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About  this  book  

This book provides suggestions and guidance for using the IBM Parallel 

Environment for AIX to develop and run Fortran, C, and C++ parallel applications. 

To make this book a little easier to read, the name IBM Parallel Environment for AIX 

has been abbreviated to PE throughout. 

In this book, you will find information on basic parallel programming concepts 

and the Message Passing Interface (MPI) standard. You will also find information 

about the application development tools that are provided by PE such as the 

Parallel Operating Environment and the Parallel Debugger. 

References to RS/6000® SP™ or SP include currently supported IBM® 

Eserver 

Cluster 1600 hardware. 

What is all this? 

To make the best use of this book, you should be familiar with the following: 

v   The AIX® operating system 

v   One or more of the supported programming languages (Fortran, C, or C++) 

v   Basic parallel programming concepts.

This book is not intended to provide comprehensive coverage of the topics, nor is 

it intended to tell you everything there is to know about IBM Parallel Environment 

for AIX (PE). If you are new to either message passing parallel programming or to 

PE, you should find this book useful. For the latest information, always use the 

documents at: 

http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/ 

The objective of each chapter is described below: 

v   Chapter 1, “Understanding the environment,” on page 1 familiarizes you with 

the Parallel Operating Environment (POE). 

v   Chapter 2, “Message passing,” on page 21 covers parallelization techniques and 

discusses their advantages and disadvantages. It discusses how you take a 

working serial program and create a parallel program that gives the same result. 

v   Chapter 3, “Don’t panic,” on page 37 outlines the possible causes for a parallel 

application to fail to execute correctly, and how the tools available with the PE 

can be used to identify and correct problems. 

v   Chapter 4, “Is it efficient,” on page 63 discusses some of the ways you can 

optimize the performance of a parallel program and some hints on tuning the 

performance of the program. 

v   Chapter 5, “MPL to MPI,” on page 95 helps you understand how to translate a 

MPL parallel program into a program that conforms to the MPI standard. 

v   Chapter 6, “Mostly harmless,” on page 105 provides you with some general 

guidelines for creating safe parallel MPI programs. 

v   Appendix A, “A sample program to illustrate messages,” on page 109 provides 

a sample program, run with the maximum level of error messages. It points out 

the various types of messages you can expect, and tells you what they mean. 

v   Appendix B, “Parallel Environment internals,” on page 113 provides some 

additional information about how the PE works with respect to your application.
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The purpose of this book is to get you started creating parallel programs with PE. 

Once you have mastered these initial concepts, you will need to know more  about 

how PE works. For information on the Parallel Operating Environment (POE), see 

IBM Parallel Environment for AIX: Operation and Use, Volume 1. For information on 

PE tools, see IBM Parallel Environment for AIX: Operation and Use, Volume 2. 

Conventions and terminology used in this book 

This book uses the following typographic conventions: 

 Convention Usage 

bold Bold words or characters represent system elements that you must 

use literally, such as: command names, file names, flag names, path 

names, PE component names (pedb, for example), and subroutines. 

constant width Examples and information that the system displays appear in 

constant-width typeface. 

italic Italicized words or characters represent variable values that you 

must supply. 

Italics are also used for book titles, for the first use of a glossary 

term, and for general emphasis in text. 

[item] Used to indicate optional items. 

<Key> Used to indicate keys you press. 

\ The continuation character is used in coding examples in this book 

for formatting purposes. 

  

In addition to the highlighting conventions, this manual uses the following 

conventions when describing how to perform tasks. 

User actions appear in uppercase boldface type. For example, if the action is to 

enter the tool command, this manual presents the instruction as: 

ENTER 

tool

Abbreviated names 

Some abbreviated names used in this book: 

 Short Name  Full Name  

AIX  Advanced Interactive Executive 

CSM Clusters Systems Management 

CSS communication subsystem 

CTSEC cluster-based security 

DPCL  dynamic probe class library 

dsh distributed shell 

GUI  graphical user interface 

HDF Hierarchical Data Format 

IP Internet Protocol 

LAPI Low-level Application Programming Interface 

MPI  Message Passing Interface 
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Short Name  Full Name  

