<|lI!

IBM Parallel Environment for AIX 5L,

MPI Subroutine Reference

Version 4 Release 2

SA22-7946-02

<|lI!

IBM Parallel Environment for AIX 5L,

MPI Subroutine Reference

Version 4 Release 2

SA22-7946-02

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 593

Third Edition (April 2005)

This edition applies to Version 4, Release 2 of IBM Parallel Environment for AIX5L (product number 5765-F83) and
to all subsequent releases and modifications until otherwise indicated in new editions. This edition replaces
SA22-7946-01. Significant changes or additions to the text and illustrations are indicated by a vertical line (1) to the
left of the change.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has
been removed, address your comments to:

IBM Corporation, Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States and Canada): 1+845+432-9405
FAX (Other Countries) Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCES)
Internet: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.
Make sure to include the following in your comment or note:

* Title and order number of this book

¢ Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Tables

About this book .

Who should read this book . .

Conventions and terminology used in thls book
Abbreviated names. .

Prerequisite and related 1nformat10r1 . .
Using LookAt to look up message explanatlons .

How to send your comments .

National language support (NLS). .

Summary of changes for Parallel Environment 4. 2 .

Chapter 1. A sample MPI subroutine .
A_SAMPLE_MPI_SUBROUTINE, A_Sample_MPI__ subroutme .

Chapter 2. Nonblocking collective communication subroutines .

MPE_IALLGATHER, MPE_lallgather .
MPE_TALLGATHERYV, MPE _lallgatherv
MPE_TALLREDUCE, MPE_Iallreduce.
MPE_TALLTOALL, MPE_Ialltoall .
MPE_TALLTOALLV, MPE_Ialltoallv
MPE_IBARRIER, MPE_Ibarrier .
MPE_IBCAST, MPE_Ibcast
MPE_IGATHER, MPE_Igather .
MPE_IGATHERYV, MPE_Igatherv
MPE_IREDUCE, MPE_Ireduce .
MPE_IREDUCE_SCATTER, MPE_ Ireduce scatter
MPE_ISCAN, MPE_Iscan .
MPE_ISCATTER, MPE_Iscatter .
MPE_ISCATTERV, MPE_Iscatterv .

Chapter 3. MPI subroutines and functions
MPI_ABORT, MPI_Abort . .
MPI_ACCUMULATE, MPI Accumulate .
MPI_ADD_ERROR_CLASS, MPI_Add_error_class
MPI_ADD_ERROR_CODE, MPI_Add_error_code.
MPI_ADD_ERROR_STRING, MPI_Add_error strlng
MPI_ADDRESS, MPI_Address . o
MPI_ALLGATHER, MPI_Allgather
MPI_ALLGATHERYV, MPI_Allgatherv.
MPI_ALLOC_MEM, MPI_Alloc_mem
MPI_ALLREDUCE, MPI_Allreduce
MPI_ALLTOALL, MPI_Alltoall .
MPI_ALLTOALLV, MPI_Alltoallv .
MPI_ALLTOALLW, MPI_Alltoallw
MPI_ATTR_DELETE, MPI_Attr_delete
MPI_ATTR_GET, MPI_Attr_get.

MPI_ATTR_PUT, MPI_Attr_put.

MPI_BARRIER, MPI_Barrier.

MPI_BCAST, MPI_Bcast .

MPI_BSEND, MPI_Bsend .

MPI_BSEND_INIT, MPI_Bsend 1n1t .
MPI_BUFFER_ATTACH, MPI_Buffer_attach
MPI_BUFFER_DETACH, MPI_Buffer_detach

© Copyright IBM Corp. 1993, 2005

. Xi
. Xi
.xi
. xii
. Xii
. xiii
. xdii
. xdii
. Xiv

.12
. 15
. 18
.21
.23
. 26
. 29
.32
. 35
. 38
.41
. 44

. 47
. 48
. 49
. 52
. 54
. 56
. 58
. 59
. 61
. 63
. 65
. 68
.70
.73
. 76
.77
.79
. 81
. 83
. 85
. 87
. 89
.91

iii

MPI_CANCEL, MPI_Cancel . .
MPI_CART_COORDS, MPI_Cart_ coords.
MPI_CART_CREATE, MPI_Cart_create .
MPI_CART_GET, MPI_Cart_get
MPI_CART_MAP, MPI_Cart_map
MPI_CART_RANK, MPI_Cart_rank .
MPI_CART_SHIFT, MPI_Cart_shift .
MPI_CART_SUB, MPI_Cart_sub .
MPI_CARTDIM_GET, MPI_Cartdim get
MPI_Comm_c2f .

MPI_COMM_CALL_ ERRHANDLER MPI Comm call errhandler
MPI::Comm::Clone

MPI_COMM_COMPARE, MPI Comm compare
MPI_COMM_CREATE, MPI_Comm_create

MPI_COMM_CREATE_ERRHANDLER, MPI_Comm_ create errhandler .

MPI_COMM_CREATE_KEYVAL, MPI_Comm_create_keyval
MPI_COMM_DELETE_ATTR, MPI_Comm_delete_attr.
MPI_COMM_DUP, MPI_Comm_dup

MPI_Comm_f2c

MPI_COMM_FREE, MPI_ Comm free .
MPI_COMM_FREE_KEYVAL, MPI_Comm_free keyval
MPI_COMM_GET_ATTR, MPI_Comm_get_attr .
MPI_COMM_GET_ERRHANDLER, MPI_Comm_get_ errhandler
MPI_COMM_GET_NAME, MPI_Comm_get_name . .o
MPI_COMM_GROUP, MPI_Comm_group .
MPI_COMM_RANK, MPI_Comm_rank .
MPI_COMM_REMOTE_GROUP, MPI_Comm_ remote group
MPI_COMM_REMOTE_SIZE, MPI_Comm_remote_size
MPI_COMM_SET_ATTR, MPI_Comm_set_attr .
MPI_COMM_SET_ERRHANDLER, MPI_Comm_set_ errhandler
MPI_COMM_SET_NAME, MPI_Comm_set_name .
MPI_COMM_SIZE, MPI_Comm_size

MPI_COMM_SPLIT, MPI_Comm_split .
MPI_COMM_TEST_INTER, MPI_Comm_test mter
MPI_DIMS_CREATE, MPI_Dims_create

MPI_Errhandler_c2f . -

MPI_ERRHANDLER_CREATE, MPI Errhandler Create
MPI_Errhandler_f2¢ . .
MPI_ERRHANDLER_FREE, MPI Errhandler free .
MPI_ERRHANDLER_GET, MPI_Errhandler_get .
MPI_ERRHANDLER_SET, MPI_Errhandler_set .
MPI_ERROR_CLASS, MPI_Error_class .

