assumed_shape_spec_list

-

v
I—lower_bound—l

>

lower_bound
is a [specification expression|

Each lower bound defaults to one, or may be explicitly specified. Each upper
bound is set on entry to the subprogram to the specified lower bound (not the
lower bound of the actual argument array) plus the extent of the dimension minus
one.

The extent of any dimension is the extent of the corresponding dimension of the
associated actual argument.

The rank is the number of colons in the assumed_shape_spec_list.
The shape is assumed from the associated actual argument array.

The size is determined on entry to the subprogram where it is declared, and equals
the size of the associated argument array.

Note: Subprograms that have assumed-shape arrays as dummy arguments must
have explicit interfaces.

Examples of assumed-shape arrays

INTERFACE

SUBROUTINE SUB1(B)

INTEGER B(1:,:,10:)

END SUBROUTINE
END INTERFACE
INTEGER A(10,11:20,30)
CALL SUB1 (A)
END
SUBROUTINE SUB1(B)
INTEGER B(1:,:,10:)
! Inside the subroutine, B is associated with A.
I It has the same extents as A but different bounds (1:10,1:10,10:39).
END SUBROUTINE

Deferred-shape arrays

Deferred-shape arrays are allocatable arrays or array pointers, where the bounds
can be defined or redefined during execution of the program.

76 XL Fortran Language Reference

— Deferred_shape_spec_list

’7:
Y ;—‘ <

The extent of each dimension (and the related properties of bounds, shape, and
size) is undefined until the array is allocated or the pointer is associated with an
array that is defined. Before then, no part of the array may be defined, or
referenced except as an argument to an appropriate inquiry function. At that point,
an array pointer assumes the properties of the target array, and the properties of
an allocatable array are specified in an ALLOCATE statement.

The rank is the number of colons in the deferred_shape_spec_list.

Although a deferred_shape_spec_list can appear identical to an
assumed_shape_spec_list, deferred-shape arrays and assumed-shape arrays are not
the same. A deferred-shape array must have the ALLOCATABLE or POINTER
attribute, while an assumed-shape array must be a dummy argument that does not
have the ALLOCATABLE or POINTER attribute. The bounds of a deferred-shape
array, and the actual storage associated with it, can be changed at any time by
reallocating the array or by associating the pointer with a different array, while
these properties remain the same for an assumed-shape array during the execution
of the containing subprogram.

Related information:

+ [“Allocation status” on page 26|

+ [“Data pointer assignment” on page 123|

+ [“Pointer association” on page 152
[“ALLOCATABLE” on page 274

[“ALLOCATED(X)” on page 541]
[“ASSOCIATED(POINTER, TARGET) ” on page 545|

Allocatable arrays

A deferred-shape array that has the ALLOCATABLE attribute is referred to as an
allocatable array. Determination of the bounds and shape of the array occurs when
you allocate storage using an ALLOCATE statement.

Example of an allocatable array

INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: A

ALLOCATE(A(10,-4:5,20)) ! Bounds of A are now defined (1:10,-4:5,1:20)
DEALLOCATE (A)

ALLOCATE(A(5,5,5)) I Change the bounds of A

Chapter 5. Array concepts 77

Migration Tip:

If you do not know the size of an array at compile time, you can avoid unnecessary
memory usage by making the array allocatable instead of declaring it with a maximum
size.

FORTRAN 77 source

INTEGER A(1000),B(1000),C(1000)

C 1000 is the maximum size
WRITE (6,*) "Enter the size of the arrays:"
READ (5,%) N

DO I=1,N
A(T)=B(I)+C(I)

END DO

END

Source for Fortran 90 or above:

INTEGER, ALLOCATABLE, DIMENSION(:) :: A,B,C
WRITE (6,*) "Enter the size of the arrays:"
READ (5,%) N

ALLOCATE (A(N),B(N),C(N))

A=B+C
END

Array pointers

An array with the POINTER attribute is referred to as an array pointer. Its bounds
and shape are determined when it is associated with a target through pointer
assignment or execution of an ALLOCATE statement.
REAL, POINTER, DIMENSION(:,:) :: B
REAL, TARGET, DIMENSION(5,10) :: C, D(10,10)
B =>C ! Bounds of B are now defined (1:5,1:10)

>D

B I B now has different bounds and is associated
I with different storage

ALLOCATE(B(5,5)) ! Change bounds and storage association again

END

Related information:

+ |“Pointer association” on page 152|

Assumed-size arrays

Assumed-size arrays are dummy argument arrays where the size is inherited from
the associated actual array, but the rank and extents may differ.

78 XL Fortran Language Reference

— Assumed_size_spec

[N *. [
>p

’7, |—lower‘_bound—:—|

A4 B] upper_bound——,
lower_bound—:

lower_bound, upper_bound
are [specification expressions|

If any bound is not constant, the array must be declared inside a subprogram and
the nonconstant bounds are determined on entry to the subprogram. If a lower
bound is omitted, its default value is 1.

The last dimension has no upper bound and is designated instead by an asterisk.
You must ensure that references to elements do not go past the end of the actual
array.

The rank equals one plus the number of upper_bound specifications in its
declaration, which may be different from the rank of the actual array it is
associated with.

The size is assumed from the actual argument that is associated with the
assumed-size array:

* If the actual argument is a noncharacter array, the size of the assumed-size array
is that of the actual array.

e If the actual argument is an array element from a noncharacter array, and if the
size remaining in the array beginning at this element is S, then the size of the
dummy argument array is S. Array elements are processed in array element
order.

e If the actual argument is a character array, array element, or array element
substring, and assuming that:
— A is the starting offset, in characters, into the character array
— T is the total length, in characters, of the original array
— S is the length, in characters, of an element in the dummy argument array

then the size of the dummy argument array is:

MAX(INT (T-A +1)/S,0)
For example:

CHARACTER(10) A(10)
CHARACTER(1) B(30)
CALL SUBI(A)

CALL SUBL(A(4))

CALL SUB1(A(6)(5:10))

I Size of dummy argument array is 10

I Size of dummy argument array is 7

I Size of dummy argument array is 4 because there

I are just under 4 elements remaining in A
CALL SUB1(B(12)) ! Size of dummy argument array is 1, because the
! remainder of B can hold just one CHARACTER(10)
END I element.
SUBROUTINE SUB1(ARRAY)

CHARACTER(10) ARRAY (*)

END SUBROUTINE

Chapter 5. Array concepts 79

Examples of assumed-size arrays
INTEGER X(3,2)

DOI =1,3
DO J =1,2
X(I,J) =1 = I The elements of X are 1, 2, 3, 2, 4, 6
END DO
END DO
PRINT *,SHAPE(X) ! The shape is (/ 3, 2 /)
PRINT *,X(1,:) ! The first row is (/ 1, 2 /)

CALL SUB1(X)

CALL SUB2(X)

END

SUBROUTINE SUB1(Y)
INTEGER Y(2,%)
PRINT *, SIZE(Y,1)

The dimensions of y are the reverse of x above
We can examine the size of the first dimension
but not the last one.

We can print out vectors from the first
dimension, but not the Tast one.

PRINT *, Y(:,1)
PRINT *, Y(:,2)
END SUBROUTINE
SUBROUTINE SUB2(Y)
INTEGER Y(*)
PRINT *, Y(6)

Y has a different rank than X above.

We have to know (or compute) the position of
the last element. Nothing prevents us from
subscripting beyond the end.

END SUBROUTINE
Notes:

1. An assumed-size array cannot be used as a whole array in an executable
construct unless it is an actual argument in a subprogram reference that does
not require the shape:

' A is an assumed-size array.

PRINT =,
UBOUND(A,1) ! OK - only examines upper bound of first dimension.
PRINT =, LBOUND(A) 1 0K - only examines lower bound of each dimension.

! However, 'B=UBOUND(A)' or 'A=5' would reference the upper bound of
! the Tast dimension and are not allowed. SIZE(A) and SHAPE(A) are
! also not allowed.

2. If a section of an assumed-size array has a subscript triplet as its last section
subscript, the upper bound must be specified. (Array sections and subscript
triplets are explained in a subsequent section.)

I A is a 2-dimensional assumed-size array

PRINT =, A(:, 6) ! Triplet with no upper bound is not last dimension.
PRINT *, A(1, 1:10) I Triplet in last dimension has upper bound of 10.
PRINT *, A(5, 5:9:2) ! Triplet in last dimension has upper bound of 9.

Array elements

Array elements are the scalar data that make up an array. Each element inherits the
type, type parameters, and INTENT] [PARAMETER)} f F2003 | |PROTECTED|,
[F2003 4 [TARGET] } F2003 |ASYNCHRONOUS| F2003 4and rzo03 ||[VOLATILE
attributes from its parent array. The [POINTER|and [ALLOCATABLE|
attributes are not inherited.

You identify an array element by an array element designator, whose form is:

80 XL Fortran Language Reference

A\
A

»—Earray_name—_l—(—subscript_l ist—)
array_struct_comp

array_name is the name of an array

array_struct_comp is a structure component whose rightmost
comp_name is an array

subscript is an scalar integer expression

| IBM Extension |

A subscript can be a scalar real expression in XL
Fortran.

; End of IBM Extension 4,

Note:
e The number of subscripts must equal the number of dimensions in the array.

* If array_struct_comp is present, each part of the structure component except the
rightmost must have rank zero (that is, must not be an array name or an array
section).

* The value of each subscript expression must not be less than the lower bound or
greater than the upper bound for the corresponding dimension.

The subscript value depends on the value of each subscript expression and on the
dimensions of the array. It determines which element of the array is identified by
the array element designator.

Related information:
“Structure components” on page 53|
“Array sections and structure components” on page 86|

Array element order

The elements of an array are arranged in storage in a sequence known as the array
element order, in which the subscripts change most rapidly in the first dimension,
and subsequently in the remaining dimensions.

For example, an array declared as A(2, 3, 2) has the following elements:
Position of Array Element Array Element Order

A(1,1,1) 1
A(2,1,1) 2
A(1,2,1) 3
A(2,2,1) 4
A(1,3,1) 5
A(2,3,1) 6
A(1,1,2) 7
A(2,1,2) 8
A(1,2,2) 9
A(2,2,2) 10
A(1,3,2) 11
A(2,3,2) 12

Chapter 5. Array concepts 81

Array sections

An array section is a selected portion of an array. It is an array subobject that
designates a set of elements from an array, or a specified substring or derived-type
component from each of those elements. An array section is also an array.

Note: This introductory section describes the simple case, where structure

components are not involved. [“Array sections and structure components”]
explains the additional rules for specifying array sections that

are also structure components.

Y
A

»>—array_name—(—section_subscript_list—) B]
substring_range

section subscript:

subscript
Esubscr‘ipt_tripleﬂ
vector_subscript

A\
A

section_subscript
designates some set of elements along a particular dimension. It
can be composed of a combination of the following:

subscript

is a scalar integer expression, explained in|”Arrayj
felements” on page 80|

| IBM Extension

A subscript can be a scalar real expression in XL Fortran.

| End of IBM Extension

subscript_triplet, vector subscript
designate a (possibly empty) sequence of subscripts in a
given dimension. For details, see [‘Subscript triplets” on|
[page 83| and [“Vector subscripts” on page 85|

Note: At least one of the dimensions must be a subscript triplet

or vector subscript, so that an array section is distinct from
an array element:

INTEGER, DIMENSION(5,5,5) :: A
A(1,2,3) = 100
A(1,3,3) = 101
PRINT *, A(1,2,3)
PRINT *, A(1,2:2,3)
PRINT *, A(1,2:3,3)

A single array element, 100.

I A one-element array section, (/ 100 /)
A two-element array section,

(/ 100, 101 /)

substring_range

82 XL Fortran Language Reference

»—(

l—int_exprl—l

A\
A

)
I—i nt_exp r2—|

int_exprl and int_expr2 are scalar integer expressions called
substring expressions, defined in [“Character substrings” on page
They specify the leftmost and rightmost character positions,
respectively, of a substring of each element in the array section. If
an optional substring_range is present, the section must be from an
array of character objects.

An array section is formed from the array elements specified by the sequences of
values from the individual subscripts, subscript triplets, and vector subscripts,
arranged in column-major order.

For example, if SECTION = A(1:3, (/ 5,6,5 /), 4):

¢ The sequence of numbers for the first dimension is 1, 2, 3.

* The sequence of numbers for the second dimension is 5, 6, 5.
* The subscript for the third dimension is the constant 4.

The section is made up of the following elements of A, in this order:

A(1,5,4) SECTION(1,1)
A(2,5,4) |----- First column ----- SECTION(2,1)
A(3,5,4) SECTION(3,1)
A(1,6,4) SECTION(1,2)
A(2,6,4) |----- Second column ---- SECTION(2,2)
A(3,6,4) SECTION(3,2)
A(1,5,4) SECTION(1,3)
A(2,5,4) |----- Third column ----- SECTION(2,3)
A(3,5,4) SECTION(3,3)

Some examples of array sections include:

INTEGER, DIMENSION(20,20) :: A

I These references to array sections require loops or multiple

| statements in FORTRAN 77.

PRINT *, A(1:5,1) ! Contiguous sequence of elements
PRINT *, A(1:20:2,10) ! Noncontiguous sequence of elements
PRINT =, A(:,5) ! An entire column

PRINT =, A((/1,10,5/), (/7,3,1/)) ! A 3x3 assortment of elements

Related information:
[“Structure components” on page 53

Subscript triplets

A subscript triplet consists of two subscripts and a stride, and defines a sequence
of numbers corresponding to array element positions along a single dimension.

[N
>p

l—subscm’ptl—|

l—subscr‘iptZ—l l—:—stride—|

subscriptl, subscript2
are subscripts that designate the first and last values in the
sequence of indices for a dimension.

Chapter 5. Array concepts 83

If the first subscript is omitted, the lower array bound of that
dimension is used. If the second subscript is omitted, the upper
array bound of that dimension is used. (The second subscript is
mandatory for the last dimension when specifying sections of an
assumed-size array.)

stride is a scalar integer expression that specifies how many subscript
positions to count to reach the next selected element.

A stride can be a scalar real expression in XL Fortran.

If the stride is omitted, it has a value of 1. The stride must have a
nonzero value:

* A positive stride specifies a sequence of integers that begins with
the first subscript and proceeds in increments of the stride to the
largest integer that is not greater than the second subscript. If
the first subscript is greater than the second, the sequence is
empty.

* When the stride is negative, the sequence begins at the first
subscript and continues in increments specified by the stride to
the smallest integer equal to or greater than the second
subscript. If the second subscript is greater than the first, the
sequence is empty.

Calculations of values in the sequence use the same steps as shown in
[a DO statement” on page 132.|

A subscript in a subscript triplet does not have to be within the declared bounds
for that dimension if all the values used in selecting the array elements for the
array section are within the declared bounds:
INTEGER A(9)
PRINT *, A(1:9:2) ! Count from 1 to 9 by 2s: 1, 3, 5, 7, 9.
PRINT =, A(1:10:2) ! Count from 1 to 10 by 2s: 1, 3, 5, 7, 9.

! No element past A(9) is specified.

Examples of subscript triplets

REAL, DIMENSION(10) :: A
INTEGER, DIMENSION(10,10) :: B
CHARACTER(10) STRING(1:100)

PRINT =, A(:) ! Print all elements of array.
PRINT =, A(:5) ! Print elements 1 through 5.
PRINT =, A(3:) ! Print elements 3 through 10.
PRINT %, STRING(50:100) ! Print all characters in

! elements 50 through 100.

I The following statement is equivalent to A(2:10:2) = A(1:9:2)

A(2::2) = A(:9:2) ! LHS = A(2), A(4), A(6), A(8), A(10)
! RHS = A(1), A(3), A(5), A(7), A(9)
! The statement assigns the odd-numbered
I elements to the even-numbered elements.

! The following statement is equivalent to PRINT *, B(1:4:3,1:7:6)
PRINT *, B(:4:3,:7:6) ! Print B(1,1), B(4,1), B(1,7), B(4,7)

PRINT *, A(10:1:-1) ! Print elements in reverse order.

84 XL Fortran Language Reference

PRINT %, A(10:1:1) I These two are
PRINT *, A(1:10:-1) ! both zero-sized.
END

Vector subscripts

A vector subscript is an integer array expression of rank one, designating a
sequence of subscripts that correspond to the values of the elements of the
expression.

A vector subscript can be a real array expression of rank one in XL
Fortran.

The sequence does not have to be in order, and may contain duplicate values:

INTEGER A(10), B(3), C(3)

PRINT =, A((/ 10,9,8 /)) ! Last 3 elements in reverse order
B=A((/1,2,27/)) 1 B(1) = A(1), B(2) = A(2), B(3) = A(2) also
END

An array section with a vector subscript in which two or more elements of the
vector subscript have the same value is called a many-one section. Such a section
must not:

* Appear on the left side of the equal sign in an assignment statement

* Be initialized through a DATA statement

* Be used as an input item in a READ statement

Notes:

1. An array section used as an internal file must not have a vector subscript.

2. If you pass an array section with a vector subscript as an actual argument, the
associated dummy argument must not be defined or redefined.

3. An array section with a vector subscript must not be the target in a pointer
assignment statement.

! We can use the whole array VECTOR as a vector subscript for A and B
INTEGER, DIMENSION(3) :: VECTOR= (/ 1,3,2 /), A, B
INTEGER, DIMENSION(4) :: C = (/ 1,2,4,8 /)

A(VECTOR) = B I A(1) = B(1), A(3) = B(2), A(2) = B(3)
A=B((/3,2,1/)) PA(1) = B(3), A(2) = B(2), A(3) = B(1)
PRINT *, C(VECTOR(1:2)) ! Prints C(1), C(3)

END

Array sections and substring ranges

For an array section with a substring range, each element in the result is the
designated character substring of the corresponding element of the array section.
The rightmost array name or component name must be of type character.
PROGRAM SUBSTRING
TYPE DERIVED

CHARACTER(10) STRING(5) I Each structure has 5 strings of 10 chars.
END TYPE DERIVED
TYPE (DERIVED) VAR, ARRAY(3,3) ! A variable and an array of derived type.

VAR%STRING(:)(1:3) = 'abc' I Assign to chars 1-3 of elements 1-5.
VAR%STRING(3:) (4:6) = '123' I Assign to chars 4-6 of elements 3-5.

ARRAY (1:3,2)%STRING(3) (5:10) = 'hello'
I Assign to chars 5-10 of the third element in
I ARRAY(1,2)%STRING, ARRAY(2,2)%STRING, and
END I ARRAY(3,2)%STRING

Chapter 5. Array concepts 85

Array sections and structure components

Understanding how array sections and structure components interact requires a
familiarity with the syntax for [“Structure components” on page 53

What we defined at the beginning of this section as an array section is really only
a subset of the possible array sections. An array name or array name with a
section_subscript_list can be a subobject of a structure component:

86 XL Fortran Language Reference

struct_sect_subobj:

»>—object_name

l—(—section_subscript_l ist—)—|

>~ ——%——comp_name
—[:l_ l—(—section_subscript_list—)—l I—substring_range—l

object_name
is the name of an object of derived type

section_subscript_list, substring_range
are the same as defined under [“Array sections” on page 82|

comp_name
is the name of a derived-type component

% or . Separator character.

Note: The . (period) separator is an IBM extension.

Notes:
1. The type of the last component determines the type of the array.

2. Only one part of the structure component may have nonzero rank. Either the
rightmost comp_name must have a section_subscript_list with nonzero rank, or
another part must have nonzero rank.

3. Any parts to the right of the part with nonzero rank must not have the
ALLOCATABLE or POINTER attributes.

TYPE BUILDING_T
LOGICAL RESIDENTIAL
END TYPE BUILDING_T

TYPE STREET_T
TYPE (BUILDING_T) ADDRESS(500)
END TYPE STREET_T

TYPE CITY_T
TYPE (STREET T) STREET(100,100)
END TYPE CITY T

TYPE (CITY_T) PARIS

TYPE (STREET_T) S

TYPE (BUILDING_T) RESTAURANT

I LHS is not an array section, no subscript triplets or vector subscripts.
PARIS%STREET(10,20) = S

I None of the parts are array sections, but the entire construct

! is a section because STREET has a nonzero rank and is not

I the rightmost part.

PARIS%STREET%ADDRESS (100) = BUILDING T(.TRUE.)

I STREET(50:100,10) is an array section, making the LHS an array section
I with rank=1, shape=(/51/).

! ADDRESS(123) must not be an array section because only one can appear
! in a reference to a structure component.

PARIS%STREET (50:100,10)%ADDRESS (123)%RESIDENTIAL = .TRUE.

END

Chapter 5. Array concepts

87

Rank and shape of array sections

For an array section that is not a subobject of a structure component, the rank is
the number of subscript triplets and vector subscripts in the section_subscript_list.
The number of elements in the shape array is the same as the number of subscript
triplets and vector subscripts, and each element in the shape array is the number
of integer values in the sequence designated by the corresponding subscript triplet
or vector subscript.

For an array section that is a subobject of a structure component, the rank and
shape are the same as those of the part of the component that is an array name or
array section.

DIMENSION :: ARR1(10,20,100)
TYPE STRUCT2_T
LOGICAL SCALAR_COMPONENT
END TYPE
TYPE STRUCT_T
TYPE (STRUCT2_T), DIMENSION(10,20,100) :: SECTION
END TYPE

TYPE (STRUCT_T) STRUCT

! One triplet + one vector subscript, rank =

I Triplet designates an extent of 10, vector subscript designates
I an extent of 3, thus shape = (/ 10,3 /).

ARR1(:, (/ 1,3,4 /), 10) =

! One triplet, rank =
! Triplet designates 5 values, thus shape = (/ 5 /).
STRUCT%SECTION(1,10,1:5)%SCALAR_COMPONENT .TRUE.

! Here SECTION is the part of the component that is an array,
! so rank = 3 and shape = (/ 10,20,100 /), the same as SECTION.
STRUCT%SECTION%SCALAR_COMPONENT = .TRUE.

Array constructors

An array constructor is a sequence of specified scalar values. It constructs a
rank-one array whose element values are those specified in the sequence. You can
construct arrays of rank greater than one using an intrinsic function. See
['RESHAPE(SOURCE, SHAPE, PAD, ORDER) ” on page 640| for details.

Syntax of an array constructor

v
A

»_E(/ac spec/

[ac_spec]

where ac_spec is:

v
A

»»——i d type_spec—::

-

7 Y ac_value

I—i_d_t ype_spec—::

i_d_type_spec

88 XL Fortran Language Reference

Is an intrinsic_type_spec or derived_type_spec. See [“Type Declaration” on|
for a list of possible type specifications.

BYTE is not allowed as an intrinsic_type_spec in an array constructor.

If you specify an intrinsic type, each ac_value expression in the array
constructor must be of an intrinsic type compatible with the type you
specify.

ac_value
is an expression or implied-DO list that provides values for array elements.
If type_spec is omitted, each ac_value in the array constructor must have
the same type and type parameters.

Rules for array constructors

If i_d_type_spec is omitted, each ac_value expression in the array constructor must
have the same type and kind type parameters.

A i_d_type_spec specifies the type and type parameters of the array constructor.
Each ac_value expression must be compatible with intrinsic assignment to a
variable with these type and type parameters. Each value is converted to the type
parameters of the array constructor.

If i_d_type_spec appears without an ac_value, a zero-sized rank-one array is created.

If ac_value is:
* A scalar expression, its value specifies an element of the array constructor.

* An array expression, the values of the elements of the expression, in array
element order, specify the corresponding sequence of elements of the array
constructor.

¢ An implied-DO list, it is expanded to form an ac_value sequence under the
control of the implied_do_variable, as in the DO construct.

The character length of an ac_value in an implied-DO with an iteration count of
zero must not depend on the value of the implied_do_variable and must not depend
on the value of an expression that is not an initialization expression.

Example of an array constructor

INTEGER, DIMENSION(5) :: A, B, C, D(2,2)

CHARACTER(5) ,DIMENSION(3) : : COLOR

A=(/1,2,3,4,5/) ! Assign values to all elements in A
A(3:5) = (/ 0,1,0 /) ! Assign values to some elements

C = MERGE (A, B, (/ T,F,T,T,F /)) ! Construct temporary logical mask

I The array constructor produces a rank-one array, which
! is turned into a 2x2 array that can be assigned to D.
D = RESHAPE(SOURCE = (/ 1,2,1,2 /), SHAPE = (/ 2,2 /))

! Here, the constructor linearizes the elements of D in

I array-element order into a one-dimensional result.

PRINT *, A((/ D /))

! without a type_spec,each character literal must be of length 5

COLOR= ['RED ','GREEN','BLUE ']

! with a type_spec,padding and truncation of each character literal occurs
COLOR= [CHARACTER(5)::'RED','GREEN', 'BLUE']

Chapter 5. Array concepts 89

Implied-DO list for an array constructor

Implied-DO loops in array constructors help to create a regular or cyclic sequence
of values, to avoid specifying each element individually.

A zero-sized array of rank one is formed if the sequence of values generated by the
loop is empty.

»»—(—ac_value list—,—implied do_variable— =

v
A

—exprl—,—expr2 |_ _|)
,—expr3

implied_do_variable
is a named scalar integer p_1em__]or real[_Bm 4 variable.

In a nonexecutable statement, the type must be integer. You must not
reference the value of an implied_do_variable in the limit expressions expr1
or expr2. Loop processing follows the same rules as for an implied-DO in
["'DATA” on page 314 and uses integer or real arithmetic depending on the
type of the implied-DO variable.

The variable has the scope of the implied-DO, and it must not have the
same name as another implied-DO variable in a containing array
constructor implied-DO:

M=0

PRINT =, (/ (M, M=1, 10) /) ! Array constructor implied-DO
PRINT *, M I'M still 0 afterwards

PRINT *, (M, M=1, 10) I Non-array-constructor implied-DO
PRINT *, M I This one goes to 11

PRINT *, (/ ((M, M=1, 5), N=1, 3) /)
I The result is a 15-element, one-dimensional array.
I The inner loop cannot use N as its variable.
exprl, expr2, and expr3
are scalar integer or real[1BM 4 expressions

PRINT %, (/ (I, 1 =1, 3) /)

! Sequence is (1, 2, 3)

PRINT =, (/ (I, I =1, 10, 2) /)

! Sequence is (1, 3, 5, 7, 9)

PRINT *, (/ (I, I+1, I+2, 1 =1, 3) /)

! Sequence is (1, 2, 3, 2, 3, 4, 3, 4, 5)
PRINT *, (/ ((I, 1=1,3),d=1,3)/)

! Sequence is (1, 2, 3, 1, 2, 3, 1, 2, 3)

PRINT =, (/ ((I, 1=1,J),d=1,3)7/)
! Sequence is (1, 1, 2, 1, 2, 3)

PRINT %, (/2,3,(I, I+1, I =5, 8)/)

! Sequence is (2, 3, 5, 6, 6, 7, 7, 8, 8, 9).

I The values in the implied-DO Toop before

I I=5 are calculated for each iteration of the loop.

Expressions involving arrays

Arrays can be used in the same kinds of expressions and operations as scalars.
Intrinsic operations, assignments, or elemental procedures can be applied to one or
more arrays.

90 XL Fortran Language Reference

For intrinsic operations, in expressions involving two or more array operands, the
arrays must have the same shape so that the corresponding elements of each array

can be assigned to or be evaluated. In a defined operation arrays can have
different shapes. Arrays with the same shape are conformable. In a context where
conformable entity is expected, you can also use a scalar value: it is conformable
with any array, such that it is treated like an array where each array element has
the value of the scalar.

For example:

INTEGER, DIMENSION(5,5) :: A,B,C
REAL, DIMENSION(10) :: X,Y
| Here are some operations on arrays

A=B+¢C I Add corresponding elements of both arrays.
A=-B I Assign the negative of each element of B.

A = MAX(A,B,C) P A(i,3) = MAX(A(i,3), B(i,3), C(i,i))

X = SIN(Y) I Calculate the sine of each element.

I These operations show how scalars are conformable with arrays
A=A+5 ! Add 5 to each element.

A =10 I Assign 10 to each element.

A = MAX(B, C, 5) ! A(i,3) = MAX(B(i,d), C(i,3), 5)

END

Related information:

“Elemental intrinsic procedures” on page 529

“Intrinsic assignment” on page 110f

“WHERE” on page 478 shows a way to assign values to some elements in an
array but not to others

["FORALL construct” on page 120]

Chapter 5. Array concepts

a

91

92 XL Fortran Language Reference

Chapter 6. Expressions and assignment

This section describes the rules for formation, interpretation, and evaluation of
expressions and assignment statements:

+ [“Introduction to expressions and assignment”]

+ |“Constant expressions” on page 94|

+ [“Specification expressions” on page 96|

* [“Operators and expressions” on page 98|

[“Extended intrinsic and defined operations” on page 106|

+ [“How expressions are evaluated” on page 107

* |“Intrinsic assignment” on page 110|
* [“'WHERE construct” on page 113|

* p 5 JI"FORALL construct” on page 120[Fs5 q
+ [“Data pointer assignment” on page 123|

Related information

* |“Defined operators” on page 163

* [“Defined assignment” on page 165|

Introduction to expressions and assighment

An expression is a data reference or a computation, and is formed from operands,
operators, and parentheses. An expression, when evaluated, produces a value,
which has a declared type, a dynamic type, a shape, and possibly type parameters.

An operand is either a scalar or an array. An operator is either intrinsic or defined. A
unary operation has the form:

* operator operand

A binary operation has the form:
* operand, operator operand,

Any expression contained in parentheses is treated as a data entity. Parentheses can
be used to specify an explicit interpretation of an expression. They can also be
used to restrict the alternative forms of the expression, which can help control the
magnitude and accuracy of intermediate values during evaluation of the
expression. For example, the two expressions

(IxJ)/K
Ix(J/K)

are mathematically equivalent, but may produce different computational values as
a result of evaluation.

Primary
A primary is the simplest form of an expression. It can be one of the following:
* A data object
* An array constructor
* A structure constructor

© Copyright IBM Corp. 1990, 2007 93

. A complex constructor

¢ A function reference

* An expression enclosed in parentheses

A primary that is a data object must not be an assumed-size array.

Examples of primaries

12.3 I Constant

"ABCDEFG' (2:3) I Subobject of a constant
VAR ! Variable name

(/7.0,8.0/) ! Array constructor
EMP(6,'SMITH') ! Structure constructor
SIN(X) ! Function reference

(T-1) I Expression in parentheses

Type, parameters, and shape
The type, type parameters, and shape of a primary are determined as follows:

* A data object or function reference acquires the type, type parameters, and shape
of the object or function reference, respectively. The type, parameters, and shape
of a generic function reference are determined by the type, parameters, and
ranks of its actual arguments.

* A structure constructor is a scalar and its type is that of the constructor name.

* An array constructor has a shape determined by the number of constructor
expressions, and its type and parameters are determined by those of the
constructor expressions.

* A parenthesized expression acquires the type, parameters, and shape of the
expression.

If a pointer appears as a primary in an operation in which it is associated with a
nonpointer dummy argument, the target is referenced. The type, parameters, and
shape of the primary are those of the target. If the pointer is not associated with a
target, it can appear only as an actual argument in a procedure reference whose
corresponding dummy argument is a pointer, or as the target in a pointer
assignment statement. A disassociated pointer can also appear as an actual

argument to the JASSOCIATED) intrinsic inquiry function.

Given the operation [exprl] op expr2, the shape of the operation is the shape of
expr2 if op is unary or if exprl is a scalar. Otherwise, its shape is that of exprI.

The type and shape of an expression are determined by the operators and by the
types and shapes of the expression’s primaries. The type of the expression can be
intrinsic or derived. An expression of intrinsic type has a kind parameter and, if it
is of type character, it also has a length parameter.

Constant expressions

A constant expression is an expression in which each operation is intrinsic and
each primary is one of the following;:

* A constant or a subobject of a constant.

* An array constructor where each element and the bounds and strides of each
implied-DO are expressions whose primaries are either constant expressions or
implied-DO variables.

* A structure constructor where each component is a constant expression.
* An elemental intrinsic function reference where each argument is a constant
expression.

94 XL Fortran Language Reference

A transformational intrinsic function reference where each argument is a
constant expression.

A reference to the transformational intrinsic function NULL.

A reference to an array inquiry function (except ALLOCATED), a numeric
inquiry function, the BIT_SIZE function, the KIND, LEN, or NEW_LINE
function. Each argument is either a constant expression or it is a variable whose
properties inquired about are not assumed, not defined by an expression that is
not a constant expression, and not definable by an ALLOCATE or pointer
assignment statement.

A constant expression enclosed in parentheses.

Examples of constant expressions

-48.9

name('Pat', 'Doe')
TRIM('ABC ")
(MOD(9,4)*%3.5)

Initialization expressions

An initialization expression is a [constant expression] that is subject to all the same
rules. In addition, the following rules apply to items that form for

initialization expressions:

A constant or a subobject of a constant

An array constructor in which each element and implied-DO control expression
is an initialization expression

A structure constructor in which each expression corresponding to an allocatable
component is a reference to the intrinsic function NULL, and all other
expressions are initialization expressions

You can also specify any [elemental intrinsic functions) where each argument is
an initialization expression

A reference to the vector intrinsic function VEC_CONVERT]| where each
argument is an initialization expression

You can reference any of the transformational intrinsic functions other than
NULL, where each argument must be an initialization expression:

A reference to the transformation intrinsic function
[[EEE_SELECTED_REAL_KIND| from the intrinsic module [EEE_ARITHMETIC}
where each argument is an initialization expression

A reference to the [transformational intrinsic function| NULL that does not have
an argument with a type parameter that is assumed or is defined by an
expression that is not an initialization expression

A specification inquiry where each designator or function argument is an
initialization expression, or a variable whose properties inquired about are not:

— assumed,
— deferred, or
— defined by an expression that is not an initialization expression

An implied-DO variable within an array constructor in which each element and
implied-DO control expression is an initialization expression

An initialization expression enclosed in parentheses

If an initialization expression includes a specification inquiry that depends on a
TYPE parameter or an array bound of an object specified in the same specification
part, the type parameter or array bound must be specified in a prior specification

Chapter 6. Expressions and assignment 95

of the specification part. The prior specification can be to the left of the
[specification inquiry]in the same statement, but must not be within the same entity
declaration.

Examples of initialization expressions

3.4%%3
KIND(57438)
(/'desk','lamp'/)
Iabl//lcdl//lefl

Example of an elemental intrinsic function, SIN, used in an
initialization expression
integer, parameter :: foo = 42.0 * sin(0.5)

Example of a transformational intrinsic function, CSHIFT, used in
an initialization expression

integer, parameter :: a(3) = (/ 1, 2, 3 /)
integer, parameter :: a_cshifted(3) = cshift(a,2)

Specification expressions

A specification expression is an expression with limitations that you can use to
specify items such as character lengths and array bounds.

A specification expression is a scalar, integer, restricted expression.

A restricted expression is an expression in which each operation is intrinsic and each
primary is:
* A constant or a subobject of a constant.

* A variable that is a dummy argument that has neither the OPTIONAL nor the
INTENT(OUT) attribute, or a subobject of such a variable.

* A variable that is in a common block, or a subobject of such a variable.

* A variable accessible by use association or host association, or a subobject of
such a variable.

* An array constructor where each element and the bounds and strides of each
implied-DO are expressions whose primaries are either restricted expressions or
implied-DO variables.

* A structure constructor where each component is a restricted expression.

* A reference to an array inquiry function (except ALLOCATED), the bit inquiry
function BIT_SIZE, the character inquiry functions LEN and the
kind inquiry function KIND, an IEEE inquiry function, or a numeric inquiry
function. Each argument is either a restricted expression, or it is a variable
whose properties inquired about are not dependent on the upper bound of the
last dimension of an assumed-size array, not defined by an expression that is not
a restricted expression, or not definable by an ALLOCATE statement or by a
pointer assignment statement.

| Fortran 95 |

* A reference to any remaining intrinsic functions defined in this document where
each argument is a restricted expression.

96 XL Fortran Language Reference

| IBM Extension |

* A reference to a system inquiry function, where any arguments are restricted
expressions.

| End of IBM Extension |

* Any subscript or substring expression must be a restricted expression.

* A reference to a specification function, where any arguments are restricted
expressions.

| Fortran 95 |

You can use a specification function in a specification expression. A function is a
specification function if it is a pure function that is not an intrinsic, internal or
statement function. A specification function cannot have a dummy procedure
argument.

| End of Fortran 95 |

A variable in a specification expression must have its type and type parameters, if
any, specified by a previous declaration in the same scoping unit, or by the implicit
typing rules in effect for the scoping unit, or by host or use association. If a
variable in a specification expression is typed by the implicit typing rules, its
appearance in any subsequent type declaration statement must confirm the implied
type and type parameters.

If a specification expression includes a reference to an inquiry function for a type
parameter or an array bound of an entity specified in the same specification part,
the type parameter or array bound must be specified in a prior specification of the
specification part. If a specification expression includes a reference to the value of
an element of an array specified in the same specification part, the array bounds
must be specified in a prior declaration. The prior specification can be to the left of
the inquiry function in the same statement.