PE IBM Parallel Environment for AIX  

PE MPI  IBM’s implementation of the MPI  standard for PE 

PE MPI-IO IBM’s implementation of MPI  I/O for PE 

POE  parallel operating environment 

pSeries®  IBM Eserver  pSeries 

PSSP IBM Parallel System Support Programs for AIX  

RSCT Reliable Scalable Cluster Technology 

RISC reduced instruction set computer 

rsh remote shell 

RS/6000 IBM RS/6000 

SP IBM RS/6000 SP 

STDERR standard error 

STDIN standard input 

STDOUT  standard output 

US user space
  

Prerequisite and related information 

The Parallel Environment library consists of: 

v   IBM Parallel Environment for AIX: Introduction, SA22-7947, the book you are 

reading 

v   IBM Parallel Environment for AIX: Installation, GA22-7943 

v   IBM Parallel Environment for AIX: Messages, GA22-7944 

v   IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7945 

v   IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7946 

v   IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7948 

v   IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7949 

To access the most recent PE documentation in PDF and HTML format, refer to the 

IBM Eserver Cluster Information Center on the Web at: 

http://publib.boulder.ibm.com/clresctr/library/ 

Both the current PE books and earlier versions of the library are also available in 

PDF format from the IBM Publications Center Web site located at: 

http://www.ibm.com/shop/publications/order/ 

It is easiest to locate a book in the IBM Publications Center by supplying the 

book’s publication number. The publication number for each of the Parallel 

Environment books is listed after the book title in the preceding list. 

For a glossary of terms, see the Glossary at the back of this book. 
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Summary of changes for Parallel Environment 4.2 

This release of IBM Parallel Environment for AIX contains a number of functional 

enhancements, including: 

v   Support for POWER3™, POWER4™, and POWER5™ servers running AIX 5L™ 

V5.2 or AIX 5L V5.3 

v   Support for IBM Eserver p5 servers and the High Performance Switch (HPS) 

with AIX 5L V5.2 only, and coexistence in a cluster managed by Cluster Systems 

Management (CSM) 

v   Remote Direct Memory Access (RDMA) for bulk data copy and transfer, and 

large contiguous messages, only on the HPS 

v   Support for striping of messages over multiple adapters attached to the pSeries 

HPS 

v   MPI  support for 128 tasks per node using shared memory 

v   Support for LoadLeveler® performance improvements 

v   Support for up to 8192 tasks in a single job, with improved memory utilization 

for large jobs 

v   MPI  collectives algorithm and optimization improvements 

v   MPI  shared memory collectives use AIX 5L V5.3 cross-memory attachment 

enhancements 

v   Point-to-point messages in shared memory use AIX 5L V5.3 cross-memory 

attachment enhancements 

v   MPI/LAPI performance statistics 

v   The SP Switch is no longer supported 

v   PE 4.2 is the last release of PE that will support Parallel Systems Support 

Programs for AIX (PSSP), the SP Switch2, and POWER3 servers

Using LookAt to look up message explanations 

LookAt is an online facility that lets you look up explanations for most of the IBM 

messages you encounter, as well as for some system abends and codes. You can 

use LookAt from the following locations to find IBM message explanations for 

Clusters for AIX and Linux™: 

v   The Internet. You can access IBM message explanations directly from the LookAt 

Web site: 

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/ 

v   Your wireless handheld device. You can use the LookAt Mobile Edition with a 

handheld device that has wireless access and an Internet browser (for example, 

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for 

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt 

Web site.

National language support (NLS) 

For national language support (NLS), all PE components and tools display 

messages that are located in externalized message catalogs. English versions of the 

message catalogs are shipped with PE, but your site may be using its own 

translated message catalogs. The PE components use the AIX environment variable 

NLSPATH to find the appropriate message catalog. NLSPATH specifies a list of 

directories to search for message catalogs. The directories are searched, in the order 

listed, to locate the message catalog. In resolving the path to the message catalog, 
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NLSPATH is affected by the values of the environment variables LC_MESSAGES 

and LANG. If you get an error saying that a message catalog is not found and you 

want the default message catalog: 

ENTER 

export NLSPATH=/usr/lib/nls/msg/%L/%N 

 export LANG=C

The PE message catalogs are in English, and are located in the following 

directories: 

   /usr/lib/nls/msg/C 

   /usr/lib/nls/msg/En_US 

   /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your 

system administrator for the appropriate value of NLSPATH or LANG. For more 

information on NLS and message catalogs, see IBM AIX 5L Version 5.2 General 

Programming Concepts: Writing and Debugging Programs. 
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Chapter  1.  Understanding  the  environment  

This section will help you understand the new environment, IBM Parallel 

Environment for AIX (PE). It covers: 

v   PE 

v   The Parallel Operating Environment (POE) 

v   Starting the POE 

v   Running simple commands 

v   Experimenting with parameters and environment variables 

v   Using a host list file versus a job management system (LoadLeveler) for 

requesting processor nodes 

v   Compiling and running a simple parallel application 

v   Some simple environment setup and debugging tips.