MPI_ERROR_STRING, MPI_Error strmg .

MPI_EXSCAN, MPI_Exscan .

MPI_File_c2f .

MPI_FILE_CALL_ ERRHANDLER MPI Fﬂe Call errhandler
MPI_FILE_CLOSE, MPI_File_close . .
MPI_FILE_CREATE_ERRHANDLER, MPI_ Flle Create errhandler .
MPI_FILE_DELETE, MPI_File_delete

MPI_File_f2c . .
MPI_FILE_GET AMODE MPI Flle get amode . .
MPI_FILE_GET_ATOMICITY, MPI_File_get_atomicity .
MPI_FILE_GET_BYTE_OFFSET, MPI_File_get_byte_offset
MPI_FILE_GET_ERRHANDLER, MPI_File_get_errhandler
MPI_FILE_GET_GROUP, MPI_File_get_group
MPI_FILE_GET_INFO, MPI_File_get_info . .
MPI_FILE_GET_POSITION, MPI_File_get_| posrtron
MPI_FILE_GET_POSITION_SHARED, MPI Flle_get_posmon shared
MPI_FILE_GET_SIZE, MPI_File_get_size . .
MPI_FILE_GET_TYPE_EXTENT, MPI_File_get_ type extent .
MPI_FILE_GET_VIEW, MPI_File_get_view .

iV IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

.93
. 95
. 97
099
. 101
. 103
. 105
. 107
. 109
. 110
111
. 113
. 114
. 116
. 118
. 120
. 122
. 123
. 125
. 126
. 127
. 128
. 130
. 131
. 133
. 134
. 135
. 136
. 137
. 139
. 140
. 142
. 144
. 146
. 147
. 149
. 150
. 152
. 153
. 154
. 155
. 157
. 160
. 161
. 163
. 164
. 166
. 168
. 170
. 172
. 173
. 174
. 175
. 176
. 178
. 179
. 181
. 182
. 183
. 185
. 187

MPI_FILE_IREAD, MPI_File_iread .
MPI_FILE_IREAD_AT, MPI_File_iread_at . -
MPI_FILE_IREAD_SHARED, MPI_File_iread_shared .
MPI_FILE_IWRITE, MPI_File_iwrite.

MPI_FILE_IWRITE_AT, MPI_File_iwrite_at
MPI_FILE_IWRITE_SHARED, MPI_File_iwrite shared
MPI_FILE_OPEN, MPI_File_open .
MPI_FILE_PREALLOCATE, MPI_File preallocate
MPI_FILE_READ, MPI_File_read . . .
MPI_FILE_READ_ALL, MPI_File_read_. all
MPI_FILE_READ_ALL_BEGIN, MPI_File_read_all begm
MPI_FILE_READ_ALL_END, MPI_File_read_all_end .
MPI_FILE_READ_AT, MPI_File_read_at .
MPI_FILE_READ_AT_ALL, MPI_File_read_at_all .
MPI_FILE_READ_AT_ALL_BEGIN, MPI_File_read_at_all begm
MPI_FILE_READ_AT_ALL_END, MPI_File_read_at_all_end.
MPI_FILE_READ_ORDERED, MPI_File_read_ordered .
MPI_FILE_READ_ORDERED_BEGIN, MPI_File_read_ordered begm
MPI_FILE_READ_ORDERED_END, MPI_File_read_ordered_end .
MPI_FILE_READ_SHARED, MPI_File_read_shared.
MPI_FILE_SEEK, MPI_File_seek .

MPI_FILE_SEEK_SHARED, MPI_File_: seek shared
MPI_FILE_SET_ATOMICITY, MPI_File_set_atomicity .
MPI_FILE_SET_ERRHANDLER, MPI_File_set_errhandler
MPI_FILE_SET_INFO, MPI_File_set_info .
MPI_FILE_SET_SIZE, MPI_File_set_size

MPI_FILE_SET_VIEW, MPI_File_set_view .

MPI_FILE_SYNC, MPI_File_sync .

MPI_FILE_WRITE, MPI_File_write . -
MPI_FILE_WRITE_ALL, MPI_File_write_all . - .
MPI_FILE_WRITE_ALL_BEGIN, MPI_File_write_all begm .
MPI_FILE_WRITE_ALL_END, MPI_File_write_all_end
MPI_FILE_WRITE_AT, MPI_File_write_at .
MPI_FILE_WRITE_AT_ALL, MPI_File_write_at_: all .
MPI_FILE_WRITE_AT_ALL_BEGIN, MPI_File_write_at_all begm
MPI_FILE_WRITE_AT_ALL_END, MPI_File_write_at_all_end .
MPI_FILE_WRITE_ORDERED, MPI_File_write_ordered .

MPI_FILE_WRITE_ORDERED_BEGIN, MPI_File_write_ordered begm .

MPI_FILE_WRITE_ORDERED_END, MPI_File_write_ordered_end
MPI_FILE_WRITE_SHARED, MPI_File_write_shared .
MPI_FINALIZE, MPI_Finalize .

MPI_FINALIZED, MPI_Finalized.

MPI_FREE_MEM, MPI_Free_mem

MPI_GATHER, MPI_Gather

MPI_GATHERYV, MPI_Gatherv.

MPI_GET, MPI_Get

MPI_GET_ADDRESS, MPI_¢ Get address

MPI_GET_COUNT, MPI_Get_count . .
MPI_GET_ELEMENTS, MPI_Get_elements . .
MPI_GET_PROCESSOR_NAME, MPI Get_processor name .
MPI_GET_VERSION, MPI_Get_version. Lo
MPI_GRAPH_CREATE, MPI_Graph_create

MPI_GRAPH_GET, MPI_Graph_get .

MPI_GRAPH_MAP, MPI_Graph_map .
MPI_GRAPH_NEIGHBORS, MPI_Graph_ nelghbors . .
MPI_GRAPH_NEIGHBORS_COUNT, MPI_Graph_ nelghbors count .
MPI_GRAPHDIMS_GET, MPI_Graphdims_get .. R
MPI_GREQUEST_COMPLETE, MPI_Grequest_complete .
MPI_GREQUEST_START, MPI_Grequest_start

MPI_Group_c2f. .