Examples of specification expressions

LBOUND(C,2)+6 I C is an assumed-shape dummy array
ABS(I)*J I T and J are scalar integer variables
276/NN(4) I NN is accessible through host association

| Fortran 95 |

The following example shows how a user-defined pure function, fact, can be used
in the specification expression of an array-valued function result variable:

MODULE MOD

CONTAINS
INTEGER PURE FUNCTION FACT(N)
INTEGER, INTENT(IN) :: N

END FUNCTION FACT
END MODULE MOD

PROGRAM P

PRINT *, PERMUTE('ABCD')
CONTAINS

Chapter 6. Expressions and assignment 97

FUNCTION PERMUTE (ARG)
USE MOD
CHARACTER(*), INTENT(IN) :: ARG

CHARACTER(LEN(ARG)) :: PERMUTE(FACT(LEN(ARG)))

END FUNCTION PERMUTE
END PROGRAM P

End of Fortran 95

Operators and expressions

This section contains details on the XL Fortran expressions listed in the XL Fortran

Expressions table. For information on the order of evaluation precedence see,
[expressions are evaluated|

Table 14. XL Fortran expressions

|érithmetic| |Logica!]

[Character] Primary]

[Genera
Arithmetic

An arithmetic expression (arith_expr), when evaluated, produces a numeric value.
The form of arith_expr is:

arith_term ><

| I—arith_expr—l l— :']—1

The form of arith_term is:

arith_factor >

l—arith_term—E /]J

The form of arith_factor is:

»>—arith_primary

\4
A

I— *% —arithjactor—l

An arith_primary is a primary of arithmetic type.

The following table shows the available arithmetic operators and the precedence
each takes within an arithmetic expression.

98 XL Fortran Language Reference

Arithmetic Operator Representation Precedence
* Exponentiation First
* Multiplication Second
/ Division Second
+ Addition or identity Third
- Subtraction or negation Third

XL Fortran evaluates the terms from left to right when evaluating an arithmetic
expression containing two or more addition or subtraction operators. For example,
2+3+4 is evaluated as (2+3)+4, although a processor can interpret the expression in
another way if it is mathematically equivalent and respects any parentheses.

The factors are evaluated from left to right when evaluating a term containing two
or more multiplication or division operators. For example, 2*3x4 is evaluated as
(2%3) *4.

The primaries are combined from right to left when evaluating a factor containing
two or more exponentiation operators. For example, 2++3%*4 is evaluated as
2%%(3%x4). (Again, mathematical equivalents are allowed.)

The precedence of the operators determines the order of evaluation when XL
Fortran is evaluating an arithmetic expression containing two or more operators
having different precedence. For example, in the expression -Ax*3, the
exponentiation operator (**) has precedence over the negation operator (-).
Therefore, the operands of the exponentiation operator are combined to form an
expression that is used as the operand of the negation operator. Thus, -A**3 is
evaluated as - (A**3).

Note that expressions containing two consecutive arithmetic operators, such as

Ax*-B or Ax-B, are not allowed. You can use expressions such as A**(-B) and
A% (-B).

If an expression specifies the division of an integer by an integer, the result is
rounded to an integer closer to zero. For example, (-7)/3 has the value -2.

| IBM Extension

For details of exception conditions that can arise during evaluation of
floating-point expressions, see [Detecting and trapping floating-point exceptions}

| End of IBM Extension

Examples of arithmetic expressions

Arithmetic Expression Fully Parenthesized Equivalent
-b**2/2.0 -((b**2)/2.0)

i**j**z i**(j**z)

a/b*2 -c (a/(b**2) - ¢

Data type of an arithmetic expression
Because the identity and negation operators operate on a single operand, the type
of the resulting value is the same as the type of the operand.

Chapter 6. Expressions and assignment 99

The following table indicates the resulting type when an arithmetic operator acts
on a pair of operands.

Notation: T(param), where T is the data type (I: integer, R: real, X: complex) and
param is the kind type parameter.

Table 15. Result types for binary arithmetic operators

second operand

first operand I(1) 1(2) 1(4) 1(8) R@®) R(8) R(16) X4) X(8) X(16)
I(1) 1(1) 1(2) 1(4) 1(8) R(4) R®) R16) XA X(®) X(16)
1(2) 1(2) 12) 1(4) 1(8) R(4) R(8) R(16) X(4) X(8) X(16)
1(4) 1(4) 1(4) 1(4) 1(8) R(4) RG) R(16) X&) X@8) X(16)
1(8) 1(8) 1(8) 1(8) 1(8) R(4) R®) R(16) XA X@8) X(16)
R(4) R(4) R(4) R(4) R(4) R(4) R®) R(16) XA X@8) X(16)
R(8) R(8) R(8) R(8) R(8) R(8) RB) R@16) X(@®) X@®) X(16)
R(16) R(16) R(16) R(16) R(16) R(16) R(16) R(16) X(16) X(16) X(16)
X(4) X(4) X(4) X(4) X(4) X(4) X®) X(16) X(@) X®) X(16)
X(8) X(8) X(8) X(8) X(8) X(8) X@©®) X(16) X(8) X@©®) X(16)
X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16) X(16)

| IBM Extension

Notes:

1. If you do not specify -qfloat=rndsngl, XL Fortran implements REAL(4)
operations using REAL(8) internal precision. If you specify -qfloat=rndsngl, XL
Fortran implements REAL(4) operations using REAL(4) internal precision. See
Detecting and trapping floating-point exceptions|in the [XL Fortran Optimization|
and Programming Guide for details on modifying this implementation. REAL(16)
values must only be used in round to nearest mode. The rounding mode can
only be changed at the beginning and end of a subprogram. It cannot be
changed across a subprogram call; and if it is changed within a subprogram, it
must be restored before control is returned to the calling routine.

2. XL Fortran implements integer operations using INTEGER(4) arithmetic, or
INTEGER(8) arithmetic if data items are 8 bytes in length. If the intermediate
result is used in a context requiring INTEGER(1) or INTEGER(2) data type, it
is converted as required.

INTEGER(2) 12 1, 12 2, 12 RESULT

INTEGER(4) I4

12_1 = 32767 I Maximum I(2)

122 = 32767 I Maximum I(2)

14 =121+ 122

PRINT =, "I4=", I4 ! Prints I4=-2

I2_ RESULT = I2_1 + I2_2 ! Assignment to I(2) variable

14 = 12 RESULT ! and then assigned to an I(4)

PRINT =, "I4=", I4 ! Prints I4=-2

END

| End of IBM Extension

Character

A character expression, when evaluated, produces a result of type character. The
form of char_expr is:

100 XL Fortran Language Reference

>
>p

A\
A

char_primary

|—char_exp r—// il

char_primary is a primary of type character. All character primaries in the
expression must have the same kind type parameter, which is also the kind type
parameter of the result.

The only character operator is //, representing concatenation.

In a character expression containing one or more concatenation operators, the
primaries are joined to form one string whose length is equal to the sum of the
lengths of the individual primaries. For example, 'AB'//'CD'//'EF' evaluates to
"ABCDEF', a string 6 characters in length.

Parentheses have no effect on the value of a character expression.

A character expression can include concatenation of an operand when you declare
the length with an asterisk in parentheses. This indicates inherited length. In this
case, the actual length depends on whether you use the inherited length character
string to declare:

* A dummy argument specified in a FUNCTION, SUBROUTINE, or ENTRY
statement. The length of the dummy argument assumes the length of the
associated actual argument on invocation.

* A named constant. The character expression takes on the length of the constant
value.

¢ The length of an external function result. The calling scoping unit must not
declare the function name with an asterisk. On invocation, the length of the
function result assumes this defined length.

Example of a character expression

CHARACTER(7) FIRSTNAME, LASTNAME

FIRSTNAME="'Martha'

LASTNAME="Edwards'

PRINT =, LASTNAME//', '//FIRSTNAME ! Qutput:'Edwards, Martha'
END

General

The general form of an expression (general_expr) is:

»>>- |_ _| expr >
general_expr—defined_binary op

defined_binary_op
is a defined binary operator. See [“Extended intrinsic and defined|
[operations” on page 106/

expr is one of the kinds of expressions defined below.

There are four kinds of intrinsic expressions: arithmetic, character, relational, and
logical.

Chapter 6. Expressions and assignment 101

Logical
A logical expression (logical_expr), when evaluated, produces a result of type
logical. The form of a logical expression is:

> B | logical_disjunct
logical_expr LEQV.
NEQV . ———
(1)
.XOR.
Notes:
1 XL Fortran logical operator

The form of a logical_disjunct is:

y

|_ J logical_term
logical _disjunct—.OR.

The form of a logical_term is:

\

\4
A

|_ J logical_factor
logical_term—.AND.

The form of a logical_factor is:

v
A

LL—J—[logical_pr'imary]J
.NOT. rel_expr

logical_primary is a primary of type logical.
rel_expr is a relational expression.

The logical operators are:

Logical Operator Representing Precedence
NOT. Logical negation First (highest)
AND. Logical conjunction Second

.OR. Logical inclusive disjunction | Third
XOR. Logical exclusive disjunction | Fourth (lowest)
.EQV. Logical equivalence Fourth (lowest)
NEQV. Logical nonequivalence Fourth (lowest)

102 XL Fortran Language Reference

Notes:

1. XL Fortran logical operator.

IBM Extension

The XOR. operator is treated as an intrinsic operator only when the -qx1f77=intxor

compiler option is specified. (See the [-qx1f77 Option|in the [XL Fortran Compiler]
for details.) Otherwise, it is treated as a defined operator. If it is treated as
an intrinsic operator, it can also be extended by a generic interface.

End of IBM Extension

The precedence of the operators determines the order of evaluation when a logical
expression containing two or more operators having different precedences is
evaluated. For example, evaluation of the expression A.OR.B.AND.C is the same as

evaluation of the expression A.OR. (B.AND.C).

Value of a logical expression
Given that x1 and x2 represent logical values, use the following tables to determine
the values of logical expressions:

x1 NOT. x1

True False

False True

x1 x2 .AND. .OR. XOR. .EQW. NEQV.
False False False False False True False
False True False True True False True
True False False True True False True
True True True True False True False

Sometimes a logical expression does not need to be completely evaluated to
determine its value. Consider the following logical expression (assume that LFCT is
a function of type logical):

A .LT. B .OR. LFCT(Z)

If A is less than B, the evaluation of the function reference is not required to
determine that this expression is true.

XL Fortran evaluates a logical expression to a LOGICAL(n) or INTEGER(n) result,
where n is the kind type parameter. The value of n depends on the kind parameter
of each operand.

By default, for the unary logical operator .NOT., n will be the same as the kind

type parameter of the operand. For example, if the operand is LOGICAL(2), the
result will also be LOGICAL(2).

The following table shows the resultant type for unary operations:

OPERAND

RESULT of Unary Operation

BYTEH

INTEGER(1) |

Chapter 6. Expressions and assignment

103

OPERAND RESULT of Unary Operation
LOGICAL(1) LOGICAL(1)
LOGICAL(2) LOGICAL(2)
LOGICAL(4) LOGICAL(4)
LOGICAL(8) LOGICAL(8)
Typeless Default integer

Notes:

1. IBM Extension

If the operands are of the same length, n will be that length.

IBM Extension

For binary logical operations with operands that have different kind type
parameters, the kind type parameter of the expression is the same as the larger
length of the two operands. For example, if one operand is LOGICAL(4) and the
other LOGICAL(2), the result will be LOGICAL(4).

End of IBM Extension

The following table shows the resultant type for binary operations:

Table 16. Result Types for binary logical expressions

first
operand
*BYTE

LOGICAL(1)
LOGICAL(2)
LOGICAL(4)
LOGICAL(8)

*Typeless

*BYTE
*INTEGER(1)
LOGICAL(1)
LOGICAL(2)
LOGICAL(4)
LOGICAL(8)
*INTEGER(1)

LOGICAL(Q1)
*LOGICAL(1)
LOGICAL(1)
LOGICAL(2)
LOGICAL(4)
LOGICAL(8)
*LOGICAL(1)

second operand

LOGICAL(2)
*LOGICAL(2)
LOGICAL(2)
LOGICAL(2)
LOGICAL(4)
LOGICAL(8)
*LOGICAL(2)

LOGICAL®4)
*LOGICAL(4)
LOGICAL(4)
LOGICAL(4)
LOGICAL(4)
LOGICAL(8)
*LOGICAL(4)

LOGICAL(@S)
*LOGICAL(S)
LOGICAL(S)
LOGICAL(8)
LOGICAL(8)
LOGICAL(S)
*LOGICAL(S)

*Typeless
*INTEGER(1)
LOGICAL(1)
LOGICAL(2)
LOGICAL(4)
LOGICAL(8)
*Default
Integer

Note: * Resultant types for binary logical expressions in XL Fortran

If the expression result is to be treated as a default integer but the value cannot be
represented within the value range for a default integer, the constant is promoted

to a representable kind.

Primary

The form of a primary expression is:

»>-

|—defined_unar‘y_op

_| primary

104 XL Fortran Language Reference

defined_unary_op
is a defined unary operator. See [“Extended intrinsic and defined|
loperations” on page 106

Relational

A relational expression (rel_expr), when evaluated, produces a result of type logical,
and can appear wherever a logical expression can appear. It can be an arithmetic
relational expression or a character relational expression.

Arithmetic relational expressions

An arithmetic relational expression compares the values of two arithmetic
expressions. Its form is:

»>—arith_exprl—relational_operator—arith_expr2 ><

arith_exprl and arith_expr2

are each an arithmetic expression. Complex expressions can only
be specified if relational_operator is .EQ., .NE., <>, ==, or /=.

relational_operator

is any of:
Relational Operator Representing
LT or < Less than
.LE. or <= Less than or equal to
.EQ. or == Equal to
NE. or *<>or /= Not equal to
.GT. or > Greater than
.GE. or >= Greater than or equal to

Note: * XL Fortran relational operator.

An arithmetic relational expression is interpreted as having the logical value

.true. if the values of the operands satisfy the relation specified by the operator. If
the operands do not satisfy the specified relation, the expression has the logical
value .false..

If the types or kind type parameters of the expressions differ, their values are
converted to the type and kind type parameter of the expression (arith_exprl +
arith_expr2) before evaluation.

Example of an arithmetic relational expression:
IF (NODAYS .GT. 365) YEARTYPE = 'leapyear'

Character relational expressions

A character relational expression compares the values of two character expressions.
Its form is:

Chapter 6. Expressions and assignment 105

A\
A

»>—char_exprl—relational_operator—char_expr2

char_exprl and char_expr2
are each character expressions

relational_operator

is any of the relational operators described in [“Arithmetid

[relational expressions” on page 105

For all relational operators, the collating sequence is used to interpret a character
relational expression. The character expression whose value is lower in the
collating sequence is less than the other expression. The character expressions are
evaluated one character at a time from left to right. You can also use the intrinsic
functions (LGE, LLT, and LLT) to compare character strings in the order specified
by the ASCII collating sequence. For all relational operators, if the operands are of
unequal length, the shorter is extended on the right with blanks. If both char_exprl
and char_expr2 are of zero length, they are evaluated as equal.

| IBM Extension

Even if char_exprl and char_expr2 are multibyte characters (MBCS) in XL Fortran,
the ASCII collating sequence is still used.

| End of IBM Extension

Example of a character relational expression:
IF (CHARIN .GT. '@' .AND. CHARIN .LE. '9') CHAR_TYPE = 'digit'

Extended intrinsic and defined operations

A defined operation is either a defined unary operation or a defined binary
operation. It is defined by a function and a generic interface (see |“Interface blocks”|
fon page 158 and [“Type-bound procedures” on page 58). A defined operation is not
an intrinsic operation, although an intrinsic operator can be extended in a defined
operation. For example, to add two objects of derived type, you can extend the
meaning of the intrinsic binary operator for addition (+). If an extended intrinsic
operator has typeless operands, the operation is evaluated intrinsically.

The operand of a unary intrinsic operation that is extended must not have a type
that is required by the intrinsic operator. Either or both of the operands of a binary
intrinsic operator that is extended must not have the types or ranks that are
required by the intrinsic operator.

The defined operator of a defined operation must be defined in a generic interface.

A defined operator is an extended intrinsic operator or has the form:

106 XL Fortran Language Reference

v

> letter . >«

(1)
(2)

3

Notes:
1 XL Fortran defined operator

2 XL Fortran defined operator

In Fortran 90 and Fortran 95, a defined operator must not contain more than 31
letters, and must not be the same as any intrinsic operator or logical literal
constant. In Fortran 2003 the letter limit for a defined operator is 63.

See [“Generic interface blocks” on page 161| for details on defining and extending
operators in an interface block. See |[“Type-bound procedures” on page 58| for
details on defining and extending operators that are bound to a derived type.

How expressions are evaluated

Precedence of operators

An expression can contain more than one kind of operator. When it does, the
expression is evaluated from left to right, according to the following precedence
among operators:

Defined unary
Arithmetic
Character
Relational
Logical

o0k wd -

Defined binary

For example, the logical expression:
L .OR. A+ B .GE. C

where L is of type logical, and A, B, and C are of type real, is evaluated the same as
the logical expression below:

L .OR. ((A +B) .GE. C)

An extended intrinsic operator maintains its precedence. That is, the operator does
not have the precedence of a defined unary operator or a defined binary operator.

Summary of interpretation rules
Primaries that contain operators are combined in the following order:

1. Use of parentheses

2. Precedence of the operators

3. Right-to-left interpretation of exponentiations in a factor
4.

Left-to-right interpretation of multiplications and divisions in a term

Chapter 6. Expressions and assignment 107

5. Left-to-right interpretation of additions and subtractions in an arithmetic
expression

Left-to-right interpretation of concatenations in a character expression
Left-to-right interpretation of conjunctions in a logical term

Left-to-right interpretation of disjunctions in a logical disjunct

© o N

Left-to-right interpretation of logical equivalences in a logical expression

Evaluation of expressions
Arithmetic, character, relational, and logical expressions are evaluated according to
the following rules:

* A variable or function must be defined at the time it is used. You must define an
integer operand with an integer value, not a statement label value. All
referenced characters in a character data object or referenced array elements in
an array or array section must be defined at the time the reference is made. All
components of a structure must be defined when a structure is referenced. A
pointer must be associated with a defined target.

Execution of an array element reference, array section reference, and substring
reference requires the evaluation of its subscript, section subscript and substring
expressions. Evaluation of any array element subscript, section subscript,
substring expression, or the bounds and stride of any array constructor
implied-DO does not affect, nor is it affected by, the type of the containing
expression. See [“Expressions involving arrays” on page 90 You cannot use any
constant integer operation or floating-point operation whose result is not
mathematically defined in an executable program. If such expressions are
nonconstant and are executed, they are detected at run time. (Examples are
dividing by zero and raising a zero-valued primary to a zero-valued or
negative-valued power.) As well, you cannot raise a negative-valued primary of
type real to a real power.

* The invocation of a function in a statement must not affect, or be affected by, the
evaluation of any other entity within the statement in which the function
reference appears. When the value of an expression is true, invocation of a
function reference in the expression of a logical IF statement or a WHERE
statement can affect entities in the statement that is executed. If a function
reference causes definition or undefinition of an actual argument of the function,
that argument or any associated entities must not appear elsewhere in the same
statement. For example, you cannot use the statements:

A(I) = FUNCL(I)
Y = FUNC2(X) + X

if the reference to FUNC1 defines I or the reference to FUNC2 defines X.

The data type of an expression in which a function reference appears does not
affect, nor is it affected by, the evaluation of the actual arguments of the
function.

* An argument to a statement function reference must not be altered by evaluating
that reference.

| IBM Extension |

Several compiler options affect the data type of the final result:

* When you use the -qintlog compiler option, you can mix integer and logical
values in expressions and statements. The data type and kind type parameter of
the result depends on the operands and the operator involved. In general:

108 XL Fortran Language Reference

— For unary logical operators (NOT.) and arithmetic unary operators (+,-):

Data Type of OPERAND Data Type of RESULT of Unary Operation
BYTE INTEGER(1)
INTEGER(n) INTEGER(n)
LOGICAL(n) LOGICAL(n)
Typeless Default integer

where n represents the kind type parameter. n must not be replaced with a
logical constant even if -qintlog is on, nor by a character constant even if
-qctyplss is on, nor can it be a typeless constant. In the case of INTEGER and
LOGICAL data types, the length of the result is the same as the kind type
parameter of the operand.

— For binary logical operators ((AND., .OR., .XOR., .EQV., .NEQV.) and
arithmetic binary operators (**¥, *, /, +, -), the following table summarizes
what data type the result has:

first
operand
BYTE
INTEGER(x)
LOGICAL(x)
Typeless

second operand

BYTE INTEGER(y) LOGICAL(y) Typeless
INTEGER(1) INTEGER(y) LOGICAL(y) INTEGER(1)
INTEGER(x) INTEGER(z) INTEGER(z) INTEGER(X)
LOGICAL(x) INTEGER(z) LOGICAL(z) LOGICAL(x)
INTEGER(1) INTEGER(y) LOGICAL(y) Default integer

Note: z is the kind type parameter of the result such that z is equal to the
greater of x and y. For example, a logical expression with a
LOGICAL(4) operand and an INTEGER(2) operand has a result of
INTEGER4).

For binary logical operators ((AND., .OR., .XOR., .EQV., .NEQV.), the result
of a logical operation between an integer operand and a logical operand or
between two integer operands will be integer. The kind type parameter of the
result will be the same as the larger kind parameter of the two operands. If
the operands have the same kind parameter, the result has the same kind
parameter.

When you use the -qlog4 compiler option and the default integer size is
INTEGER(4), logical results of logical operations will have type LOGICAL(4),
instead of LOGICAL(n) as specified in the table above. If you specify the -qlog4
option and the default integer size is not INTEGER(4), the results will be as
specified in the table above.

When you specify the compiler option, XL Fortran treats character
constant expressions as Hollerith constants. If one or both operands are character

constant expressions, the data type and the length of the result are the same as if
the character constant expressions were Hollerith constants. See the "Typeless”
rows in the previous tables for the data type and length of the result.

See |Summary of compiler options by functional category| and |Detailed descriptions of the|

[XL Fortran compiler options|in the [XL Fortran Compiler Referencd for information

about compiler options.

End of IBM Extension |

Chapter 6. Expressions and assignment 109

Using BYTE data objects

| IBM Extension |

Data objects of type BYTE can be used wherever a LOGICAL(1), CHARACTER(1),
or INTEGER(1) data object can be used.

The data types of BYTE data objects are determined by the context in which you
use them. XL Fortran does not convert them before use. For example, the type of a
named constant is determined by use, not by the initial value assigned to it.

* When you use a BYTE data object as an operand of an arithmetic, logical, or
relational binary operator, the data object assumes:

— An INTEGER(1) data type if the other operand is arithmetic, BYTE, or a
typeless constant

— A LOGICAL(1) data type if the other operand is logical
— A CHARACTER(1) data type if the other operand is character

* When you use a BYTE data object as an operand of the concatenation operator,
the data object assumes a CHARACTER(1) data type.

* When you use a BYTE data object as an actual argument to a procedure with an
explicit interface, the data object assumes the type of the corresponding dummy
argument:

— INTEGER() for an INTEGER(1) dummy argument
— LOGICAL(1) for a LOGICAL(1) dummy argument
— CHARACTER(@) for a CHARACTER(1) dummy argument

* When you use a BYTE data object as an actual argument passed by reference to
an external subprogram with an implicit interface, the data object assumes a
length of 1 byte and no data type.

* When you use a BYTE data object as an actual argument passed by value
(VALUE] attribute), the data object assumes an INTEGER(1) data type.

* When you use a BYTE data object in a context that requires a specific data type,
which is arithmetic, logical, or character, the data object assumes an
INTEGER(1), LOGICAL(1), or CHARACTER(1) data type, respectively.

* A pointer of type BYTE cannot be associated with a target of type character, nor
can a pointer of type character be associated with a target of type BYTE.

* When you use a BYTE data object in any other context, the data object assumes
an INTEGER(1) data type.

| End of IBM Extension

Intrinsic assignment

Assignment statements are executable statements that define or redefine variables
based on the result of expression evaluation.

A defined assignment is not intrinsic, and is defined by a subroutine and an
interface. See [‘Defined assignment” on page 165.|

The general form of an intrinsic assignment is:

110 XL Fortran Language Reference

A\
A

»»—variable— = —expression

| Fortran 2003 |

The shapes of variable and expression must conform unless variable is an allocatable
array. If variable is an allocatable array, and -qx1f2003=autorealloc has been
specified, then variable and expression must not be arrays of different ranks.

| End of Fortran 2003 |

variable must be an array if expression is an array (see [“Expressions involving]
larrays” on page 90). If expression is a scalar and variable is an array, expression is
treated as an array of the same shape as variable, with every array element having
the same value as the scalar value of expression. variable must not be a many-one
array section (see [“Vector subscripts” on page 85| for details), and neither variable
nor expression can be an assumed-size array. The types of variable and expression
must conform as follows:

Type of variable Type of expression

Numeric Numeric

Logical Logical

Character Character

Derived type Derived type (same as variable)

In numeric assignment statements, variable and expression can specify different
numeric types and different kind type parameters. For logical assignment
statements, the kind type parameters can differ. For character assignment
statements, the length type parameters can differ.

If the length of a character variable is greater than the length of a character
expression, the character expression is extended on the right with blanks until the
lengths are equal. If the length of the character variable is less than the character
expression, the character expression is truncated on the right to match the length of
the character variable.

If variable is a pointer, it must be associated with a definable target that has type,
type parameters and shape that conform with those of expression. The value of

expression is then assigned to the target associated with variable.

Both variable and expression can contain references to any portion of variable.

| Fortran 2003 |

If variable is an allocated allocatable variable, it is deallocated if expression is an
array of different shape or any of the corresponding length type parameter values
of variable and expression differ. If variable is or becomes an unallocated allocatable
variable, then it is allocated with each deferred type parameter equal to the
corresponding type parameters of expression, with the shape of expression, and with
each lower bound equal to the corresponding element of LBOUND (expression)

Chapter 6. Expressions and assignment 111

Specify -gx1f2003=autorealloc for reallocation support. See the
-gx1f2003=autorealloc option in the XL Fortran Compiler Reference for more]

informatiog]

| End of Fortran 2003

An assignment statement causes the evaluation of expression and all expressions
within variable before assignment, the possible conversion of expression to the type
and type parameters of variable, and the definition of variable with the resulting
value. No value is assigned to variable if it is a zero-length character object or a
zero-sized array.

A derived-type assignment statement is an intrinsic assignment statement if there
is no accessible defined assignment for objects of this derived type. The derived
type expression must be of the same declared type as the variable. See
[‘Determining declared type for derived types” on page 66| for the rules that
determine when two structures are of the same derived type. Assignment is
performed as if each component of the expression is assigned to the corresponding
component of the variable. Pointer assignment is executed for pointer components,
defined assignment is performed for each nonpointer nonallocatable component of
a type that has a defined assignment consistent with the component, and intrinsic
assignment is performed for each other nonpointer nonallocatable component. For
an allocatable component the following sequence of operations is applied:

1. If the component of variable is currently allocated, it is deallocated.

2. If the component of expression is currently allocated, the corresponding
component of variable is allocated with the same type and type parameters as
the component of expression. If it is an array, it is allocated with the same
bounds.

3. The value of the component of expression is then assigned to the corresponding
component of variable using:

* Defined assignment if the declared type of the component has a defined
assignment consistent with the component.

* Intrinsic assignment for the dynamic type of that component otherwise.

When variable is a subobject, the assignment does not affect the definition status or
value of other parts of the object.

Arithmetic conversion

For numeric intrinsic assignment, the value of expression may be converted to the
type and kind type parameter of variable, as specified in the following table:

Type of variable Value Assigned

Integer INT(expression, KIND=KIND(variable))
Real REAL(expression, KIND=KIND(variable))
Complex CMPLX(expression, KIND=KIND(variable))

| IBM Extension

Note: Arithmetic integer operations for INTEGER(8) data items, including
intermediate results, are performed using INTEGER(8) arithmetic in both
32-bit and 64-bit mode. Arithmetic integer operations for INTEGER(1),
INTEGER(2), and INTEGER(4) data objects, including intermediate results,
are performed using INTEGER(4) arithmetic in 32-bit mode and

112 XL Fortran Language Reference

INTEGER(8) arithmetic in 64-bit mode. If an intermediate result is used in a
context requiring a smaller integer size, it is converted as required.

| End of IBM Extension

Character assignment
Only as much of the character expression as is necessary to define the character
variable needs to be evaluated. For example:

CHARACTER SCOTT=4, DICKx8
SCOTT = DICK

This assignment of DICK to SCOTT requires only that you have previously defined
the substring DICK(1:4). You do not have to previously define the rest of DICK
(DICK(5:8)).

BYTE assignment

| IBM Extension

If expression is of an arithmetic type, arithmetic assignment is used. Similarly, if
expression is of type character, character assignment is used, and if expression is of
type logical, logical assignment is used. If the expression on the right is of type
BYTE, arithmetic assignment is used.

| End of IBM Extension

Examples of Intrinsic Assignment:

INTEGER I(10)
LOGICAL INSIDE
REAL R,RMIN,RMAX
REAL :: A=2.3,B=4.5,C=6.7
TYPE PERSON
INTEGER(4) P_AGE
CHARACTER(20) P_NAME
END TYPE
TYPE (PERSON) EMP1, EMP2
CHARACTER(10) :: CH = 'ABCDEFGHIJ'

I1=5 I ATl elements of I assigned value of 5
RMIN = 28.5 ; RMAX = 29.5

R = (-B + SQRT(B**2 - 4.0%A%C))/(2.0%A)

INSIDE = (R .GE. RMIN) .AND. (R .LE. RMAX)

CH(2:4) = CH(3:5) I CH is now 'ACDEEFGHIJ'

EMP1
EMP2

PERSON (45, 'Frank Jones')
EMP1

! EMP2%P_AGE is assigned EMP1%P_AGE using arithmetic assignment
! EMP2%P_NAME 1is assigned EMP1%P_NAME using character assignment

END

WHERE construct

The WHERE construct masks the evaluation of expressions and assignments of
values in array assignment statements. It does this according to the value of a
logical array expression.

Chapter 6. Expressions and assignment 113

»—I/HERE _construct_statement

|—where_body_cons tructJ

\

|—masked_E LSEWHERE bl ock—|

»—END_WHERE_statement

|—ELSEWHERE_bZock—|

v

WHERE_construct_statement

See|“"WHERE” on page 478§| for syntax details.

where_body_construct

where _assignment_statement
(1)
WHERE_statement
(2)
WHERE construct

Notes:
1 Fortran 95
2 Fortran 95

where_assignment_statement

Is an assignment_statement.

masked_ELSEWHERE_block

Fortran 95

»>—masked_ELSEWHERE_statement

|—wher‘e_bod ly_cons truct—l

masked_ELSEWHERE_statement

Is an ELSEWHERE statement that specifies a mask_expr. See

["ELSEWHERE” on page 333| for syntax details.

ELSEWHERE _block

114 XL Fortran Language Reference

End of Fortran 95

»>—F| SEWHERE _statement

A\
A

l—where_body_construct—l

ELSEWHERE_statement

Is an ELSEWHERE statement that does not specify a mask_expr. See
[“ELSEWHERE” on page 333| for syntax details.

END_ WHERE_statement

See|“"END (Construct)” on page 336 for syntax details.

Rules:

mask_expr is a logical array expression.

In each where_assignment_statement, the mask_expr and the variable being defined
must be arrays of the same shape.

A statement that is part of a where_body_construct must not be a branch target
statement. Also, ELSEWHERE, masked ELSEWHERE, and END WHERE
statements must not be branch target statements.

Fortran 95 |

A where_assignment_statement that is a defined assignment must be an elemental
defined assignment.

The mask_expr on the WHERE construct statement and all corresponding masked
ELSEWHERE statements must have the same shape. The mask_expr on a nested
WHERE statement or nested WHERE construct statement must have the same
shape as the mask_expr on the WHERE construct statement of the construct in
which it is nested.

If a construct name appears on a WHERE construct statement, it must also
appear on the corresponding END WHERE statement. A construct name is
optional on the masked ELSEWHERE and ELSEWHERE statements in the
WHERE construct.

End of Fortran 95 |

Interpreting masked array assignments

To understand how to interpret masked array assignments, you need to
understand the concepts of a control mask (m.) and a pending control mask (m.):

The m, is an array of type logical whose value determines which elements of an
array in a where_assignment_statement will be defined. This value is determined
by the execution of one of the following:

— a WHERE statement
— a WHERE construct statement
— an ELSEWHERE statement

- a masked ELSEWHERE statement
— an END WHERE statement

The value of m, is cumulative; the compiler determines the value using the mask
expressions of surrounding WHERE statements and the current mask
expression. Subsequent changes to the value of entities in a mask_expr have no

Chapter 6. Expressions and assignment 115

effect on the value of m. The compiler evaluates the mask_expr only once for
each WHERE statement, WHERE construct statement, or masked

ELSEWHERE statement[Fe5 4

* The m, is a logical array that provides information to the next masked
assignment statement at the same nesting level on the array elements not
defined by the current WHERE statement, WHERE construct statement,

or masked ELSEWHERE statement.[Fo5 4

The following describes how the compiler interprets statements in a WHERE,
WHERE construct, masked ELSEWHERE[rs5 4, ELSEWHERE, or END
WHERE statement. It describes the effect on m_ and m, and any further behavior
of the statements, in order of occurrence.

* WHERE statement

| Fortran 95 |

— If the WHERE statement is nested in a WHERE construct, the following
occurs:

1. m_ becomes m, .AND. mask_expr.

2. After the compiler executes the WHERE statement, m_ has the value it had
prior to the execution of the WHERE statement.

| End of Fortran 95 |

— Otherwise, m_becomes the mask_expr.
* WHERE construct

| Fortran 95 |

— If the WHERE construct is nested in another WHERE construct, the following
occurs:

1. m, becomes m. .AND. (NOT. mask_expr).
2. m.becomes m_, .AND. mask_expr.

| End of Fortran 95 |

— Otherwise:

1. The compiler evaluates the mask_expr, and assigns m, the value of that
mask_expr.

2. m, becomes .NOT. mask_expr.

| Fortran 95

* Masked ELSEWHERE statement
The following occurs:
1. m,becomes my,.
2. m, becomes m_ .AND. (.NOT. mask_expr).
3. m, becomes m. .AND. mask_expr.

| End of Fortran 95

* ELSEWHERE statement
The following occurs:

116 XL Fortran Language Reference

1. m_ becomes m,. No new m,, value is established.
* END WHERE statement

After the compiler executes an END WHERE statement, m. and m, have the
values they had prior to the execution of the corresponding WHERE construct
statement.

. where_assignment_statement

The compiler assigns the values of the expr that correspond to the true values of
m, to the corresponding elements of the variable.

If a non-elemental function reference occurs in the expr or variable of a
where_assignment_statement or in a mask_expr, the compiler evaluates the function
without any masked control; that is, it fully evaluates all of the function’s
argument expressions and then it fully evaluates the function. If the result is an
array and the reference is not within the argument list of a non-elemental function,
the compiler selects elements corresponding to true values in m_ for use in
evaluating the expr, variable, or mask_expr.

If an elemental intrinsic operation or function reference occurs in the expr or
variable of a where_assignment_statement or in a mask_expr, and is not within the
argument list of a non-elemental function reference, the compiler performs the
operation or evaluates the function only for the elements corresponding to true
values in m..

If an array constructor appears in a where_assignment_statement or in a mask_expr,
the compiler evaluates the array constructor without any masked control and then
executes the where_assignment_statement or evaluates the mask_expr.

The execution of a function reference in the mask_expr of a WHERE statement is
allowed to affect entities in the where_assignment_statement. Execution of an END
WHERE has no effect.

The following example shows how control masks are updated. In this example,
mask1, mask2, mask3, and mask4 are conformable logical arrays, m, is the control
mask, and m, is the pending control mask. The compiler evaluates each mask
expression once.

Sample code (with statement numbers shown in the comments):

WHERE (mask1) I Wl *
WHERE (mask2) 1 W2 *
I W3 *
ELSEWHERE (mask3) ! W4 *
I W5 *
END WHERE I W6 *

ELSEWHERE (mask4) I W7 *

I W8 *

ELSEWHERE 1 W9

1 W10

END WHERE I W11

Note: * Fortran 95

Chapter 6. Expressions and assignment 117

The compiler sets control and pending control masks as it executes each statement,
as shown below:

| Fortran 95

Statement W1
m. = maskl
m, = .NOT. maskl
Statement W2
m, = maskl .AND. (.NOT. mask2)
m. = maskl .AND. mask2
Statement W4
m. = maskl .AND. (.NOT. mask2)
m, = maskl .AND. (.NOT. mask2)
.AND. (.NOT. mask3)
m. = maskl .AND. (.NOT. mask2)
.AND. mask3
Statement W6
m. = maskl

C

m, = .NOT. maskl

| End of Fortran 95

Statement W7

m. = .NOT. maskl

m, = (.NOT. maskl) .AND. (.NOT.
mask4)

m. = (.NOT. maskl) .AND. mask4
Statement W9

m. = (.NOT. maskl) .AND. (.NOT.

mask4)
Statement W11
m =0
m, = 0

The compiler uses the values of the control masks set by statements W2, W4, W7,
and W9 when it executes the respective where_assignment_statements W3, W5, W8,
and W10.