This book contains examples and illustrates various commands and programs as 

well as the output you get as a result of running them. When looking at these 

examples, keep in mind that the output you see on the system may not exactly 

match what is printed in the book. The included examples here give you a basic 

idea of what happens. 

What is IBM Parallel Environment for AIX? 

IBM Parallel Environment for AIX (PE) software lets you develop, debug, analyze, 

tune, and execute parallel applications written in Fortran, C, and C++. PE 

conforms to existing standards like UNIX® and MPI. PE runs on either an IBM 

pSeries server, or a clustered server. 

PE consists of the following: 

v   The Parallel Operating Environment (POE), for submitting and managing jobs. 

v   A message passing library (MPI), for communication among the tasks that make 

up a parallel program. 

v   A parallel debugger (pdbx) for debugging parallel programs. 

v   Parallel utilities for easing file manipulation. 

v   PE Benchmarker, a suite of applications and utilities you can use to analyze 

program performance.

What is the Parallel Operating Environment? 

The Parallel Operating Environment (POE) allows you to develop and execute the 

parallel applications across multiple operating system images, called nodes. When 

using POE, there is a single node (possibly a workstation) that is called the home 

node that manages interactions with users. 

POE transparently manages the allocation of remote nodes where the parallel 

application actually runs. It also handles the various requests and communication 

between the home node and the remote nodes via the underlying network. 
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This approach eases the transition from serial to parallel programming by hiding 

the differences, and allowing you to continue using standard AIX tools and 

techniques. You have to tell POE what remote nodes to use, but once you have, 

POE does the rest. 

The processor node is a physical entity or operating system image that is defined to 

the network. It can be a standalone machine, or a processor node within an IBM 

RS/6000 SP (SP) frame or clustered server. From POE’s point of view, a node is a 

single copy of the operating system. 

If you are using a Symmetric Multiprocessor (SMP) system, it is important to know 

that, although an SMP  node has more than one processing unit, it is still 

considered, and referred to as, a processor node. 

Before you start 

Before starting, check that you have addressed the items covered in this section. 

Installation 

Whoever installed POE should have verified that it was installed successfully by 

running the Installation Verification Program (IVP). The IBM Parallel Environment for 

AIX: Installation Guide discusses the IVP. 

The IVP tests to see if POE can do the following: 

v   Establish a remote execution environment 

v   Compile and execute the program 

v   Initialize the IP message passing environment 

v   Check that the MPI  library is operable.

Access 

Before running the job, you must first have access to computer resources in the 

system. Here are some things to consider: 

v   You must have the same user ID on the home node and each remote node on 

which you will be running the parallel application. 

v   POE will not allow you to run the application as root.

If  you are using LoadLeveler to submit POE jobs, which includes all user space 

applications, then LoadLeveler is responsible for the security authentication. The 

security function in POE is not invoked when POE is run under LoadLeveler. 

Security methods:   PE uses an enhanced set of security methods, based on Cluster 

Security Services in RSCT (Reliable Scalable Cluster Technology). RSCT is a set of 

software components that provide a comprehensive clustering environment. RSCT 

is the infrastructure used by a variety of products to provide clusters with 

improved system availability, scalability, and ease of use. POE now has a security 

configuration option for the system administrator to determine which set of 

security methods are used in the system. Two types of security methods are 

supported: 

v   cluster security services 

v   AIX or DCE based security (or compatibility) and is the default.

Cluster security services:   When cluster based security is the security method of 

choice, the system administrator will have to ensure that UNIX Host Based 

authentication is enabled and properly configured on all nodes. Refer to IBM 

Parallel Environment for AIX: Installation Guide and IBM Reliable Scalable Cluster 

Technology for AIX 5L: Guide and Reference for details. 
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When using cluster based security, users will be required to have the proper 

entries in the /etc/hosts.equiv or .rhosts files, to ensure proper access to each node, 

as described in “AIX-based user authorization.” 