MPI_GROUP_COMPARE, MPI Group compare

. 189
. 192
. 195
. 198
. 201
. 204
. 207
. 213
. 215
. 217
. 219
. 221
. 223
. 226
. 229
. 231
. 233
. 235
. 237
. 239
. 241
. 243
. 245
. 247
. 249
. 251
. 253
. 256
. 257
. 259
. 262
. 264
. 266
. 269
. 272
. 274
. 276
. 278
. 280
. 282
. 285
. 287
. 288
. 289
. 292
. 295
. 298
. 300
. 302
. 304
. 305
. 306
. 308
. 310
. 312
. 314
. 315
. 316
. 317
. 321
. 322

Contents

A\

MPI_GROUP_DIFFERENCE, MPI_Group_difference
MPI_GROUP_EXCL, MPI_Group_excl . .
MPI_Group_f2c. .
MPI_GROUP_FREE, MPI Group free .
MPI_GROUP_INCL, MPI_Group_incl .
MPI_GROUP_INTERSECTION, MPI_Group_ mtersechon
MPI_GROUP_RANGE_EXCL, MPI_Group_range_excl.
MPI_GROUP_RANGE_INCL, MPI_Group_range_incl .
MPI_GROUP_RANK, MPI_Group_rank .
MPI_GROUP_SIZE, MPI_Group_size

MPI_GROUP_TRANSLATE_RANKS, MPI Group translate ranks.

MPI_GROUP_UNION, MPI_Group_union.
MPI_IBSEND, MPI_Ibsend . ..
MPI_Info_c2f . .
MPI_INFO_CREATE, MPI Info create .
MPI_INFO_DELETE, MPI_Info_delete .
MPI_INFO_DUP, MPI_Info_dup .

MPI_Info_f2c

MPI_INFO_FREE, MPI_ Info free

MPI_INFO_GET, MPI_Info_get .
MPI_INFO_GET_NKEYS, MPI Info_get nkeys .
MPI_INFO_GET_NTHKEY, MPI_Info_get_nthkey
MPI_INFO_GET_VALUELEN, MPI_Info_get_valuelen.
MPI_INFO_SET, MPI_Info_set. R
MPI_INIT, MPI_Init . .

MPI_INIT_THREAD, MPI_ Imt thread
MPI_INITIALIZED, MPI_Initialized .
MPI_INTERCOMM_CREATE, MPI_ Intercomm create
MPI_INTERCOMM_MERGE, MPI_Intercomm_merge .
MPI_IPROBE, MPI_Iprobe . Lo
MPI_IRECV, MPI_Irecv .

MPI_IRSEND, MPI_Irsend . . .
MPI_IS_ THREAD_MAIN, MPI_Is_ thread main .
MPI_ISEND, MPI_Isend .

MPI_ISSEND, MPI_Issend . .
MPI_KEYVAL_CREATE, MPI Keyval Create .
MPI_KEYVAL_FREE, MPI_Keyval_free.

MPI_Op_c2f. . .
MPI_OP_CREATE, MPI Op create .

MPI_Op_f2c. . .o

MPI_OP_FREE, MPI Op free .

MPI_PACK, MPI_Pack .
MPI_PACK_EXTERNAL, MPI_ Pack external

MPI_PACK_EXTERNAL_SIZE, MPI_Pack_external_size .

MPI_PACK_SIZE, MPI_Pack_size.
MPI_PCONTROL, MPI_Pcontrol .

MPI_PROBE, MPI_Probe

MPI_PUT, MPI_Put

MPI_QUERY_THREAD, MPI Query_thread
MPI_RECV, MPI_Recv .
MPI_RECV_INIT, MPI_Recv_: 1r11t
MPI_REDUCE, MPI_Reduce . .
MPI_REDUCE_SCATTER, MPI_ Reduce scatter .
MPI_REGISTER_DATAREP, MPI Reglster datarep .
MPI_Request_c2f . .o e
MPI_Request_f2c . . .
MPI_REQUEST_FREE, MPI Request free .

MPI_REQUEST_GET_STATUS, MPI Request_get status .

MPI_RSEND, MPI_Rsend
MPI_RSEND_INIT, MPI_Rsend_: 1mt
MPI_SCAN, MPI_Scan

Vi IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

. 323
. 324
. 326
. 327
. 328
. 330
. 331
. 333
. 335
. 336
. 337
. 339
. 340
. 342
. 343
. 344
. 346
. 347
. 348
. 349
. 351
. 352
. 354
. 356
. 358
. 360
. 362
. 363
. 365
. 367
. 369
. 371
. 373
. 374
. 376
. 378
. 380
. 381
. 382
. 384
. 385
. 386
. 388
. 390
. 392
. 394
. 395
. 397
. 400
. 402
. 404
. 406
. 409
. 412
. 415
. 416
. 417
. 418
. 420
. 422
. 424

MPI_SCATTER, MPI_Scatter

MPI_SCATTERYV, MPI_Scatterv

MPI_SEND, MPI_Send .

MPI_SEND_INIT, MPI_Send 1n1t

MPI_SENDRECYV, MPI_Sendrecv . .
MPI_SENDRECV_REPLACE, MPIL__ Sendrecv replace .
MPI_SIZEOF .o o .
MPI_SSEND, MPI_ Ssend .

MPI_SSEND_INIT, MPI_Ssend_ 1n1t .

MPI_START, MPI_Start .

MPI_STARTALL, MPI_Startall .

MPI_Status_c2f .

MPI_Status_f2c. .

MPI_STATUS_SET _ CANCELLED MPI Status set cancelled
MPI_STATUS_SET_ELEMENTS, MPI_Status_set_elements
MPI_TEST, MPI_Test .

MPI_TEST_CANCELLED, MPI Test cancelled

MPI_TESTALL, MPI_Testall

MPI_TESTANY, MPI_Testany .

MPI_TESTSOME, MPI_Testsome .