118 XL Fortran Language Reference

Migration Tip:
Simplify logical evaluation of arrays

FORTRAN 77 source:
INTEGER A(10,10),B(10,10)

DO I=1,10
D0 J=1,10
IF (A(I,J).LT.B(I,J)) A(I,J)=B(I,J)
END DO
END DO
END

Fortran 90 or Fortran 95 source:
INTEGER A(10,10),B(10,10)

WHERE (A.LT.B) A=B
END

Examples of the WHERE construct

REAL, DIMENSION(10) :: A,B,C,D
WHERE (A>0.0)

A = LOG(A) Only the positive elements of A
are used in the LOG calculation.

B=A The mask uses the original array A
instead of the new array A.

C=A/ SUM(LOG(A)) ! A is evaluated by LOG, but

the resulting array is an
argument to a non-elemental
function. A1l elements in A will
be used in evaluating SUM.

END WHERE

WHERE (D>0.0)

C = CSHIFT(A, 1) CSHIFT applies to all elements in array A,
and the array element values of D determine
which CSHIFT expression determines the

corresponding element values of C.

ELSEWHERE

C = CSHIFT(A, 2)
END WHERE
END

| Fortran 95

The following example shows an array constructor in a WHERE construct
statement and in a masked ELSEWHERE mask_expr:

CALL SUB((/ 0, -4, 3, 6, 11, -2, 7, 14 /))
CONTAINS

SUBROUTINE SUB(ARR)

INTEGER ARR(:)

INTEGER N

N = SIZE(ARR)

Chapter 6. Expressions and assignment 119

! Data in array ARR at this point:
|

IA=]0-43611-2714 |

WHERE (ARR < 0)
ARR = 0

ELSEWHERE (ARR < ARR((/(N-I, I=0, N-1)/)))
ARR = 2

END WHERE

! Data in array ARR at this point:
|

'A=]120321107 14 |

END SUBROUTINE
END

The following example shows a nested WHERE construct statement and masked
ELSEWHERE statement with a where_construct_name:

INTEGER :: A(10, 10), B(10, 10)

OUTERWHERE: WHERE (A < 10)
INNERWHERE: WHERE (A < 0)
B=0
ELSEWHERE (A < 5) INNERWHERE
B=5
ELSEWHERE INNERWHERE
B =10
END WHERE INNERWHERE
ELSEWHERE OUTERWHERE
B=A
END WHERE OUTERWHERE

| End of Fortran 95

FORALL construct

| Fortran 95

The FORALL construct performs assignment to groups of subobjects, especially
array elements.

Unlike the WHERE construct, FORALL performs assignment to array elements,
array sections, and substrings. Also, each assignment within a FORALL construct
need not be conformable with the previous one. The FORALL construct can
contain nested FORALL statements, FORALL constructs, WHERE statements, and
WHERE constructs.

| End of Fortran 95

-qx1f2003=autorealloc does not apply to FORALL constructs. No reallocation of
allocatable variables occurs during assignment statements inside a FORALL
construct.

| IBM Extension

The INDEPENDENT] directive specifies that the left and right sides of the
assignments inside a FORALL construct do not overlap.

120 XL Fortran Language Reference

| Fortran 95 |

»—FORALL construct_statement ><

»—jforall_body

A\
A

A\
A

»>—END_FORALL_statement

FORALL_construct_statement
See |“FORALL (construct) ” on page 358 for syntax details.

END_FORALL_statement
See ["END (Construct)” on page 336| for syntax details.

forall_body
is one or more of the following statements or constructs:
forall_assignment
WHERE statement (see ["WHERE” on page 478)
WHERE construct (see ["WHERE construct” on page 113)
FORALL statement (see |"'FORALL” on page 355)
FORALL construct

forall_assignment
is either assignment_statement or pointer_assignment_statement

Any procedures that are referenced in a forall_body, including one referenced by a
defined operation, defined assignment, or finalization must be pure.

If a FORALL statement or construct is nested within a FORALL construct, the
inner FORALL statement or construct cannot redefine any index_name used in the
outer FORALL construct.

Although no atomic object can be assigned to, or have its association status
changed in the same statement more than once, different assignment statements
within the same FORALL construct can redefine or reassociate an atomic object.
Also, each WHERE statement and assignment statement within a WHERE
construct must follow these restrictions.

If a FORALL_construct_name is specified, it must appear in both the FORALL
statement and the END FORALL statement. Neither the END FORALL statement
nor any statement within the FORALL construct can be a branch target statement.

| End of Fortran 95 |

Chapter 6. Expressions and assignment 121

Interpreting the FORALL construct

| Fortran 95
1. From the FORALL Construct statement, evaluate the subscript and stride
expressions for each forall_triplet_spec in any order. All possible pairings of
index_name values form the set of combinations. For example, given the
statement:
FORALL (I=1:3,J=4:5)
The set of combinations of I and J is:
{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)}
The -1 and -qnozerosize compiler options do not affect this step.

2. Evaluate the scalar_mask_expr (from the FORALL Construct statement) for the
set of combinations, in any order, producing a set of active combinations (those
that evaluated to .TRUE.). For example, if the mask (I+J.NE.6) is applied to the
above set, the set of active combinations is:

{(1,4),(2,5),(3,4),(3,5)}
3. Execute each forall_body statement or construct in order of appearance. For the

set of active combinations, each statement or construct is executed completely
as follows:

assignment_statement

Evaluate, in any order, all values in the right-hand side expression and
all subscripts, strides, and substring bounds in the left-hand side
variable for all active combinations of index_name values.

Assign, in any order, the computed expression values to the
corresponding variable entities for all active combinations of index_name
values. In a forall_assignment if variable is allocatable,
-qx1f2003=autorealloc will not cause variable to be deallocated and/or
allocated.
INTEGER, DIMENSION(50) :: A,B,C
INTEGER :: X,I=2,J=49
FORALL (X=I:J)

A(X)=B(X)+C(X)

C(X)=B(X)-A(X) ! A1l these assignments are performed after the

I assignments in the preceding statement

END FORALL
END

pointer_assignment_statement

Determine, in any order, what will be the targets of the pointer
assignment, and evaluate all subscripts, strides, and substring bounds
in the pointer for all active combinations of index_name values. If a
target is not a pointer, determination of the target does not include
evaluation of its value. Pointer assignment never requires the value of
the righthand side to be determined.

Associate, in any order, all targets with the corresponding pointer
entities for all active combinations of index_name values.

WHERE statement or construct

Evaluate, in any order, the control mask and pending control mask for
each WHERE statement, WHERE construct statement, ELSEWHERE
statement, or masked ELSEWHERE statement each active combination
of index_name values, producing a refined set of active combinations for
that statement, as described in |“Interpreting masked arrayl

122 XL Fortran Language Reference

[assignments” on page 115] For each active combination, the compiler
executes the assignment(s) of the WHERE statement, WHERE construct
statement, or masked ELSEWHERE statement for those values of the
control mask that are true for that active combination. The compiler
executes each statement in a WHERE construct in order, as described
previously.
INTEGER 1(100,10), J(100), X
FORALL (X=1:100, J(X)>0)
WHERE (I(X,:)<0)
I(X,:)=0 ! Assigns O to an element of I along row X
I only if element value is less than 0 and value

1
! of element in corresponding column of J is
I greater than 0.

ELSEWHERE
I(X,:)=1
END WHERE
END FORALL
END

FORALL statement or construct

Evaluate, in any order, the subscript and stride expressions in the
forall_triplet_spec_list for the active combinations of the outer FORALL
statement or construct. The valid combinations are the Cartesian
product of combination sets of the inner and outer FORALL constructs.
The scalar_mask_expr determines the active combinations for the inner
FORALL construct. Statements and constructs for these active
combinations are executed.

! Same as FORALL (I=1:100,J=1:100,I.NE.J) A(I,J)=A(J,I)

INTEGER A(100,100)
OUTER: FORALL (I=1:100)
INNER: FORALL (J=1:100,I.NE.J)
A(1,d)=A(J,1)
END FORALL INNER
END FORALL OUTER
END

End of Fortran 95

Data pointer assignment

Pointer assignment statement causes a pointer to become associated with a target
or causes the pointer’s association status to become disassociated or undefined.

1
2

»»—data_pointer_object

Notes:
Fortran 2003
Fortran 2003

=> —target———><«

(1)
(bounds_spec_list) ————

(2)

(bounds_remapping list)

target

is a variable or expression. If it is a variable, it must have the TARGET

Chapter 6. Expressions and assignment 123

attribute (or be a subobject of such an object) or the POINTER attribute. If
it is an expression, it must yield a value that has the POINTER attribute.

If target is not unlimited polymorphic, it must have the same type
parameters and rank as data_pointer_object, and data_pointer_object must be
type-compatible with it. If target is unlimited polymorphic,
data_pointer_object must be unlimited polymorphic, of sequence derived
type, or of a type with the BIND attribute.

data_pointer_object
must have the POINTER attribute.

| Fortran 2003

bounds_spec

-
>

|—lower‘_bound—|

lower_bound
is a scalar integer expression.

| End of Fortran 2003

| Fortran 2003

bounds_remapping

[N

Y
A

|—lower_bound : upper‘_bound—|

lower_bound
is a scalar integer expression.

upper_bound
is a scalar integer expression.

| End of Fortran 2003

A target must not be an array section with a vector subscript, or a whole
assumed-size array.

The size, bounds, and shape of the target of a disassociated array pointer are
undefined. No part of such an array can be defined or referenced, although the
array can be the argument of an intrinsic inquiry function that is inquiring about
association status, argument presence, or a property of the type or type
parameters.

124 XL Fortran Language Reference

| IBM Extension

A pointer of type byte can only be associated with a target of type byte,
INTEGER(1), or LOGICAL(1).

| End of IBM Extension

| Fortran 2003

If the data_pointer_object is not polymorphic and the target is polymorphic with
dynamic type that differs from its declared type, the assignment target is the
ancestor component of target that has the type of data_pointer_object. Otherwise, the
assignment target is target.

If data_pointer_object is polymorphic, it assumes the dynamic type of target. If
data_pointer_object is of sequence derived type or a type with the BIND attribute,
the dynamic type of target must be that type.

If you specify bounds_spec_list, the number of bounds in the list must be equal to
the rank of data_pointer_object.

If you specify either a bounds_spec_list or a bounds_remapping_list, you must not use
a SUBSCRIPTORDER directive on the pointer

If you specify a bounds_remapping_list:

* The target must not be a diassociated or undefined pointer, and the size of the
target must not be less than the size of the data_pointer_object.

¢ The number of bounds_remappings in the list must be equal to the rank of
data_pointer_object.

* The lower bound of each dimension of the data_pointer_object becomes equal to
the lower_bound you specify in the corresponding bounds_remapping

* The upper bound of each dimension of the data_pointer_object becomes equal to
the upper_bound you specify in the corresponding bounds_remapping.

¢ The extent of each dimension of the data_pointer_object is equal to the upper
bound of that dimension, minus the lower bound of that dimension, plus 1.

* The elements of the target of data-pointer-object, in array element order, are the
first SIZE (data-pointer-objec) elements of the target, after any
SUBSCRIPTORDER directives affect the target.

If you specify a bounds_spec_list:

* If you specify a bounds_spec_list, then the lower bound of each dimension of the
data_pointer_object becomes equal to the lower_bound in the corresponding
bounds_spec. The lower bound of each dimension is the result of the LBOUND
intrinsic function that you apply to the corresponding dimension of the target.

¢ The extent of each dimension of the data_pointer_object is equal to the extent of
the corresponding dimension of the target.

* The upper bound of each dimension of the data_pointer_object is equal to the lower
bound of that dimension, plus the extent of that dimension, minus 1.

| End of Fortran 2003 |

If neither bounds_remapping_list nor bounds_spec_list are specified:

Chapter 6. Expressions and assignment 125

During pointer assignment of an array pointer, the lower bound of each dimension
is the result of the LBOUND intrinsic function applied to the corresponding
dimension of the target. For an array section or array expression that is not a
whole array or a structure component, the lower bound is 1. The upper bound of
each dimension is the result of the UBOUND intrinsic function applied to the
corresponding dimension of the target.

Any previous association between a data_pointer_object and a target is broken. If
target is not a pointer, data_pointer_object becomes associated with target. If target is
itself an associated pointer, data_pointer_object is associated with the target of target.
If target is a pointer with an association status of disassociated or undefined,
data_pointer_object acquires the same status. If target of a pointer assignment is an
allocatable object, it must be allocated.

Pointer assignment for a pointer structure component can also occur via execution
of a derived-type intrinsic assignment statement or a defined assignment

statement.

Related information:

* See["ALLOCATE” on page 275| for an alternative form of associating a pointer
with a target.

Examples of pointer assignment

TYPE T
INTEGER, POINTER :: COMP_PTR

ENDTYPE T

TYPE(T) T_VAR

INTEGER, POINTER :: P,Q,R

INTEGER, POINTER :: ARR(:)

BYTE, POINTER :: BYTE_PTR

LOGICAL(1), POINTER :: LOG_PTR

INTEGER, TARGET :: MYVAR

INTEGER, TARGET :: DARG(1:5)

P => MYVAR I P points to MYVAR

Q=>P I Q points to MYVAR

NULLIFY (R) I R is disassociated
I
|

Q =>R Q is disassociated
T VAR = T(P) T_VAR%COMP_PTR points to MYVAR

ARR => DARG(1:3)
BYTE_PTR => LOG_PTR
END

Procedure pointer assignment

| Fortran 2003 |

The procedure pointer assignment statement causes a procedure pointer to become
associated with a target or causes the procedure pointer’s association status to
become disassociated or undefined.

»>—proc_pointer_object— => —proc_target ><

proc_target
is an expression or a procedure name. If proc_target is an expression, it
must be a function that returns a procedure pointer. If proc_target is a

126 XL Fortran Language Reference

procedure name, it must be the name of an external procedure, module
procedure, dummy procedure, an intrinsic procedure that can be passed as
an actual argument, or another procedure pointer. proc_target must not be
an elemental procedure.

proc_pointer_object
is a procedure pointer.

If proc_target is not a procedure pointer, proc_pointer_object becomes associated with
proc_target. If proc_target is a procedure pointer and is associated with a procedure,
proc_pointer_object becomes associated with the same procedure. If proc_target is a
pointer with an association status of disassociated or undefined, proc_pointer_object
acquires the same status.

If the proc_pointer_object has an explicit interface, its characteristics must be the
same as proc_target except that proc_target can be pure even if proc_pointer_object is
not. If the characteristics of proc_pointer_object or proc_target are such that an
explicit interface is required, both proc_pointer_object and proc_target must have an
explicit interface.

If proc_pointer_object has an implicit interface and is explicitly typed or referenced
as a function, proc_target must be a function. If proc_pointer_object has an implicit
interface and is referenced as a subroutine, proc_target must be a subroutine.

If proc_target and proc_pointer_object are functions, they must have the same type;
corresponding type parameters must either be both deferred or have the same
value.

If proc_target is a specific procedure name that is also a generic name, only the
specific procedure is associated with proc_pointer_object.

Related information::
+ ["PROCEDURE declaration” on page 419

| End of Fortran 2003

Integer pointer assignment

| IBM Extension

Integer pointer variables can be:
* Used in integer expressions
* Assigned values as absolute addresses

* Assigned the address of a variable using the LOC intrinsic function. (Objects of
derived type and structure components must be of sequence-derived type when
used with the LOC intrinsic function.)

Note: The XL Fortran compiler does not use the size of an object as a multiplier in
an arithmetic expression where an integer pointer is an operand.

Example of integer pointer assignment

INTEGER INT_TEMPLATE
POINTER (P,INT_TEMPLATE)
INTEGER MY_ARRAY (10)

Chapter 6. Expressions and assignment 127

DATA MY_ARRAY/1,2,3,4,5,6,7,8,9,10/
INTEGER, PARAMETER :: WORDSIZE=4

P = LOC(MY_ARRAY)

PRINT =, INT_TEMPLATE Prints '1'

I
P=P+4; ! Add 4 to reach next element
! because arithmetic is byte-based
PRINT %, INT_TEMPLATE ! Prints '2'
P = LOC(MY_ARRAY)
DO I = 1,10
PRINT =,INT_TEMPLATE
P = P + WORDSIZE ! Parameterized arithmetic is suggested
END DO
END

End of IBM Extension

128 XL Fortran Language Reference

Chapter 7. Execution Control

You can control the execution of a program sequence using constructs. Constructs
contain [statement blocks| and other executable statements that can alter the M
fexecution sequence] This section contains detailed descriptions of the following
constructs:

* |} F2003 | |KSSOCIATE| F2003 4
DO WHILE

ELECT CASE
. WEELECT TYPE| F2003 4

Detailed syntax diagrams for the constructs in this section can be found by
following the links to the associated

For nesting to occur, a construct must be wholly contained within another
construct. If a statement specifies a construct name, it applies to that construct. If
the statement does not specify a construct name, the statement applies to the
innermost construct in which it appears.

In addition to constructs, XL Fortran provides as a method for
transferring control from one statement to another statement in the same scoping
unit.

Statement blocks

A statement block consists of a sequence of zero or more executable statements,
executable constructs, [FORMAT] statements, or statements embedded in
another executable construct and are treated as a single unit.

In the same program, you can not transfer control from outside of the statement
block to within the statement block. You can transfer control within the statement
block, or from within the statement block to outside the block. For example, you
can have a statement branching to a label that is within a statement block.
You cannot branch into a statement block from a GO TO statement outside the
statement block.

ASSOCIATE Construct

Fortran 2003 |
The ASSOCIATE construct creates an association between an identifier and a
variable, or the value of an expression, during the execution of that construct. The
identifier you specify in an ASSOCIATE construct becomes an associating entity.
You can create multiple associating entities inside a single ASSOCIATE construct.

© Copyright IBM Corp. 1990, 2007 129

Syntax

»»—USSOCIATE statement] >
»>—ASSOCIATE statement_block ><
»>—END ASSOCIATE statement} ><

ASSOCIATE_statement
See |“ASSOCIATE” on page 279| for syntax details

END_ASSOCIATE_statement
See ["END (Construct)” on page 336| for syntax details

Execution of an ASSOCIATE construct causes execution of an

ASSOCIATE _statement followed by the ASSOCIATE _statement_block. During
execution of that block, the construct creates an association with an identifier and
the corresponding selector. The associating entity assumes the declared type and
type parameters of the selector. The name of the associating entity is an associate
name. For further information on associate names, see [“ Associate names” on page|

Examples

The following example uses the ASSOCIATE construct as a shorthand for a
complex expression and renames an existing variable, MYREAL. After the end of
the ASSOCIATE construct, any change within the construct to the value of the
associating entity that associates with MYREAL is reflected.

PROGRAM ASSOCIATE_EXAMPLE

REAL :: MYREAL, X, Y, THETA, A
X =0.42

Y =0.35

MYREAL = 9.1

THETA = 1.5

A=0.4

ASSOCIATE (Z => EXP(-(X#*2+Yx%2)) = COS(THETA), V => MYREAL)
PRINT *, A+Z, A-Z, V
V=V=x4.6

END ASSOCIATE

PRINT *, MYREAL

END PROGRAM ASSOCIATE_EXAMPLE

The expected output is.
0.4524610937 0.3475389183 9.100000381

41.86000061

End of Fortran 2003

130 XL Fortran Language Reference

DO construct

The DO construct specifies the repeated execution of a statement block. Such a
repeated block is called a loop.

The iteration count of a loop can be determined at the beginning of execution of
the DO construct, unless it is infinite.

You can curtail a specific iteration with the CYCLE statement, and the EXIT
statement terminates the loop.

»»—P0 _statement

A\
A

»>—statement_block ><
»_EEND DO _statement ><
terminal_statement—l

DO_statement See ['DO” on page 323| for syntax details

END_DO_statement
See ["END (Construct)” on page 336| for syntax details

terminal_statement
is a statement that terminates the DO construct. See the description
below.

If you specify a DO construct name on the DO statement, you must terminate the
construct with an END DO statement with the same construct name. Conversely, if
you do not specify a DO construct name on the DO statement, and you terminate
the DO construct with an END DO statement, you must not have a DO construct
name on the END DO statement.

The terminal statement

The terminal statement must follow the DO statement and must be executable. See
[Chapter 11, “Statements and attributes,” on page 269| for a listing of statements that
can be used as the terminal statement. If the terminal statement of a DO construct
isa statement, it can contain any executable statement compatible with
the restrictions on a logical IF statement.

If you specify a statement label in the DO statement, you must terminate the DO
construct with a statement that is labeled with that statement label.

A labeled DO statement must be terminated with an END DO statement that has
a matching statement label. A DO statement with no label must be terminated with
an unlabeled END DO statement.

Nested, labeled DO and DO WHILE constructs can share the same terminal

statement if the terminal statement is labeled, and if it is not an [END DO,
statement.

Chapter 7. Execution Control 131

Range of a DO construct

The range of a DO construct consists of all the executable statements following the
DO statement, up to and including the terminal statement. In addition to the rules
governing the range of constructs, you can only transfer control to a shared
terminal statement from the innermost sharing DO construct.

Active and inactive DO constructs

A DO construct is either active or inactive. Initially inactive, a DO construct
becomes active only when its DO statement is executed. Once active, the DO
construct becomes inactive only when:

* Its iteration count becomes zero.
* A RETURN statement occurs within the range of the DO construct.
* Control is transferred to a statement outside the range of the DO construct.

* A subroutine invoked from within the DO construct returns, through an
alternate return specifier, to a statement that is outside the range of the DO
construct.

e An EXIT statement that belongs to the DO construct executes.

* An EXIT statement or a CYCLE statement that is within the range of the DO
construct, but belongs to an outer DO or DO WHILE construct, executes.

* A STOP statement executes or the program stops for any other reason.

When a DO construct becomes inactive, the DO variable retains the last value
assigned to it.

Executing a DO statement
An infinite DO does not have an iteration count limit or a termination condition.

If the loop is not an infinite DO, the DO statement includes an initial parameter, a
terminal parameter, and an optional increment.

1. The initial parameter, m,, the terminal parameter, m,, and the increment, m;, are
established by evaluating the DO statement expressions (a_exprl, a_expr2, and
a_expr3, respectively). Evaluation includes, if necessary, conversion to the type
of the DO variable according to the rules for arithmetic conversion. (See
[“Arithmetic conversion” on page 112)) If you do not specify a_expr3, m, has a
value of 1. m; must not have a value of zero.

2. The DO variable becomes defined with the value of the initial parameter (1m,).
3. The iteration count is established, determined by the expression:
MAX (INT ((m, - m; + m;) / m), 0)

Note that the iteration count is 0 whenever:
m, > m, and my > 0, or

m <m, and my < 0

The iteration count cannot be calculated if the DO variable is missing. This is
referred to as an infinite DO construct.

| IBM Extension

The iteration count cannot exceed 2**31 - 1 for integer variables of kind 1, 2, or 4,
and cannot exceed 2**63 - 1 for integer variables of kind 8. The count becomes
undefined if an overflow or underflow situation arises during the calculation.

| End of IBM Extension

132 XL Fortran Language Reference

At the completion of the DO statement, loop control processing begins.

Loop control processing

Loop control processing determines if further execution of the range of the DO
construct is required. The iteration count is tested. If the count is not zero, the first
statement in the range of the DO construct begins execution. If the iteration count
is zero, the DO construct becomes inactive. If, as a result, all of the DO constructs
sharing the terminal statement of this DO construct are inactive, normal execution
continues with the execution of the next executable statement following the
terminal statement. However, if some of the DO constructs sharing the terminal
statement are active, execution continues with incrementation processing of the
innermost active DO construct.

DO execution range

The range of a DO construct includes all statements within the statement block.
These statements execute until reaching the terminal statement. A DO variable
must not become redefined or undefined during execution of the range of a DO
construct, and only becomes redefined through incremental processing.

Terminal statement execution

Execution of the terminal statement occurs as a result of the normal execution
sequence, or as a result of transfer of control, subject to the restriction that you
cannot transfer control into the range of a DO construct from outside the range.
Unless execution of the terminal statement results in a transfer of control,
execution continues with incrementation processing.

Incrementation processing

1. The DO variable, the iteration count, and the increment of the active DO
construct whose DO statement was most recently executed, are selected for
processing.

2. The value of the DO variable is increased by the value of ;.

w

The iteration count is decreased by 1.

4. Execution continues with loop control processing of the same DO construct
whose iteration count was decremented.

Chapter 7. Execution Control 133

Migration Tip:
* Use EXIT, CYCLE, and infinite DO statements instead of a GOTO statement.

FORTRAN 77 source

I 0
J=0
20 CONTINUE
I=1+1
J=J+1
PRINT =, I
IF (I.GT.4) GOTO 10 ! Exiting Toop
IF (J.GT.3) GOTO 20 ! Iterate loop immediately
I=1+2
GOTO 20
10 CONTINUE
END

Fortran 90/95/2003 source:

I1=03;J=0
DO
I =1
J=1J
PRINT
IF (I
IF (J
I =1
END DO
END

1
1
, 1
T.4) EXIT
T.

3) CYCLE

+
+
*

.G

.G
+2

134 XL Fortran Language Reference

Examples:

INTEGER :: SUM=0
OUTER: DO
INNER: DO
READ (5,%) J
IF (J.LE.I) THEN
PRINT *, 'VALUE MUST BE GREATER THAN ', I
CYCLE INNER
END IF
SUM=SUM+J
IF (SUM.GT.500) EXIT OUTER
IF (SUM.GT.100) EXIT INNER
END DO INNER
SUM=SUM+I
1=1+10
END DO OUTER
PRINT %, 'SUM =',SUM
END

DO WHILE construct

The DO WHILE construct specifies the repeated execution of a statement block for
as long as the scalar logical expression specified in the DO WHILE statement is
true. You can curtail a specific iteration with the CYCLE statement, and the EXIT
statement terminates the loop.

»>—D0 WHILE statement ><

»>—statement_block ><

A\
A

»_EE ND_DO_statement _|
terminal_statement

DO_WHILE_statement
See ['DO WHILE” on page 325| for syntax details

END_DO_statement
See ["END (Construct)” on page 336| for syntax details

terminal_stmt is a statement that terminates the DO WHILE construct. See
[ferminal statement” on page 131 for details.

The rules applicable to the names and ranges, active and inactive
DO constructs, and terminal statements also apply to the DO WHILE construct.

Example

1=10

TWO_DIGIT: DO WHILE ((I.GE.10).AND.(I.LE.99))
J=0+1
READ (5,%) I

END DO TWO DIGIT

END

Chapter 7. Execution Control 135

IF construct

The IF construct selects no more than one of its statement blocks for execution.

»>—Block_IF_statement

»>—statement_block

LELSE_IF_blockJJ

|—ELSE_block—I

»»>—FLND_IF_statement

v
A

Block_IF_statement
See |“IF (block)” on page 369 for syntax details.

END_IF_statement
See ["END (Construct)” on page 336| for syntax details.

ELSE_IF_block

»»—£LSE_IF_statement

\4
A

»>—statement_block

v
A

ELSE_IF statement
See |“ELSE IF” on page 333 for syntax details.

ELSE block

»>—F | SE_statement

»>—statement_block

ELSE_statement
See|“ELSE” on page 332| for syntax details.

136 XL Fortran Language Reference

The scalar logical expressions in an IF construct (that is, the block IF and ELSE IF
statements) are evaluated in the order of their appearance until a true value, an
ELSE statement, or an END IF statement is found:

* If a true value or an ELSE statement is found, the statement block immediately
following executes, and the IF construct is complete. The scalar logical
expressions in any remaining ELSE IF statements or ELSE statements of the IF
construct are not evaluated.

e If an END IF statement is found, no statement blocks execute, and the IF
construct is complete.

If the IF construct name is specified, it must appear on the IF statement and END
IF statement, and optionally on any ELSE IF or ELSE statements.

Example
I Get a record (containing a command) from the terminal
DO
WHICHC: IF (CMD .EQ. 'RETRY') THEN ! named IF construct
IF (LIMIT .GT. FIVE) THEN ! nested IF construct
! Print retry Timit exceeded
CALL STOP
ELSE
CALL RETRY
END IF
ELSE IF (CMD .EQ. 'STOP') THEN WHICHC I ELSE IF blocks
CALL STOP
ELSE IF (CMD .EQ. 'ABORT') THEN
CALL ABORT
ELSE WHICHC I ELSE block

! Print unrecognized command
END IF WHICHC
END DO
END

SELECT CASE construct

The CASE construct has a concise syntax for selecting, at most, one of a number of
statement blocks for execution. The case selector of each CASE statement is
compared to the expression of the SELECT CASE statement.

A\
A

»>—SELECT_CASE_statement

y
y
v
A

Y CASE_statement_block

»>—END_SELECT_statement ><

SELECT _CASE_statement
defines the case expression that is to be evaluated. See ["SELECT CASE” on|

for syntax details.

Chapter 7. Execution Control 137

END_SELECT statement
terminates the CASE construct. See [“END (Construct)” on page 336| for
syntax details.

CASE_statement_block

»»—CASE_statement ><

\4
A

»>—statement_block

CASE_statement
defines the case selector, which is a value, set of values, or default case, for
which the subsequent statement block is executed. See [CASE” on pagge]

for syntax details.

In the construct, each case value must be of the same type as the case expression.

The CASE construct executes as follows:
1. The case expression is evaluated. The resulting value is the case index.
2. The case index is compared to the case_selector of each CASE statement.

3. If a match occurs, the statement block associated with that CASE statement is
executed. No statement block is executed if no match occurs. (See["CASE” o
page 292.)

4. Execution of the construct is complete and control is transferred to the
statement after the END SELECT statement.

A CASE construct contains zero or more CASE statements that can each specify a
value range, although the value ranges specified by the CASE statements cannot
overlap.

A default case_selector can be specified by one of the CASE statements. A default
CASE_statement_block can appear anywhere in the CASE construct; it can appear at

the beginning or end, or among the other blocks.

If a construct name is specified, it must appear on the SELECT CASE statement
and END SELECT statement, and optionally on any CASE statements.

You can only branch to the END SELECT statement from within the CASE
construct. A CASE statement cannot be a branch target.

138 XL Fortran Language Reference

Migration Tip:
Use CASE in place of block IFs.

FORTRAN 77 source

IF (I .EQ.3) THEN
CALL SUBA()

ELSE IF (I.EQ. 5) THEN
CALL SUBB()

ELSE IF (I .EQ. 6) THEN
CALL SUBC()

ELSE
CALL OTHERSUB()

ENDIF

END

Fortran 90/95/2003 source:

SELECTCASE(I)
CASE(3)
CALL SUBA()
CASE(5)
CALL SUBB()
CASE(6)
CALL SUBC()
CASE DEFAULT
CALL OTHERSUB()
END SELECT
END

Examples
ZERO: SELECT CASE(N)

CASE DEFAULT ZERO
OTHER: SELECT CASE(N) ! start of CASE construct OTHER

CASE(:-1)
SIGNUM = -1 I this statement executed when n=-1
CASE(1:) OTHER
SIGNUM = 1
END SELECT OTHER I end of CASE construct OTHER
CASE (0)
SIGNUM = 0

END SELECT ZERO
END

SELECT TYPE construct

| Fortran 2003
The SELECT TYPE construct selects, at most, one of its constituent blocks for

execution. The selection is based on the dynamic type of an expression. A name is
associated with the expression, in the same way as for the ASSOCIATE construct.

Chapter 7. Execution Control 139

»>—SELECT_TYPE_statement

A\
A

> >

Lt ype_guard_statement_b Zock—\J

»>—END_SELECT _statement

Y
A

SELECT _TYPE_statement
defines the selector expression that is to be evaluated and optionally
associates a name (an associate name) with the selector expression. If you
do not specify an associate name in the SELECT_TYPE_statement, the
selector expression must be a named variable. The name of this variable
becomes the associate name. Execution of a SELECT TYPE construct
whose selector is not a variable causes the selector expression to be
evaluated. See ['SELECT TYPE” on page 447] for syntax details.

type_guard_statement_block

»>—type_guard_statement >

»>—statement_block >

type_guard_statement
The dynamic type of the selector expression is compared to the type
specified in the type_guard_statement. If the rules for type comparison
succeed for a particular type_guard_statement the subsequent statement
block is executed. A type guard statement cannot be a branch target
statement. It is permissible to branch to an end-select-type-stmt only from
within its SELECT TYPE construct. See [“Type Guard” on page 467 for
syntax details. The other attributes of the associating entity are described in
[Associate names” on page 142

END_SELECT _statement
terminates the SELECT TYPE construct. See [“END (Construct)” on page]
for syntax details.

The block to be executed is selected as follows:

1. If a TYPE IS type guard statement matches the selector, the block following
that statement is executed. A TYPE IS type guard statement matches the
selector if the dynamic type and kind type parameter values of the selector are
the same as those specified by the statement.

2. Otherwise, if exactly one CLASS IS type guard statement matches the selector,
the block following that statement is executed.A CLASS IS type guard
statement matches the selector if the dynamic type of the selector is an
extension of the type specified by the statement, and the kind type parameter

140 XL Fortran Language Reference

values specified by the statement are the same as the corresponding type
parameter values of the dynamic type of the selector.

3. Otherwise, if several CLASS IS type guard statements match the selector, one
of these statements must specify a type that is an extension of all the types
specified in the others; the block following that statement is executed.

4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block
following that statement is executed.

Within the block following a TYPE IS type guard statement, the associating entity
is not polymorphic, has the type named in the type guard statement, and has the
type parameters of the selector.

Within the block following a CLASS IS type guard statement, the associating
entity is polymorphic and has the declared type named in the type guard
statement. The type parameters of the associating entity are those of the type
specified in the CLASS IS type guard statement.

Within the block following a CLASS DEFAULT type guard statement, the
associating entity is polymorphic and has the same declared type as the selector.
The type parameters of the associating entity are those of the declared type of the

selector.
Examples
TYPE :: POINT
REAL :: X, Y

END TYPE POINT

TYPE, EXTENDS(POINT) :: POINT_3D
REAL :: Z
END TYPE POINT_3D

TYPE, EXTENDS(POINT) :: COLOR_POINT
INTEGER :: COLOR
END TYPE COLOR_POINT

TYPE(POINT), TARGET :: P
TYPE(POINT 3D), TARGET :: P3
TYPE(COLOR_POINT), TARGET :: C
CLASS(POINT), POINTER :: P_OR_C

PORC=>C
SELECT TYPE (A => P_OR C)
CLASS IS (POINT)
I "CLASS (POINT) :: A" implied here
PRINT *, A%X, A%Y ! This block gets executed
TYPE IS (POINT 3D)
! "TYPE (POINT_3D) :: A" implied here
PRINT *, A%X, A%Y, A%Z
END SELECT

End of Fortran 2003

Chapter 7. Execution Control 141

Associate names

Within a SELECT TYPE or ASSOCIATE construct, each associating entity has the
same rank as its associated selector. The lower bound of each dimension is the
result of the intrinsic function LBOUND applied to the corresponding dimension
of selector. The upper bound of each dimension is one less than the sum of the
lower bound and the extent.

The associating entity has the ASYNCHRONOUS, INTENT, or VOLATILE
attribute if the selector is a variable with the same attribute. The associating entity
has the TARGET attribute if the selector has the TARGET or POINTER attribute.
If the associating entity is polymorphic, it assumes the dynamic type and type
parameter values of the selector. If the selector has the OPTIONAL attribute, then
it must be present.

If the selector is not permitted to appear in a variable definition context or is an
array with a vector subscript, the associate name must not appear in a variable
definition context.

Branching

You can also alter the normal execution sequence by branching. A branch transfers
control from one statement to a labeled branch target statement in the same
scoping unit. A branch target statement can be any executable statement except a
CASE, ELSE, ELSE IF, or TYPE GUARD statement.

The following statements can be used for branching;:
+ |Assigned GO TO|

transfers program control to an executable statement, whose statement label is
designated in an ASSIGN statement. See [GO TO (assigned)” on page 365| for
syntax details.

* |[Computed GO TO|
transfers control to possibly one of several executable statements. See
[(computed)” on page 366| for syntax details.

+ [Unconditional GO TO|

transfers control to a specified executable statement. See [“GO TO
[(unconditional)” on page 367] for syntax details.

¢ [Arithmetic I

transfers control to one of three executable statements, depending on the
evaluation of an arithmetic expression. See [“IF (arithmetic)” on page 368| for
syntax details.

The following input/output specifiers can also be used for branching:
* the END= end-of-file specifier

transfers control to a specified executable statement if an endfile record is
encountered (and no error occurs) in a READ statement.

* the ERR= error specifier

transfers control to a specified executable statement in the case of an error. You
can specify this specifier in the BACKSPACE] [ENDFILE, [REWIND| |[CLOSE,
|OPEN| [READ| [WRITE} and INQUIRE| statements.

* the EOR= end-of-record specifier

142 XL Fortran Language Reference

transfers control to a specified executable statement if an end-of-record condition
is encountered (and no error occurs) in a READ statement.

Chapter 7. Execution Control 143

144 XL Fortran Language Reference

Chapter 8. Program units and procedures

This section describes:

e [“Scope”

» |“Association” on page 150|

* [“Program units, procedures, and subprograms” on page 154

* |“Interface blocks” on page 15|

* |“Generic interface blocks” on page 161]

[“Abstract interface” on page 169

* [“Main program” on page 170|
[“Modules” on page 171
[“Block data program unit” on page 174

* [“Function and subroutine subprograms” on page 175|

+ [“Intrinsic procedures” on page 179

* [“Arguments” on page 180|

* |“Argument association” on page 183

* [“Recursion” on page 195|

* p 95 ||‘Pure procedures” on page 196 Fs5 4
* p o5 |[“Elemental Procedures” on page 198 Fs5 4

Scope

A program unit consists of a set of nonoverlapping scoping units. A scoping unit is
that portion of a program unit that has its own scope boundaries. It is one of the
following:

* A derived-type definition

* A procedure interface body (not including any derived-type definitions and
interface bodies within it)

e A program unit, module subprogram, or internal subprogram (not including
derived-type definitions, interface bodies, module subprograms, and internal
subprograms).