AIX/DCE based security:   When AIX/DCE based security (compatibility) is the 

security method of choice (which is also the default), POE will rely on the 

following for user authorization. The choices are based on the security services 

methods available when using PSSP, as set with the PSSP chauthts command, 

primarily for DCE support under PSSP. In the case where PSSP is not being used, 

POE defaults to using AIX authentication. 

Compatibility 

AIX authentication is used, based on entries in the /etc/hosts.equiv or 

.rhosts files. This is the default. 

DCE DCE authentication is used, for which you need to have: 

1.   A valid DCE ID and principal, that you use to perform a dce_login. 

2.   The PMD service principal, which the system administrator set up.

DCE  and Compatibility 

DCE authentication is attempted first, and if unsuccessful, AIX 

authentication is tried. 

None No security methods are enabled. POE defaults to use AIX authentication, 

as it does with Compatibility.

 User authentication is set on the POE remote nodes. Refer to IBM Parallel 

Environment for AIX: Installation Guide for specific details on mixing security 

methods in the system. 

AIX-based user authorization 

You must have remote execution authority on all the nodes in the system that you 

will use for parallel execution. The system administrator should: 

v   Authorize both the home node machine and the user name (or machine names) 

in the /etc/hosts.equiv file on each remote node, or 

v   Set up the .rhosts file in the home directory of the user ID for each node that 

you want to use. The contents of each .rhosts file can be either the explicit IP 

address of the home node, or the home node name. For more information about 

.rhosts files, see the IBM Parallel Environment for AIX: Installation Guide.

/etc/hosts.equiv is checked first, and, if the home node and user/machine name do 

not appear there, it then looks to .rhosts. 

You can verify that you have remote execution authority by running a remote shell 

from the workstation where you intend to submit parallel jobs. For example, to test 

whether you have remote execution authority on node 202r1n10, try the following 

command: 

$ rsh 202r1n10 hostname 

The response should be the remote host name. If it is not the remote host name, or 

the command cannot run, see the system administrator. Issue this command for 

every remote host on which you plan to have POE execute the job. 

Refer to IBM Parallel Environment for AIX: Installation Guide for more details. 

DFS/DCE-based user authorization 

When DCE authentication is enabled, POE expects a valid set of DCE credentials 

to submit parallel jobs. 
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When both DCE and Compatibility methods are enabled, POE first tries to use DCE 

authentication. If DCE authentication is unsuccessful, POE then uses AIX 

authentication. 

To use DCE, POE requires the following: 

v   A valid set of DCE credentials, created by a dce_login to a valid principal. 

v   A valid set of Kerberos Version 5 principals, created by klogin or an entry in a 

.k5login file in the user’s home directory. 

v   The PMD service principal, which the system administrator must have set up as 

part of the system’s security administration and configuration steps. See IBM 

Parallel Environment for AIX: Installation Guide for more information on 

configuring the PMD service principal.

For more information on DCE user authentication, refer to IBM Parallel Environment 

for AIX: Installation Guide and IBM Parallel Environment for AIX: Operation and Use, 

Volume 1. 

Host list file 

One way to tell POE where to run the program is by using a host list file. The host 

list file is generally in the current working directory, but you can move it 

anywhere you like by specifying certain parameters. This file can be given any 

name, but the default name is host.list. Many people use host.list as the name to 

avoid having to specify another parameter. This file contains one of two different 

kinds of information; node names or pool numbers (a pool can also be designated 

by a string). 

Node names refer to the hosts on which parallel jobs may be run. They may be 

specified as Domain Names (as long as those Domain Names can be resolved from 

the workstation where you submit the job) or as Internet addresses. Each host goes 

on a separate line in the host list file. 

Here is an example of a host list file that specifies the node names on which four 

tasks will run: 

202r1n09.hpssl.kgn.ibm.com 

202r1n10.hpssl.kgn.ibm.com 

202r1n11.hpssl.kgn.ibm.com 

202r1n12.hpssl.kgn.ibm.com 

Running POE 

Once you have checked all the items in “Before you start” on page 2, you are 

ready to run the POE. You can view POE as a way to run commands and 

programs on multiple nodes from a single point. Remember that these commands 

and programs are really running on the remote nodes. If you ask POE to perform 

some operation on a remote node, everything necessary to perform that operation 

must be available on the remote node. 