MPI_TOPO_TEST, MPI_Topo_test

MPI_Type_c2f . .o

MPI_TYPE_COMMIT, MPI Type commlt .
MPI_TYPE_CONTIGUOUS, MPI_Type_contiguous .
MPI_TYPE_CREATE_DARRAY, MPI_Type_create_darray . .
MPI_TYPE_CREATE_F90_COMPLEX, MPI_Type_create_f90 complex
MPI_TYPE_CREATE_F90_INTEGER, MPI_Type_create_f90_integer
MPI_TYPE_CREATE_F90_REAL, MPI_Type_create_f90_real .
MPI_TYPE_CREATE_HINDEXED, MPI_Type_create_hindexed .
MPI_TYPE_CREATE_HVECTOR, MPI_Type_create_hvector .

MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_Type_create_indexed block.

MPI_TYPE_CREATE_KEYVAL, MPI_Type_create_keyval .
MPI_TYPE_CREATE_RESIZED, MPI_Type_create_resized
MPI_TYPE_CREATE_STRUCT, MPI_Type_create_struct .
MPI_TYPE_CREATE_SUBARRAY, MPI_Type_create_subarray .
MPI_TYPE_DELETE_ATTR, MPI_Type_delete_attr . .
MPI_TYPE_DUP, MPI_Type_dup .

MPI_TYPE_EXTENT, MPI_Type_extent.

MPI_Type_f2¢c . . .

MPI_TYPE_FREE, MPI Type free
MPI_TYPE_FREE_KEYVAL, MPI_Type_ free keyval
MPI_TYPE_GET_ATTR, MPI_Type_get_attr
MPI_TYPE_GET_CONTENTS, MPI_Type_get_ contents
MPI_TYPE_GET_ENVELOPE, MPI_Type_get_envelope
MPI_TYPE_GET_EXTENT, MPI_Type_get_extent
MPI_TYPE_GET_NAME, MPI_Type_get_name .
MPI_TYPE_GET_TRUE_EXTENT, MPI_Type_get_true_ extent
MPI_TYPE_HINDEXED, MPI_Type_hindexed S
MPI_TYPE_HVECTOR, MPI_Type_hvector
MPI_TYPE_INDEXED, MPI_Type_indexed

MPI_TYPE_LB, MPI_Type_lb . . .
MPI_TYPE_MATCH_SIZE, MPI_Type_: match size .
MPI_TYPE_SET_ATTR, MPI_Type_set_attr
MPI_TYPE_SET_NAME, MPI_Type_set_name
MPI_TYPE_SIZE, MPI_Type_size . .o
MPI_TYPE_STRUCT, MPI_Type_struct .

MPI_TYPE_UB, MPI_Type_ub .

MPI_TYPE_VECTOR, MPI_Type_ Vector

MPI_UNPACK, MPI_Unpack .

MPI_UNPACK_EXTERNAL, MPI Unpack external
MPI_WAIT, MPI_Wait e

Contents

. 426
. 429
. 432
. 434
. 436
. 438
. 440
. 441
. 443
. 445
. 447
. 448
. 449
. 450
. 451
. 452
. 454
. 455
. 457
. 460
. 462
. 463
. 464
. 466
. 468
. 471
. 473
. 474
. 476
. 478
. 480
. 482
. 484
. 486
. 488
. 490
. 491
. 493
. 494
. 495
. 497
. 498
. 500
. 504
. 506
. 508
. 510
. 512
. 514
. 516
. 518
. 519
. 521
. 523
. 525
. 526
. 528
. 530
. 532
. 534
. 536

vii

MPI_WAITALL, MPI_Waitall .

MPI_WAITANY, MPI_Waitany.

MPI_WAITSOME, MPI_Waitsome

MPI_Win_c2f .

MPI_WIN_CALL_ ERRHANDLER MPI Wm call errhandler
MPI_WIN_COMPLETE, MPI_Win_complete .
MPI_WIN_CREATE, MPI_Win_create

MPI_WIN_CREATE_ERRHANDLER, MPI Wm Create errhandler.

MPI_WIN_CREATE_KEYVAL, MPI_Win_create_keyval
MPI_WIN_DELETE_ATTR, MPI_Win_delete_attr
MPI_Win_f2c .

MPI_WIN_FENCE, MPI Wm fence .

MPI_WIN_FREE, MPI_Win_free . . .
MPI_WIN_FREE_KEYVAL, MPI_Win free keyval .
MPI_WIN_GET_ATTR, MPI_Win_get_attr . .
MPI_WIN_GET_ERRHANDLER, MPI_Win_get_ errhandler .
MPI_WIN_GET_GROUP, MPI_Win_get_group
MPI_WIN_GET_NAME, MPI_Win_get_name.
MPI_WIN_LOCK, MPI_Win_lock.

MPI_WIN_POST, MPI_Win_post . .o
MPI_WIN_SET_ATTR, MPI_Win_set_attr .
MPI_WIN_SET_ERRHANDLER, MPI_Win_set_ errhandler
MPI_WIN_SET _NAME, MPI_Win_set_name .
MPI_WIN_START, MPI_Win_start

MPI_WIN_TEST, MPI_Win_test .
MPI_WIN_UNLOCK, MPI_Win_unlock

MPI_WIN_WAIT, MPI_Win_wait .

MPI_WTICK, MPI_Wtick

MPI_WTIME, MPI_Wtime .

Appendix A. Parallel utility subroutines .

Appendix B. Parallel task identification APl subroutines .

Appendix C. Accessmlllty
Accessibility information
Using assistive technologies

Notices .
Trademarks . .
Acknowledgments.

Glossary

Index .

viili IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

. 538
. 540
. 542
. 545
. 546
. 548
. 549
. 552
. 554
. 556
. 557
. 558
. 560
. 561
. 562
. 564
. 565
. 566
. 568
. 570
. 572
. 574
. 575
. 577
. 579
. 581
. 582
. 584
. 585

. 587

. 589

. 591
. 591
. 591

. 593
. 595
. 596
. 597

. 605

Tables

MPI error classes
Supported file hints

L e

Combiners and calls

© Copyright IBM Corp. 1993, 2005

Combiners and constructor arguments .