A host scoping unit is the scoping unit that immediately surrounds another
scoping unit. For example, in the following diagram, the host scoping unit of the
internal function C is the scoping unit of the main program A. Host association is
the method by which an internal subprogram, module subprogram, or
derived-type definition accesses names from its host. Using the
statement, an interface body can also access names from its host.[F2003 4

© Copyright IBM Corp. 1990, 2007 145

PROGRAM A h
INTEGER A1
CONTAINS
47
SUBROUTINE B scope of
REAL B1 variable B1 scope of
END SUBROUTINE B variable A1
+— (not including
+— scope of B1
FUNCTION C () scope of and C1)
REAL CH variable C1
END FUNCTION C
47
END PROGRAM A

A

Entities that have scope are:

* A name (see below)

* A label (local entity)

* An external input/output unit number (global entity)

* An operator symbol. Intrinsic operators are global entities, while defined
operators are local entities.

* An assignment symbol (global entity)

If the scope is an executable program, the entity is called a global entity. If the
scope is a scoping unit, the entity is called a local entity. If the scope is a statement
or part of a statement, the entity is called a statement entity. If the scope is
a construct, the entity is called a construct entity[re5 4

The scope of a name

Global entity

Global entities are:

* Program units

* External procedures
* Common blocks

. CRITICAL lock_names[_1sm_4q
. Entities that have binding labels.[2003 4

If a name identifies a global entity, it cannot be the same as any binding
label in the same executable program,[r2003 4 and it cannot be used to identify
any other global entity in the same executable program unless that entity is an
intrinsic module.

See [Conventions for XL Fortran external names|in the |[XL Fortran Optimization and|
[Programming Guide| for details on restrictions on names of global entities.

Local entity

Entities of the following classes are local entities of the scoping unit in which they

are defined:

1. Named variables that are not statement entities, module procedures, named
constants, derived-type definitions, construct names, generic identifiers,
statement functions, internal subprograms, dummy procedures, intrinsic
procedures, or namelist group names.

146 XL Fortran Language Reference

2. Components and bindings of a derived type definition where each derived type
definition has its own class.

A component name has the same scope as the type of which it is a component.
You can specify a name within a component designator of a structure of that
type, or as a component keyword in a structure constructor for that type.

A binding name of a procedure has the same scope as the type. It can appear
only as the binding-name in a procedure reference. A generic binding for which
the generic-spec is not a generic-name has a scope that consists of all scoping
units in which an entity of that type is accessible

If the derived type is defined in a module and contains the
statement, the type and its components are accessible in any of the defining
module’s subprograms by host association. If the accessing scoping unit
accesses this type by use association, that scoping unit, and any scoping unit
that accesses the entities of that scoping unit by host association can access the

derived-type definition, and only those components with the PUBLIC| attribute.

3. Argument keywords (in a separate class for each procedure with an explicit
interface).

A dummy argument name in an internal procedure, module procedure, or
procedure interface block has a scope as an argument keyword of the scoping
unit of its host. As an argument keyword, it may appear only in a procedure
reference for the procedure of which it is a dummy argument. If the procedure
or procedure interface block is accessible in another scoping unit by use
association or host association, the argument keyword is accessible for
procedure references for that procedure in that scoping unit.

In a scoping unit, a name that identifies a local entity of one class may be used to
identify a local entity of another class. Such a name must not be used to identify
another local entity of the same class, except in the case of generic names. A name
that identifies a global entity in a scoping unit cannot be used to identify a local
entity of Class 1 in that scoping unit, except for a common block name or the
name of an external function. Components and bindings of a record structure are
local entities of class 2. A separate class exists for each type.

| IBM Extension |

A name declared to be a derived type can have the same name as another local
entity of class 1 of that scoping unit that is not a derived-type. In this case, the
structure constructor for that type is not available in that scope. Similarly, a local
entity of class 1 is accessible through host association or use association, even if
there is another local entity of class 1 accessible in that scope, if:

* one of the two entities is a derived type and the other is not; and

* in the case of host association, the derived type is accessible via host association.
For example, given a module M, a program unit P, and an internal subprogram
or module subprogram S nested in P, if you have an entity named T1 declared
in M that is accessed by use association in P (or in S), you can declare another
entity in P (or in S, respectively) with the same name T1, so long as one of the
two is a derived type. If you have an entity named T2 accessible in P, and an
entity named T2 declared in S, then the T2 accessible in P is accessible in S if the
T2 in P is a derived type. If the T2 in P was not a derived type, it would not be
accessible in S if S declared another T2 (of derived type or not).

The structure constructor for that type will not be available in that scope. A local
entity of class 1 in a scope that has the same name as a derived type accessible in

Chapter 8. Program units and procedures 147

that scope must be explicitly declared in a declaration statement in that scope.

| End of IBM Extension

If two local entities of class 1, one of which is a derived type, are accessible in a
scoping unit, any PUBLIC or PRIVATE statement that specifies the name of the
entities applies to both entities. If the name of the entities is specified in a
VOLATILE statement, the entity or entities declared in that scope have the volatile
attribute. If the two entities are public entities of a module, any rename on a USE
statement that references the module and specifies the names of the entities as the
use_name applies to both entities.

A common block name in a scoping unit can be the name of any local entity other
than a named constant or intrinsic procedure. The name is recognized as the
common block entity only when the name is delimited by slashes in a BIND,
COMMON, VOLATILE, or SAVE statement. If it is not, the name identifies the
local entity. An intrinsic procedure name can be the name of a common block in a
scoping unit that does not reference the intrinsic procedure. In this case, the
intrinsic procedure name is not accessible.

An external function name can also be the function result name. This is the only
way that an external function name can also be a local entity.

If a scoping unit contains a local entity of Class 1 with the same name as an
intrinsic procedure, the intrinsic procedure is not accessible in that scoping unit.

An interface block generic name can be the same as any of the procedure names in
the interface block, or the same as any accessible generic name. It can be the same

as any generic intrinsic procedure. See [“Resolution of procedure references” on|
page 193] for details.

Statement and construct entities

Statement entities: The following items are statement entities:

* Name of a statement function dummy argument.
SCOPE: Scope of the statement in which it appears.

* Name of a variable that appears as the DO variable of an implied-DO in a
DATA statement or array constructor.
SCOPE: Scope of the implied-DO list.

Except for a common block name or scalar variable name, the name of a global
entity or local entity of class 1 that is accessible in the scoping unit of a statement
or construct must not be the name of a statement or construct entity of that
statement or construct. Within the scope of a statement or construct entity, another
statement or construct entity must not have the same name.

The name of a variable that appears as a dummy argument in a statement function
statement has a scope of the statement in which it appears. It has the type and
type parameters that it would have if it were the name of a variable in the scoping
unit that includes the statement function.

If the name of a global or local entity accessible in the scoping unit of a statement
or construct is the same as the name of a statement or construct entity in that
statement or construct, the name is interpreted within the scope of the statement or
construct entity as that of the statement or construct entity. Elsewhere in the

148 XL Fortran Language Reference

scoping unit, including parts of the statement or construct outside the scope of the
statement or construct entity, the name is interpreted as that of the global or local
entity.

If a statement or construct entity has the same name as an accessible name that
denotes a variable, constant, or function, the statement or construct entity has the
same type and type parameters as the variable, constant or function. Otherwise,
the type of the statement or construct entity is determined through the implicit
typing rules in effect. If the statement entity is the DO variable of an implied-DO
in a DATA statement, the variable cannot have the same name as an accessible
named constant.

Statement and construct entity:

| Fortran 95

The following is a statement and/or construct entity:

* Name of a variable that appears as an index_name in a FORALL statement or
FORALL construct.

— SCOPE: Scope of the FORALL statement or construct.

The only attributes held by the FORALL statement or construct entity are the type
and type parameters that it would have if it were the name of a variable in the
scoping unit that includes the FORALL. It is type integer.

Except for a common block name or a scalar variable name, a name that identifies
a global entity or a local entity of class 1, accessible in the scoping unit of a
FORALL statement or construct, must not be the same as the index_name. Within
the scope of a FORALL construct, a nested FORALL statement or FORALL
construct must not have the same index_name.

If the name of a global or local entity accessible in the scoping unit of a FORALL
statement or construct is the same as the index_name, the name is interpreted
within the scope of the FORALL statement or construct as that of the index_name.
Elsewhere in the scoping unit, the name is interpreted as that of the global or local
entity.

| End of Fortran 95 |

Construct entity:

| Fortran 2003

The following is a construct entity:
* The associate name of an [ASSOCIATE construct}
— SCOPE: Scope of the block of the ASSOCIATE construct.

e The associate name of a|SELECT TYPE| construct.
— SCOPE: (Separate) Scope of each block of the|SELECT TYPE| construct.

If the name of a global or local entity accessible in the scoping unit of an

or SELECT TYPE construct is the same as an associate name, the
name is interpreted within the blocks of an ASSOCIATE or SELECT TYPE
construct as that of the associate name. Elsewhere in the scoping unit, the name is

Chapter 8. Program units and procedures 149

interpreted as the global and local entities.

| End of Fortran 2003

Association

Association exists if the same data can be identified with different names in the
same scoping unit, or if the same data can be accessed in different scoping units of
the same executable program. See [“Argument association” on page 183| for
information on argument association in procedures and functions.

Host association

Host association allows an internal subprogram, module subprogram, interface
body, or derived-type definition to access named entities that exist in its host. In
interface bodies, entities cannot be accessed by host association unless they are
made accessible by an IMPORT statement Accessed entities have the same
attributes and are known by the same name as they are in the host.

A name that is specified with the EXTERNAL attribute is a global name. Any
entity in the host scoping unit that has this name as its nongeneric name is
inaccessible by that name and by host association.

The following list of entities are local within a scoping unit when declared or
initialized in that scoping unit:

* A variable name in a COMMON statement or initialized in a DATA statement
* An array name in a DIMENSION statement

* A name of a derived type

* An object name in a type declaration, EQUIVALENCE, POINTER,
ALLOCATABLE, SAVE, TARGET, AUTOMATIC, integer POINTER, STATIC,
or VOLATILE statement

Note: VOLATILE is controlled by compiler option qx1f2003. For more
information: [XL Fortran Compiler Reference

* A named constant in a PARAMETER statement
* A namelist group name in a NAMELIST statement

* A generic interface name or a defined operator
* An intrinsic procedure name in an INTRINSIC statement

¢ A function name in a FUNCTION statement, statement function statement, or
type declaration statement

¢ A result name in a FUNCTION statement or an ENTRY statement
e A subroutine name in a SUBROUTINE statement
* An entry name in an ENTRY statement

* A dummy argument name in a FUNCTION, SUBROUTINE, ENTRY, or
statement function statement

¢ The name of a named construct

* The name of an entity declared by an interface body or PROCEDURE
declaration statement

Entities in the host scoping unit that have the same name as a local entity are not
accessible by host association.

A local entity must not be referenced or defined before the DATA statement when:

150 XL Fortran Language Reference

1. An entity is local to a scoping unit only because it is initialized in a DATA
statement, and

2. An entity in the host has the same name as this local entity.

If a derived-type name of a host is inaccessible, structures of that type or
subobjects of such structures are still accessible.

If a subprogram gains access to a pointer (or integer pointer) by host association,
the pointer association that exists at the time the subprogram is invoked remains
current within the subprogram. This pointer association can be changed within the
subprogram. The pointer association remains current when the procedure finishes
executing, except when this causes the pointer to become undefined, in which case
the association status of the host-associated pointer becomes undefined. For more
information on events that cause definition and undefinition of variables, see
[“Definition status of variables” on page 19

The host scoping unit of an internal or module subprogram can contain the same
use-associated entities.

Example of host association

SUBROUTINE MYSUB
TYPE DATES I Define DATES
INTEGER START
INTEGER END
END TYPE DATES
CONTAINS
INTEGER FUNCTION MYFUNC(PNAME)
TYPE PLANTS
TYPE (DATES) LIFESPAN ! Host association of DATES
CHARACTER(10) SPECIES
INTEGER PHOTOPER
END TYPE PLANTS
END FUNCTION MYFUNC
END SUBROUTINE MYSUB

| Fortran 2003 |

Host associated entities are known by the same name and have the same attributes
as in the host, except that an accessed entity may have the VOLATILE or
ASYNCHRONOUS attribute even if the host entity does not. In an internal or
module procedure, if a variable that is accessible via host association is specified in
an ASYNCHRONOUS or VOLATILE statement, that host variable is given the
ASYNCHRONOUS or VOLATILE attribute in the local scope.

Note: VOLATILE is controlled by compiler option qx1f2003. For more information:
[XL Fortran Compiler Reference}

| End of Fortran 2003

Use association

Use association occurs when a scoping unit accesses the entities of a module with
the USE statement. Use-associated entities can be renamed for use in the local
scoping unit. The association is in effect for the duration of the executable
program. See [“USE” on page 468| for details.
MODULE M

CONTAINS

SUBROUTINE PRINTCHAR(X)
CHARACTER(20) X

Chapter 8. Program units and procedures 151

PRINT *, X

END SUBROUTINE
END MODULE
PROGRAM MAIN
USE M I Accesses public entities of module M
CHARACTER(20) :: NAME='George'
CALL PRINTCHAR(NAME) ! Calls PRINTCHAR from module M
END

| Fortran 2003 |

A USE associated entity may have the ASYNCHRONOUS or VOLATILE attribute
in the local scoping unit even if the associated module entity does not.

Note: VOLATILE is controlled by compiler option qx1f2003. For more information:
[XL Fortran Compiler Reference}

| End of Fortran 2003

Construct Association

| Fortran 2003 |

Construct association establishes an association between each selector and the
corresponding associate name of the construct. Each associate name remains
associated with the corresponding selector throughout the execution of the
executed block. Within the block, each selector is known by and may be accessed
by the corresponding associate name. Construct termination terminates the
association as well. See the [ASSOCIATE| and [SELECT TYPE| constructs for more
information.

| End of Fortran 2003

Pointer association

A target that is associated with a pointer can be referenced by a reference to the
pointer. This is called pointer association.

A pointer always has an association status:

Associated

* The ALLOCATE statement successfully allocates the pointer, which has
not been subsequently disassociated or undefined.

ALLOCATE (P(3))

* The pointer is pointer-assigned to a target that is currently associated or
has the TARGET attribute and, if allocatable, is currently allocated.

p=>T
Disassociated

* The pointer is nullified by a NULLIFY statement or by the -qinit=f90ptr
option. See in the XL Fortran Compiler Referencel

NULLIFY (P)

| Fortran 2003

* The pointer is an ultimate component of an object with default
initialization specified for the component and:

152 XL Fortran Language Reference

— a procedure is invoked with this object as an actual argument
corresponding to a nonpointer, nonallocatable dummy argument with
INTENT(OUT),

— a procedure with the object as an unsaved nonpointer, nonallocatable
local object that is not accessed by use or host association is invoked,

— this object is allocated, or

| End of Fortran 2003

* The pointer is successfully deallocated.
DEALLOCATE (P)

* The pointer is pointer-assigned to a disassociated pointer.
NULLIFY (Q); P => Q

Undefined
¢ Initially (unless the -qinit=f90ptr option is specified)

| Fortran 2003

* The pointer is an ultimate component of an object, default initialization
is not specified for the component, and a procedure is invoked with this
object as an actual argument corresponding to a dummy argument with
INTENT(OUT), or a procedure is invoked with the pointer as an actual
argument corresponding to a pointer dummy argument with
INTENT(OUT).

| End of Fortran 2003

* If it is pointer-assigned to a pointer whose association status is
undefined.
* If its target was deallocated other than through the pointer.
POINTER P(:), Q(:)
ALLOCATE (P(3))
Q=>P
DEALLOCATE (Q) ! Deallocate target of P through Q.
! P is now undefined.
END

¢ If the execution of a RETURN or END statement causes the pointer’s
target to become undefined.

 After the execution of a RETURN or END statement in a procedure
where the pointer was declared or accessed, except for objects described
in item 4 under [“Events causing undefinition” on page 23|

Definition status and association status

The definition status of a pointer is that of its target. If a pointer is associated with
a definable target, the definition status of the pointer can be defined or undefined
according to the rules for a variable.

If the association status of a pointer is disassociated or undefined, the pointer must
not be referenced or deallocated. Whatever its association status, a pointer can
always be nullified, allocated or pointer-assigned. When it is allocated, its
definition status is undefined. When it is pointer-assigned, its association and
definition status are determined by its target. So, if a pointer becomes associated
with a target that is defined, the pointer becomes defined.

Chapter 8. Program units and procedures 153

Integer pointer association

| IBM Extension

An integer pointer that is associated with a data object can be used to reference the
data object. This is called integer pointer association.

Integer pointer association can only occur in the following situations:
* An integer pointer is assigned the address of a variable:
POINTER (P,A)

P=LOC(B) I A and B become associated
* Multiple pointees are declared with the same integer pointer:
POINTER (P,A), (P,B) ! A and B are associated

* Multiple integer pointers are assigned the address of the same variable or the
address of other variables that are storage associated:
POINTER (P,A), (Q,B)
P=L0OC(C)
Q=L0C(C) I A, B, and C become associated
* An integer pointer variable that appears as a dummy argument is assigned the
address of another dummy argument or member of a common block:

POINTER (P,A)
CALL SUB (P,B)

SUBROUTINE SUB (P,X)
POINTER (P,Y)
P=LOC (X) ! Main program variables A
I and B become associated.

| End of IBM Extension

Program units, procedures, and subprograms

A program unit is a sequence of one or more lines, organized as statements,
comments, and directives. Specifically, a program unit can be:

* The main program

* A module

* Ablock data program unit

* An external function subprogram

* An external subroutine subprogram

An executable program is a collection of program units consisting of one main
program and any number of external subprograms, modules, and block data
program units.

A subprogram can be invoked by a main program or by another subprogram to
perform a particular activity. When a procedure is invoked, the referenced
subprogram is executed.

An external or module subprogram can contain multiple ENTRY statements. The

subprogram defines a procedure for the SUBROUTINE or FUNCTION statement,
as well as one procedure for each ENTRY statement.

154 XL Fortran Language Reference

An external procedure is defined either by an external subprogram or by a
program unit in a programming language other than Fortran.

Main programs, external procedures, block data program units, common blocks,
entities with binding labels, and modules are global entities. Internal and module
procedures are local entities.

Internal procedures

External subprograms, module subprograms, and main programs can have internal
subprograms, whether the internal subprograms are functions or subroutines, as
long as the internal subprograms follow the CONTAINS statement.

An internal procedure is defined by an internal subprogram. Internal subprograms
cannot appear in other internal subprograms. A module procedure is defined by a
module subprogram or an entry in a module subprogram. Internal procedures and
module procedures are the same as external procedures except that:

* The name of the internal procedure or module procedure is not a global entity
* An internal subprogram must not contain an ENTRY statement

* The internal procedure name must not be an argument associated with a
dummy procedure

* The internal subprogram or module subprogram has access to host entities by
host association

| Fortran 2003 |

* The BIND attribute is not allowed on an internal procedure

| End of Fortran 2003 |

Chapter 8. Program units and procedures 155

Migration Tip:

Turn your external procedures into internal subprograms or put them into modules. The
explicit interface provides type checking.

FORTRAN 77 source

PROGRAM MAIN
INTEGER A
A=58
CALL SUB(A) I C must be passed
END
SUBROUTINE SUB(A)
INTEGER A,B,C ! A must be redeclared
C=A+B
END

Fortran 90/95/2003 source:

PROGRAM MAIN
INTEGER :: A=58
CALL SUB
CONTAINS
SUBROUTINE SUB
INTEGER B,C
C=A+B I A is accessible by host association
END SUBROUTINE
END

Interface concepts

The interface of a procedure determines the form of the procedure reference. The
interface consists of:

* The characteristics of the procedure

¢ The name of the procedure

¢ The name and characteristics of each dummy argument
* The generic identifiers of the procedure, if any

The characteristics of a procedure:
* Distinguishing the procedure as a subroutine or a function

* Distinguishing each dummy argument either as a data object, dummy
procedure, or alternate return specifier

The characteristics of a dummy data object are its declared type, type parameters
(if any), shape, intent, whether it is optional, allocatable, p Fzo03 | polymorphic,

a pointer, a target, or has the p 2003 | [VALUE|[2003 4 attribute. Any
dependence on other objects for type parameter or array bound determination is
a characteristic. If a shape, size, or character length is assumed, it is a
characteristic.

The characteristics of a dummy procedure are the explicitness of its interface, its
procedure characteristics (if the interface is explicit), and whether it is optional.

* If the procedure is a function, it specifies the characteristics of the result value,
specifically:
— Declared type
— Any type parameters
— Rank

156 XL Fortran Language Reference

— Whether the result value is a pointer
— Whether the result value is allocatable.

- Whether the result value is polymorphic r2003 4

For nonpointer, nonallocatable array results, its shape is a characteristic. Any
dependence on other objects for type parameters or array bound determination
is a characteristic. If the length of a character object is assumed, this is a
characteristic.

* Determine whether the procedures is [PURE| or [ELEMENTAL}

* Determine whether procedure has the |BIND] attribute.

If a procedure is accessible in a scoping unit, it has an interface that is either
explicit or implicit in that scoping unit. The rules are:

Entity Interface

Dummy procedure Explicit in a scoping unit if an interface block exists or
is accessible, or if an explicit interface is specified by a
PROCEDURE declaration statement. Implicit in all
other cases.

External subprogram Explicit in a scoping unit other than its own if an
interface block exists or is accessible, or if an explicit
interface is specified by a PROCEDURE declaration
statement. Implicit in all other cases.

Recursive procedure with a result | Explicit in the subprogram’s own scoping unit.
clause

Module procedure Always explicit.
Internal procedure Always explicit.
Generic procedure Always explicit.
Intrinsic procedure Always explicit.
Statement function Always implicit.

Internal subprograms cannot appear in an interface block or in a PROCEDURE
declaration statement.

A procedure must not have more than one accessible interface in a scoping unit.

The interface of a statement function cannot be specified in an interface block or in
a PROCEDURE declaration statement.

Explicit interface
A procedure must have an explicit interface in any of the following cases:

1. A reference to the procedure appears
* with an argument keyword
* as a defined assignment (for subroutines only)
* in an expression as a defined operator (for functions only)
* as a reference by its generic name
. in a context that requires it to be pure
2. The procedure has
* a dummy argument that has the p F2003 JJALLOCATABLE) [F2003 4
[OPTIONAL)} [POINTER| [TARGET] or f rze03 | [VALUE|[Fz003 4 attributes.

. a dummy argument that is polymorphic_r2003 4

Chapter 8. Program units and procedures 157

an array-valued result (for functions only)

a result whose length type parameter is neither assumed nor constant (for
character functions only)

a pointer or allocatable result (for functions only)

a dummy argument that is an assumed-shape array

3. The procedure is elemental.
4. The procedure has the j Fao0s JBIND} Fa003 q attribute.

Implicit interface
A procedure has an implicit interface if its interface is not fully known; that is, it
has no explicit interface.

Interface blocks

The interface block allows you to specify an explicit interface for external and
dummy procedures. You can also use an interface block to define generic
identifiers. An interface body in an interface block contains the explicit specific
interface for an existing external procedure or dummy procedure. You can also
specify the interface for a procedure using a procedure statement.

»»>—INTERFACE_statement

v

\4
A

>

SUBROUTINE_interface_body—

|EFUNCTI ON_interface_body—
PROCEDURE_statement

»»—FEND INTERFACE statement ><

INTERFACE_statement

See ['INTERFACE” on page 389| for syntax details

END_INTERFACE_statement

See ["END INTERFACE” on page 339 for syntax details

PROCEDURE_statement

See |'PROCEDURE” on page 418 for syntax details

FUNCTION interface_body

158 XL Fortran Language Reference

»>—FUNCTION_statement

A\
A

[
>p

l—specification_part—l

»»—end function_statement ><

SUBROUTINE _interface_body

»>—SUBROUTINE_statement >
I—spez:ification_part—|
»—end_subroutine_statement ><

FUNCTION statement, SUBROUTINE_statement
For syntax details, see ["FUNCTION” on page 362 and [“SUBROUTINE” on|
|o age 453,

specification_part
is a sequence of statements from the statement groups numbered H H
and [in[‘Order of statements and execution sequence” on page 14

end_function_statement, end_subroutine_statement
For syntax details of both statements, see ['END” on page 335

In an interface body or with a procedure declaration statement, you specify all the
characteristics of the procedure or abstract interface. See [“Interface concepts” on|
The characteristics must be consistent with those specified in the
subprogram definition, except that:

1. dummy argument names may be different.

2. you do not have to indicate that a procedure is pure, even if the subprogram
that defines it is pure.

3. you can associate a pure actual argument with a dummy procedure that is not
pure.

4. when you associate an intrinsic elemental procedure with a dummy procedure,
the dummy procedure does not have to be elemental

The specification_part of an interface body can contain statements that specify
attributes or define values for data objects that do not determine characteristics of
the procedure. Such specification statements have no effect on the interface.
Interface blocks do not specify the characteristics of module procedures, whose
characteristics are defined in the module subprogram definitions.

Chapter 8. Program units and procedures 159

An interface body cannot contain ENTRY statements, DATA statements, FORMAT
statements, statement function statements, or executable statements. You can
specify an entry interface by using the entry name as the procedure name in an
interface body.

An interface body does not access named entities by host association unless you
specify the Wllmm statement. It is treated as if it had a host
with the default implicit rules. See |[“Determining Type” on page 17| for a discussion
of the implicit rules.

An interface block can be abstract, generic or specific. A generic interface block
must specify a generic specification in the INTERFACE statement, while an
abstract or specific interface block must not specify such a generic specification.
See ['INTERFACE” on page 389| for details.

The interface bodies within an abstract or specific interface block can contain
interfaces for both subroutines and functions.

A generic name specifies a single name to reference all of the procedures in the
interface block. At most, one specific procedure is invoked each time there is a
procedure reference with a generic name.

The PROCEDURE statement is allowed only if the interface block has a generic
specification and is contained in a scoping unit where each procedure name is
accessible.

A procedure name used in a PROCEDURE statement must not have been
previously specified in any MODULE PROCEDURE statement in any accessible
interface block with the same generic identifier.

| IBM Extension

For an interface to a non-Fortran subprogram, the dummy argument list in the
FUNCTION or SUBROUTINE statement can explicitly specify the passing
method. See ['Dummy arguments” on page 182| for details.

| End of IBM Extension

Example of an interface block

MODULE M
CONTAINS
SUBROUTINE S1(IARG)
IARG = 1
END SUBROUTINE S1
SUBROUTINE S2(RARG)
RARG = 1.1
END SUBROUTINE S2
SUBROUTINE S3(LARG)
LOGICAL LARG

LARG = .TRUE.
END SUBROUTINE S3
END
USE M

INTERFACE SS
SUBROUTINE SS1(IARG,JARG)
END SUBROUTINE
MODULE PROCEDURE S1,S2,S3

160 XL Fortran Language Reference

END INTERFACE

CALL SS(II) I Calls subroutine S1 from M
CALL SS(I,J) I Calls subroutine SS1

END

SUBROUTINE SS1(IARG,JARG)
IARG = 2
JARG = 3

END SUBROUTINE

You can always reference a procedure through its specific interface. If a generic
interface exists for a procedure, the procedure can also be referenced through the
generic interface.

Within an interface body, if a dummy argument is intended to be a dummy
procedure, it must have the EXTERNAL attribute or there must be an interface for
the dummy argument.

Generic interface blocks

In an INTERFACE statement, a generic interface block must specify one of the
following:

° a generic name
* defined operator
* defined assignment

. a derived-type input/output generic specification

The generic name is a single name with which to reference all of the procedures
specified in the interface block. It can be the same as any accessible generic name,
or any of the procedure names in the interface block.

If two or more generic interfaces that are accessible in a scoping unit have the
same local name, they are interpreted as a single generic interface.

Unambiguous generic procedure references

When making a reference to a generic procedure, only one specific procedure is
invoked. This section includes rules that ensure a generic reference is
unambiguous.

If two procedures in the same scoping unit both define assignment or both have
the same defined operator and the same number of arguments, you must specify a
dummy argument that corresponds by position in the argument list to a dummy
argument of the other that is distinguishable from: it. Two dummy
arguments are distinguishable if neither is a subroutine and neither is

[TKR-compatible| with the other.

Within a scoping unit, if two procedures have the same dtio_generic_spec, their dtv
arguments must be type-incompatible or have different kind type parameters. (For
information on dtio_generic_spec specifications and the dfv argument, see
[“User-defined derived-type Input/Output procedure interfaces” on page 210).

Within a scoping unit, two procedures that have the same generic name must both
be subroutines or both be functions. They must also adhere to the following
conditions:

1. One of the procedures contains a non-passed-object dummy argument such
that:

Chapter 8. Program units and procedures 161

a. the number of dummy arguments in one procedure that are nonoptional,
not passed-object, and with which the dummy argument is TKR-compatible,
possibly including the dummy argument itself, exceeds

b. the number of non-passed-object dummy arguments, both optional and
nonoptional, in the other procedure that are not distinguishable from the
dummy argument.

2. Both procedures have passed-object dummy arguments, which are
distinguishable.

3. At least one of the procedures has both:

a. a nonoptional non-passed-object dummy argument at an effective position
such that either the other procedure has no dummy argument at that
effective position or the dummy argument at that position is distinguishable
from it

b. a nonoptional non-passed-object dummy argument whose name is such that
either the other procedure has no dummy argument with that name or the
dummy argument with that name is distinguishable from it.

The dummy argument that disambiguates by position must either be the same as,
or occur earlier in the argument list than, the one that disambiguates by name.

The effective position of a dummy argument is its position in the argument list
after any passed-object dummy argument has been removed.

When an interface block extends an intrinsic procedure, the rules in this section
apply as if the intrinsic procedure consists of a collection of specific procedures,
one procedure for each allowed set of arguments.

| IBM Extension |

Notes:

1. Dummy arguments of type BYTE are considered to have the same type as
corresponding 1-byte dummy arguments of type INTEGER(1), LOGICAL(1),
and character.

2. When the -qintlog compiler option is specified, dummy arguments of type
integer and logical are considered to have the same type as corresponding
dummy arguments of type integer and logical with the same kind type
parameter.

3. If the dummy argument is only declared with the EXTERNAL attribute within
an interface body, the dummy argument must be the only dummy argument
corresponding by position to a procedure, and it must be the only dummy
argument corresponding by argument keyword to a procedure.

| End of IBM Extension |

Example of a generic interface block

PROGRAM MAIN
INTERFACE A
FUNCTION AI(X)
INTEGER AI, X
END FUNCTION AI
END INTERFACE
INTERFACE A
FUNCTION AR(X)
REAL AR, X
END FUNCTION AR
END INTERFACE

162 XL Fortran Language Reference

INTERFACE FUNC
FUNCTION FUNC1(I, EXT) ! Here, EXT is a procedure
INTEGER I
EXTERNAL EXT
END FUNCTION FUNC1
FUNCTION FUNC2(EXT, I)
INTEGER I
REAL EXT ! Here, EXT is a variable
END FUNCTION FUNC2
END INTERFACE
EXTERNAL MYFUNC

IRESULT=A(INTVAL) ! Call to function AI
RRESULT=A(REALVAL) ! Call to function AR
RESULT=FUNC (1,MYFUNC) I Call to function FUNC1

END PROGRAM MAIN

Extending intrinsic procedures with generic interface blocks

A generic intrinsic procedure can be extended or redefined. An extended intrinsic
procedure supplements the existing specific intrinsic procedures. A redefined
intrinsic procedure replaces an existing specific intrinsic procedure.

When a generic name is the same as a generic intrinsic procedure name and the
name has the INTRINSIC attribute (or appears in an intrinsic context), the generic
interface extends the generic intrinsic procedure.

When a generic name is the same as a generic intrinsic procedure name and the
name does not have the INTRINSIC attribute (nor appears in an intrinsic context),
the generic interface can redefine the generic intrinsic procedure.

A generic interface name cannot be the same as a specific intrinsic procedure name
if the name has the INTRINSIC attribute (or appears in an intrinsic context).

Example of extending and redefining intrinsic procedures

PROGRAM MAIN
INTRINSIC MAX
INTERFACE MAX | Extension to intrinsic MAX
FUNCTION MAXCHAR(STRING)
CHARACTER(50) STRING
END FUNCTION MAXCHAR
END INTERFACE

INTERFACE ABS ! Redefines generic ABS as
FUNCTION MYABS(ARG) ! ABS does not appear in
REAL(8) MYABS, ARG ! an INTRINSIC statement

END FUNCTION MYABS
END INTERFACE
REAL(8) DARG, DANS
REAL(4) RANS
INTEGER IANS,IARG
CHARACTER(50) NAME

DANS = ABS(DARG) ! Calls external MYABS

= 1
IANS = ABS(IARG) ! Calls intrinsic IABS
DANS = DABS (DARG) I Calls intrinsic DABS
IANS = MAX (NAME) I Calls external MAXCHAR
RANS = MAX(1.0,2.0) I Calls intrinsic AMAX1

END PROGRAM MAIN

Defined operators

A defined operator is a user-defined unary or binary operator, or an extended
intrinsic operator (see [“Extended intrinsic and defined operations” on page 106). It
must be defined by both a function and a generic interface block.

1. To define the unary operation op x;:

Chapter 8. Program units and procedures 163

a. A function or entry must exist that specifies exactly one dummy argument,

d 1 .
| Fortran 2003 |
b. Either:

1) the generic_spec in an INTERFACE statement specifies OPERATOR

(op), or

2) there is a generic binding in the declared type of x1 with a generic_spec
of OPERATOR(op) and there is a corresponding binding to the
function in the dynamic type of x1.

| End of Fortran 2003 |

c. The dynamic type of x; is compatible with the type of the dummy
argument d;.

d. The type parameters, if any, of x; must match those of d,.

e. Either
e The function is ELEMENTAL, or
* The rank of x;, and its shape, if it is an array, match those of 4,

2. To define the binary operation x; op x,:
a. The function is specified with a FUNCTION or ENTRY statement that
specifies two dummy arguments, d, and d,.

| Fortran 2003 |

b. Either:
1) the generic_spec in an INTERFACE block specifies OPERATOR (op), or
2) there is a generic binding in the declared type of x1 or x2 with a
generic_spec of OPERATOR(op) and there is a corresponding binding to
the function in the dynamic type of x1 or x2, respectively.

| End of Fortran 2003 |

c. The dynamic types of x, and x, are compatible with the types of the
dummy arguments d; and d,, respectively.

d. The type parameters, if any, of x; and x, match those of 4, and d,,
respectively.

e. Either:
* The function is ELEMENTAL and x, and x, are conformable or,
¢ The ranks of x; and x, and their shapes, if either or both are arrays,

match those of d; and d,, respectively.

3. If op is an intrinsic operator, the types or ranks of either x; or x, are not those
required for an intrinsic operation.

4. The generic_spec must not specify OPERATOR for functions with no
arguments or for functions with more than two arguments.

5. Each argument must be nonoptional.
6. The arguments must be specified with INTENT(IN).

7. Each function specified in the interface cannot have a result of assumed
character length.

8. If the operator specified is an intrinsic operator, the number of function
arguments must be consistent with the intrinsic uses of that operator.

9. A given defined operator can, as with generic names, apply to more than one
function, in which case it is generic just like generic procedure names. For
intrinsic operator symbols, the generic properties include the intrinsic

164 XL Fortran Language Reference

operations they represent.

IBM Extension |

10. The following rules apply only to extended intrinsic operations:

a. The type of one of the arguments can only be of type BYTE when the type
of the other argument is of derived type.

b. When the -qintlog compiler option has been specified for non-character
operations, and 4, is numeric or logical, then d, must not be numeric or
logical.

c. When the -qctyplss compiler option has been specified for non-character
operations, if x; is numeric or logical and x, is a character constant, the
intrinsic operation is performed.

End of IBM Extension |

Exa

mple of a defined operator

INTERFACE OPERATOR (.DETERMINANT.)
FUNCTION IDETERMINANT (ARRAY)

I

NTEGER, INTENT(IN), DIMENSION (:,:) :: ARRAY
INTEGER IDETERMINANT

END FUNCTION

END
END

INTERFACE

Defined assignment

A de
side

fined assignment is treated as a reference to a subroutine, with the left-hand
as the first argument and the right-hand side enclosed in parentheses as the

second argument.

1. To define the defined assignment x; = x,:

a.

The subroutine is specified with a SUBROUTINE or ENTRY statement that
specifies two dummy arguments, d, and d,.

Fortran 2003 |

Either:
1) the generic_spec of an interface block specifies ASSIGNMENT (=), or

2) there is a generic binding in the declared type of xI or x2 with a
generic_spec of ASSIGNMENT(=) and there is a corresponding binding
to the subroutine in the dynamic type of xI or x2, respectively.

End of Fortran 2003 |

The dynamic types of x; and x, are compatible with the types of dummy

arguments d; and d,, respectively.

The type parameters, if any, of x; and x, match those of d; and d,,

respectively.