There are two ways to influence the way the parallel program is executed; with 

environment variables or command-line option flags. You can set environment 

variables at the beginning of the session to influence each program that you 

execute. You also get the same effect by specifying the related command-line flag 

when you invoke POE, but its influence lasts only for that particular program 

execution. This book shows you how to use the command-line option flags to 

influence the way the program executes. “Running POE with environment 

variables” on page 7 gives you some high-level information, but you may also 
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want to refer to IBM Parallel Environment for AIX: Operation and Use, Volume 1 to 

learn more about using environment variables. 

The following sections show you how to run a parallel job by requesting that POE 

use nodes in a host list file and tell you how to use a host list file to request nodes 

from LoadLeveler. 

Some examples of running POE 

The poe command enables you to load and execute programs on remote nodes. 

The syntax is: 

poe [program] [options] 

When you invoke poe, it allocates processor nodes for each task and initializes the 

local environment. It then loads the program and reproduces the local shell 

environment on each processor node. POE also passes the user program arguments 

to each remote node. 

The simplest thing to do with POE is to run an AIX command. When you try these 

examples on the system, use a host list file that contains the node names (as 

opposed to a pool number). These examples assume at least a four-node parallel 

environment. If you have more than four nodes, feel free to use more. If you have 

fewer than four nodes, you may duplicate lines. This example assumes that the file 

is called host.list, and is in the directory from which you are submitting the parallel 

job. If either of these conditions are not true, POE will not find the host list file 

unless you use the -hostfile option. 

The -procs 4 option tells POE to run this command on four nodes. It will use the 

first four in the host list file. 

 

 What you see is the output from the hostname command run on each of the 

remote nodes. POE has taken care of submitting the command to each node, 

collecting the standard output and standard error from each remote node, and 

sending it back to the workstation. One thing that you do not see is an indication 

of which task is responsible for each line of output. In a simple example like this, it 

is not that important. If, however, you had many lines of output from each node, 

you would want to know which task was responsible for each line of output. To 

do that, you use the -labelio option: 

 

 Notice how each line starts with a number and a colon and that the numbering 

started at 0 (zero). The number is the task ID that the line of output came from (it 

is also the line number in the host list file that identifies the host which generated 

this output). Use this parameter to identify lines from a command that generates 

more output. Try this command: 

 

$ poe hostname -procs 4 

  

202r1n10.hpssl.kgn.ibm.com 

202r1n11.hpssl.kgn.ibm.com 

202r1n09.hpssl.kgn.ibm.com 

202r1n12.hpssl.kgn.ibm.com 

$ poe hostname -procs 4 -labelio yes 

  

1:202r1n10.hpssl.kgn.ibm.com 

2:202r1n11.hpssl.kgn.ibm.com 

0:202r1n09.hpssl.kgn.ibm.com 

3:202r1n12.hpssl.kgn.ibm.com 
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You should see something similar to this: 

0:***************************************************************************** 

0:*                                                                           * 

0:*  Welcome to IBM AIX Version 5.2   on 202r1n09.hpssl.kgn.ibm.com           * 

0:*                                                                           * 

0:***************************************************************************** 

0:*                                                                           * 

0:*     Message of the Day:  Never drink more than 3                          * 

0:*     Blasters unless you are a 50 ton elephant.                            * 

0:*                                                                           * 

0:*                                                                           * 

1:***************************************************************************** 

1:*                                                                           * 

1:*  Welcome to IBM AIX Version 5.2   on 202r1n10.hpssl.kgn.ibm.com           * 

1:*                                                                           * 

1:***************************************************************************** 

1:*                                                                           * 

1:*                                                                           * 

1:*     Message of the Day:  Never drink more than 3                          * 

1:*     Blasters unless you are a 50 ton elephant.                            * 

1:*                                                                           * 

1:*                                                                           * 

1:*                                                                           * 

1:***************************************************************************** 

0:*                                                                           * 

0:*                                                                           * 

0:*                                                                           * 

0:***************************************************************************** 

The cat command is listing the contents of the file /etc/motd on each of the remote 

nodes. Notice how the output from each of the remote nodes is intermingled. This 

is because as soon as a buffer is full on the remote node, POE sends it back to the 

workstation for display (in case you had any doubts that these commands were 

really being executed in parallel). The result is the jumbled mess that can be 

difficult to interpret. Fortunately, POE can clear things up with the -stdoutmode 

parameter. 