. 157
. 208
. 501
. 505

ix

X IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

About this book

This book describes the subroutines provided by IBM®’s implementation of the
Message Passing Interface (MPI) standard for Parallel Environment for AIX® (PE).
Programmers can use these subroutines when writing parallel applications. All
implemented function in the PE MPI product is designed to comply with the
requirements of the Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard. The standard is documented in two volumes, Version 1.1,
University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions to
the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee, July 18,
1997. The second volume includes a section identified as MPI 1.2 with clarifications
and limited enhancements to MPI 1.1. It also contains the extensions identified as
MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken together constitute
the current standard for MPL. PE MPI provides support for all of MPI 1.1 and MPI
1.2. PE MPI also provides support for all of the MPI 2.0 Enhancements, except the
contents of the chapter titled Process Creation and Management. If you believe that
PE MPI does not comply with the MPI standard for the portions that are
implemented, please contact IBM Service.

References to RS/6000® SP™ or SP include currently supported IBM @server
Cluster 1600 hardware.

Who should read this book

This book is intended for experienced programmers who want to write parallel
applications using the C, C++, or FORTRAN programming language. Readers of
this book should know C , C++, and FORTRAN and should be familiar with AIX
and UNIX® commands, file formats, and special files. They should also be familiar
with the Message Passing Interface (MPI) concepts. In addition, readers should be
familiar with distributed-memory machines.

Conventions and terminology used in this book

This book uses the following typographic conventions:

Convention

Usage

bold

Bold words or characters represent system elements that you must use literally, such
as: command names, file names, flag names, path names, PE component names
(pedb, for example), and subroutines.

constant width

Examples and information that the system displays appear in constant-width

typeface.

italic Italicized words or characters represent variable values that you must supply.
Italics are also used for book titles, for the first use of a glossary term, and for general
emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

In addition to the highlighting conventions, this manual uses the following
conventions when describing how to perform tasks.

© Copyright IBM Corp. 1993, 2005 xi

User actions appear in uppercase boldface type. For example, if the action is to
enter the tool command, this manual presents the instruction as:

ENTER
tool

Abbreviated names

Some of the abbreviated names used in this book follow.

Short Name Full Name

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

P Internet Protocol

LAPI Low-level Application Programming Interface
MPI Message Passing Interface

PE IBM Parallel Environment for AIX

PE MPI IBM’s implementation of the MPI standard for PE
PE MPI-IO IBM’s implementation of MPI I/O for PE
POE parallel operating environment

pSeries® IBM @server pSeries

PSSP IBM Parallel System Support Programs for AIX
RISC reduced instruction set computer

RSCT Reliable Scalable Cluster Technology

rsh remote shell

RS/6000 IBM RS/6000

SP IBM RS/6000 SP

STDERR standard error

STDIN standard input

STDOUT standard output

Prerequisite and related information

xii

The Parallel Environment library consists of:

* IBM Parallel Environment for AIX: Introduction, SA22-7947

* IBM Parallel Environment for AIX: Installation, GA22-7943

* IBM Parallel Environment for AIX: Messages, GA22-7944

* IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7945

e IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7946

* IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7948

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

* IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7949

To access the most recent Parallel Environment documentation in PDF and HTML
format, refer to the IBM @server Cluster Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

Both the current Parallel Environment books and earlier versions of the library are
also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the
book’s publication number. The publication number for each of the Parallel
Environment books is listed after the book title in the preceding list.

A glossary of terms see the Glossary at the back of this book.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM
messages you encounter, as well as for some system abends and codes. You can
use LookAt from the following locations to find IBM message explanations for
Clusters for AIX and Linux®:

¢ The Internet. You can access IBM message explanations directly from the LookAt
Web site:

http:/ /www.ibm.com/eserver/zseries/zos/bkserv/lookat/

* Your wireless handheld device. You can use the LookAt Mobile Edition with a
handheld device that has wireless access and an Internet browser (for example,
Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for
Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt
Web site.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
PE documentation:

* Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of PE, and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

* Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display
messages that are located in externalized message catalogs. English versions of the
message catalogs are shipped with the PE licensed program, but your site may be
using its own translated message catalogs. The PE components use the AIX
environment variable NLSPATH to find the appropriate message catalog.
NLSPATH specifies a list of directories to search for message catalogs. The
directories are searched, in the order listed, to locate the message catalog. In
resolving the path to the message catalog, NLSPATH is affected by the values of

About this book xiii

the environment variables LC_MESSAGES and LANG. If you get an error saying
that a message catalog is not found and you want the default message catalog;:

ENTER
export NLSPATH=/usr/lib/nls/msg/%L/%N

export LANG=C

The PE message catalogs are in English, and are located in the following
directories:

/usr/lib/nls/msg/C
usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For more
information on NLS and message catalogs, see AIX: General Programming Concepts:
Writing and Debugging Programs.

Summary of changes for Parallel Environment 4.2

xiv

This release of IBM Parallel Environment for AIX contains a number of functional
enhancements, including:

* Support for POWER3", POWER4", and POWER5" servers running AIX 5L™
V5.2 or AIX 5L V5.3

e Support for IBM @server p5 servers and the High Performance Switch (HPS)
with AIX 5L V5.2 only, and coexistence in a cluster managed by Cluster Systems
Management (CSM)

* Remote Direct Memory Access (RDMA) for bulk data copy and transfer, and
large contiguous messages, only on the HPS

* Support for striping of messages over multiple adapters attached to the pSeries
HPS

* MPI support for 128 tasks per node using shared memory
* Support for LoadLeveler® performance improvements

 Support for up to 8192 tasks in a single job, with improved memory utilization
for large jobs

* MPI collectives algorithm and optimization improvements

* MPI shared memory collectives use AIX 5L V5.3 cross-memory attachment
enhancements

* Point-to-point messages in shared memory use AIX 5L V5.3 cross-memory
attachment enhancements

* MPI/LAPI performance statistics
e The SP Switch is no longer supported

* PE 4.2 is the last release of PE that will support Parallel Systems Support
Programs for AIX (PSSP), the SP Switch2, and POWERS3 servers

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Chapter 1. A sample MPI subroutine

This book includes descriptions of the PE MPI subroutines and functions that are
available for parallel programming. For each subroutine or function, this book
includes some or all of the following sections as appropriate: Purpose, C synopsis,
C++ synopsis, FORTRAN synopsis, Parameters, Description, Notes, Errors, and
Related information. Review the following sample before proceeding to better
understand how the subroutine and function descriptions are structured.

© Copyright IBM Corp. 1993, 2005

A_SAMPLE_MPI_SUBROUTINE

A_SAMPLE_MPI_SUBROUTINE, A_Sample_MPI_subroutine

Purpose

Provides a brief description of the subroutine or function.