Either:

* The subroutine is ELEMENTAL and either x, and x, have the same
shape, x, is scalar, or

* The ranks of x; and x,, and their shapes, if either or both are arrays,
match those of d, and d,, respectively.

2. ASSIGNMENT must only be used for subroutines with exactly two arguments.

3. Each argument must be nonoptional.

Chapter 8. Program units and procedures 165

4. The first argument must have INTENT(OUT) or INTENT(INOUT), and the
second argument must have INTENT(IN).

5. The types of the arguments must not be both numeric, both logical, or both
character with the same kind parameter.

IBM Extension |

The type of one of the arguments can only be of type BYTE when the type of
the other argument is of derived type.

When the -qintlog compiler option has been specified, and d; is numeric or
logical, then d, must not be numeric or logical.

When the -qctyplss compiler option has been specified, if x; is numeric or
logical and x, is a character constant, intrinsic assignment is performed.

| End of IBM Extension |

6. The ASSIGNMENT generic specification specifies that the assignment
operation is extended or redefined if both sides of the equal sign are of the
same derived type.

Example of defined assignment

INTERFACE ASSIGNMENT (=)
SUBROUTINE BIT_TO_NUMERIC (N,B)
INTEGER, INTENT(OUT) :: N
LOGICAL, INTENT(IN), DIMENSION(:) :: B
END SUBROUTINE
END INTERFACE

User-defined derived-type Input/Output procedures

| Fortran 2003 |

[User-defined derived-type input/output procedures|allow a program to override
the default handling of derived-type objects and values in data transfer
input/output statements.

There are four one each for formatted input, formatted output,
unformatted input, and unformatted output which specify the characteristics of the
four procedures. The four interfaces use a dfv type specification, or dtv_type_spec.
The syntax for the dtv_type_spec is as follows:

TYPE (—derived_type_spec—)
CLASS

Y
A

If derived_type_spec specifies an extensible type, use the CLASS keyword;
otherwise, use the TYPE keyword.

The following table shows the required characteristics of the user-defined

procedures for each of the four dtio_generic_spec specifications of the interface block
or generic binding:

166 XL Fortran Language Reference

Table 17. Interfaces for user-defined derived-type input/output procedures

dtio_generic_spec Interface

READ (FORMATTED) SUBROUTINE my read_routine_formatted &
(dtv, &
unit, &

iotype, v_list, &

jostat, iomsg)

INTEGER, INTENT(IN) :: unit ! unit number
! the derived-type value/variable
dtv_type spec , INTENT(INOUT) :: dtv

! the edit descriptor string

CHARACTER (LEN=*), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_Tist(:)

INTEGER, INTENT(OUT) :: iostat

CHARACTER (LEN=%), INTENT(INOUT) :: iomsg
END

READ (UNFORMATTED)

SUBROUTINE my_read_routine_unformatted &
(dtv, &

unit, &

jostat, iomsg)

INTEGER, INTENT(IN) :: unit

! the derived-type value/variable
dtv_type spec , INTENT(INOUT) :: dtv
INTEGER, INTENT(OUT) :: iostat

CHARACTER (LEN=+*), INTENT(INOUT) :: iomsg
END

WRITE (FORMATTED)

SUBROUTINE my write_routine_formatted &
(dtv, &

unit, &

iotype, v_list, &

jostat, iomsg)

INTEGER, INTENT(IN) :: unit

! the derived-type value/variable
dtv_type_spec , INTENT(IN) :: dtv

! the edit descriptor string

CHARACTER (LEN=+), INTENT(IN) :: iotype
INTEGER, INTENT(IN) :: v_Tist(:)
INTEGER, INTENT(OUT) :: iostat
CHARACTER (LEN=*), INTENT(INOUT) :: iomsg
END

WRITE (UNFORMATTED)

SUBROUTINE my_write_routine_unformatted &
(dtv, &

unit, &

jostat, iomsg)

INTEGER, INTENT(IN) :: unit

! the derived-type value/variable
dtv_type_spec , INTENT(IN) :: dtv
INTEGER, INTENT(OUT) :: iostat

CHARACTER (LEN=*), INTENT(INOUT) :: jomsg
END

Note: The actual specific procedure names (the my ... routine ... procedure
names above) are not significant. In the discussion here and elsewhere, the
dummy arguments in these interfaces are referred by the names given

above; the names are, however, arbitrary.

The following are the characteristics of the arguments:

Chapter 8. Program units and procedures

dtv

If the parent data transfer statement is a READ statement, dtv is the
argument associated with the effective list item that caused the
user-defined derived-type input procedure to be invoked, as if the effective
list item were an actual argument in this procedure reference. If the parent
data transfer statement is a WRITE or PRINT statement, dtv contains the
effective list item.

unit When you invoke a user-defined derived-type input/output procedure,
unit has a value as follows:

* If the parent data transfer statement uses a file-unit-number, the value is
that of the file-unit-number.

* If the parent data transfer statement is a WRITE statement with an
asterisk unit or a PRINT statement, the value is the same as that of the
OUTPUT_UNIT named constant of the ISO_FORTRAN_ENYV intrinsic
module.

e If the parent data transfer statement is a READ statement with an
asterisk unit or a READ statement without an io-control-spec-list, the
value is the same as that of the INPUT_UNIT named constant of the
ISO_FORTRAN_ENYV intrinsic module.

* Otherwise the parent data transfer statement must access an internal file.
In this case the value is negative.
iotype For formatted data transfer, iotype has a value as follows:

* "LISTDIRECTED" if the parent data transfer statement specified list
directed formatting

¢ "NAMELIST" if the parent data transfer statement specified namelist
formatting

* "DT" concatenated with the char-literal-constant, if any, of the edit
descriptor, if the parent data transfer statement contained a format
specification and the list item’s corresponding edit descriptor was a DT
edit descriptor.

v_list For formatted data transfer, v_list has values as follows:

¢ If the v-list of the edit descriptor appears in the parent data transfer
statement, v_list contains the values specified in v-list, with the same
number of elements, in the same order.

* If there is no v-list in the edit descriptor or if the data transfer statement
specifies list-directed or namelist formatting, v_ list is a zero-sized array.
iostat is used to report whether an error, end-of-record, or end-of-file condition
occurs. Values are assigned to iostat as follows:
 If an error condition occurs, the value is positive.

e If an end-of-file condition occurs, the value is that of the named constant
IOSTAT_END.

e If an end-of-record condition occurs, the value is that of the named
constant IOSTAT_EOR.

e Otherwise, the value is zero.

iomsg If the iostat argument returns a nonzero value, the procedure returns an
explanatory message in iomsg. Otherwise, the procedure does not change
the value of the iomsg argument.

End of Fortran 2003

168 XL Fortran Language Reference

Abstract interface

| Fortran 2003

An abstract interface allows you to specify procedure characteristics and dummy
argument names without declaring a procedure with those characteristics. You can
use an abstract interface to declare interfaces for procedures and deferred bindings.
The procedure names defined in an abstract interface block do not have an
EXTERNAL attribute.

»»—/ABSTRACT _INTERFACE_statement

A\
A

v

|EF UNCTION_ interface_body—

SUBROUTINE_interface_body—
PROCEDURE_statement

»>—FND ABSTRACT _INTERFACE_statement ><

ABSTRACT_INTERFACE_statement
See [“ABSTRACT” on page 273 for syntax details

FUNCTION _interface_body
See [“Interface blocks” on page 158|for syntax details

SUBROUTINE_interface_body
See |“Interface blocks” on page 158| for syntax details

PROCEDURE_statement
See |'PROCEDURE” on page 418| for syntax details

END_ABSTRACT_INTERFACE_statement
See ['END INTERFACE” on page 339 for syntax details

For more information see:
+ PROCEDURE declaration ["PROCEDURE declaration” on page 419|

* external procedures [“Program units, procedures, and subprograms” on page 154

* dummy procedures [‘Procedures as dummy arguments” on page 192|

* module procedures [‘“Modules” on page 171]

Example of an abstract interface

MODULE M
ABSTRACT INTERFACE
SUBROUTINE SUB(X,Y)
INTEGER ,INTENT(IN)::X
INTEGER ,INTENT(IN)::Y
END SUBROUTINE
END INTERFACE
END MODULE

PROGRAM MAIN

Chapter 8. Program units and procedures 169

USE M

PROCEDURE (SUB) SUB1
PROCEDURE (SUB), POINTER::P
P=>SUB1

CALL P(5,10)

END PROGRAM

SUBROUTINE SUB1 (X,Y)

INTEGER ,INTENT(IN)::X

INTEGER ,INTENT(IN)::Y

PRINT*, "The sum of X and Y is: ", X + Y
END SUBROUTINE

| End of Fortran 2003

Main program

A main program is the program unit that receives control from the system when
the executable program is invoked at run time.

A\

v
A

|—PROGRAM_s tatemen t—l

A4
v
A

l—specification_part—l

I—execution_part—|

y

l—internal_subprogram_part—l

»»>—FEND PROGRAM statement ><

PROGRAM._statement
See 'PROGRAM” on page 422| for syntax details

specification_part
is a sequence of statements from the statement groups numbered

], [, and B in[‘Order of statements and execution sequence’]
on page 14

execution_part is a sequence of statements from the statement groups numbered
and [in[‘Order of statements and execution sequence” on|
age 14|and which must begin with a statement from statement
group

internal_subprogram_part
See [“Internal procedures” on page 155| for details

END_PROGRAM_statement
See ['END” on page 335| for syntax details

170 XL Fortran Language Reference

A main program cannot contain an ENTRY statement, nor can it specify an
automatic object.

| IBM Extension |

ARETURN] statement can appear in a main program. The execution of a RETURN
statement has the same effect as the execution of an statement.

| End of IBM Extension |

Modules

A module contains specifications and definitions that can be accessed from other
program units. These definitions include data object definitions, namelist groups,
derived-type definitions, procedure interface blocks and procedure definitions.

| Fortran 2003 |

There are two types of modules, intrinsic and nonintrinsic. XL Fortran provides
intrinsic modules, while nonintrinsic modules are user-defined.

An intrinsic module can have the same name as other global entities, such as
program units, common blocks, external procedures, critical sections, or binding
labels of global entities. A scoping unit must not access both an intrinsic module
and a non-intrinsic module with the same name.

| End of Fortran 2003 |

| IBM Extension |

Modules define global data, which, like COMMON data, is shared across threads
and is therefore thread-unsafe. To make an application thread-safe, you must
declare the global data as THREADPRIVATE or THREADLOCAL. See
“COMMON” on page 303)[THREADLOCAL] and [THREADPRIVATH in the
Fortran Optimization and Programming Guide| for more information.

| End of IBM Extension |

A\
A

»>—MODULE_statement

y
v
A

l—specification_part—l

|—module_subprogram _part—|

»>—END_MODULE_statement ><

MODULE_statement
See |'MODULE” on page 397 for syntax details

Chapter 8. Program units and procedures 171

specification_part
is a sequence of statements from the statement groups numbered

], [, and B in[‘Order of statements and execution sequence”]
on page 14

module_subprogram_part:

»>—CONTAINS_statement ><

»»—Y module_subprogranm >

CONTAINS_statement
See [“CONTAINS” on page 312 for syntax details

END_MODULE_statement
See |'END” on page 335| for syntax details

A module subprogram is contained in a module but is not an internal subprogram.
Module subprograms must follow a CONTAINS statement, and can contain
internal procedures. A module procedure is defined by a module subprogram or
an entry in a module subprogram.

Executable statements within a module can only be specified in module
subprograms.

The declaration of a module function name of type character cannot have an
asterisk as a length specification.

specification_part cannot contain statement function statements, ENTRY statements,
or FORMAT statements, although these statements can appear in the specification
part of a module subprogram.

Automatic objects and objects with the AUTOMATIC attribute cannot appear in
the scope of a module.

An accessible module procedure can be invoked by another subprogram in the
module or by any scoping unit outside the module through use association (that is,
by using the USE statement). See [‘USE” on page 468 for details.

| IBM Extension |

Integer pointers cannot appear in specification_part if the pointee specifies a
dimension declarator with nonconstant bounds.

All objects in the scope of a module retain their association status, allocation status,
definition status, and value when any procedure that accesses the module through
use association executes a RETURN or END statement. See point 4 under
[causing undefinition” on page 23| for more information.

| End of IBM Extension |

172 XL Fortran Language Reference

A module is a host to any module procedures, interface blocks, or derived-type
definitions it contains, which can access entities in the scope of the module
through host association.

A module procedure can be used as an actual argument associated with a dummy
procedure argument.

The name of a module procedure is local to the scope of the module and cannot be
the same as the name of any entity in the module, except for a common block
name.

Migration Tips:
* Eliminate common blocks and INCLUDE directives

» Use modules to hold global data and procedures to ensure consistency of definitions

FORTRAN 77 source:

COMMON /BLOCK/A, B, C, NAME, NUMBER
REAL A, B, C
A=3
CALL CALLUP(D)
PRINT *, NAME, NUMBER
END
SUBROUTINE CALLUP (PARM)
COMMON /BLOCK/A, B, C, NAME, NUMBER

REAL A, B, C

NAME = 3

NUMBER = 4
END

Fortran 90/95/2003 source:
MODULE FUNCS

REAL A, B, C I Common block no longer needed
INTEGER NAME, NUMBER ! Global data
CONTAINS
SUBROUTINE CALLUP (PARM)
NAME = 3
NUMBER = 4

END SUBROUTINE
END MODULE FUNCS
PROGRAM MAIN
USE FUNCS
A=3
CALL CALLUP(D)
PRINT *, NAME, NUMBER
END

Example of a module

MODULE M
INTEGER SOME_DATA
CONTAINS
SUBROUTINE SUB() ! Module subprogram
INTEGER STMTFNC
STMTFNC(I) =1 + 1
SOME_DATA = STMTFNC(5) + INNER(3)
CONTAINS
INTEGER FUNCTION INNER(IARG) I Internal subprogram
INNER = IARG * 2
END FUNCTION

Chapter 8. Program units and procedures 173

END SUBROUTINE SUB

END MODULE

PROGRAM MAIN
USE M ! Main program accesses
CALL SUB() I module M

END PROGRAM

Block data program unit

A block data program unit provides initial values for objects in named common
blocks.

»>—BLOCK_DATA_statement

\4
A

A\
A

>
>

l—specification_part—l

»»—FEND BLOCK DATA statement ><

BLOCK_DATA _statement
See |'BLOCK DATA” on page 286| for syntax details

specification_part
is a sequence of statements from the statement groups numbered

], [, and B in[‘Order of statements and execution sequence’]
on page 14

END_BLOCK_DATA_statement
See ["END” on page 335| for syntax details

In specification_part, you can specify type declaration,USE, IMPLICIT, COMMON,
DATA, EQUIVALENCE, and integer pointer statements, derived-type definitions,
and the allowable attribute specification statements. The only attributes that can be
specified are: p_r2003 | BIND[F2003 4, DIMENSION, INTRINSIC, PARAMETER,
POINTER, SAVE, TARGET, and ASYNCHRONOUS[2003 4.

A type declaration statement in a block data specification-part must not contain
ALLOCATABLE or EXTERNAL attribute specifiers.

You can have more than one block data program unit in an executable program,
but only one can be unnamed. You can also initialize multiple named common
blocks in a block data program unit.

Restrictions on common blocks in block data program units are:

* All items in a named common block must appear in the COMMON statement,
even if they are not all initialized.

¢ The same named common block must not be referenced in two different block
data program units.

¢ Only nonpointer objects in named common blocks can be initialized in block
data program units.

* Objects in blank common blocks cannot be initialized.

174 XL Fortran Language Reference

Example of a block data program unit

PROGRAM MAIN
COMMON /L3/ C, X(10)
COMMON /L4/ Y(5)
END PROGRAM
BLOCK DATA BDATA
COMMON /L3/ C, X(10)
DATA C, X /1.0, 10%2.0/ ! Initializing common block L3
END BLOCK DATA

BLOCK DATA I An unnamed block data program unit
PARAMETER (Z=10)
DIMENSION Y(5)
COMMON /L4/ Y
DATA Y /5*Z/
END BLOCK DATA

Function and subroutine subprograms

A subprogram is either a function or a subroutine, and is either an internal,
external, or module subprogram. You can also specify a function in a statement
function statement. An external subprogram is a program unit.

A\
A

»>—subprogram_statement

v
\
A\
A

l—specification_part—l

y
v
A

|—execution_par‘tJ

v

l—internal_subprogram_part—l

»>—end_subprogram_statement ><

subprogram_statement
See ['FUNCTION” on page 362| or ['SUBROUTINE” on page 453| for
syntax details

specification_part
is a sequence of statements from the statement groups numbered

], [} and B in[‘Order of statements and execution sequence”|
on page 14

execution_part is a sequence of statements from the statement groups numbered
[] and [in[‘Order of statements and execution sequence” on|
and which must begin with a statement from statement
group [J

internal_subprogram_part
See [“Internal procedures” on page 155| for details

Chapter 8. Program units and procedures 175

end_subprogram_statement
See |"END” on page 335| for syntax details on the END statement
for functions and subroutines

An internal subprogram is declared after the CONTAINS statement in the main
program, a module subprogram, or an external subprogram, but before the END
statement of the host program. The name of an internal subprogram must not be
defined in the specification section in the host scoping unit.

An external procedure has global scope with respect to the executable program. In
the calling program unit, you can specify the interface to an external procedure in
an interface block or you can define the external procedure name with the
EXTERNAL attribute.

A subprogram can contain any statement except [PROGRAM| [BLOCK DATA|and
MODULE] statements. An internal subprogram cannot contain an ENTRY

statement or an internal subprogram.

Declaring procedures
An [EXTERNAL|statement, PROCEDURE]| declaration statement, or a procedure

component definition statement can be used to declare a procedure.

An [EXTERNAL] statement declares external procedures and dummy procedures.
See ["EXTERNAL” on page 352

A [PROCEDURE] declaration statement declares procedure pointers, dummy

procedures, and external procedures. For further information on the PROCEDURE
declaration statement, see ["PROCEDURE declaration” on page 419

A procedure component definition statement declares procedure pointer
components of a derived type definition. See [“Procedure pointer component” on|
‘ae 56.

Procedure pointers

| Fortran 2003

A procedure pointer is a procedure that has the [EXTERNAL]and [POINTER|
attribute. A derived type component which has been declared with the
ROCEDURE] statement can be a procedure pointer.

A procedure pointer points at a procedure rather than a data object. A procedure
pointer can be associated in the same way as a dummy procedure with an external
procedure, a module procedure, an intrinsic procedure, or a dummy procedure
that is not a procedure pointer. Procedure pointers can have both an explicit and
implicit interface, can be structure components and associated using

[pointer assignment]

A dummy procedure with the pointer attribute is a dummy procedure pointer and
its associated actual argument is a procedure pointer.

A procedure pointer shall be storage associated only with another procedure
pointer; either both interfaces shall be explicit (the characteristics are the same) or
both interfaces shall be implicit (both interfaces will be functions or subroutines
with the same type and type parameters).

176 XL Fortran Language Reference

Although both [type-bound procedures| and procedure pointer components are

invoked through an object, the type-bound procedure which is executed depends
upon the type of the invoking object whereas procedure pointer components

depend upon the value. The PASS attribute defines the [passed-object dummy]|

ecument| of the procedure pointer component

Example of procedure pointer declaration:
PROCEDURE(PROC), POINTER :: PTR

Procedure references

There are two types of procedure references:

End of Fortran 2003

* A subroutine is invoked by any of the following:

execution of a|CALL|statement

execution of a defined assignment statement

user-defined derived-type input/output
execution of finalization

A function is invoked during evaluation of a function reference or defined
operation.

Function reference
A function reference is used as a primary in an expression:

-

data_ref—separator— binding_name

procedure_component_ref:

(2)

(1)

-function_name

)

|—a(:tual_argurnen t_spec_lis t—l

Notes:

1
2

Fortran 2003
Fortran 2003

Executing a function reference results in the following order of events:

1.

A

The function is executed.

Actual arguments that are expressions are evaluated.
Control transfers to the specified function.

The value (or status or target, for pointer functions) of the function result

variable is available to the referencing expression.

Chapter 8. Program units and procedures

Actual arguments are associated with their corresponding dummy arguments.

177

| Fortran 2003

If the binding_name in a function reference is that of a specific function, the
function referenced is the one identified by the binding with that name in the
dynamic type of the data-ref.

If the binding_name in a function reference is that of a generic procedure, the

generic binding with that name in the declared type of the data-ref is used to select

a specific binding;:

1. If the reference is consistent with one of the specific bindings of that generic
binding, that specific binding is selected.

2. Otherwise, if the reference is consistent with an elemental reference to one of
the specific bindings of that generic binding, that specific binding is selected.

The reference is to the procedure identified by the binding with the same name as
the selected specific binding, in the dynamic type of the data-ref.

| End of Fortran 2003

Execution of a function reference must not alter the value of any other data item
within the statement in which the function reference appears. Invocation of a
function reference in the logical expression of a[logical IF statement| or WHERE
statement can affect entities in the statement that is executed when the value of the
expression is true.

| IBM Extension

The argument list built-in functions % VAL and %REF are supplied to aid
interlanguage calls by allowing arguments to be passed by value and by reference,
respectively. They can be specified in non-Fortran procedure references and in a
subprogram statement in an interface body. (See [‘%VAL and %REF” on page 184)
See [Statement Function| and [Recursion| examples of function references.

| End of IBM Extension

On entry to an allocatable function, the allocation status of the result variable
becomes not currently allocated

The function result variable may be allocated and deallocated any number of times
during the execution of the function. However, it shall be currently allocated and
have a defined value on exit from the function. Automatic deallocation of the
result variable does not occur immediately on exit from the function, but instead
occurs after execution of the statement in which the function reference occurs.

Examples of subprograms and procedure references

MODULE QUAD_MOD
TYPE QUAD_TYPE
REAL:: a, b, ¢
CONTAINS
PROCEDURE Q2
END TYPE

INTERFACE
SUBROUTINE Q2(T,QUAD) ! External subroutine
IMPORT QUAD_TYPE
CLASS(QUAD_TYPE) T
REAL QUAD
END SUBROUTINE

178 XL Fortran Language Reference

END INTERFACE
END MODULE
PROGRAM MAIN
USE QUAD_MOD
REAL QUAD,X2,X1,X0,A,C3
TYPE (QUAD_TYPE) QT
QUAD=0; A=X1#X2

X2 = 2.0

X1 = SIN(4.5) ! Reference to intrinsic function
X0 = 1.0

QT = QUAD_TYPE(X2, X1, X0)

CALL Q(X2,X1,X0,QUAD) ! Reference to external subroutine
CALL QT%Q2(QUAD) ! Reference to a subroutine
C3 = CUBE() ! Reference to internal function
CONTAINS
REAL FUNCTION CUBE() ! Internal function
CUBE = Ax=*3
END FUNCTION CUBE
END
SUBROUTINE Q(A,B,C,QUAD) ! External subroutine
REAL A,B,C,QUAD
QUAD = (-B + SQRT(Bx*2-4xAxC)) / (2%A)
END SUBROUTINE Q
SUBROUTINE Q2(T,QUAD) ! External subroutine
USE QUAD_MOD
TYPE(QUAD_TYPE) T
REAL QUAD
QUAD = (-T%B + SQRT(T%Bx+2-4xT%A<T%C)) / (2%T%A)
END SUBROUTINE Q2

Examples of allocatable function results

FUNCTION INQUIRE_FILES_OPEN() RESULT(OPENED_STATUS)
LOGICAL,ALLOCATABLE :: OPENED_STATUS(:)
INTEGER I,J
LOGICAL TEST
DO 1=1000,0,-1

INQUIRE (UNIT=I,0PENED=TEST, ERR=100)
IF (TEST) EXIT

100 CONTINUE
END DO
ALLOCATE (OPENED_STATUS(0:1))

D0 J=0,1
INQUIRE (UNIT=J,0PENED=0PENED_STATUS(J))
END DO
END FUNCTION INQUIRE_FILES OPEN

Intrinsic procedures

An intrinsic procedure is a procedure already defined by XL Fortran. See
[Chapter 14, “Intrinsic procedures,” on page 529| for details.

You can reference some intrinsic procedures by a generic name, some by a specific
name, and some by both:

A generic intrinsic function
does not require a specific argument type and usually produces a result of
the same type as that of the argument, with some exceptions. Generic
names simplify references to intrinsic procedures because the same
procedure name can be used with more than one type of argument; the
type and kind type parameter of the arguments determine which specific
function is used.

A specific intrinsic function
requires a specific argument type and produces a result of a specific type.

Chapter 8. Program units and procedures 179

A specific intrinsic function name can be passed as an actual argument. If a
specific intrinsic function has the same name as a generic intrinsic function,
the specific name is referenced. All references to a dummy procedure that
are associated with a specific intrinsic procedure must use arguments that
are consistent with the interface of the intrinsic procedure. Specific intrinsic
functions may be procedure pointer targets.

Whether or not you can pass the name of an intrinsic procedure as an argument
depends on the procedure. You can use the specific name of an intrinsic procedure
that has been specified with the INTRINSIC attribute as an actual argument in a
procedure reference.

* An IMPLICIT statement does not change the type of an intrinsic function.

* If an intrinsic name is specified with the INTRINSIC attribute, the name is
always recognized as an intrinsic procedure.

Conflicts between intrinsic procedure names and other names

When you declare a data object with the same name as an intrinsic procedure, the
intrinsic procedure is inaccessible.

A generic interface block can extend or redefine a generic intrinsic function, as
described in [“Interface blocks” on page 158|If the function already has the
INTRINSIC attribute, it is extended; otherwise, it can be redefined.

Arguments

Actual argument specification

> |_ _| argument >
arg_keyword— = (1)

%VAL— (—argument

(2)

%REF— (—argument

Notes:
1 IBM Extension
2 IBM Extension

arg_keyword
is a dummy argument name in the explicit interface of the procedure being
invoked

argument
is an actual argument

| IBM Extension

%VAL, %REF
specifies the passing method. See [“%VAL and %REF” on page 184 for more
information.

| End of IBM Extension |

180 XL Fortran Language Reference

An actual argument appears in the argument list of a procedure reference. An
actual argument in a procedure reference can be one of the following:

* An expression
* A variable
* A procedure name

* An alternate return specifier (if the actual argument is in a CALL statement),
having the form *stmt_label, where stmt_label is the statement label of a branch
target statement in the same scoping unit as the CALL statement.

An actual argument specified in a statement function reference must be a scalar
object.

A procedure name cannot be the name of an internal procedure, statement
function, or the generic name of a procedure, unless it is also a specific name.

The rules and restrictions for referencing a procedure described in|“Procedure
[references” on page 177|p F95 | You cannot use a non-intrinsic elemental
procedure as an actual argument in Fortran 95.

Argument keywords

Argument keywords allow you to specify actual arguments in a different order
than the dummy arguments. With argument keywords, any actual arguments that
correspond to optional dummy arguments can be omitted; that is, dummy
arguments that merely serve as placeholders are not necessary.

Each argument keyword must be the name of a dummy argument in the explicit
interface of the procedure being referenced. An argument keyword must not
appear in an argument list of a procedure that has an implicit interface.

In the argument list, if an actual argument is specified with an argument keyword,
the subsequent actual arguments in the list must also be specified with argument
keywords.

An argument keyword cannot be specified for label parameters. Label parameters
must appear before referencing the argument keywords in that procedure
reference.

Example of argument keywords:

INTEGER MYARRAY (1:10)
INTERFACE
SUBROUTINE SORT(ARRAY, DESCENDING, ARRAY SIZE)
INTEGER ARRAY_SIZE, ARRAY(ARRAY_SIZE)
LOGICAL, OPTIONAL :: DESCENDING
END SUBROUTINE
END INTERFACE
CALL SORT(MYARRAY, ARRAY SIZE=10) ! No actual argument corresponds to the
I optional dummy argument DESCENDING
END
SUBROUTINE SORT(ARRAY, DESCENDING, ARRAY_SIZE)
INTEGER ARRAY SIZE, ARRAY(ARRAY SIZE)
LOGICAL, OPTIONAL :: DESCENDING
IF (PRESENT(DESCENDING)) THEN

END SUBROUTINE

Chapter 8. Program units and procedures 181

Dummy arguments

\4
A

dummy_arg_name

(1)
(—rdummy_arg_name—l—)
(—rdummy_arg_name—l—)

%VAL

(2)

%REF.

Notes:
1 IBM Extension
2 IBM Extension

A dummy argument is specified in a [Statement Function statement, [FUNCTION|
statement, statement, or |ENTR!| statement. Dummy arguments in
statement functions, function subprograms, interface bodies, and subroutine
subprograms indicate the types of actual arguments and whether each argument is
a scalar value, array, procedure, or statement label. A dummy argument in an

external, module, or internal subprogram definition, or in an interface body, is
classified as one of the following:

* A variable name
* A procedure name

* An asterisk (in subroutines only, to indicate an alternate return point)

| IBM Extension

%VAL or %REF can only be specified for a dummy argument in a FUNCTION or
SUBROUTINE statement in an interface block. The interface must be for a
non-Fortran procedure interface. If % VAL or %REF appears in an interface block
for an external procedure, this passing method is implied for each reference to that
procedure. If an actual argument in an external procedure reference specifies
%VAL or %REF, the same passing method must be specified in the interface block
for the corresponding dummy argument. See |“%VAL and %REF” on page 184 for
more details.

| End of IBM Extension

A dummy argument in a statement function definition is classified as a variable
name.

A given name can appear only once in a dummy argument list.
The name of a variable that appears as a dummy argument in a statement function
statement has a scope of the statement in which it appears. It has the type that it

would have if it were the name of a variable in the scoping unit that includes the
statement function. It cannot have the same name as an accessible array.

182 XL Fortran Language Reference

Argument association

Actual arguments are associated with dummy arguments when a function or
subroutine is referenced. In a procedure reference, the actual argument list
identifies the correspondence between the actual arguments provided in the list
and the dummy arguments of the subprogram.

| Fortran 2003 |

The reduced dummy argument list is the full dummy argument list or, if there is a
passed-object dummy argument, the dummy argument list with the passed object
dummy argument omitted. When there is no argument keyword, an actual
argument is associated with the dummy argument that occupies the corresponding
position in the reduced dummy argument list. The first actual argument becomes
associated with the first dummy argument in the reduced list, the second actual
argument with the second dummy argument, continuing until reaching the end of
the list. Each actual argument must be associated with a dummy argument.

| End of Fortran 2003 |

When a keyword is present, the actual argument is associated with the dummy
argument whose name is the same as the argument keyword. In the scoping unit
that contains the procedure reference, the names of the dummy arguments must
exist in an accessible explicit interface.

Argument association within a subprogram terminates upon execution of a
[RETURN] or [END| statement in the subprogram. There is no retention of argument
association between one reference of a subprogram and the next reference of the
subprogram, unless you specify -qx1f77=persistent and the subprogram contains at
least one entry procedure.

If associated with a null argument in a procedure reference, the corresponding
dummy argument is undefined and undefinable.

| IBM Extension |

Except when %VAL or the VALUE attribute is used, the subprogram reserves no
storage for the dummy argument. It uses the corresponding actual argument for
calculations. Therefore, the value of the actual argument changes when the dummy
argument changes. If the corresponding actual argument is an expression or an
array section with vector subscripts, the calling procedure reserves storage for the
actual argument, and the subprogram must not define, redefine, or undefine the
dummy argument.

If the actual argument is specified with %VAL, or the corresponding dummy
argument has the [VALUE] attribute, the subprogram does not have access to the
storage area of the actual argument.

| End of IBM Extension |

Actual arguments must agree in type and type parameters with their
corresponding dummy arguments (and in shape if the dummy arguments are
pointers or assumed-shape), except for two cases: a subroutine name has no type
and must be associated with a dummy procedure name that is a subroutine, and
an alternate return specifier has no type and must be associated with an asterisk.

Chapter 8. Program units and procedures 183

Argument association can be carried through more than one level of procedure
reference.

If a subprogram reference causes a dummy argument in the referenced
subprogram to become associated with another dummy argument in the referenced
subprogram, neither dummy argument can become defined, redefined, or
undefined during that subprogram. For example, if a subroutine definition is:

SUBROUTINE XYZ (A,B)

and it is referenced by:
CALL XYZ (C,C)

the dummy arguments A and B each become associated with the same actual
argument C and, therefore, with each other. Neither A nor B can be defined,
redefined, or undefined during the execution of subroutine XYZ or by any
procedures referenced by XYZ.

If a dummy argument becomes associated with an entity in a common block or an
entity accessible through use or host association, the value of the entity must only
be altered through the use of the dummy argument name, while the entity is
associated with the dummy argument. If any part of a data object is defined
through a dummy argument, the data object can be referenced only through that
dummy argument, either before or after the definition occurs. These restrictions
also apply to pointer targets.

| IBM Extension |

If you have programs that do not conform to these restrictions, using the compiler
option -qalias=nostd may be appropriate. See the in the
[Compiler Reference for details.

| End of IBM Extension |

%VAL and %REF

| IBM Extension |

To call subprograms written in languages other than Fortran (for example,
user-written C programs, or AIX operating system routines), the actual arguments
may need to be passed by a method different from the default method used by XL
Fortran. The default method passes the address of the actual argument and, if it is
of type character, the length. (Use the -qnullterm compiler option to ensure that
scalar character initialization expressions are passed with terminating null strings.
See [-gnullterm|in the [XL Fortran Compiler Referencel for details.)

The default passing method can be changed by using the % VAL and %REF
built-in functions in the argument list of a statement or [function reference]
or with the dummy arguments in interface bodies. These built-in functions specify
the way an actual argument is passed to the external subprogram.

%VAL and %REF built-in functions cannot be used in the argument lists of Fortran
procedure references, nor can they be used with alternate return specifiers.

The argument list built-in functions are:

%VAL This built-in function can be used with actual arguments that are

184 XL Fortran Language Reference

CHARACTER(@), logical, integer, real, complex expressions, or sequence
derived type. Objects of derived type cannot contain character structure
components whose lengths are greater than 1 byte, or arrays.

%VAL cannot be used with actual arguments that are arrays, derived types
with allocatable components, procedure names, or character expressions of
length greater than 1 byte.

%VAL causes the actual argument to be passed as 32-bit or 64-bit
intermediate values. If the actual argument is of type real or complex, it is
passed as one or more 64-bit intermediate values. If the actual argument is
of integer, logical, or sequence derived type, it is passed as one or more
32-bit intermediate values. An integer actual argument shorter than 32 bits
is sign-extended to a 32-bit value, while a logical actual argument shorter
than 32 bits is padded with zeros to a 32-bit value.

Byte named constants and variables are passed as if they were
INTEGER(). If the actual argument is a CHARACTER(1), it is padded on
the left with zeros to a 32-bit value, regardless of whether the -qctyplss
compiler option is specified.

%REF This built-in function causes the actual argument to be passed by reference;
that is, only the address of the actual argument is passed. Unlike the
default passing method, %REF does not pass the length of a character
argument. If such a character argument is being passed to a C routine, the
string must be terminated with a null character (for example, using the
-qnullterm option) so that the C routine can determine the length of the
string.

Examples of %VAL and %REF
EXTERNAL FUNC

CALL RIGHT2(%REF(FUNC)) ! procedure name passed by reference
REAL XVAR

CALL RIGHT3(%VAL(XVAR)) I real argument passed by value
IVARB=6

CALL TPROG(%VAL(IVARB)) ! integer argument passed by value

See|“VALUE” on page 472| for a standard-conforming alternative to %VAL.

See [Interlanguage calls|in the [XL Fortran Optimization and Programming Guide| for
more information.

| End of IBM Extension |

Intent of dummy arguments

With the INTENT attribute, you can explicitly specify the intended use of a
dummy argument. Use of this attribute may improve optimization of the
program’s calling procedure when an explicit interface exists. Also, the explicitness
of argument intent may provide more opportunities for error checking. See
['INTENT” on page 387 for syntax details.

| IBM Extension |

The following table outlines XL Fortran’s passing method for internal procedures
(not including assumed-shape dummy arguments and pointer dummy arguments):

Chapter 8. Program units and procedures 185

Table 18. Passing method and intent

Argument Type Intent(IN) Intent(OUT) Intent(INOUT) No Intent
Non-CHARACTER VALUE default default default
Scalar
CHARACTER*1 Scalar VALUE REFERENCE REFERENCE REFERENCE
CHARACTER*n Scalar REFERENCE REFERENCE REFERENCE REFERENCE
CHARACTER*(*) Scalar default default default default
Derived Type ' Scalar VALUE default default default
Derived Type ? Scalar default default default default
Non-CHARACTER default default default default
Array
CHARACTER*1 Array REFERENCE REFERENCE REFERENCE REFERENCE
CHARACTER*n Array REFERENCE REFERENCE REFERENCE REFERENCE
CHARACTER*(*) Array default default default default
Derived Type * Array default default default default

| End of IBM Extension

Optional dummy arguments

The OPTIONAL attribute specifies that a dummy argument need not be associated
with an actual argument in a reference to a procedure. Some advantages of the
OPTIONAL attribute include:

* The use of optional dummy arguments to override default behavior. For an
example, see [“Example of argument keywords” on page 181/

* Additional flexibility in procedure references. For example, a procedure could
include optional arguments for error handlers or return codes, but you can select
which procedure references would supply the corresponding actual arguments.

See ["OPTIONAL” on page 407| for details about syntax and rules.