Try this command: 

 

 You should see something similar to this: 

0:***************************************************************************** 

0:*                                                                           * 

0:*  Welcome to IBM AIX Version 5.2   on 202r1n09.hpssl.kgn.ibm.com           * 

0:*                                                                           * 

0:***************************************************************************** 

0:*                                                                           * 

0:*                                                                           * 

0:*     Message of the Day:  Never drink more than 3 Blasters                 * 

0:*     unless you are a 50 ton elephant.                                     * 

0:*                                                                           * 

0:*                                                                           * 

0:*                                                                           * 

0:***************************************************************************** 

1:***************************************************************************** 

1:*                                                                           * 

1:*  Welcome to IBM AIX Version 5.2   on 202r1n10.hpssl.kgn.ibm.com           * 

1:*                                                                           * 

1:***************************************************************************** 

1:*                                                                           *

$ poe cat /etc/motd -procs 2 -labelio yes 

$ poe cat /etc/motd -procs 2 -labelio yes -stdoutmode ordered 
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1:*                                                                           * 

1:*     Message of the Day:  Never drink more than 3 Blasters                 * 

1:*     unless you are a 50 ton elephant.                                     * 

1:*                                                                           * 

1:*                                                                           * 

1:*                                                                           * 

1:***************************************************************************** 

POE holds all the output until the jobs either finish or POE itself runs out of space. 

If the jobs finish, POE displays the output from each remote node together. If POE 

runs out of space, it prints everything, and then starts a new page of output. You 

get less of a sense of the parallel nature of the program, but it is easier to 

understand. 

Running POE with environment variables 

If you are getting tired of typing the same command line options over and over 

again, you can set them as environment variables so that you do not have to put 

them on the command line. The environment variable names are the same as the 

command line option names (without the leading dash), but they start with MP_, 

all in upper case. For example, the environment variable name for the -procs 

option is MP_PROCS, and for the -labelio option it is MP_LABELIO. Setting these 

two variables like this: 

$ export MP_PROCS=2 

$ export MP_LABELIO=yes 

allows you to run the /etc/motd program with two processes and labeled output, 

without specifying either with the poe command. 

Try this command; 

$ poe cat /etc/motd -stdoutmode ordered 

You should see something similar to this: 

0:***************************************************************************** 

0:*                                                                           * 

0:*  Welcome to IBM AIX Version 5.2   on pe03.pok.ibm.com                     * 

0:*                                                                           * 

0:***************************************************************************** 

0:*                                                                           * 

0:*                                                                           * 

0:*     Message of the Day:  Never drink more than 3 Blastes                  * 

0:*     unless you are a 50 ton elephant.                                     * 

0:*                                                                           * 

0:*                                                                           * 

0:*                                                                           * 

0:***************************************************************************** 

1:***************************************************************************** 

1:*                                                                           * 

1:*  Welcome to IBM AIX Version 5.2   on pe03.pok.ibm.com                     * 

1:*                                                                           * 

1:***************************************************************************** 

1:*                                                                           * 

1:*                                                                           * 

1:*     Message of the Day:  Never drink more than 3                          * 

1:*     Blasters unless you are a 50 ton elephant.                            * 

1:*                                                                           * 

1:*                                                                           * 

1:*                                                                           * 

1:***************************************************************************** 

In the previous example, the program ran with two processes, and the output was 

labeled. 
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Now, to see that the environment variable setting lasts for the duration of the 

session, try running the command below, without specifying the number of 

processes or labeled I/O. 

 

 Notice that the program still ran with two processes and you got labeled output. 

Now try overriding the environment variables just set. To do this, use command 

line options when running POE. Try running the following command: 

$ poe hostname -procs 4 -labelio no 

  

202r1n09.hpssl.kgn.ibm.com 

202r1n12.hpssl.kgn.ibm.com 

202r1n11.hpssl.kgn.ibm.com 

202r1n10.hpssl.kgn.ibm.com 

This time, notice that the program ran with four processes and that the output was 

not labeled? No matter what the environment variables have been set to, you can 

always override them when you run POE. 