C synopsis
Header file mpi.h supplies ANSI-C prototypes for every subroutine and function
described in [Chapter 3, “MPI subroutines and functions,” on page 47

#include <mpi.h>
int A_Sample MPI_subroutine (one or more parameters);

In the C prototype, a declaration of void * indicates that a pointer to any datatype
is allowable.

C++ synopsis

#include mpi.h
type MPI::A Sample MPI subroutine(one or more parameters);

In the C++ prototype, a declaration of void* indicates that a pointer to any
datatype is allowable.

For information about predefined constants for C++, see IBM Parallel Environment
for AIX: MPI Programming Guide.

FORTRAN synopsis

include 'mpif.h' or use mpi
A_SAMPLE_MPI_SUBROUTINE (ONE OR MORE PARAMETERS);

In the FORTRAN subroutines, formal parameters are described using a subroutine
prototype format, even though FORTRAN does not support prototyping. The term
CHOICE indicates that any FORTRAN datatype is valid.

Description

This section contains a detailed description of the subroutine or function.

Parameters

Argument or parameter definitions are listed as follows:

parameter_1
description of parameter_1 (type)

parameter_n
description of parameter_n (type)

IERROR
is the FORTRAN return code. It is always the last argument.

Parameter types:

IN A call uses this parameter, but does not update an argument.

2 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

A_SAMPLE_MPI_SUBROUTINE

INOUT
A call uses this parameter and updates an argument.

OUT A call returns information by way of an argument, but does not use its
input value.

If applicable, this section contains notes about PE MP], as it relates to the
requirements of the MPI standard. PE MPI intends to comply fully with the
requirements of the MPI standard. There are some issues, however, that the MPI
standard leaves open to the implementation’s choice.

For non-file-handle errors, a single list appears here.

For errors on a file handle, up to three lists appear:
* Fatal errors:

Non-recoverable errors are listed here.
* Returning errors (MPI error class):

Errors that by default return an error code to the caller appear here. These are
normally recoverable errors and the error class is specified so you can identify
the cause of failure.

e Errors returned by completion routine (MPI error class):

Errors that by default return an error code to the caller at one of the WAIT or
TEST calls appear here. These are normally recoverable errors and the error class
is specified so you can identify the cause of failure.

In almost every subroutine, the C version is invoked as a function returning
integer. In the FORTRAN version, the routine is called as a subroutine; that is, it
has no return value.

For more information about errors, see IBM Parallel Environment for AIX: Messages,
which provides a listing of all the error messages issued as well as the error class
to which the message belongs.

Related information

This section contains a list of the related subroutines or functions in this book.

For C and FORTRAN, MPI uses the same spelling for subroutine names. The only
distinction is the capitalization. For the purpose of clarity, when referring to a
subroutine without specifying whether it is the FORTRAN version or the C
version, all uppercase letters are used.

FORTRAN refers to FORTRAN 77 (F77) bindings, which are officially supported
for MPL. However, F77 bindings for MPI can be used by FORTRAN 90. FORTRAN
90 and High Performance FORTRAN (HPF) offer array section and assumed shape
arrays as parameters on calls. These are not safe with MPL

Chapter 1. A sample MPI subroutine 3

A_SAMPLE_MPI_SUBROUTINE

4 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Chapter 2. Nonblocking collective communication subroutines

This chapter includes descriptions of the nonblocking collective communication
subroutines that are available for parallel programming. These subroutines, which
have a prefix of MPE_I, are extensions of the MPI standard. They are part of IBM’s
implementation of the MPI standard for PE. Review [Chapter 1, “A sample MP]]
lsubroutine,” on page 1| before proceeding to better understand how the subroutine
descriptions are structured.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives. With this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For more information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

For more information about matching blocking and non-blocking collectives in the
same application, see the chapter Programming considerations for user application in
POE in IBM Parallel Environment for AIX: MPI Programming Guide.

The MPI-2 extensions related to collective communication are now available for all
MPI blocking collectives. The MPE_I non-blocking collectives have not been
enhanced with MPI-2 functionality. The MPE_I non-blocking collectives are
semantically equivalent to MPI-1.

© Copyright IBM Corp. 1993, 2005 5

MPE_IALLGATHER

MPE_IALLGATHER, MPE_lallgather

6

Purpose

Performs a nonblocking allgather operation.

C synopsis

#include <mpi.h>

int MPE_Iallgather(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,
MPI_Request +*request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IALLGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ ALLGATHER. It performs the
same function as MPI_ALLGATHER except that it returns a request handle that
must be explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcount
The number of elements received from any task (integer) (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of your applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLGATHER

participating tasks like blocking collective communication routines generally do,
tasks running at different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid counts
count < 0

Invalid datatypes
Type not committed

Unequal message length

Chapter 2. Nonblocking collective communication subroutines 7

MPE_IALLGATHER

MPI_IN_PLACE not valid
MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent message length

Match of blocking and non-blocking collectives

Related information
MPI_ALLGATHER

8 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLGATHERV

MPE_IALLGATHERV, MPE_lallgatherv

Purpose

Performs a nonblocking allgatherv operation.

C synopsis

#include <mpi.h>

int MPE_lallgatherv(void* sendbuf,int sendcount,
MPI_Datatype sendtype,void* recvbuf,int recvcounts,
int *displs,MPI_Datatype recvtype,
MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IALLGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DISPLS(*),
INTEGER RECVTYPE,INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLGATHERV. It performs the
same function as MPI_ALLGATHERV except that it returns a request handle that
must be explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcounts
An integer array (of length group size) that contains the number of
elements received from each task (IN)

displs An integer array (of length group size). Entry i specifies the displacement
(relative to recvbuf) at which to place the incoming data from task i (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided

Chapter 2. Nonblocking collective communication subroutines 9

MPE_IALLGATHERV

10

Errors

to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in [BM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid counts
count < 0

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLGATHERV

Invalid datatypes

Type not committed
Unequal message length
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Match of blocking and non-blocking collectives

Related information
MPI_ALLGATHERV

Chapter 2. Nonblocking collective communication subroutines 11

MPE_IALLREDUCE

MPE_IALLREDUCE, MPE_lallreduce

Purpose

Performs a nonblocking allreduce operation.