The passed-object dummy argument

| Fortran 2003 |

In a reference to a procedure that has a passed-object dummy argument, the
data_ref of the function reference or call statement is associated, as an actual
argument, with the passed object dummy argument. See [Passed-object dummy]|
[arguments” on page 60|

| End of Fortran 2003 |

Restrictions on optional dummy arguments not present

A dummy argument is present in an instance of a subprogram if it is associated
with an actual argument, and the actual argument is either a dummy argument
that is not optional in the invoking subprogram or a dummy argument that is not
present in the invoking subprogram. A dummy argument that is not optional must
be present.

1. A data object of derived type with no array components or CHARACTER*n components, where 1 > 1.
2. A data object of derived type with array components or CHARACTER*n components, where n > 1.
3. A data object of derived-type with components of any type, size and rank.

186 XL Fortran Language Reference

An optional dummy argument that is not present must conform to the following
rules:

* If it is a dummy data object, it must not be referenced or defined. If the dummy
data object is of a type for which default initialization can be specified, the
initialization has no effect.

* It must not be used as the data_target or proc_target of a pointer assignment
 If it is a procedure or procedure pointer, it must not be invoked.

* It must not be supplied as an actual argument that corresponds to a nonoptional
dummy argument, except as the argument of the PRESENT intrinsic function.

* A subobject of an optional dummy argument that is not present must not be
supplied as an actual argument that corresponds to an optional dummy
argument.

* If the optional dummy argument that is not present is an array, it must not be
supplied as an actual argument to an elemental procedure unless an array of the
same rank is supplied as an actual argument that corresponds to a nonoptional
dummy argument of that elemental procedure.

* If the optional dummy argument that is not present is a pointer, it must not be
allocated, deallocated, nullified, pointer-assigned or supplied as an actual
argument that corresponds to a nonpointer dummy argument, except as the
argument of the PRESENT intrinsic function.

* If the optional dummy argument that is not present is allocatable, it must not be
allocated, deallocated, or supplied as an actual argument corresponding to a
nonallocatable dummy argument other than as the argument of the PRESENT
intrinsic function.

* If it has length type parameters, they must not be the subject of an inquiry.

| Fortran 2003 |

* An optional dummy argument that is not present must not be used as the
selector in an [ASSOCIATE| or [SELECT TYPE| construct.

| End of Fortran 2003 |

Length of character arguments

If the length of a character dummy argument is a nonconstant specification
expression or is a colon, the object is a dummy argument with a run-time length. A
character dummy argument with a colon length is a deferred length character
dummy argument. If an object that is not a dummy argument has a run-time

length and is not deferred length, it is an automatic object. See [“Automatic objects”|
for details

If a dummy argument has a length specifier of an asterisk in parentheses, the
length of the dummy argument is “inherited” from the actual argument. The
length is inherited because it is specified outside the program unit containing the
dummy argument. If the associated actual argument is an array name, the length
inherited by the dummy argument is the length of an array element in the
associated actual argument array. %REF cannot be specified for a character dummy
argument with inherited length.

Chapter 8. Program units and procedures 187

Variables as dummy arguments

| Fortran 2003 |

If a dummy argument is neither allocatable nor a pointer, it must be
type-compatible with the associated actual argument. If a dummy argument is
allocatable or a pointer, the associated actual argument is polymorphic only if the
dummy argument is polymorphic, and the declared type of the actual argument is
the same as the declared type of the dummy argument.

| End of Fortran 2003 |

If the actual argument is scalar, the corresponding dummy argument must be
scalar, unless the actual argumenty rzoos | is of type default character, of type
character with the C character kind [F2003 4 or is an element or substring of an
element of an array that is not an assumed-shape or pointer array. If the actual
argument is allocatable, the corresponding dummy argument must also be
allocatable. If the procedure is referenced by a generic name or as a defined
operator or defined assignment, the ranks of the actual arguments and
corresponding dummy arguments must agree. A scalar dummy argument can be
associated only with a scalar actual argument.

| Fortran 2003 |

If the procedure is nonelemental and is referenced by a generic name or as defined
operator or defined assignment, the ranks of the actual arguments and
corresponding dummy arguments must agree.

| End of Fortran 2003 |

| Fortran 95 |

The following apply to dummy arguments used in elemental subprograms:

e All dummy arguments must be scalar, and cannot have the
b F2003 ||ALLOCATABLE| or [Fz003 |POINTEi§| attribute.

* A dummy argument, or a suboject thereof, cannot be used in a specification
expression, except if it is used as an argument to the BIT_SIZE, KIND, or LEN
intrinsic functions, or as an argument to one of the numeric inquiry intrinsic
functions, see [Chapter 14, “Intrinsic procedures,” on page 529

* A dummy argument cannot be an asterisk.

* A dummy argument cannot be a dummy procedure.

| End of Fortran 95 |

| Fortran 2003 |

If a scalar dummy argument is of type character, its length must be less than or
equal to the length of the actual argument. The dummy argument is associated
with the leftmost characters of the actual argument. If the character dummy
argument is an array, the length restriction applies to the entire array rather than
each array element. That is, the lengths of associated array elements can vary,
although the whole dummy argument array cannot be longer than the whole

188 XL Fortran Language Reference

actual argument array.

| End of Fortran 2003

If the dummy argument is an assumed-shape array, the rank of the actual
argument must be the same as the rank of the dummy argument; the
actual argument must not be an assumed-size array or a scalar, including a
designator for an array element or an array element substring.

If the dummy argument is an explicit-shape or assumed-size array, and if the
actual argument is a noncharacter array, the size of the dummy argument must not
exceed the size of the actual argument array. Each actual array element is
associated with the corresponding dummy array element. If the actual argument is
a noncharacter array element with a subscript value of as, the size of the dummy
argument array must not exceed the size of the actual argument array + 1 - as.
The dummy argument array element with a subscript value of ds becomes
associated with the actual argument array element that has a subscript value of as
+ds - L

If an actual argument is a character array, character array element, or character
substring, and begins at a character storage unit acu of an array, character storage
unit dcu of an associated dummy argument array becomes associated with
character storage unit acu+dcu-1 of the actual array argument.

You can define a dummy argument that is a variable name within a subprogram if
the associated actual argument is a variable. You must not redefine a dummy
argument that is a variable name within a subprogram if the associated actual
argument is not definable.

If the actual argument is an array section with a vector subscript, the associated
dummy argument cannot be defined and shall not have the INTENT(OUT),
INTENT(INOUT), VOLATILE, or ASYNCHRONOUS[Fzo003 4 attributes.

If an actual argument is an array section or an assumed-shape array, and the
corresponding dummy argument has either the VOLATILE or
ASYNCHRONOUS[Fz003 { attribute, that dummy argument shall be an
assumed-shape array.

If an actual argument is a pointer array, and the corresponding dummy argument
has either the VOLATILE or ASYNCHRONOUS[2003 4 attribute, that
dummy argument shall be an assumed-shape array or a pointer array.

F2008_] Except in references to intrinsic inquiry functions,[F2ee3 4 if a nonpointer

dummy argument is associated with a pointer actual argument, the actual
argument must be currently associated with a target, to which the dummy
argument becomes argument associated. Any restrictions on the passing method
apply to the target of the actual argument.

| Fortran 2003 |
Except in references to intrinsic inquiry functions, if the dummy argument is not
allocatable and the actual argument is allocatable, the actual argument must be

allocated.

If the dummy argument has the VALUE attribute it becomes associated with a
definable anonymous data object whose initial value is that of the actual argument.

Chapter 8. Program units and procedures 189

Subsequent changes to the value or definition status of the dummy argument do
not affect the actual argument.

| End of Fortran 2003

If the dummy argument is neither a target nor a pointer, any pointers associated
with the actual argument do not become associated with the corresponding
dummy argument on invocation of the procedure.

If both the dummy and actual arguments are targets, with the dummy argument
being a scalar or an assumed-shape arrayp rz003_| without the VALUE attribute
(and the actual argument is not an array section with a vector subscript):

1. Any pointers associated with the actual argument become associated with the
corresponding dummy argument on invocation of the procedure.

2. When execution of the procedure completes, any pointers associated with the
dummy argument remain associated with the actual argument.

If both the dummy and actual arguments are targets, with the dummy argument
being either an explicit-shape array or an assumed-size array, while the actual
argument is not an array section with a vector subscript:

1. Whether any pointers associated with the actual argument become associated
with the corresponding dummy argument on invocation of the procedure is
processor dependent.

2. When execution of the procedure completes, whether any pointers associated
with the dummy argument remain associated with the actual argument is
processor dependent.

If the dummy argument is a target and the corresponding actual argument is not a
target or is an array section with a vector subscript, any pointers associated with
the dummy argument become undefined when execution of the procedure
completes.

| Fortran 2003

If the dummy argument has the TARGET attribute and the VALUE attribute, any
pointers associated with the dummy argument become undefined when execution
of the procedure completes.

| End of Fortran 2003

Allocatable objects as dummy arguments

| Fortran 2003

An allocatable dummy argument has an actual argument which is also allocatable
associated with it. If the allocatable dummy argument is an array, the associated
actual argument must also be an array.

On procedure entry, the allocation status of an allocatable dummy argument
becomes that of the associated actual argument. If the dummy argument is

and the associated actual argument is currently allocated, the
actual argument is deallocated on procedure invocation so that the dummy
argument has an allocation status of not currently allocated. If the dummy
argument is not and the actual argument is currently allocated, the
value of the dummy argument is that of the associated actual argument.

190 XL Fortran Language Reference

While the procedure is active, an allocatable dummy argument that does not have
INTENT(IN)| may be allocated, deallocated, defined, or become undefined. No
reference to the associated actual argument is permitted via another alias if any of

these events occur.

On exit from the routine, the actual argument has the allocation status of the
allocatable dummy argument (there is no change, of course, if the allocatable
dummy argument has INTENT(N)). The usual rules apply for propagation of the
value from the dummy argument to the actual argument.

Automatic deallocation of the allocatable dummy argument does not occur as a

result of execution of a[RETURN] or [END|statement in the procedure of which it is
a dummy argument.

Note: An allocatable dummy argument that has the attribute must
not have its allocation status altered within the called procedure. The main
difference between such a dummy argument and a normal dummy
argument is that it might be unallocated on entry (and throughout execution
of the procedure).

Example

SUBROUTINE LOAD(ARRAY, FILE)
REAL, ALLOCATABLE, INTENT(OUT) :: ARRAY(:, :, :)
CHARACTER(LEN=+), INTENT(IN) :: FILE
INTEGER UNIT, N1, N2, N3
INTEGER, EXTERNAL :: GET_LUN
UNIT = GET_LUN() ! Returns an unused unit number
OPEN(UNIT, FILE=FILE, FORM='UNFORMATTED')
READ(UNIT) N1, N2, N3
ALLOCATE (ARRAY (N1, N2, N3))
READ(UNIT) ARRAY
CLOSE (UNIT)
END SUBROUTINE LOAD

| End of Fortran 2003

Pointers as dummy arguments

If a dummy argument is a pointer, the actual argument must be a pointer and their

types, type parameters, and ranks must match. The actual argument reference is to

the pointer itself, not to its target. When the procedure is invoked:

* The dummy argument acquires the pointer association status of the actual
argument.

e If the actual argument is associated, the dummy argument is associated with the
same target.

The association status can change during execution of the procedure. When the
procedure finishes executing, the dummy argument’s association status becomes
undefined, if it is associated.

| IBM Extension |

The passing method must be by reference; that is, % VAL must not be specified for
the pointer actual argument.

| End of IBM Extension |

Chapter 8. Program units and procedures 191

Procedures as dummy arguments

A dummy argument that is identified as a procedure or a procedure

pointer is called a dummy procedure or dummy procedure
pointer,[F2003 4 respectively.

| Fortran 2003

If a dummy argument is a dummy procedure without the POINTER attribute, the
associated actual argument must be the specific name of an external procedure,
module procedure, dummy procedure, or intrinsic procedure whose name can be
passed as an argument, an associated procedure pointer, or a reference to a
function that returns an associated procedure pointer. If the specific name is also a
generic name, only the specific procedure is associated with the dummy argument.

If a dummy argument is a procedure pointer, the associated actual argument must
be a procedure pointer, a reference to a function that returns a procedure pointer,
or a reference to the NULL intrinsic function.

| End of Fortran 2003

If an external procedure name or a dummy procedure name is used as an actual
argument, its interface must be explicit or it must be explicitly declared with the
EXTERNAL attribute.

If the interface of the dummy argument is explicit, the characteristics must be the
same for the associated actual argument and the corresponding dummy argument,
except that a pure actual argument may be associated with a dummy argument
that is not pure.

If the interface of the dummy argument is implicit and either the name of the
dummy argument is explicitly typed or it is referenced as a function, the dummy
argument must not be referenced as a subroutine and the actual argument must be

a function p Fzo03 | function procedure pointer[rz003 4, or dummy procedure.

If the interface of the dummy argument is implicit and a reference to it appears as
a subroutine reference, the actual argument must be a subroutine § 2003 |
subroutine procedure pointer[r2003 4, or dummy procedure.

Internal subprograms cannot be associated with a dummy procedure argument.
You cannot use a non-intrinsic elemental procedure as an actual argument in
Fortran 95.

Examples of procedures as dummy arguments

PROGRAM MYPROG
INTERFACE
SUBROUTINE SUB (ARG1)
EXTERNAL ARG1
INTEGER ARG1
END SUBROUTINE SUB
END INTERFACE
EXTERNAL IFUNC, RFUNC

REAL RFUNC
CALL SUB (IFUNC) ! Valid reference
CALL SUB (RFUNC) ! Invalid reference

! The first reference to SUB is valid because IFUNC becomes an
! implicitly declared integer, which then matches the explicit

192 XL Fortran Language Reference

! interface. The second reference is invalid because RFUNC is
I explicitly declared real, which does not match the explicit
I interface.
END PROGRAM

SUBROUTINE ROOTS
EXTERNAL NEG
X = QUAD(A,B,C,NEG)
RETURN

END

FUNCTION QUAD(A,B,C,FUNCT)
INTEGER FUNCT
VAL = FUNCT(A,B,C)
RETURN

END

FUNCTION NEG(A,B,C)
RETURN
END

Related information

* SedChapter 14, “Intrinsic procedures,” on page 529| for details on which intrinsic
procedures can be passed as actual arguments.

* See["Procedure references” on page 177| for the rules and restrictions for
referencing a procedure.

Asterisks as dummy arguments
A dummy argument that is an asterisk can only appear in the dummy argument
list of a|[SUBROUTINE]|statement or an statement in a subroutine

subprogram. The corresponding actual argument must be an alternate return

specifier, which indicates the statement label of a branch target statement in the
same scope as the CALL statement, to which control is returned.

Example of an alternate return specifier
CALL SUB(*10)

STOP I STOP is never executed
10 PRINT *, 'RETURN 1'
CONTAINS
SUBROUTINE SUB(*)
RETURN 1 I Control returns to statement with label 10
END SUBROUTINE

END

Resolution of procedure references

The subprogram name in a procedure reference is either established to be generic,
established to be only specific, or not established.

A subprogram name is established to be generic in a scoping unit if one or more of
the following is true:

¢ The scoping unit has an interface block with that name.

* The name of the subprogram is the same as the name of a generic intrinsic
procedure that is specified in the scoping unit with the INTRINSIC attribute.

* The scoping unit accesses the generic name from a module through use
association.

* There are no declarations of the subprogram name in the scoping unit, but the
name is established to be generic in the host scoping unit.

Chapter 8. Program units and procedures 193

A subprogram name is established to be only specific in a scoping unit when it has
not been established to be generic and one of the following is true:

* An interface body in the scoping unit has the same name.

* There is a statement function, module procedure, or an internal subprogram in
the scoping unit that has the same name.

¢ The name of the subprogram is the same as the name of a specific intrinsic
procedure that is specified with the INTRINSIC attribute in the scoping unit.

* The scoping unit contains an EXTERNAL statement with the subprogram name.

* The scoping unit accesses the specific name from a module through use
association.

* There are no declarations of the subprogram name in the scoping unit, but the
name is established to be specific in the host scoping unit.

If a subprogram name is not established to be either generic nor specific, it is not
established.

Rules for resolving procedure references to names

The following rules are used to resolve a procedure reference to a name established
to be generic:

1. If there is an interface block with that name in the scoping unit or accessible
through use association, and the reference is consistent with a non-elemental
reference to one of the specific interfaces of that interface block, the reference is
to the specific procedure associated with the specific interface.

2. If rule 1 does not apply, there is an interface block with that name in the
scoping unit or accessible through use association, and the reference is
consistent with an elemental reference to one of the specific interfaces of that
interface block, the reference is to the specific elemental procedure associated
with the specific interface.

3. If neither Rule 1 nor Rule 2 applies, the reference is to an intrinsic procedure if
the procedure name in the scoping unit is specified with the INTRINSIC
attribute or accesses a module entity whose name is specified with the
INTRINSIC attribute, and the reference is consistent with the interface of that
intrinsic procedure.

4. If Rule 1, Rule 2 and Rule 3 do not apply, but the name is established to be
generic in the host scoping unit, the name is resolved by applying the rules to
the host scoping unit. For this rule to apply, there must be agreement between
the host scoping unit and the scoping unit of which the name is either a
function or a subroutine.

The following rules are used to resolve a procedure reference to a name established

to be only specific:

1. If the scoping unit is a subprogram, and it contains either an interface body
with that name or the name has the EXTERNAL attribute, and if the name is a
dummy argument of that subprogram, the dummy argument is a dummy
procedure. The reference is to that dummy procedure.

2. If Rule 1 does not apply, and the scoping unit contains either an interface body
with that name or the name has the EXTERNAL attribute, the reference is to an
external subprogram.

3. In the scoping unit, if a statement function or internal subprogram has that
name, the reference is to that procedure.

4. In the scoping unit, if the name has the INTRINSIC attribute, the reference is
to the intrinsic procedure with that name.

194 XL Fortran Language Reference

5. The scoping unit contains a reference to a name that is the name of a module
procedure that is accessed through use association. Because of possible
renaming in the USE statement, the name of the reference may differ from the
original procedure name.

6. If none of these rules apply, the reference is resolved by applying these rules to
the host scoping unit.

The following rules are used to resolve a procedure reference to a name that is not
established:

1. If the scoping unit is a subprogram and if the name is the name of a dummy
argument of that subprogram, the dummy argument is a dummy procedure.
The reference is to that dummy procedure.

2. If Rule 1 does not apply, and the name is the name of an intrinsic procedure,
the reference is to that intrinsic procedure. For this rule to apply, there must be
agreement between the intrinsic procedure definition and the reference that the
name is either a function or subroutine.

3. If neither Rule 1 nor 2 applies, the reference is to the external procedure with
that name.

Recursion

A procedure that can reference itself, directly or indirectly, is called a recursive
procedure. Such a procedure can reference itself indefinitely until a specific
condition is met. For example, you can determine the factorial of the positive
integer N as follows:

INTEGER N, RESULT
READ (5,%) N
IF (N.GE.®) THEN
RESULT = FACTORIAL(N)
END IF
CONTAINS
RECURSIVE FUNCTION FACTORIAL (N) RESULT (RES)
INTEGER RES
IF (N.EQ.0) THEN

RES =1
ELSE
RES = N * FACTORIAL(N-1)
END IF
END FUNCTION FACTORIAL

END

For details on syntax and rules, see 'FUNCTION” on page 362,)“SUBROUTINE"]|
fon page 453) or ["ENTRY” on page 343 |

| IBM Extension |

You can also call external procedures recursively when you specify the -qrecur
compiler option, although XL Fortran disregards this option if the procedure
specifies either the RECURSIVE or RESULT keyword.

| End of IBM Extension

Chapter 8. Program units and procedures 195

Pure procedures

| Fortran 95

Pure procedures are free of side effects and are particularly useful in [FORAL
statements and constructs, which by design require that all referenced procedures
be free of side effects.

A procedure must be pure in the following contexts:
* An internal procedure of a pure procedure

* A procedure referenced in the scalar_mask_expr or body of a [FORALL]|statement
or construct, including one referenced by a defined operator, defined
assignment, or finalization

* A procedure referenced in a pure procedure
* A procedure actual argument to a pure procedure

Intrinsic functions (except |RAND|, an XL Fortran extension) and the
[MOVE_ALLOC| and [MVBITS]| subroutines are always pure. They do not need to
be explicitly declared to be pure. A statement function is pure if and only if all
functions that it references are pure.

The specification_part of a pure function must specify that all dummy arguments
have an INTENT(IN)| except procedure arguments, and arguments with the

[POINTER| attribute. The specification_part of a pure subroutine must specify the

intents of all dummy arguments, except for procedure arguments, asterisks, and
arguments that have the POINTER attribute. Any interface body for such pure

procedures must similarly specify the intents of its dummy arguments.

The execution_part and internal_subprogram_part of a pure procedure cannot refer to
a dummy argument with an a global variable (or any object that is
storage associated with one), or any subobject thereof, in contexts that may cause
its value to change: that is, in contexts that produce side effects. The execution_part
and internal_subprogram_part of a pure function must not use a dummy argument,

a global variable, or an object that is associated with a global variable, or a
subobject thereof, in the following contexts:

* As variable in an assignment statement, or as expression in an assignment
statement if variable is of a derived type that has a pointer component at any
level

* As pointer_object or target in a pointer assignment statement
* Asa or implied-DO variable

e As an input_item in a statement

* As an internal file identifier in a statement

* As an IOSTAT=, SIZE= or IOMSG= specifier variable in an input/output
statement

* As a variable in an [ALLOCATE} [DEALLOCATE, [NULLIFY} or [ASSIGN|
statement

* As an actual argument that is associated with a dummy argument with the
POINTER| attribute or with an intent of [OUT] or [INOUT]

* As the argument to LOC
* As a STAT= or ERRMSG= specifier

e As a variable in a NAMELIST| which appears in a [READ|statement

196 XL Fortran Language Reference

* A variable that is the selector in a [SELECT TYPE| or [ASSOCIATE| construct if
the associate name of that construct appears in a variable definition context.

A pure procedure must not specify that any entity is In addition, it
must not contain any references to data that is VOLATILE, that would otherwise
be accessible through use- or host-association. This includes references to data
which occur through NAMELIST 1/O.

Only internal input/output is permitted in pure procedures. Therefore, the unit
identifier of an input/output statement must not be an asterisk (*) or refer to an
external unit. The input/output statements are:

* IBACKSPACE

Nl[=
=
HI
2

el

[z3]

NDFILE
F2003 ELUSHl F2003 4

L]

] m
=]
=

READ|

e WRIT

=B
s Zl1=|[C
= yA|[=
= Z =
) &

The [PAUSE| and [STOP| statements are not permitted in pure procedures.

There are two differences between pure functions and pure subroutines:

1. Subroutine nonpointer dummy data objects may have any intent, while
function nonpointer dummy data objects must be INTENT(IN)

2. Subroutine dummy data objects with the [POINTER| attribute can change
association status and/or definition status

If a procedure is not defined as pure, it must not be declared pure in an interface
body. However, the converse is not true: if a procedure is defined as pure, it does
not need to be declared pure in an interface body. Of course, if an interface body
does not declare that a procedure is pure, that procedure (when referenced through
that explicit interface) cannot be used as a reference where only pure procedure
references are permitted (for example, in a statement).

Examples

PROGRAM ADD
INTEGER ARRAY (20,256)
INTERFACE I Interface required for
PURE FUNCTION PLUS_X(ARRAY) I a pure procedure
INTEGER, INTENT(IN) :: ARRAY(:)
INTEGER :: PLUS_X(SIZE(ARRAY))
END FUNCTION
END INTERFACE
INTEGER :: X
X = ABS(-4) I Intrinsic function
! is always pure
FORALL (I=1:20, I /= 10)
ARRAY(I,:) = I + PLUS X(ARRAY(I,:)) ! Procedure references in
! FORALL must be pure
END FORALL
END PROGRAM

Chapter 8. Program units and procedures 197

PURE FUNCTION PLUS_X(ARRAY)
INTEGER, INTENT(IN) :: ARRAY(:)
INTEGER :: PLUS_X(SIZE(ARRAY)),X
INTERFACE
PURE SUBROUTINE PLUS_Y (ARRAY)
INTEGER, INTENT(INOUT) :: ARRAY(:)

END SUBROUTINE

END INTERFACE

X=8

PLUS X = ARRAY+X

CALL PLUS_Y(PLUS_X)

END FUNCTION

PURE SUBROUTINE PLUS_Y(ARRAY)

INTEGER, INTENT(INOUT) :: ARRAY(:) ! Intent must be specified
INTEGER :: Y
Y=6

ARRAY = ARRAY+Y
END SUBROUTINE

| End of Fortran 95

Elemental Procedures

| Fortran 95

An elemental subprogram definition must have the ELEMENTAL prefix specifier.
If the ELEMENTAL prefix specifier is used, the RECURSIVE specifier cannot be
used.

You cannot use the -qrecur option when specifying elemental procedures.

An elemental subprogram is a pure subprogram. However, pure subprograms are
not necessarily elemental subprograms. For elemental subprograms, it is not
necessary to specify both the ELEMENTAL prefix specifier and the PURE prefix
specifier; the PURE prefix specifier is implied by the presence of the ELEMENTAL
prefix specifier. A standard conforming subprogram definition or interface body
can have both the PURE and ELEMENTAL prefix specifiers.

Elemental procedures, subprograms, and user-defined elemental procedures must
conform to the following rules:

e The result of an elemental function must be a scalar, and must not have the
F 72003 |JALLOCATABLE orf Fz005 4 [POINTER| attribute.

* The following apply to dummy arguments used in elemental subprograms:

— All dummy arguments must be scalar, and must not have the
F 72003 JJALLOCATABLE| o1 2003 4 [POINTER| attribute.

— A dummy argument, or a subobject thereof, cannot be used in a specification
expression, except if it is used as an argument to the [BIT_SIZE} [KIND} or
intrinsic functions, or as an argument to one of the numeric inquiry
intrinsic functions, see [Chapter 14, “Intrinsic procedures,” on page 529 |

— A dummy argument cannot be an asterisk.
— A dummy argument cannot be a dummy procedure.

* Elemental subprograms must follow all of the rules that apply to pure
subprograms, defined in [“Pure procedures” on page 196

198 XL Fortran Language Reference

* Elemental subprograms can have [ENTRY|statements, but the ENTRY statement
cannot have the ELEMENTAL prefix. The procedure defined by the ENTRY
statement is elemental if the ELEMENTAL prefix is specified in the
[SUBROUTINE| or FUNCTION] statement.

* Elemental procedures can be used as defined operators in elemental expressions,

but they must follow the rules for elemental expressions as described in
[‘Operators and expressions” on page 98

A reference to an elemental procedure is elemental only if:

* The reference is to an elemental function, one or more of the actual arguments is
an array, and all array actual arguments have the same shape; or

¢ The reference is to an elemental subroutine, and all actual arguments that
correspond to the and INTENT(INOUT) dummy arguments are
arrays that have the same shape. The remaining actual arguments are
conformable with them.

A reference to an elemental subprogram is not elemental if all of its arguments are
scalar.

The actual arguments in a reference to an elemental procedure can be either of the
following:

* All scalar. For elemental functions, if the arguments are all scalar, the result is
scalar.

* One or more array-valued. The following rules apply if one or more of the
arguments is array-valued:

— For elemental functions, the shape of the result is the same as the shape of the
array actual argument with the greatest rank. If more than one argument
appears then all actual arguments must be conformable.

— For elemental subroutines, all actual arguments associated with
and INTENT(INOUT) dummy arguments must be arrays of
the same shape, and the remaining actual arguments must be conformable
with them.

For elemental references, the resulting values of the elements are the same as
would be obtained if the subroutine or function had been applied separately in any
order to the corresponding elements of each array actual argument.

If the intrinsic subroutine is used, the arguments that correspond to the
TO and FROM dummy arguments may be the same variable. Apart from this, the
actual arguments in a reference to an elemental subroutine or elemental function
must satisfy the restrictions described in [“Argument association” on page 183/

Special rules apply to generic procedures that have an elemental specific
procedure. See [“Rules for resolving procedure references to names” on page 194

Examples
Example 1:

I Example of an elemental function
PROGRAM P
INTERFACE
ELEMENTAL REAL FUNCTION LOGN(X,N)
REAL, INTENT(IN) :: X
INTEGER, INTENT(IN) :: N
END FUNCTION LOGN
END INTERFACE

Chapter 8. Program units and procedures 199

REAL RES(1600), VAL(100,100)

DO 1-1,100
RES(I) = MAXVAL(LOGN(VAL(I,:),2))
END DO

END PROGRAM P

Example 2:

! Elemental procedure declared with a generic interface
INTERFACE RAND
ELEMENTAL FUNCTION SCALAR_RAND(x)
REAL, INTENT(IN) :: X
END FUNCTION SCALAR_RAND

FUNCTION VECTOR_RANDOM(x)
REAL X(:)
REAL VECTOR_RANDOM(SIZE(x))
END FUNCTION VECTOR_RANDOM
END INTERFACE RAND

REAL A(10,10), AA(10,10)

! The actual argument AA is a two-dimensional array. The procedure
! taking AA as an argument is not declared in the interface block.
! The specific procedure SCALAR RAND is then called.

A = RAND(AA)

! The actual argument is a one-dimensional array section. The procedure

! taking a one-dimensional array as an argument is declared in the

! interface block. The specific procedure VECTOR RANDOM is then called.

! This is a non-elemental reference since VECTOR_RANDOM is not elemental.
A(:,1) = RAND(AA(6:10,2))

END

| End of Fortran 95

200 XL Fortran Language Reference

Chapter 9. XL Fortran Input/Output

XL Fortran supports both synchronous and asynchronous input/output (I/0).
Synchronous I/0 halts an executing application until I/O operations complete.

Asynchronous 1/0 allows an application to continue processing while I/O

operations occur in the background. Both I/O types support the following file

access methods:

* [Sequential access|

* |Direct access
* | F2003 Etream access| F2003 4

Each method of access offers benefits and limitations based on the I/O concepts of,

[Records} [Files| and [Units}

This section also provides [explanations of the IOSTAT= specifier codes| that can

result when using XL Fortran I/O statements.

Records

A record contains a sequence of characters or values. XL Fortran supports three

record types:

* [formatted|
* lunformatted
* lendfile

Formatted records

A formatted record consists of a sequence of ASCII characters that can print in a
readable format. Reading a formatted record converts the data values from

readable characters into an internal representation. Writing a formatted record

converts the data from the internal representation into characters.

| IBM Extension

When printing a file with formatted records using the AIX asa command, the first
character of each record determines vertical spacing and does not print. See

Printing Output Files with Fortran ASA Carriage Controls (asa)|in the [XL Fortran|

literal data according to the following table:

Compiler Reference| for details. The remaining characters of the record begin printing
at the left margin. You can specify vertical spacing in a format specification as

First Character of Record Vertical Spacing Before Printing
Blank One line
0 Two lines
1 To first line of next page
+ No advance

An error occurs if you use any other character as the first character of the print

record. If the print record contains no characters, spacing advances by one line and
a blank line prints. Displaying records on a terminal also uses the first character of
the record, but only the characters blank, 0, and + produce the spacing shown. You
must use the AIX asa to display these print codes on a terminal. See

© Copyright IBM Corp. 1990, 2007

201

Output Files with Fortran ASA Carriage Controls (asa)|in the [XL Fortran Compiler]
eferencel for details.)

| End of IBM Extension

Unformatted records

An unformatted record contains a sequence of values in an internal representation
that can contain both character and noncharacter data. An unformatted record can
also contain no data. Reading or writing an unformatted record does not convert
any data the record contains from the internal representation.

Endfile records

If it exists, an endfile record is the last record of a file. It has no length. It can be
written explicitly by an ENDFILE statement. It can be written implicitly to a file
connected for sequential access when the last data transfer statement was a WRITE
statement, no intervening file positioning statement referring to the file has been
executed, and the following is true:

« A REWIND or BACKSPACE statement references the unit to which the file is
connected; or

* The file is closed, either explicitly by a CLOSE statement, implicitly by a
program termination not caused by an error condition, or implicitly by another
OPEN statement for the same unit.

Files

A file is an internal or external sequence of records or file storage units. You
determine the file access method when connecting a file to a You can access
an external file using three methods:

* [Sequential access|

* |Direct access
° |} F2003 Etream access| F2003 4

You can only access an internal file [sequentially,

Definition of an external file

You must associate an external file with an I/O device such as a disk, or terminal.
An external file exists for a program when a program creates that file, or the file is
available to that program for reading and writing. Deleting an external file ends
the existence of that file. An external file can exist and contain no

| IBM Extension |

To specify an external file by a file name, you must designate a valid operating
system file name. Each file name can contain a maximum of 255 characters. If you
specify a full path name, it can contain a maximum of 1023 characters.

| End of IBM Extension |

The preceding I/0O statement determines the position of an external file. You can
position an external file to:

* The initial point, which is the position immediately before the first record, or the
first file storage unit.

202 XL Fortran Language Reference

¢ The terminal point, which is the position immediately after the last record, or
the last file storage unit.

* The current record, when the file position is within a record. Otherwise, there is
no current record.

* The preceding record, which is the record immediately before the current record.
If there is no current record, the preceding record is the record immediately
before the current file position. A preceding record does not exist when the file
position is at its initial point or within the first record of the file.

* The next record, which is the record immediately after the current record. If
there is no current record, the next record is the record immediately after the
current position. The next record does not exist when the file position is at the
terminal point or within the last record of the file.

An external file can also have indeterminate position after an error.

File access methods

Sequential access

Using sequential access, in a file are read or written based on the logical
order of records in that file. Sequential access supports both and external
files.

External files: A file connected for sequential access contains records in the order
they were written. The records must be either all [formatted| or all [unformatted} the
last record of the file must be an [endfile record| The records must not be read or
written by [direct p 2003] or [stream access|[2003 4 1/O statements during the
time the file is connected for sequential access.

Internal files: An internal file is a character variable that is not an array section
with a [vector subscriptl You do not need to create internal files. They always exist,
and are available to the application.

If an internal file is a scalar character variable, the file consists of one record with a
length equal to that of the scalar variable. If an internal file is a character array,
each element of the array is a record of the file, with each record having the same
length.

An internal file must contain only [formatted records| [READ|and [WRITH are the
only statements that can specify an internal file. If a WRITE statement writes less
than an entire record, blanks fill the remainder of that record.

| Fortran 2003 |

An internal file is positioned at the beginning of the first record prior to data
transfer, except for child data transfer statements. This record becomes the current
record.

| End of Fortran 2003 |

Direct access

Using direct access, the records of an file can be read or written in any
order. The records must be either all [formatted| or all Ianformattedl The records

must not be read or written using [sequentiall or [stream| access, |!ist—directed| or
formatting, or a nonadvancing input/output statement. If the file was

Chapter 9. XL Fortran Input/Output 203

previously connected for sequential access, the last record of the file is an
h

The endfile record is not considered a part of the file connected for direct
access.

Each record in a file connected for direct access has a record number that identifies
its order in the file. The record number is an integer value that must be specified
when the record is read or written. Records are numbered sequentially. The first
record is number 1. Records need not be read or written in the order of their
record numbers. For example, records 9, 5, and 11 can be written in that order
without writing the intermediate records.

All records in a file connected for direct access must have the same length, which
is specified in the |OPEN|statement when the file is connected.

Records in a file connected for direct access cannot be deleted, but they can be
rewritten with a new value. A record cannot be read unless it has first been
written.

Stream access

| Fortran 2003 |

You can connect files for stream access as either [formatted| or [unformatted]
Both forms use external stream files composed of one byte file storage units. While
a file connected for unformatted stream access has only a stream structure, files
connected for formatted stream access have both a record and a stream structure.
These dual structure files have the following characteristics:

* Some file storage units represent record markers.

* The record structure is inferred from the record markers stored in the file.
* There is no theoretical limit on record length.

* Writing an empty record without a record marker has no effect.

* If there is no record marker at the end of a file, the final record is incomplete but
not empty.

* Thelendfile record|in a file previously connected for sequential access is not

considered part of the file when you connect that file for stream access.

The first file storage unit of a file connected for formatted stream access has a
position of 1. The position of each subsequent storage unit is greater than the
storage unit immediately before it. The positions of successive storage units are not
always consecutive and positionable files need not be read or written to in order of
position. To determine the position of a file storage unit connected for formatted
stream access, use the specifier of the statement. If the file can be
positioned, you can use the value obtained using the INQUIRE statement to
position that file. You read from the file while connected to the file, as long as the
storage unit has been written to since file creation and that the connection permits
a statement. File storage units of a file connected for formatted stream
access can only be read or written by formatted stream access input/output
statements.

The first file storage unit of a file connected for unformatted stream access has a
position of 1. The position value of successive storage units is incrementally one
greater than the storage unit it follows. Positionable files need not be read or
written to in order of position. Any storage unit can be read from the file while
connected to the file, if the storage unit has been written to since file creation and
that the connection permits a statement. File storage units of a file

204 XL Fortran Language Reference

connected for unformatted stream access can only be read or written by stream
access input/output statements.

End of Fortran 2003

Units

A unit is a means of referring to a file. Programs refer to files by the unit numbers
indicated by unit specifiers in input/output statements. See [[UNIT=]| for the form

of a unit specifier.

Connection of a unit

A connection refers to the association between a file and a unit. A connection must
occur before the records of a file can be read or written.

There are three ways to connect a file to a unit:

* |Preconnectio

+ p M _[Implicit connection|[iBm 4
* Explicit connection, using the |OPEN] statement

Preconnection

Preconnection occurs when the program begins executing. You can specif
preconnection in I/O statements without the prior execution of an |OPEN

statement.

| IBM Extension |

Using formatted [sequential access| always preconnects units 0, 5 and 6 as unnamed
files to the devices below:

* Unit 0 to the standard error device
* Unit 5 to the standard input device
* Unit 6 to the standard output device

The other properties of these files are the default specifier values for the [OPEN
statement with the following exceptions:

* [STATUS="OLD'|
+ |JACTION="READWRITE/|
+ [FORM="FORMATTED/|

| End of IBM Extension

Implicit connection

| IBM Extension |

Implicit connection occurs when a |sequential| statement that is; [ENDFILE, [PRINT}
READ]| [REWIND)| or [WRITE executes on a unit not already connected to an
external file| The executing statement connects that unit to a file with a
predetermined name. By default, this connection is unit 7 to file fort.n. You do not
need to create the file before implicit connection. To implicitly connect to a
different file name, see the UNIT_VARS run-time option under [Setting Run-Timd
[Options|in the [XL Fortran Compiler Reference

Chapter 9. XL Fortran Input/Output 205

You can not specify unit 0 for implicit connection.

You can only connect a unit implicitly if you terminate the

connection between the unit and the external file. In the next example a
preconnected unit closes before implicit connection takes place.

Sample Implicit Connection

PROGRAM TRYME

WRITE (6, 10) "Hellol" ! "Hellol" written to standard output
CLOSE (6)
WRITE (6, 10) "Hello2" I "Hello2" written to fort.6
10 FORMAT (A)
END

A unit with an implicit connection uses the default specifier values of the (OPEN
statement, except for the [FORM=| and [ASYNCH=]| specifiers. The first data transfer
statement determines the values for FORM= and ASYNCH-=.

If the first I/O statement uses format-directed, list-directed, or formatting,
the value of the FORM-=|specifier is set to FORMATTED. An unformatted 1/0O
statement sets the specifier to UNFORMATTED.

If the first I/O statement is asynchronous, the value of the ASYNCH=| specifier is
set to YES. A synchronous 1/0O statement sets the specifier to NO.

| End of IBM Extension |

Disconnection

The statement disconnects a file from a unit. You can connect the file again
within the same program to the same unit or to a different unit. You can connect
the unit again within the same program to the same file or a different file.

| IBM Extension
* You can not close unit 0

* You can not reconnect unit 5 to standard input after the unit closes
* You can not reconnect unit 6 to standard output after the unit closes

| End of IBM Extension

Data transfer statements

The [READ| statement obtains data from an [external| or [internal| file and transfers
the data to internal storage. If you specify an input list, values transfer from the
file to the data items you specify.

The WRITE| statement transfers data from internal storage into an external or
internal file.

The statement transfers data from internal storage into an external file.
Specifying the —qport=typestmt compiler option enables the TYPE statement which
supports functionality identical to PRINT. If you specify an output list and format
specification, values transfer to the file from the data items you specify. If you do
not specify an output list, the PRINT statement transfers a blank record to the
output device unless the statement it refers to contains, as the first
specification, a character string edit descriptor or a slash edit descriptor. In this
case, the records these specifications indicate transfer to the output device.

206 XL Fortran Language Reference

Execution of a WRITE or PRINT statement for a file that does not exist creates
that file, unless an error occurs.

If an input/output item is a pointer, data is transferred between the file and the
associated target.

| Fortran 2003 |

A list item must not be polymorphic unless it is processed by a user-defined
derived-type input/output procedure

| End of Fortran 2003 |

During advancing input from a file with a PAD= specifier that has the value NO,
the input list and format specification must not require more characters from the
record than that record contains. If the PAD= specifier has the value YES, blank
characters are supplied if the input list and format specification require more
characters from the record than the record contains.

| IBM Extension |

If you want to pad files connected for sequential access, specify the
t-qx1f77=noblankpad| compiler option. This compiler option also sets the default
value for the PAD= specifier to NO for direct and stream files and YES for
sequential files.

| End of IBM Extension |

During nonadvancing input from a file with a PAD= specifier that has the value
NO, an [end-of-record condition| occurs if the input list and format specification
require more characters from the record than the record contains. If the PAD=
specifier has the value YES, an end-of-record condition occurs and blank characters
are supplied if an input item and its corresponding data edit descriptor require
more characters from the record than the record contains. If the record is the last
record of a stream file, an [end-of-file condition| occurs.

Asynchronous Input/Output

You can specify asynchronous [READ|and [WRITE| data transfer statements to
initiate asynchronous data transfer. Execution continues after the asynchronous I/0
statement, without waiting for the data transfer to complete.

Executing a matching |[WAIT]| statement with the same value that was returned
to the ID= variable in the data transfer statement detects that the data transfer
statement is complete, or waits for that data transfer statement to complete.

The data transfer of an I/0O item in an asynchronous I/O statement can complete:
* During the execution of the asynchronous data transfer statement

* At any time before the execution of the matching statement

* During the matching WAIT statement

For information on situations where data transfer must complete during the
asynchronous data transfer statement, see |[mplementation details of XL Fortran|
[[nput/Output| in the [XL Fortran Optimization and Programming Guide

Chapter 9. XL Fortran Input/Output 207

If an error occurs during the execution of an asynchronous data transfer statement,
the statement executes as if it were synchronous. The specifier remains
undefined and the accompanying [WAIT] statement does not execute. Instead of the
WAIT statement, the specifier handles the error, and the specifier
indicates the status of the I/O operation.

You must not reference, define, or undefine variables or items associated with a
variable appearing in an I/O list for an asynchronous data transfer statement, until
the execution of the matching WAIT statement.

Any deallocation of allocatable objects and pointers and changing association
status of pointers are disallowed between an asynchronous data transfer statement
and the matching WAIT statement.

| IBM Extension |

Multiple outstanding asynchronous data transfer operations on the same unit must
all be or all be You must not specify other I/O statements on the
same unit until the matching [WAIT]| statements for all outstanding asynchronous
data transfer operations on the same unit execute.

| End of IBM Extension |

| Fortran 2003 |

Multiple outstanding data transfer operations on the same unit can be both [READ
and WRITE} A WAIT statement will perform a wait operation for all pending data
transfers for the specified unit if the ID= specifier is omitted.

| End of Fortran 2003 |

In the case of an asynchronous WRITE statement must not specify
both the same unit and record number as any asynchronous WRITE statement for
which the matching WAIT statement has not been executed. p_Fzo03 | For |strea5|
an asynchronous WRITE statement must not specify either the same unit
and location within a file as any asynchronous WRITE statement for which the
matching WAIT statement has not been executed.

In the portion of the program that executes between the asynchronous data
transfer statement and the matching statement, you must not reference,
define, or undefine variables or items associated with the integer_variable in the
NUM= specifier of that data transfer statement.

Using Asynchronous I/O

SUBROUTINE COMPARE (ISTART, IEND, ISIZE, A)
INTEGER, DIMENSION(ISIZE) :: A
INTEGER I, ISTART, IEND, ISIZE
DO I = ISTART, IEND
IF (A (I) /= I) THEN
PRINT %, "Expected ", I, ", got ", A(I)
END IF
END DO
END SUBROUTINE COMPARE

PROGRAM SAMPLE
INTEGER, PARAMETER :: ISIZE
INTEGER, PARAMETER :: SECT1

1000000
(ISIZE/2) - 1, SECT2 = ISIZE - 1

208 XL Fortran Language Reference

INTEGER, DIMENSION(ISIZE), STATIC :: A
INTEGER IDVAR

OPEN(10, STATUS="OLD", ACCESS="DIRECT", ASYNCH="YES", RECL=(ISIZE/2)=*4)
A=0

I Reads in the first part of the array.

READ(10, REC=1) A(1:SECT1)

I Starts asynchronous read of the second part of the array.
READ(10,ID=IDVAR, REC=2) A(SECT1+1:SECT2)

I While the second asynchronous read is being performed,
! do some processing here.

CALL COMPARE(1, SECT1, ISIZE, A)
WAIT(ID=IDVAR)

CALL COMPARE(SECT1+1, SECT2, ISIZE, A)
END

Advancing and nonadvancing Input/Output

Advancing I/0O positions the file after the last record that is read or written, unless
an error condition occurs.

Nonadvancing I/O can position the file at a character position within the current
or a subsequent record. With nonadvancing 1/0, you can [READ|or WRITE|
a record of the file by a sequence of I/O statements that each access a portion of
the record. You can also read variable-length records and inquire about the length
of the records.

Nonadvancing I/O

! Reads digits using nonadvancing input

INTEGER COUNT
CHARACTER(1) DIGIT
OPEN (7)
DO
READ (7,FMT="(A1)",ADVANCE="NO",EOR=100) DIGIT
COUNT = COUNT + 1
IF ((ICHAR(DIGIT).LT.ICHAR('0")).OR.(ICHAR(DIGIT).GT.ICHAR('9"'))) THEN
PRINT *,"Invalid character ", DIGIT, " at record position ",COUNT
STOP
END IF
END DO
100 PRINT #,"Number of digits in record = ", COUNT
END

I When the contents of fort.7 is '1234\n', the output is:

! Number of digits in record = 4

Chapter 9. XL Fortran Input/Output 209

User-defined derived-type Input/Output procedure interfaces

| Fortran 2003

User-defined derived-type input/output procedures allow a program to override
the default handling of derived-type objects and values in data transfer
input/output statements.

A user-defined derived-type input/output procedure is a procedure accessible by a
dtio_generic_spec. A particular user-defined derived-type input/output procedure is
selected based on the existence of one of the following:

1. A suitable generic interface with both:

a. a dtio_generic_spec that is appropriate to the direction (read or write) and
form (formatted or unformatted) of the data transfer, and

b. a specific interface whose dtv argument is compatible with the effective
item. For more information on dtv see [“User-defined derived-type
[[nput/Output procedures” on page 166.|

2. A suitable generic binding for the declared type of the effective item.

If a derived-type input/output procedure is selected as specified above, it is called
for any appropriate data transfer input/output statements executed in that scoping
unit. The procedure controls the actual data transfer operations for the
derived-type list item.

A data transfer statement that includes a derived-type list item and that causes a
user-defined derived-type input/output procedure to be invoked is called a parent
data transfer statement. A data transfer statement that is executed while a parent
data transfer statement is being processed, and that specifies the unit passed into a
user-defined derived-type input/output procedure, is called a child data transfer
statement.

A child data transfer statement is processed differently from a nonchild data
transfer statement in the following ways:

* Executing a child data transfer statement does not position the file prior to data
transfer.

* An unformatted child data transfer statement does not position the file after
data transfer is complete.

| End of Fortran 2003

User-defined derived-type Input/Output

| Fortran 2003

For a particular derived type and a particular set of kind type parameter values,
there are four possible [user-defined derived-type input/output procedurest one
each for formatted input, formatted output, unformatted input, and unformatted
output. You do not need to supply all four procedures. You can specify the
procedures to be used for derived-type input/output by interface blocks or by
generic bindings, with a dtio_generic_spec (the values for dtio_generic_spec are given
in [Table 17 on page 167).

While a parent data transfer statement is active, the following rules apply:

210 XL Fortran Language Reference

When a parent READ statement is active, an input/output statement does not
read from any external unit other than the one specified by the dummy
argument unit and does not write to any external unit.

When a parent WRITE or PRINT statement is active, an input/output statement
does not write to any external unit other than the one specified by the dummy
argument unit and does not read from any external unit.

A data transfer statement that specifies an internal file is permitted.

OPEN, CLOSE, BACKSPACE, ENDFILE, and REWIND statements are not
executed.

The user-defined procedure, and any procedures that it invokes, cannot define or
undefine any storage location referenced by any input/output list item, the
corresponding format, or any specifier in any active parent data transfer
statement, except through the dtv argument.

The following are additional rules for user-defined derived-type input/output
procedure data transfer statements:

The procedure may use a FORMAT with a DT edit descriptor for handling a
component of the derived type that is itself of a derived type. A child data
transfer statement that is a list-directed or namelist input/output statement may
contain a list item of derived type.

Because a child data transfer statement does not position the file prior to data
transfer, it starts transferring data from where the file was positioned by the
parent data transfer statement’s most recently processed effective list item or
record positioning edit descriptor. This is not necessarily at the beginning of a
record.

A record positioning edit descriptor, such as TL and TR, used on unit by a child
data transfer statement, does not cause the record to be positioned before its
position at the time the procedure was invoked.

Parent and child data transfer statements cannot be asynchronous.

A child data transfer statement must not specify the ID=, POS=, or REC=
specifiers in an input/output control list.

Example of a derived-type Input/Output procedure

The following is an example of derived-type formatted output. The type and
associated formatted write procedure are defined in a module so that they are
accessible from wherever they might be needed. It would also be possible to check
iotype and vlist, and to set iomsg and iostat.

module m

type point

character(20) Tabel

integer x, y
contains

procedure :: writepoint

generic :: write(formatted) => writepoint
end type

type :: line
type(point) :: pl,p2

contains
procedure :: writeline

generic :: write(formatted) => writeline

end type

contains

subroutine writepoint(dtv, unit, iotype, vlist, iostat, iomsg)
class(point), intent(in) :: dtv
integer, intent(in) :: unit
character(x), intent(in) :: iotype

Chapter 9. XL Fortran Input/Output 211

integer, intent(in) :: vlist(:)
integer, intent(out) :: iostat
character(*), intent(inout) :: iomsg

write(unit, *, iostat=iostat, iomsg=iomsg) &
trim(dtv%label), ': (', dtvsx, ', ', dtvsy, ')’
end subroutine

subroutine writeline(dtv, unit, iotype, vlist, iostat, iomsg)
class(1ine), intent(in) :: dtv
integer, intent(in) :: dtv
character(x), intent(in) :: iotype
integer, intent(in) :: vlist(:)
integer, intent(out) :: iostat
character(*), intent(inout) :: iomsg

real length, delta x, delta y
deTta_x = dtv%p2%x - dtv%pl%x
delta_y = dtvsp2%y - dtvspl%y
Tength = sqrt(delta_x**2 + delta_y**2)

write(unit, *, iostat=iostat, iomsg=iomsg) &
'Distance from ', dtv%pl, ' to ', dtv%p2, ' is ', Tength
end subroutine
end module

use m
type(point) :: p = point('Pointl', x=1, y=1)
type(line) :: 1

1 = Tine(p, point('Point2', x=4, y=5))
print x, 1

end

Qutput:
Distance from Pointl: (1, 1) to Point2: (4, 5) is 5.000000000

| End of Fortran 2003

File position before and after data transfer

For an explicit connection using an |OPEN| statement for [sequential| or [stream|I/O
that specifies the [POSITION=| specifier, you can position the file explicitly at the
beginning, at the end, where the position is on opening.

If the OPEN statement does not specify the POSITION= specifier:

e If the|STATUS=|specifier has the value NEW or SCRATCH, the file position is
at the beginning.

IBM Extension

* If you specify [STATUS="OLD’| with the [-qposition=appendold| compiler option,
and the next operation that changes the file position is a[WRITE statement, then
the file position is at the end. If these conditions are not met, the file position is
at the beginning.

* If you specify [STATUS="UNKNOWN’| with the |- qposition=appendunknown|
compiler option, and the next operation is a [WRITE]statement, then the file
position is at the end. If these conditions are not met, the file position is at the
beginning.

After an implicit [OPEN] the file position is at the beginning:

212 XL Fortran Language Reference

« If the first I/O operation on the file is [PRINT]| or [READ), the application reads
the first record of the file.

e If the first I/O operation on the file is WRITE] the application deletes the
contents of the file and writes at the first record.

| End of IBM Extension

You can use a[REWIND] statement to position a file at the beginning. The
[preconnected| units 0, 5 and 6 are positioned as they come from the parent process
of the application.

The positioning of a file prior to data transfer depends on the method of access:

* [Sequential access| for an external file:

— For advancing input, the file position is at the beginning of the next
This record becomes the current record.

- Advancing output creates a new record and becomes the last record of the
file.
* [Sequential access| for an internal file:
— File position is at the beginning of the first of the file. This record
becomes the current record.

* |Direct access

— File position is at the beginning of the record that the REC= specifier
indicates. This record becomes the current record.

° F F2003 |§tream accessl

— File position is immediately before the file storage unit the POS= specifier
indicates. If there is no POS= specifier, the file position remains unchanged.

| Fortran 2003

File positioning for a child data transfer statement is processed differently from a
nonchild data transfer statement in the following ways:

* Executing a child data transfer statement does not position the file prior to data
transfer.

* An unformatted child data transfer statement does not position the file after
data transfer is complete.

| End of Fortran 2003 |

After advancing 1/0 data transfer] the file position is:

* Beyond the endfile record if an end-of-file condition exists as a result of reading
an fendfile record

* Beyond the last record read or written if no error or end-of-file condition exists.
That last record becomes the preceding record. A record written on a file

connected for sequential or formatted stream access becomes the last record of
the file.

After jnonadvancing inpuf| the file position:

e If no error condition or end-of-file condition occurs, but an end-of-record
condition occurs, the file position is immediately after the record read.

Chapter 9. XL Fortran Input/Output 213

e If no error condition, end-of-file condition or end-of-record condition occurs in a
nonadvancing input statement, the file position does not change.

* If no error condition occurs in a nonadvancing output statement, the file
position does not change.

* In all other cases, the file position is immediately after the record read or written
and that record becomes the preceding record.

If the file position is beyond the fendfile record| a [READ| [WRITE} [PRINT] or
|ENDFILE' statement can not execute if the compiler option [-qx1f77=softeof|is not
set. A[BACKSPACE| or REWIND| statement can be used to reposition the file.

| IBM Extension

Use the option to be able to read and write past the end-of-file.

| End of IBM Extension

| Fortran 2003

For formatted stream output with no errors, the terminal point of the file is set to
the highest-numbered position to which data was transferred by the statement. For
unformatted stream output with no errors, the file position is unchanged. If the file
position exceeds the previous terminal point of the file, the terminal point is set to
the file position. Use the POS= specifier with an empty output list to extend the
terminal point of the file without writing data. After data transfer, if an error
occurs, the file position is indeterminate.

| End of Fortran 2003

Conditions and IOSTAT values

An JOSTAT value is a value assigned to the variable for the IOSTAT= specifier if
[end-of-file condition} [end-of-record condition| or an error condition occurs during
an input/output statement. The IOSTAT= specifier reports the following types of
error conditions:

.

° eVere

¢ |Recoverable

¢ |Conversio

End-of-record conditions

When an application encounters an end-of-record condition with the IOSTAT=
specifier, it sets the value to -4 and branches to the EOR= label if that label is
present. If the IOSTAT= and EOR= specifiers are not present on the I/O statement
when an application encounters an end-of-record condition, the application stops.

Table 19. IOSTAT values for end-of-record conditions

IOSTAT
Value |End-of-Record Condition Description

-4 End of record encountered on a nonadvancing, format-directed READ of an
[internal| or |externall file.

214 XL Fortran Language Reference

End-of-file conditions

An end-of-file condition can occur in the following instances:

* At the beginning of the execution of an input statement.

* During execution of a formatted input statement that requires more than one
record through the interaction of the input list and the format.

* During execution of a stream input statement.

¢ When encountering an endfile record while reading of a file connected for
sequential access.

* When attempting to read a record beyond the end of an internal file.

For stream access, an end-of-file condition occurs when you attempt to
read beyond the end of a file. An end-of-file condition also occurs if you attempt to
read beyond the last record of a stream file connected for formatted access[r2003 4

An end-of-file condition causes IOSTAT= to be set to one of the values defined
below and branches to the END= label if these specifiers are present on the input
statement. If the IOSTAT= and END= specifiers are not present on the input
statement when an end-of-file condition is encountered, the program stops.

Table 20. IOSTAT values for end-of-file conditions

IOSTAT
Value |End-of-File Condition Description

-1 End of file encountered on sequential or stream READ of an external file, or
END-= is specified on a direct access read and the record is nonexistent.

-1 End of file encountered on READ of an internal file.

-2 End of file encountered on READ of an internal file.

Notes:

1. Fortran 2003 Standard. See the IOSTAT_END| run-time option for more
information.

Error conditions

Catastrophic errors

Catastrophic errors are system-level errors encountered within the run-time system
that prevent further execution of the program. When a catastrophic error occurs, a
short (non-translated) message is written to unit 0, followed by a call to the C
library routine abort(). A core dump can result, depending on how you configure
your execution environment.

Severe errors

A severe error cannot be recovered from, even if the ERR_RECOVERY run-time
option has been specified with the value YES. A severe error causes the IOSTAT=
specifier to be set to one of the values defined below and the ERR= label to be
branched to if these specifiers are present on the input/output statement. If the
IOSTAT= and ERR= specifiers are not present on the input/output statement
when a severe error condition is encountered, the program stops.

Chapter 9. XL Fortran Input/Output 215

Table 21. IOSTAT Values for severe error conditions

IOSTAT
Value

Error Description

1

END= is not specified on a direct access READ and the record is
nonexistent.

End of file encountered on WRITE of an internal file.

File cannot be found and STATUS="OLD’ is specified on an OPEN
statement.

10

Read error on direct file.

11

Write error on direct file.

12

Read error on sequential or stream file.

13

Write error on [sequential| or |stream| file.

14

Error opening file.

15

Permanent I/0O error encountered on file.

37

Dynamic memory allocation failure - out of memory.

38

REWIND error.

39

ENDFILE error.

40

BACKSPACE error.

107

File exists and STATUS="NEW’ was specified on an OPEN statement.

119

BACKSPACE statement attempted on unit connected to a tape device.

122

Incomplete record encountered during direct access READ.

130

ACTION="READWRITE’ specified on an OPEN statement to connect a pipe.

135

The user program is making calls to an unsupported version of the XL
Fortran run-time environment.

139

I/0 operation not permitted on the unit because the file was not opened
with an appropriate value for the ACTION= specifier.

142

CLOSE error.

144

INQUIRE error.

152

ACCESS="DIRECT" is specified on an OPEN statement for a file that can
only be accessed sequentially.

153

POSITION="REWIND’ or POSITION="APPEND’ is specified on an OPEN
statement and the file is a pipe.

156

Invalid value for RECL= specifier on an OPEN statement.

159

External file input could not be flushed because the associated device is not
seekable.

165

The record number of the next record that can be read or written is out of
the range of the variable specified with the NEXTREC= specifier of the
INQUIRE statement.

169

The asynchronous I/O statement cannot be completed because the unit is
connected for synchronous I/O only.

172

The connection failed because the file does not allow asynchronous 1/0.

173

An asynchronous READ statement was executed while asynchronous
WRITE statements were pending for the same unit, or an asynchronous
WRITE statement was executed while asynchronous READ statements were
pending for the same unit.

216 XL Fortran Language Reference

Table 21. IOSTAT Values for severe error conditions (continued)

IOSTAT
Value Error Description

174 The synchronous I/O statement cannot be completed because an earlier
asynchronous I/O statement has not been completed.

175 The WAIT statement cannot be completed because the value of the ID=
specifier is invalid.

176 The WAIT statement cannot be completed because the corresponding
asynchronous I/O statement is in a different scoping unit.

178 The asynchronous direct WRITE statement for a record is not permitted
because an earlier asynchronous direct WRITE statement for the same record
has not been completed.

179 The I/0 operation cannot be performed on the unit because there are still
incomplete asynchronous 1/O operations on the unit.

181 A file cannot be connected to a unit because multiple connections are
allowed for synchronous I/O only.

182 Invalid value for UWIDTH= option. It must be set to either 32 or 64.

183 The maximum record length for the unit is out of the range of the scalar
variable specified with the RECL= specifier in the INQUIRE statement.

184 The number of bytes of data transmitted is out of the range of the scalar
variable specified with the SIZE= or NUM= specifier in the I/O statement.

185 A file cannot be connected to two units with different UWIDTH values.

186 Unit numbers must be between 0 and 2,147,483,647.

192 The value of the file position is out of the range of the scalar variable
specified with the POS= specifier in the INQUIRE statement.

193 The value of the file size is out of the range of the scalar variable specified
with the SIZE= specifier in the INQUIRE statement.

200 FLUSH error.

201 The unit specified in the FLUSH statement is connected to a non-seekable
file.

Recoverable errors

A recoverable error is an error that can be recovered from. A recoverable error
causes the IOSTAT= specifier to be set to one of the values defined below and the
ERR= label to be branched to if these specifiers are present on the input/output
statement. If the IOSTAT= and ERR= specifiers are not present on the
input/output statement and the ERR_RECOVERY run-time option is set to YES,
recovery action occurs and the program continues. If the IOSTAT= and ERR=
specifiers are not present on the input/output statement and the ERR_RECOVERY
option is set to NO, the program stops.

Table 22. IOSTAT values for recoverable error conditions

IOSTAT Value Error Description

16 Value of REC= specifier invalid on direct I/O.

17 I/0 statement not allowed on direct file.

18 Direct I/O statement on an unconnected unit.

19 Unformatted I/0 attempted on formatted file.

20 Formatted I/O attempted on unformatted file.

21 Sequential or stream I/O attempted on direct file.

Chapter 9. XL Fortran Input/Output 217

Table 22. IOSTAT values for recoverable error conditions (continued)

IOSTAT Value

Error Description

22

Direct I/O attempted on sequential or stream file.

23

Attempt to connect a file that is already connected to another unit.

24

OPEN specifiers do not match the connected file’s attributes.

25

RECL= specifier omitted on an OPEN statement for a direct file.

26

RECL= specifier on an OPEN statement is negative.

27

ACCESS= specifier on an OPEN statement is invalid.

28

FORM= specifier on an OPEN statement is invalid.

29

STATUS= specifier on an OPEN statement is invalid.

30

BLANK= specifier on an OPEN statement is invalid.

31

FILE= specifier on an OPEN or INQUIRE statement is invalid.

32

STATUS="SCRATCH’ and FILE= specifier specified on same OPEN
statement.

33

STATUS="KEEP” specified on CLOSE statement when file was
opened with STATUS="SCRATCH'.

34

Value of STATUS= specifier on CLOSE statement is invalid.

36

Invalid unit number specified in an I/O statement.

47

A namelist input item was specified with one or more components
of nonzero rank.

48

A namelist input item specified a zero-sized array.

58

Format specification error.

93

I/0 statement not allowed on error unit (unit 0).

110

Illegal edit descriptor used with a data item in formatted 1/O.

120

The NLWIDTH setting exceeds the length of a record.

125

BLANKS= specifier given on an OPEN statement for an unformatted
file.

127

POSITION= specifier given on an OPEN statement for a direct file.

128

POSITION= specifier value on an OPEN statement is invalid.

129

ACTION= specifier value on an OPEN statement is invalid.

131

DELIM= specifier given on an OPEN statement for an unformatted
file.

132

DELIM= specifier value on an OPEN statement is invalid.

133

PAD= specifier given on an OPEN statement for an unformatted file.

134

PAD-= specifier value on an OPEN statement is invalid.

136

ADVANCE-= specifier value on a READ statement is invalid.

137

ADVANCE="NO’ is not specified when SIZE= is specified on a
READ statement.

138

ADVANCE="NC’ is not specified when EOR= is specified on a
READ statement.

145

READ or WRITE attempted when file is positioned after the endfile
record.

163

Multiple connections to a file located on a non-random access device
are not allowed.

218 XL Fortran Language Reference

Table 22. IOSTAT values for recoverable error conditions (continued)

IOSTAT Value

Error Description

164 Multiple connections with ACTION="WRITE" or
ACTION="READWRITE’ are not allowed.

170 ASYNCH= specifier value on an OPEN statement is invalid.

171 ASYNCH= specifier given on an OPEN statement is invalid because
the FORM= specifier is set to FORMATTED.

177 The unit was closed while there were still incomplete asynchronous
I/0O operations.

191 The RECL= specifier is specified on an OPEN statement that has
ACCESS="STREAM'.

194 The BACKSPACE statement specifies a unit connected for
unformatted stream 1/0.

195 POS= specifier on an I/0O statement is less than one.

196 The stream /O statement cannot be performed on the
unit because the unit is not connected for stream access.

197 POS= specifier on an I/0O statement for a unit connected to a
non-seekable file.

198 Stream I/O statement on an unconnected unit.

202 The ID=, POS=, or REC= specifier is not allowed in a child
READ or WRITE statement[_F2003 4

203 The child READ or WRITE statement specified a unit
number which does not match the unit number of the parent
statement [F2003 4

204 The child READ or WRITE statement is not allowed
because the parent statement is not a READ or WRITE statement.

205 The user-defined derived type I/O procedure set the IOSTAT
variable, but the parent statement did not specify IOSTAT=.

209 The BLANK= specifier in the READ statement has an illegal value.

210 A specifier in the READ statement has an illegal value.

211 The DELIM= specifier in the WRITE statement has an illegal value.

212 The data item in the formatted READ or WRITE statement
must be processed by a DT edit descriptor. The READ or WRITE
statement is ignored [F2003 4

213 The NAMELIST item name encountered by the NAMELIST READ
statement was not followed by an equals ('=')

214 The DELIM= specifier in the internal WRITE statement has an illegal
value.

215 SIGN= specifier value on a WRITE statement is invalid for the
external file.

216 SIGN= specifier value on a WRITE statement is invalid for the
internal file.

217 SIGN= specifier given on an OPEN statement for an unformatted
file.

218 SIGN= specifier value on an OPEN statement is invalid.

Chapter 9. XL Fortran Input/Output 219

Table 22. IOSTAT values for recoverable error conditions (continued)

IOSTAT Value Error Description

219 DECIMAL= specifier value is invalid for external file.

220 DECIMAL= specifier value is invalid for internal file.

221 DECIMAL= specifier is used in an unformatted I/O statement.

222 The ROUND-= specifier was specified in an OPEN statement with
FORM='UNFORMATTED'

223 The ROUND-= specifier in the I/O statement has an illegal value.

224 There is no outstanding asynchronous data transfer specified by the
ID= specifier.

225 A specifier in the OPEN statement has an illegal value.

226 There is no outstanding asynchronous data transfer specified.

227 Asynchronous data transfer error is not associated with the specified
unit.

228 The UFMT_LITTLEENDIAN option was specified for a unit
connected for formatted 1/0.

229 The v-list of the DT edit descriptor contains an unexpected character.

230 The v-list of the DT edit descriptor contains an unexpected
non-printable character.

231 Asynchronous data transfer error is not associated with the specified
file.

232 OpenMP thread number is not available.

233 BACKSPACE performed on a unit that does not have read access.

Conversion errors

A conversion error occurs as a result of invalid data or the incorrect length of data
in a data transfer statement. A conversion error causes the IOSTAT= specifier to be
set to one of the values defined below and the ERR= label to be branched to if
these specifiers are present on the input/output statement and the CNVERR
option is set to YES. If the IOSTAT= and ERR= specifiers are not present on the
input/output statement, both the CNVERR option and the ERR_RECOVERY
option are set to YES, recovery action is performed and the program continues. If
the IOSTAT= and ERR= specifiers are not present on the input/output statement,
the CNVERR option is set to YES, the ERR_RECOVERY option is set to NO, and
the program stops. If CNVERR is set to NO, the ERR= label is never branched to
but the IOSTAT= specifier may be set, as indicated below.

Table 23. IOSTAT values for conversion error conditions

IOSTAT IOSTAT set if
Value Error Description CNVERR=NO
3 End of record encountered on an unformatted file. no
4 End of record encountered on a formatted external file no

using advancing 1/0.

5 End of record encountered on an internal file. no
Incorrect format of list-directed input found in an external yes
file.

8 Incorrect format of list-directed input found in an internal yes
file.

220 XL Fortran Language Reference

Table 23. IOSTAT values for conversion error conditions (continued)

IOSTAT IOSTAT set if
Value Error Description CNVERR=NO

9 List-directed or NAMELIST data item too long for the yes
internal file.

41 Valid logical input not found in external file. no

42 Valid logical input not found in internal file. no

43 Complex value expected using list-directed or NAMELIST no
input in external file but not found.

44 Complex value expected using list-directed or NAMELIST no
input in internal file but not found.

45 NAMELIST item name specified with unknown or invalid no
derived-type component name in NAMELIST input.

46 NAMELIST item name specified with an invalid substring no
range in NAMELIST input.

49 List-directed or namelist input contained an invalid no
delimited character string.

56 Invalid digit found in input for B, O or Z format edit no
descriptors.

84 NAMELIST group header not found in external file. yes

85 NAMELIST group header not found in internal file. yes

86 Invalid NAMELIST input value found in external file. no

87 Invalid NAMELIST input value found in internal file. no

88 Invalid name found in NAMELIST input. no

90 Invalid character in NAMELIST group or item name in no
input.

91 Invalid NAMELIST input syntax. no

92 Invalid subscript list for NAMELIST item in input. no

94 Invalid repeat specifier for list-directed or NAMELIST no
input in external file.

95 Invalid repeat specifier for list-directed or NAMELIST no
input in internal file.

96 Integer overflow in input. no

97 Invalid decimal digit found in input. no

98 Input too long for B, O or Z format edit descriptors. no

121 Output length of NAMELIST item name or NAMELIST yes
group name is longer than the maximum record length or
the output width specified by the NLWIDTH option.

Fortran 90, 95 and 2003 standard language errors
A Fortran 90 language error results from the use of XL Fortran extensions to the
Fortran 90 language that cannot be detected at compile time. A Fortran 90
language error is considered a severe error when the LANGLVL run-time option
has been specified with the value 90STD and the ERR_RECOVERY run-time
option has either not been set or is set to NO. If both LANGLVL=90STD and
ERR_RECOVERY=YES have been specified, the error is considered a recoverable
error. If LANGLVL= EXTENDED is specified, the error condition is not considered

an error.

Chapter 9. XL Fortran Input/Output 221

A Fortran 95 language error results from the use of XL Fortran extensions to the
Fortran 95 language that cannot be detected at compile time. A Fortran 95
language error is considered a severe error when the LANGLVL run-time option
has been specified with the value 95STD and the ERR_RECOVERY run-time
option has either not been set or is set to NO. If both LANGLVL=95STD and
ERR_RECOVERY=YES have been specified, the error is considered a recoverable
error. If LANGLVL=EXTENDED is specified, the error condition is not considered
an error.

A Fortran 2003 Standard language error results from the use of XL Fortran
extensions to the Fortran 2003 language standard that cannot be detected at
compile time. A Fortran 2003 language error is considered a severe error when the
LANGLVL run-time option has been specified with the value 2003STD and the
ERR_RECOVERY run-time option has either not been set or is set to NO. If both
LANGLVL=2003STD and ERR_RECOVERY=YES have been specified, the error is
considered a recoverable error. If LANGLVL=EXTENDED is specified, the error
condition is not considered an error.

Table 24. IOSTAT Values for Fortran 90, 95, and 2003 Standard Language Error Conditions

IOSTAT
Value |Error Description

53 Mismatched edit descriptor and item type in formatted I1/0.

58 Format specification error.

140 | Unit is not connected when the I/O statement is attempted. Only for READ,
WRITE, PRINT, REWIND, and ENDFILE.

141 Two ENDFILE statements without an intervening REWIND or BACKSPACE on
the unit.

151 The FILE= specifier is missing and the STATUS= specifier does not have a value
of 'SCRATCH’ on an OPEN statement.

187 | NAMELIST comments are not allowed by the Fortran 90 standard.

199 STREAM is not a valid value for the ACCESS= specifier on an OPEN statement
in Fortran 90 or Fortran 95.

222 XL Fortran Language Reference

Chapter 10. Input/Output formatting

Formatted [READ}, [WRITE| and [PRINT] data transfer statements use formatting
information to direct the conversion between internal data representations and
character representations in a [formatted record] You can control the conversion
process, called editing, by using a formatting type. The Formatting and Access Types
table details the access types that support each formatting type.

Table 25. Formatting and access types

Formatting Type Access Types
. Format-directed |sequentiall [direct} and [stream|
| |sequentia]l and |streaml
| [sequential| and [stream|

Editing occurs on all fields in a record. A field is the part of a record that is read
on input or written on output when format control processes a data or character
string edit descriptor. The field width is the size of that field in characters.

Format-directed formatting

Format-directed formatting allows you to control editing using edit descriptors in a
[format specification} Specify a format specification in a[FORMAT] statement or as

the value of a character array or character expression in a data transfer statement.
Edit descriptors allow you to control editing in the following ways:

* Data edit descriptors allow you to specify editing by data type
 Control edit descriptors focus on the editing process

* Character string edit descriptors control string outputs

Complex editing

To edit values, you must specify complex editing by using a pair of data
edit descriptors. A complex value is a pair of separate real components. When
specifying complex editing, the first edit descriptor applies to the real part of the
number. The second edit descriptor applies to the imaginary part of the number.

You can specify different edit descriptors for a complex editing pair and use one or
more control edit descriptors between the edit descriptors in that pair. You must
not specify data edit descriptors between the edit descriptors in that pair.

Data edit descriptors

Data edit descriptors allow you to specify editing by data type. You can use them
to edit character, numeric, logical, and derived type data. The Data Edit Descriptors
table contains a complete list of all character, character string, numeric, logical, and
derived type edit descriptors. Numeric data refers to integer, real, and complex
values.

Table 26. Data edit descriptors

Forms Use
E Edits character values
Aw

© Copyright IBM Corp. 1990, 2007 223

Table 26. Data edit descriptors (continued)

Forms Use

Edits binary values

Bw.m

DT - Edits an item of derived type. You can use a procedure

DTchar-literal-constant instead of the default input/output formatting of an item

DT (v-list) of derived type.