C synopsis

#include <mpi.h>

int MPE_Iallreduce(void* sendbuf,void* recvbuf,int count,
MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,
MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IALLREDUCE (CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,
INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER REQUEST,
INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLREDUCE. It performs the
same function as MPI_ALLREDUCE except that it returns a request handle that
must be explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

recvbuf
The starting address of the receive buffer (choice) (OUT)

count The number of elements in the send buffer (integer) (IN)

datatype
The datatype of elements in the send buffer (handle) (IN)

op The reduction operation (handle) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

12 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLREDUCE

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid count
count < 0

Invalid datatype

Type not committed
Invalid op

Invalid communicator

Invalid communicator type
must be intra-communicator

Unequal message length

MPI_IN_PLACE not valid

Chapter 2. Nonblocking collective communication subroutines 13

MPE_IALLREDUCE

MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent datatype

Inconsistent message length

Inconsistent op

Match of blocking and non-blocking collectives

Related information
MPI_ALLREDUCE

14 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLTOALL

MPE_IALLTOALL, MPE_lalltoall

Purpose

Performs a nonblocking alltoall operation.

C synopsis

#include <mpi.h>

int MPE_Ialltoall(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,
MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ ALLTOALL. It performs the same
function as MPI_ALLTOALL except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements sent to each task (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcount
The number of elements received from any task (integer) (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the

Chapter 2. Nonblocking collective communication subroutines 15

MPE_IALLTOALL

participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Errors

Invalid counts
count < 0

Invalid datatypes
Type not committed
Invalid communicator

Invalid communicator type
must be intra-communicator

Unequal message lengths

16 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IALLTOALL

MPI_IN_PLACE not valid
MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent message length

Match of blocking and non-blocking collectives

Related information
MPI_ALLTOALL

Chapter 2. Nonblocking collective communication subroutines 17

MPE_IALLTOALLV

MPE_IALLTOALLYV, MPE_lalltoallv

Purpose

Performs a nonblocking alltoallv operation.

C synopsis

#include <mpi.h>

int MPE_Ialltoallv(void* sendbuf,int *sendcounts,int xsdispls,
MPI_Datatype sendtype,void* recvbuf,int *recvcounts,int *rdispls,
MPI_Datatype recvtype,MPI_Comm comm,MPI_Request xrequest);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_ALLTOALLV(CHOICE SENDBUF,INTEGER SENDCOUNTS (%),
INTEGER SDISPLS(*),INTEGER SENDTYPE,CHOICE RECVBUF,
INTEGER RECVCOUNTS(*),INTEGER RDISPLS(*),INTEGER RECVTYPE,
INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLTOALLV. It performs the
same function as MPI_ALLTOALLYV, except that it returns a request handle that
must be explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcounts
An integer array (of length group size) specifying the number of elements
to send to each task (IN)

sdispls
An integer array (of length group size). Entry j specifies the displacement
relative to sendbuf from which to take the outgoing data destined for task
j. (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice) (OUT)

recvcounts
An integer array (of length group size) specifying the number of elements
that can be received from each task (IN)

rdispls
An integer array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from task i. (IN)

recvtype
The datatype of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

18 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Notes

Errors

MPE_IALLTOALLV

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting

environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid counts
count < 0

Chapter 2. Nonblocking collective communication subroutines 19

MPE_IALLTOALLV

Invalid datatypes
Type not committed
Invalid communicator

Invalid communicator type
must be intra-communicator

A send and receive have unequal message lengths
MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Match of blocking and non-blocking collectives

Related information

MPI_ALLTOALLV

20 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IBARRIER

MPE_IBARRIER, MPE_lbarrier

Purpose

Performs a nonblocking barrier operation.

C synopsis

#include <mpi.h>
int MPE_Ibarrier(MPI_Comm comm,MPI_Request xrequest);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPE_IBARRIER(INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_BARRIER. It returns immediately,
without blocking, but will not complete (using MPI_WAIT or MPI_TEST) until all
group members have called it.

Parameters

Notes

comm A communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

A typical use of MPE_IBARRIER is to make a call to it, and then periodically test
for completion with MPI_TEST. Completion indicates that all tasks in comm have
arrived at the barrier. Until then, computation can continue.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

Chapter 2. Nonblocking collective communication subroutines 21

MPE_IBARRIER

message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Errors

Invalid communicator

Invalid communicator type
must be intra-communicator

MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Match of blocking and non-blocking collectives

Related information
MPI_BARRIER

22 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IBCAST

MPE_IBCAST, MPE_Ibcast

Purpose

Performs a nonblocking broadcast operation.

C synopsis

#include <mpi.h>
int MPE_Ibcast(void* buffer,int count,MPI Datatype datatype,
int root,MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi
MPE_IBCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER DATATYPE,INTEGER ROOT,
INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_BCAST. It performs the same
function as MPI_BCAST except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

buffer The starting address of the buffer (choice) (INOUT)
count The number of elements in the buffer (integer) (IN)

datatype
The datatype of the buffer elements (handle) (IN)

root The rank of the root task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads

Chapter 2. Nonblocking collective communication subroutines 23

MPE_IBCAST

library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Errors

Error Conditions:
Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid count
count < 0

Invalid datatype
Type not committed

Invalid root
root < 0 or root >= groupsize

Unequal message length
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

24 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IBCAST

Develop mode error (returned in the WAIT) if:
Inconsistent message length
Inconsistent root

Match of blocking and non-blocking collectives

Related information
MPI_BCAST

Chapter 2. Nonblocking collective communication subroutines 25

MPE_IGATHER

MPE_IGATHER, MPE_lgather

Purpose

Performs a nonblocking gather operation.

C synopsis

#include <mpi.h>

int MPE_Igather(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,
MPI_Comm comm,MPI_Request xrequest);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,
INTEGER COMM, INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ GATHER. It performs the same
function as MPI_GATHER, except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

Notes

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements in the send buffer (integer) (IN)

sendtype
The datatype of the send buffer elements (integer) (IN)

recvbuf
The address of the receive buffer (choice, significant only at root) (OUT)

recvcount
The number of elements for any single receive (integer, significant only at
root) (IN)

recvtype
The datatype of the receive buffer elements (handle, significant at root)
(IN)

root The rank of the receiving task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (IN)

IERROR
The FORTRAN return code. It is always the last argument.