DTchar-literal-constant(v-list)

Edits real and complex numbers with exponents

Ew.dEe

Ew@ *

Ew.dQe *

Duw.d

[ENjo.d

ENw.dEe

[ES}o.d

ESw.dEe

Quw.d *

Ew.d Edits real and complex numbers without exponents

.d Edits data fields of any intrinsic type, with the output

Guw.dEe format adapting to the type of the data and, if the data is

Gw.dDe * of type real, the magnitude of the data

Gw.dQe *

Elw Edits integer numbers

Tw.m

Du Edits logical values

|§|w Edits octal values

Ow.m

|§| * Returns the count of characters remaining in an input
record *

Edits hexadecimal values

Zw.m

where:

char-literal-constant
Specifies a character literal constant in a DT edit descriptor that must not
have a kind parameter.

. Fortran 2003

* Specifies an IBM extension.

d Specifies the number of digits to the right of the decimal point.

e Specifies the number of digits in the exponent field.

m Specifies the number of digits to print.

n Specifies the number of characters in a literal field. Blanks are included in

character count.

| Fortran 2003

v-list A comma-separated list of integer literal constants that have the same kind

224 XL Fortran Language Reference

parameter.

| End of Fortran 2003 |

w Specifies the width of a field including all blanks as a positive value.

If you specify the |E Iﬂ |§|, or IZl, edit descriptors on output, the
value of w can be zero[_Fe5_4

Rules for Data Edit Descriptor and Modifiers
You must not specify kind type parameters.

Edit descriptor modifiers must be unsigned integer literal constants.

| IBM Extension |

For the w, m, d, and e modifiers, you must enclose a scalar integer expression in
angle brackets (< and >). See [“Variable format expressions” on page 361| for details.

Note:

There are two types of Q data edit descriptor:

extended precision Q
is the Q edit descriptor with theQw.d syntax

character count Q
is the Q edit descriptor with the Q syntax

| End of IBM Extension

Rules for numeric edit descriptors on input

Leading blanks are not significant. You can control the interpretation of other
blanks using the BLANK= specifier in the [OPEN] or [READ| statements and the
and edit descriptors. A field of all blanks is treated as zero.

Plus signs are optional, though you must not specify plus signs for the @ and
edit descriptors.

In IE Iﬂ and extended precision @I editing, a decimal point appearing
in the input field overrides the portion of an edit descriptor that specifies the
decimal point location. The field can contain more digits than can be represented
internally.

Input of IEEE Exceptional Values

For real and complex editing, XL Fortran can now input IEEE exceptional values.
The Fortran 2003 standard specifies a set of values for IEEE NaN (Not-a-Number)
and IEEE infinity which XL Fortran now supports, along with another set of IEEE
NaN values that are unique to XL Fortran. Input of IEEE exceptional values under
real and complex editing are governed by the field width of the real or complex
edit descriptor. IEEE exceptional values are case insensitive during input. The IE
and @l edit descriptors support the input of IEEE exceptional values.

The Fortran 2003 standard allows the following values for IEEE infinity: 'INF’,

'+INF', -INF', INFINITY', '+INFINITY', or -INFINITY". These values can be
preceded and followed by blanks.

Chapter 10. Input/Output formatting 225

The Fortran 2003 standard allows the following values for IEEE NaN: 'NAN',
'+NAN', or -NAN'". The sign that precedes 'NAN' will not have any significant
meaning in XL Fortran. These values can also be preceded and followed by blanks.
IEEE NaN can also be directly followed by zero or more characters in parentheses.
The parentheses are used to indicate a quiet or signaling NaN. If only 'NAN' or
'NAN()' is specified it is interpreted as a quiet NaN. 'NAN(Q)' will be interpreted
as a quiet NaN, and 'NAN(S)' as a signaling NaN. Any other alphanumeric
characters specified inside the parentheses will have no significant meaning and
will be interpreted as a quiet NaN by default.

As an IBM extension, XL Fortran allows the following values for IEEE NaN:
'NANQ' or 'NANS'. These exceptional values are case insensitive. ' NANQ' will be
interpreted as a quiet NaN and 'NANS' as a signaling NaN. This form of IEEE
NaN will only be allowed when the runtime option 'langlvl' is set to 'extended'.

Rules for numeric data edit descriptors on output
Characters are right-justified in the field.

When the number of characters in a field is less than the field width, leading
blanks fill the remaining field space.

When the number of characters in a field is greater than the field width, or if an
exponent exceeds its specified width, asterisks fill the entire field space.

A minus sign prefixes a negative value. A positive or zero value does not receive a
plus sign prefix on output, unless you specify the or |SS| edit descriptors.

| Fortran 95 |

If you specify the qu1f9i;| compiler option the IE @ |Q(Extended Precision)) IE
and G(General Editing)|edit descriptors output a negative value differently
depending on the signedzero suboption.

* If you specify the signedzero suboption, the output field contains a minus sign
for a negative value, even if that value is negative zero. This behavior conforms
to the Fortran 95 and Fortran 2003 Standard.

| IBM Extension |

XL Fortran does not evaluate a REAL(16) internal value of zero as a negative
Zero.

| End of IBM Extension |

* If you specify the nosignedzero suboption, a minus sign is not written to the
output field for a value of zero, even if the internal value is negative.

The and [ES| edit descriptors output a minus sign when the value is negative
for the signedzero and nosignedzero suboptions.

| End of Fortran 95

Output of IEEE Exceptional Values

XL Fortran supports output of IEEE exceptional values for real and complex
editing. Output of IEEE exceptional values can be Fortran 2003 standard compliant
or compatible with previous releases of XL Fortran. A new compiler option and
runtime option control the output of IEEE exceptional values. The

226 XL Fortran Language Reference

-qx1£2003=o0ldnaninf compiler option will output IEEE exceptional values like
previous releases of XL Fortran; whereas, -qx1£2003=nooldnaninf will output IEEE
exceptional values in accordance with the Fortran standard. In addition to the
compiler option, a new runtime option, naninfoutput, can force the output of IEEE
exceptional values to be Fortran 2003 standard compliant or compliant to the

previous releases of XL Fortran. For more information on the naninfoutput
runtime option see: [Running XL Fortran programs| section of the
[Compiler Reference, The |ﬂ |El m @ |Ql |§l and |g edit descriptors support the
output of IEEE exceptional values.

Output of IEEE exceptional values under real and complex editing are governed by
the field width of the real or complex edit descriptor. IEEE exceptional values are
case sensitive during output.

Fortran 2003 Standard Output

IEEE infinity is output as 'Inf'. It can be preceded by as many blanks as necessary
to be right justified. If the internal value is positive infinity, it can also be directly
preceded by an optional plus sign if the field width allows for it. If the field width
is less than three, asterisks are output instead. However, if the SIGN= specifier has
a value of 'PLUS' or the 'sp' descriptor is used, then the plus sign is mandatory
and the minimum field width is 4. If the internal value is negative infinity, it must
be preceded by a negative sign. The minimum field width is 4. If the field width is
less than four, asterisks are output instead.

IEEE Nan is output as 'NaN'. It can be preceded by as many blanks as necessary to
be right justified. If the field width is greater than or equal to five, the standard
allows for zero or more alphanumeric characters in parentheses to optionally
follow the 'NaN'. XL Fortran will output 'NaN(Q)' for a quiet NaN and 'NaN(S)'
for a signaling NaN if the field width is greater than five, otherwise only a 'NaN'
is output. If the field width is less than three, asterisks are output instead.

Previous XL Fortran Output

IEEE infinity is output as 'INF'. It can be preceded by as many blanks as necessary
to be right justified. If the field width is less than three, asterisks are output
instead.

IEEE NaN is output as 'NaNQ' for a quiet NaN and 'NaNS' for a signaling NaN. It
can also be directly preceded by an optional sign. It can be preceded by as many
blanks as necessary to be right justified. If the field width is less than four,
asterisks are output instead.

Rules for derived type edit descriptors

| Fortran 2003 |

The DT edit descriptor allows you to provide a procedure instead of the default
input/output formatting for processing a list item of derived type. If you specify
the optional char-literal-constant, the character value DT is concatenated to the
char-literal-constant and passed to your user-defined derived-type input/output
procedure as the iotype argument.

The values in the v-list of the DT edit descriptor are passed to the derived-type
input/output procedure you define as the v_list array argument.

Chapter 10. Input/Output formatting 227

If a derived type variable or value corresponds to the DT edit descriptor, there
must be an accessible interface to a derived type input/output procedure for that

derived type.

You must not specify a DT edit descriptor as a non-derived type list item.

End of Fortran 2003

Control edit descriptors

Table 27. Control edit descriptors

Forms Use

Specifies the end of data transfer on the current record

r/
Specifies the end of format control if there are no more items in the
input/output list

@ * Suppresses end-of-record in output *

BN Ignores nonleading blanks in numeric input fields

BZ Interprets nonleading blanks in numeric input fields as zeros

DC - Specifies decimal comma as the decimal edit mode.

DP - Specifies decimal point as the decimal edit mode.

kP Specifies a scale factor for real and complex items.

RU - Specifies the UP rounding mode.

RC - Specifies the COMPATIBLE rounding mode.

RD - Specifies the DOWN rounding mode.

RN Specifies the NEAREST rounding mode.

RP - Specifies the PROCESSOR_DEFINED rounding mode.

RZ - Specifies the ZERO rounding mode.

S Specifies that plus signs are not to be written

SS

SP Specifies that plus signs are to be written

Tc Specifies the absolute position in a record from which, or to which,
the next character is transferred

TLc Specifies the relative position (backward from the current position
in a record) from which, or to which, the next character is
transferred

TRc Specifies the relative position (forward from the current position in

oX a record) from which, or to which, the next character is transferred

where:

. Fortran 2003

* specifies an IBM extension.

r is a repeat specifier. It is an unsigned, positive, integer literal constant.

k specifies the scale factor to be used. It is an optionally signed, integer

literal constant.
c specifies the character position in a record. It is an unsigned, nonzero,

integer literal constant.

228 XL Fortran Language Reference

0 is the relative character position in a record. It is an unsigned, nonzero,
integer literal constant.

Rules for Control Edit Descriptors and Modifiers
You must not specify kind type parameters.

| IBM Extension |

7, k, ¢, and o can also be expressed as an arithmetic expression enclosed by angle
brackets that evaluates into an integer value.

| End of IBM Extension |

Character string edit descriptors

Character string edit descriptors allow you to edit character data.

Forms Use Page
nHstr Outputs a character string (str)
"str’ Outputs a character string (str)
UStrU

n is the number of characters in a literal field. It is an unsigned, positive,

integer literal constant. Blanks are included in character count. A kind type
parameter cannot be specified.

Apostrophe/Double quotation mark editing

Purpose: The apostrophe/double quotation mark edit descriptor specifies a
character literal constant in an output format specification.

Syntax:
* 'character string'
* "character string"

Rules: The width of the output field is the length of the character literal constant.
See [“Character” on page 41| for additional information on character literal
constants.

| IBM Extension

Notes:

1. A backslash is recognized, by default, as an escape sequence, and as a
backslash character when the -qnoescape compiler option is specified. See
fescape sequences| for more information.

2. XL Fortran provides support for multibyte characters within character
constants, Hollerith constants, character-string edit descriptors, and comments.
This support is provided through the -qmbcs option. Assignment of a constant
containing multibyte characters to a variable that is not large enough to hold
the entire string may result in truncation within a multibyte character.

3. Support is also provided for Unicode characters and filenames. If the
environment variable LANG is set to UNIVERSAL and the -qmbcs compiler
option is specified, the compiler can read and write Unicode characters and
filenames.

Chapter 10. Input/Output formatting 229

| End of IBM Extension

Examples:
ITIME=8
WRITE(*,5) ITIME
5 FORMAT('The value is -- ',I12) ! The value is -- 8

WRITE(*,10) ITIME

10 FORMAT(I2,'o''clock') ! 8o'clock
WRITE (%, ' (I2,7Ho" 'clock) ') ITIME ! 8o0'clock
WRITE(*,15) ITIME

15 FORMAT ("The value is -- ",I2) ! The value is -- 8
WRITE(*,20) ITIME

20 FORMAT(I2,"0'clock") ! 8o'clock
WRITE(*,'(I2,"0"''clock")"') ITIME ! 8o'clock

Effective list items

| Fortran 2003

This section discusses the rules for expanding a data transfer statement’s array and
derived-type input/output list items. The scalar objects that result from the
application of these rules are called effective items. Zero-sized arrays and
implied-DO lists with an iteration count of zero do not contribute to the effective
list items. A scalar character item of zero length is an effective list item.

The following rules are re-applied to each expanded list item until none of the
rules applies.

1. If an array appears as an input/output list item, it is treated as if the elements,
if any, were specified in array element order.

2. If a list item of derived type in an unformatted input/output statement is not
processed by a user-defined derived-type input/output procedure, and if any
subobject of that list item would be processed by a user-defined derived-type
input/output procedure, the list item is treated as if all of the components of
the object were specified in the list in component order. Those components are
accessible in the scoping unit containing the input/output statement, and they
must not be pointers or allocatable.

3. An effective input/output list item of derived type in an unformatted
input/output statement is treated as a single value in a processor-dependent
form, unless the list item or a subobject of a list item is processed by a
user-defined derived-type input/output procedure.

4. If a list item of derived type in a formatted input/output statement is not
processed by a user-defined derived-type input/output procedure, that list item
is treated as if all of the components of the list item were specified in the list in
component order. Those components are accessible in the scoping unit
containing the input/output statement, and they must not be pointers or
allocatable.

5. If a derived-type list item is not treated as a list of its individual components,
its ultimate components cannot have the POINTER or ALLOCATABLE
attribute, unless the list item is processed by a user-defined derived-type
input/output procedure.

| End of Fortran 2003

230 XL Fortran Language Reference

Interaction of Input/Output lists and format specifications

Beginning format-directed formatting initiates format control. Each action of format
control depends on the next edit descriptor in the format specification, and on the
next effective item in the input/output list, if one exists.

If an input/output list specifies at least one effective item, at least one data edit
descriptor must exist in the format specification. Note that an empty format
specification (parentheses only) can be used only if there are no effective items in
the input/output list or if each item is a zero-sized array or an implied-DO list
with an iteration count of zero. If this is the case and advancing input/output is in
effect, one input record is skipped, or one output record containing no characters is
written. For nonadvancing input/output, the file position is left unchanged.

A format specification is interpreted from left to right, except when a repeat
specification (r) is present. A format item that is preceded by a repeat specification
is processed as a list of r format specifications or edit descriptors identical to the
format specification or edit descriptor without the repeat specification.

One effective item specified by the input/output list corresponds to each data edit
descriptor. An effective list item of type requires the interpretation of two
|E IE or extended precision |Q|edit descriptors. No item specified by

the input/output list corresponds to a control edit descriptor or character string
edit descriptor. Format control communicates information directly with the record.

Format control operates as follows:

1. If a data edit descriptor is encountered, format control processes an effective
input/output list item, if there is one, or terminates the input/output command
if the list is empty. If the effective list item processed is of type complex, any
two edit descriptors are processed.

2. The colon edit descriptor terminates format control if no more effective items
are in the input/output list. If more effective items are in the input/output list
when the colon is encountered, it is ignored.

3. If the end of the format specification is reached, format control terminates if the
entire effective input/output list has been processed, or control reverts to the
beginning of the format item terminated by the last preceding right parenthesis.
The following items apply when the latter occurs:

* The reused portion of the format specification must contain at least one data
edit descriptor.

* If reversion is to a parenthesis that is preceded by a repeat specification, the
repeat specification is reused.

* Reversion, of itself, has no effect on the scale factor, on the S, SP, or SS edit
descriptors, or on the BN or BZ edit descriptors.

e If format control reverts, the file is positioned in a manner identical to the
way it is positioned when a slash edit descriptor is processed.

| IBM Extension |

During a read operation, any unprocessed characters of the record are skipped
whenever the next record is read. A comma or semicolon can be used as a value
separator for noncharacter data in an input record processed under format-directed
formatting. The value separator will override the format width specifications when
it appears before the end of the field width. For example, the format
(I10,F20.10,14) will read the following record correctly:

-345, .05E-3, 12

Chapter 10. Input/Output formatting 231

| End of IBM Extension

It is important to consider the maximum size record allowed on the input/output
medium when defining a Fortran record by a[FORMAT statement} For example, if
a Fortran record is to be printed, the record should not be longer than the printer’s
line length.

Comma-separated Input/Output

| IBM Extension

When reading floating-point data using format-directed input/output, a comma
that appears in the input terminates the field. This can be useful for reading files
containing comma-separated values.

For example, the following program reads two reals using the E edit descriptor. It
requires that the field width be 16 characters. The program attempts to read the
remaining characters in the record as a character string.

> cat read.f

real a,b

character=*10 c

open(11, access='sequential', form='formatted')
read(11, '(2el6.10, A)') a,b,c

print *, a

print =, b

print *, ¢

end

If the floating-point fields are 16 characters wide, as the format specifies, the
program executes correctly. (0.4000000000E+02 is 16 characters long.)

> cat fort.1ll1
0.4000000000E+020.3000000000E+02he1 10
> a.out

40.00000000

30.00000000

hello

But if the floating-point input contains less than 16 characters, errors occur because
parts of the next field are read. (0.400000E+02 is 12 characters long.)

> cat fort.ll

0.400000E+020.3000000E+02hel 10

> a.out

1525-097 A READ statement using decimal base input found the invalid digit
"."in the input file.

The program will recover by assuming a zero in its place.

1525-097 A READ statement using decimal base input found the invalid digit
'h' in the input file.

The program will recover by assuming a zero in its place.

1525-097 A READ statement using decimal base input found the invalid digit
'e' in the input file.

The program will recover by assuming a zero in its place.

1525-097 A READ statement using decimal base input found the invalid digit
"1'" in the input file.

The program will recover by assuming a zero in its place.

1525-097 A READ statement using decimal base input found the invalid digit
"1'" in the input file.

The program will recover by assuming a zero in its place.

1525-097 A READ statement using decimal base input found the invalid digit

232 XL Fortran Language Reference

'o' in the input file.

The program will recover by assuming a zero in its place.
INF

0.0000000000E+00

If you use commas to terminate the fields, the floating-point values are read
correctly. (0.400000E+02 is 12 characters long, but the fields are separated by
commas.)
> cat fort.11
0.400000E+02,0.3000000E+02,hello
> a.out

40.00000000

30.00000000

hello

If decimal comma mode is in effect, a semicolon acts as a value separator instead
of a comma.

| End of IBM Extension |

Data edit descriptors

In the examples of data edit descriptors, a lowercase b in the Output column
indicates that a blank appears at that position.

A (Character) Editing

Purpose

The A edit descriptor directs the editing of character values. It can correspond to
an input/output list item of type character or any other type. The kind type
parameter of all characters transferred and converted is implied by the
corresponding list item.

Syntax
c A
* Aw

Rules

On input, if w is greater than or equal to the length (call it len) of the input list
item, the rightmost len characters are taken from the input field. If the specified
field width is less than len, the w characters are left-justified, with (len - w)
trailing blanks added.

On output, if w is greater than len, the output field consists of (w - len) blanks
followed by the len characters from the internal representation. If w is less than or
equal to len, the output field consists of the leftmost w characters from the internal
representation.

If w is not specified, the width of the character field is the length of the
corresponding input/output list item.

| Fortran 2003

During formatted stream access, character output is split across more than one
record if it contains newline characters.

| End of Fortran 2003 |

Chapter 10. Input/Output formatting 233

B (Binary) Editing

Purpose
The B edit descriptor directs editing between values of any type in internal form
and their binary representation. (A binary digit is either 0 or 1.)

Syntax
* Bw
* Bw.m

Rules

On input, w binary digits are edited and form the internal representation for the
value of the input list item. The binary digits in the input field correspond to the
rightmost binary digits of the internal representation of the value assigned to the
input list item. m has no effect on input.

On input, w must be greater than zero.

| Fortran 95 |

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required to represent the output value.

| End of Fortran 95 |

The output field for Bw consists of zero or more leading blanks followed by the
internal value in a form identical to the binary digits without leading zeros. Note
that a binary constant always consists of at least one digit.

The output field for Bw.m is the same as for Bw, except that the digit string
consists of at least m digits. If necessary, the digit string is padded with leading
zeros. The value of m must not exceed the value of w unless w is zero. If m is zero
and the value of the internal data is zero, the output field consists of only blank
characters, regardless of the sign control in effect.

If m is zero, w is positive and the value of the internal datum is zero, the output
field consists of w blank characters. If both w and m are zero, and the
value of the internal datum is zero, the output field consists of only one blank

character.

If the nooldboz suboption of the -qx1f77 compiler option is specified (the default),
asterisks are printed when the output field width is not sufficient to contain the
entire output. On input, the BLANK= specifier and the BN and BZ edit descriptors
affect the B edit descriptor.

| IBM Extension |

If the oldboz suboption of the -qx1f77 compiler option is specified, the following
occurs on output:

* Bw is treated as Bw.m, with m assuming the value that is the minimum of w and
the number of digits required to represent the maximum possible value of the
data item.

234 XL Fortran Language Reference

* The output consists of blanks followed by at least m digits. These are the
rightmost digits of the number, zero-filled if necessary, until there are m digits. If
the number is too large to fit into the output field, only the rightmost m digits
are output.

If w is zero, the oldboz suboption will be ignored.

With the oldboz suboption, the BLANK= specifier and the BN and BZ edit
descriptors do not affect the B edit descriptor.

| End of IBM Extension

Examples

Examples of B editing on input:
Input Format Value

111 B3 7

110 B3 6

Examples of B editing on output:

Value Format Qutput Output
(with -gx1f77=01dboz) (with -gx1f77=nooldboz)

7 B3 111 111
6 B5 00110 bb110
17 B6.5 b10001 b10001
17 B4.2 0001 Kokkk
22 B6.5 b10110 b10110
22 B4.2 0110 ok
0 B5.0 bbbbb bbbbh
2 BO 10 10

E, D, and Q (Extended Precision) Editing
Purpose

The E, D, and extended precision Q edit descriptors direct editing between real
and complex numbers in internal form and their character representations with
exponents. An E, D, or extended precision Q edit descriptor can correspond to an
input/output list item of type real, to either part (real or imaginary) of an
input/output list item of type complex, or to any other type in XL Fortran,

as long as the length is at least 4 bytes.

Syntax
* Ew.d
* Ew.d Ee
* Dw.d

+ M] Ew.d De [igm 4
+ ¥] Ew.d Qe [iam J
+ p] Qud w4

Rules
The form of the input field is the same as for |l__:| editing. e has no effect on input.

The form of the output field for a scale factor of O is:

Chapter 10. Input/Output formatting 235

A\
A

»>> ii :‘ |_ _| —digit_string—decimal_exponent
+ 0

digit_string
is a digit string whose length is the d most significant digits of the value
after rounding.

decimal_exponent
is a decimal exponent of one of the following forms (z is a digit):

Absolute Value of Exponent (with scale
Edit Descriptor factor of 0) Form of Exponent
Ew.d I decimal_exponent | = 99 E+z,z,
Ew.d 99< | decimal_exponent | = 309 +7,7,Z5
Ew.dEe I decimal_exponent!| = (10°)-1 E+z,z, ...z,
Ew.dDe * I decimal_exponent| = (10%-1 * D+z,z, ..z, *
Ew.dQe * I decimal_exponent | = (10°-1 * Q+z,2, ..z, *
Dw.d | decimal_exponent| = 99 D+z,7,
Dw.d 99< I decimal_exponent| = 309 +7,2,Z,
Qu.d * | decimal_exponent!| =99 * Q+tz,z, *
Qu.d * 99< I decimal_exponent| = 309 * +7,2,75 *

Note: * IBM Extensions

The [scale factor| k (see |[“P (Scale Factor) Editing” on page 253) controls decimal
normalization. If -d<k=0, the output field contains k| leading zeros and d - |kl
significant digits after the decimal symbol. If 0<k<d+2, the output field contains k
significant digits to the left of the decimal symbol and d-k+1 significant digits to
the right of the decimal symbol. You cannot use other values of k.

For general information about numeric editing on input, see [‘Rules for numerid
fedit descriptors on input” on page 225

For more information regarding numeric editing on output, see ['Rules for numeric|
[data edit descriptors on output” on page 226

Examples

Examples of E, D, and extended precision Q editing on input: (Assume BN
editing is in effect for blank interpretation.)

Input Format Value
12.34 £8.4 12.34

.1234E2 E8.4 12.34
2.E10 E12.6E1 2.E10

Examples of E, D, and extended precision Q editing on output:

236 XL Fortran Language Reference

Value Format Qutput Qutput
(with -gx1f77=noleadzero) (with -gx1f77=1eadzero)

1234.56 E10.3 bb.123E+04 b0.123E+04
1234.56 D10.3 bb.123D+04 b0.123D+04
Fortran 95
(with -gx1f90=signedzero) (with -gx1f90=nosignedzero)
-0.001 E5.2 -0.00 b0.00

| End of Fortran 95 |

DT Editing

| Fortran 2003

Purpose

The DT edit descriptor allows you to specify that a user-defined procedure is
called instead of the default input/output formatting for processing an
input/output list item of derived type

Syntax

* DT

* DTchar-literal-constant

* DT(v-list)

* DTchar-literal-constant(v-list)

Rules

The iotype dummy argument passed to the user-defined input/output procedure
contains the text from the char-literal-constant, prefixed with DT. If you do not
include a char-literal-constant, the iotype argument contains only DT.

The v-list is passed to the user-defined input/output procedure in the v_Iist integer
array dummy argument. If you do not include a v-list, the v_list dummy argument
is a zero-sized array.

When you use the DT edit descriptor, the corresponding derived type
input/output list item must be associated with an appropriate user-defined
derived type input/output procedure.

| End of Fortran 2003

EN Editing

Purpose

The EN edit descriptor produces an output field in the form of a real number in
engineering notation such that the decimal exponent is divisible by 3 and the
absolute value of the significand is greater than or equal to 1 and less than 1000,
except when the output value is zero. The scale factor has no effect on output.

The EN edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,
or to any other type in XL Fortran, as long as the length is at least 4 bytes.

Chapter 10. Input/Output formatting 237

Syntax
* ENw.d

e ENuw.dEe

Rules
The form and interpretation of the input field is the same as for F editing.

The form of the output field is:

»>>- .—digit_string—exp ><
[Tl

yyy are the 1 to 3 decimal digits representative of the most significant digits of
the value of the datum after rounding (yyy is an integer such that 1 = yyy <
1000 or, if the output value is zero, yyy = 0).

digit_string
are the d next most significant digits of the value of the datum after

rounding.

exp is a decimal exponent, divisible by 3, of one of the following forms (z is a
digit):

Edit Descriptor Absolute Value of Exponent | Form of Exponent

ENw.d lexpl =99 E+z,z,

ENw.d 99 < lexp!| =309 +2,2,Z,

ENw.dEe lexpl =10°-1 E+z, ... z,

For general information about numeric editing on input, see|“Rules for numerid
fedit descriptors on input” on page 225

For more information regarding numeric editing on output, see [‘Rules for numerid|
[data edit descriptors on output” on page 226,

Examples
Value Format Qutput
3.14159 EN12.5 b3.14159E+00
1.41425D+5 EN15.5E4 141.42500E+0003
3.14159D-12 EN15.5E1 kK KKK RR KKK
Fortran 95

(with -gx1f90=signedzero) (with -gx1f90=nosignedzero)

-0.001 EN9.2 -1.00E-03 -1.00E-03

| End of Fortran 95 |

238 XL Fortran Language Reference

ES Editing

Purpose

The ES edit descriptor produces an output field in the form of a real number in
scientific notation such that the absolute value of the significand is greater than or
equal to 1 and less than 10, except when the output value is zero. The scale factor
has no effect on output.

The ES edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,
or to any other type in XL Fortran, as long as the length is at least 4 bytes.

Syntax
* ESw.d
e ESw.dEe

Rules
The form and interpretation of the input field is the same as for F editing.

The form of the output field is:

>

TR

.—digit_string—exp >«

Y is a decimal digit representative of the most significant digit of the value of
the datum after rounding.

digit_string
are the d next most significant digits of the value of the datum after

rounding.
exp is a decimal exponent having one of the following forms (z is a digit):
Edit Descriptor Absolute Value of Exponent | Form of Exponent
ESw.d lexpl =99 E+z,z,
ESw.d 99 < lexp!| =309 +2,2,25
ESw.dEe lexpl =10°-1 E+z, ... z,

For general information about numeric editing on input, see [“Rules for numerid|
fedit descriptors on input” on page 225

For more information regarding numeric editing on output, see [‘Rules for numerid
[data edit descriptors on output” on page 226,

Examples
Value Format Output
31415.9 ES12.5 b3.14159E+04

14142 .5D+3 ES15.5E4 bb1.41425E+0007
31415.9D-22 ES15.5E1 Kk kKRR AR

Chapter 10. Input/Output formatting 239

Fortran 95

(with -gx1f90=signedzero) (with -gx1f90=nosignedzero)
-0.001 ES9.2 -1.00E-03 -1.00E-03

| End of Fortran 95 |

F (Real without Exponent) Editing

Purpose
The F edit descriptor directs editing between real and complex numbers in internal
form and their character representations without exponents.

The F edit descriptor can correspond to an input/output list item of type real, to
either part (real or imaginary) of an input/output list item of type complex,
or to any other type in XL Fortran, as long as the length is at least 4 bytes.

Syntax
* Fw.d

Rules
The input field for the F edit descriptor consists of, in order:

1. An optional sign.

2. A string of digits optionally containing a decimal symbol. If the decimal symbol
is present, it overrides the d specified in the edit descriptor. If the decimal
symbol is omitted, the rightmost d digits of the string are interpreted as
following the decimal symbol, and leading blanks are converted to zeros if
necessary.

3. Optionally, an exponent, having one of the following forms:
* A signed digit string
* E, D, or Q followed by zero or more blanks and by an optionally signed
digit string. E, D, and Q are processed identically.

The output field for the F edit descriptor consists of, in order:

1. Blanks, if necessary.

2. A minus sign if the internal value is negative, or an optional plus sign if the
internal value is zero or positive.

3. A string of digits that contains a decimal symbol and represents the magnitude
of the internal value, as modified by the scale factor in effect and rounded to d
fractional digits. See [P (Scale Factor) Editing” on page 253| for more
information.

On input, w must be greater than zero.

| Fortran 95 |

In Fortran 95 on output, w can be zero. If w is zero, the output field consists of the
least number of characters required to represent the output value.

| End of Fortran 95 |

For general information about numeric editing on input, see [‘Rules for numerid
fedit descriptors on input” on page 225

240 XL Fortran Language Reference

For more information regarding numeric editing on output, see [“Rules for numerid
[data edit descriptors on output” on page 226

Examples

Examples of F editing on input: (Assume BN editing is in effect for blank
interpretation.)

Input Format Value
-100 F6.2 -1.0
2.9 F6.2 2.9

4.E+2 F6.2 400.0

Examples of F editing on output:

Value Format Qutput Qutput
(with -gx1f77=noleadzero) (with -gx1f77=1eadzero)
+1.2 F8.4 bb1.2000 bb1.2000
.12345 F8.3 bbbb.123 bbbb0.123
-12.34 F6.2 -12.34 -12.34
Fortran 95
-12.34 FO.2 -12.34 -12.34

(with -gx1f90=signedzero) (with -gx1f90=nosignedzero)
-0.001 F5.2 -0.00 b0.00

| End of Fortran 95

G (General) Editing

Purpose

The G edit descriptor can correspond to an input/output list item of any type.
Editing of integer data follows the rules of the I edit descriptor; editing of real and
complex data follows the rules of the E or F edit descriptors (depending on the
magnitude of the value); editing of logical data follows the rules of the L edit
descriptor; and editing of character data follows the rules of the A edit descriptor.

Syntax
e Guw.d
e Gw.dEe

+ Bm] GuDe
+ Em] GuadQe

Rules

Generalized real and complex editing: If the nogedit77 suboption (the default) of
the -qx1f77 option is specified, the method of representation in the output field
depends on the magnitude of the datum being edited. Let N be the magnitude of
the internal datum. If 0 < N < 0.1-0.5x10 "' or N = 10 “-0.5 or N is 0 and d is
0, Gw.d output editing is the same as kPE w.d output editing and Gw.dEe output
editing is the same as kPEw.dEe output editing, where kP refers to the scale factor (
[P (Scale Factor) Editing” on page 253) currently in effect. If 0.1-0.5x1074! =

N < 10°-0.5 or N is identically 0 and d is not zero, the scale factor has no effect,
and the value of N determines the editing as follows:

Chapter 10. Input/Output formatting 241

Magnitude of Datum Equivalent Conversion

N=0 F(w-n).(d-1),n('b")
(d must not be 0)
0.1-0.5x104"! = N < 1-0.5x10™¢ F(w-n).d,n('b’)
1-0.5x10¢ = N < 10-0.5x1074* F(w-n).(d-1),n('b’)
10-0.5x1074* F(w-n).(d-2),n('b’)

= N < 100-0.5x10"42

1042-0.5x102 = N < 10%'-0.5x10"" F(w-n).1,n('b)

IA

1041-0.5x10"

IA

N < 10°-05 F(w-n).0,n('b’)

where b is a blank. n is 4 for Gw.d and e+2 for Gw.dEe. The value of w-n must also
be positive.

Note that the scale factor has no effect unless the magnitude of the datum to be
edited is outside the range that permits effective use of F editing.

| IBM Extension

If0 < N < 0.1-0.5x10", N = 10%-0.5, or N is 0 and d is 0, Gw.dDe output
editing is the same as kPEw.dDe output editing and Gw.dQe output editing is the
same as kPEw.dQe output editing.

| End of IBM Extension

On output, if the gedit77 suboption of the -qx1f77 compiler option is specified, the
number is converted using either E or F editing, depending on the number. The
field is padded with blanks on the right as necessary. Letting N be the magnitude
of the number, editing is as follows:
* If N<0.1 or N=10%

- Guw.d editing is the same as Ew.d editing

— Guw.dEe editing is the same as Ew.dEe editing.

e If N20.1 and N<10%

Magnitude of Datum Equivalent Conversion
01 =N<1 F(w-n).d, n('b’)
1=N<10 F(w-n).(d-1), n('b")

104% = N < 10 F(w-n).1, n('b’)

10+ = N < 10¢ F(w-n).0, n('t’)

Note: While FORTRAN 77 does not address how rounding of values affects the
output field form, Fortran 90 does. Therefore, using -qx1f77=gedit77 may
produce a different output form than -qx1f77=nogedit77 for certain
combinations of values and G edit descriptors.

For general information about numeric editing on input, see [“Rules for numerid
fedit descriptors on input” on page 225

242 XL Fortran Language Reference

For more information regarding numeric editing on output, see [“Rules for numerid
[data edit descriptors on output” on page 226

Examples
Value Format Qutput Qutput
(with -gx1f77=gedit77) (with -gx1f77=nogedit77)
0.0 6G10.2 bb0.00E+00 bbb0.0
0.0995 G10.2 bb0.10E+00 bb0.10
99.5 G10.2 bb100. bb0.10E+03
H Editing
Purpose

The H edit descriptor specifies a character string (str) and its length (1) in an
output format specification. The string can consist of any of the characters allowed
in a character literal constant.

Syntax
* nH str

Rules

If an H edit descriptor occurs within a character literal constant, the constant
delimiter character (for example, apostrophe) can be represented within str if two
such characters are consecutive. Otherwise, another delimiter must be used.

The H edit descriptor must not be used on input.

Notes:

| IBM Extension

1. A backslash is recognized,as an escape character by default, and as a backslash
character when the -qnoescape compiler option is specified. See page @I for
more information on escape sequences.

2. XL Fortran provides support for multibyte characters within character
constants, Hollerith constants, character-string edit descriptors, and comments.
This support is provided through the -qmbcs option. Assignment of a constant
containing multibyte characters to a variable that is not large enough to hold
the entire string may result in truncation within a multibyte character.

3. Support is also provided for Unicode characters and filenames. If the
environment variable LANG is set to UNIVERSAL and the -qmbcs compiler
option is specified, the compiler can read and write Unicode characters and
filenames.

| End of IBM Extension |

| Fortran 95 |

4. Fortran 95 does not include the H edit descriptor, although it was part of both
FORTRAN 77 and Fortran 90. See page [‘Deleted features” on page 818| for
more information.

| End of Fortran 95 |

Chapter 10. Input/Output formatting 243

Examples

50 FORMAT(16HThe value is -- ,I2)
10 FORMAT(I2,7Ho'clock)
WRITE(*,' (I2,7Ho" 'clock) ') ITIME

| (Integer) Editing

Purpose
The I edit descriptor directs editing between integers in internal form and
character representations of integers. The corresponding input/output list item can

be of type integer or any other type in XL Fortran.
Syntax

o Jw
e Tw.m

Rules
w includes the optional sign.

m must have a value that is less than or equal to w, unless w is zero in

Fortran 95.

The input field for the I edit descriptor must be an optionally signed digit string,
unless it is all blanks. If it is all blanks, the input field is considered to be zeros.

m is useful on output only. It has no effect on input.

On input, w must be greater than zero.

| Fortran 95 |

On output, w can be zero. If w is zero, the output field consists of the least number
of characters required t