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided

26 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IGATHER

to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

Invalid communicator type
must be intra-communicator

Invalid counts
count < 0

Chapter 2. Nonblocking collective communication subroutines 27

MPE_IGATHER

Invalid datatypes
Type not committed

Invalid root
root < 0 or root >= groupsize

Unequal message lengths
MPI_IN_PLACE not valid
MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent message length
Inconsistent root

Match of blocking and non-blocking collectives

Related information

MPI_GATHER

28 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IGATHERV

MPE_IGATHERV, MPE_lgatherv

Purpose

Performs a nonblocking gatherv operation.

C synopsis

#include <mpi.h>

int MPE_Igatherv(void* sendbuf,int sendcount,MPI Datatype sendtype,
void* recvbuf,int recvcounts,int *displs,MPI_Datatype recvtype,
int root,MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IGATHERV (CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,
CHOICE RECVBUF,INTEGER RECVCOUNTS (), INTEGER DISPLS(*),
INTEGER RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER REQUEST,
INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_GATHERV. It performs the same
function as MPI_GATHERV except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The starting address of the send buffer (choice) (IN)

sendcount
The number of elements to be sent (integer) (IN)

sendtype
The datatype of the send buffer elements (handle) (IN)

recvbuf
The address of the receive buffer (choice, significant only at root) (OUT)

recvcounts
An integer array (of length group size) that contains the number of
elements received from each task (significant only at root) (IN)

displs An integer array (of length group size). Entry i specifies the displacement
relative to recvbuf at which to place the incoming data from task i
(significant only at root) (IN)

recvtype
The datatype of the receive buffer elements (handle, significant only at
root) (IN)

root The rank of the receiving task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Chapter 2. Nonblocking collective communication subroutines 29

MPE_IGATHERV

30

Notes

Errors

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting

environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid communicator

IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IGATHERV

Invalid communicator type
must be intra-communicator

Invalid counts
Invalid datatypes
Type not committed

Invalid root
root < 0 or root >= groupsize

A send and receive have unequal message lengths
MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent root

Match of blocking and non-blocking collectives

Related information
MPI_GATHERV

Chapter 2. Nonblocking collective communication subroutines 31

MPE_IREDUCE

MPE_IREDUCE, MPE_Ireduce

Purpose

Performs a nonblocking reduce operation.

C synopsis

#include <mpi.h>

int MPE_Ireduce(void* sendbuf,void* recvbuf,int count,
MPI_Datatype datatype,MPI_Op op,int root,MPI_Comm comm,
MPI_Request +*request);

FORTRAN synopsis

include 'mpif.h' or use mpi

MPE_IREDUCE (CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,
INTEGER DATATYPE,INTEGER OP, INTEGER ROOT,INTEGER COMM,
INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_REDUCE. It performs the same
function as MPI_REDUCE except that it returns a request handle that must be
explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf
The address of the send buffer (choice) (IN)

recvbuf
The address of the receive buffer (choice, significant only at root) (OUT)

count The number of elements in the send buffer (integer) (IN)

datatype
The datatype of elements of the send buffer (handle) (IN)

op The reduction operation (handle) (IN)
root The rank of the root task (integer) (IN)
comm The communicator (handle) (IN)

request
The communication request (handle) (OUT)

IERROR
The FORTRAN return code. It is always the last argument.

Notes

The MPE prefix used with this subroutine indicates that it is an IBM extension to
the MPI standard and is not part of the standard itself. MPE routines are provided
to enhance the function and the performance of user applications, but applications
that use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and
flexibility in some applications. Because these routines do not synchronize the
participating tasks like blocking collective routines generally do, tasks running at
different speeds do not waste time waiting for each other.

32 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

Errors

MPE_IREDUCE

When it is expected that tasks will be reasonably synchronized, the blocking
collective communication routines provided by standard MPI will commonly give
better performance than the nonblocking versions.

The MPE_I non-blocking collectives provided by PE MPI were well suited to the
workings of the signal library, but are far less suited to the workings of the threads
library. The MPE_I non-blocking collectives will remain supported by the MPI
library, but their use in new or restructured applications is now deprecated.

Earlier versions of MPI allowed the mixing of MPE_I (non-blocking) and MPI_
(blocking) calls in a single collective operation. With PE Version 4, there is a new
shared memory based optimization for certain MPI collective operations, available
in 64-bit executables and enabled by default. The shared memory optimization is
not suitable for non-blocking collectives, so with this optimization enabled, affected
collective operations that mix blocking and non-blocking calls will deadlock.
MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error
message. For further information on the shared memory optimization, refer to the
description of MP_SHARED_MEMORY in IBM Parallel Environment for AIX: MPI
Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls.
A nonblocking call is considered outstanding between the time the call is made
and the time the wait is completed. This restriction does not apply to any call
defined by the MPI standard.

Applications using nonblocking collective calls often perform best when they run
in interrupt mode.

When you use this subroutine in a threads application, make sure all collective
operations on a particular communicator are started in the same order at each task.
See IBM Parallel Environment for AIX: MPI Programming Guide for more information
on programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and
all MPE_I non-blocking collectives are semantically equivalent to MPI-1.

Use of MPE_I non-blocking collective communications rules out setting
environment variable MP_SINGLE_THREAD, or the command-line flag
-single_thread to yes.

Invalid count
count < 0

Invalid datatype
Type not committed
Invalid op

Invalid root
root < 0 or root > = groupsize

Invalid communicator

Invalid communicator type
must be intra-communicator

Unequal message lengths

Chapter 2. Nonblocking collective communication subroutines 33

MPE_IREDUCE

MPI_IN_PLACE not valid
MPI not initialized
MPI already finalized

Develop mode error (returned in the WAIT) if:
Inconsistent datatype

Inconsistent message length

Inconsistent op

Inconsistent root

Match of blocking and non-blocking collectives

Related information
MPI_REDUCE

34 IBM PE for AIX 5L V4 R2: MPI Subroutine Reference

MPE_IREDUCE_SCATTER

MPE_IREDUCE_SCATTER, MPE_Ireduce_scatter

Purpose

Performs a nonblocking reduce_scatter operation.

C synopsis

#include <mpi.h>

int MPE_Ireduce scatter(void* sendbuf,voidx recvbuf,int xrecvcounts,
MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,
MPI_Request *request);

FORTRAN synopsis

include 'mpif.h' or u