To show that this was a temporary override of the environment variable settings, 

try running the following command again, without specifying any command line 

options. 

$ poe hostname 

  

0:202r1n09.hpssl.kgn.ibm.com 

1:202r1n10.hpssl.kgn.ibm.com 

Once again, the program ran with two processes, and the output was labeled. 

Compiling 

You probably have programs that you want to run in parallel. Chapter 2, “Message 

passing,” on page 21 talks about creating parallel programs in a more detail. Right 

now the topic is compiling a program for POE. You can compile almost any 

Fortran, C, or C++ program for execution under POE. 

Before compiling, you should verify that the following has happened: 

v   POE is installed on the system 

v   You are authorized to use POE 

v   A Fortran, C Compiler, or C ++ compiler is installed on the system.

See  IBM Parallel Environment for AIX: MPI Programming Guide for information on 

compilation restrictions for POE. 

This example showing how compiling works, uses the Hello World program. Here 

it is in C: 

 

$ poe hostname 

  

0:202r1n09.hpssl.kgn.ibm.com 

1:202r1n10.hpssl.kgn.ibm.com 
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And here it is in Fortran: 

 

 To compile these programs, you just invoke the appropriate compiler script: 

 

 POE scripts mpcc_r, mpCC_r, and mpxlf_r link the parallel libraries that allow 

programs to run in parallel. Script mpcc_r generates thread-aware code by linking 

in the threaded version of MPI, including the threaded POE utility library. 

Currently, only the threaded version of MPI  is provided by POE. 

Legacy POE scripts mpcc, mpCC, and mpxlf are now symbolic links to mpcc_r, 

mpCC_r, and mpxlf_r, and are used in some of the examples in this book. 

All the compiler scripts accept all the same options that the non-parallel compilers 

do, as well as some options specific to POE. For a complete list of all 

parallel-specific compilation options, see IBM Parallel Environment for AIX: 

Operation and Use, Volume 1. 

Running one of the POE compiler scripts creates an executable version of the 

source program that takes advantage of POE. However, before POE can run the 

program, you need to make sure that it is accessible on each remote node. You can 

/******************************************************************** 

* 

* Hello World C Example 

* 

* To compile: 

* mpcc_r -o hello_world_c hello_world.c 

* 

**********************************************************************/ 

#include<stdlib.h> 

#include<stdio.h> 

/* Basic program to demonstrate compilation and execution techniques */ 

int main() 

{ 

printf("Hello, World!\n"); 

exit(0); 

} 

c********************************************************************* 

c* 

c* Hello World Fortran Example 

c* 

c* To compile: 

c* mpxlf_r -o hello_world_f hello_world.f 

c* 

c********************************************************************* 

c ------------------------------------------------------------------ 

c  Basic program to demonstrate compilation and execution techniques 

c ------------------------------------------------------------------ 

c     program  hello 

  

implicit none 

write(6,*)’Hello, World!’ 

  

stop 

end 

$ mpcc_r -o hello_world_c hello_world.c 

  

$ mpxlf_r -o hello_world_f hello_world.f 

** main   === End of Compilation 1 === 

1501-510  Compilation successful for file hello_world.f. 
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do this by either copying it there, or by mounting the file system that the program 

resides in to each remote node. 

   

POE options 

There are a number of options (command line flags) that you may  want to specify 

when invoking POE. These options are covered in full detail in IBM Parallel 

Environment for AIX: Operation and Use, Volume 1 but here are the ones you will 

most likely need to be familiar with at this stage. 

-procs:   When you set -procs, you are telling POE how many tasks the program 

will run. You can also set the MP_PROCS environment variable to do this (-procs 

can be used to temporarily override it). 

-hostfile or -hfile:   The default host list file used by POE to allocate nodes is 

called host.list. You can specify a file other than host.list by setting the -hostfile or 

-hfile options when invoking POE. You can also set the MP_HOSTFILE 

environment variable to do this (-hostfile and -hfile can be used to temporarily 

override it). 

-labelio:   You can set the -labelio option when invoking POE so that the output 

from the parallel tasks of the program are labeled by task id. This becomes 

especially useful when you are running a parallel program and the output is 

unordered. When you have output that is labeled output, you can easily determine 

which message the task returned. 

You can also set the MP_LABELIO environment variable to do this (-labelio can 

be used to temporarily override it). 

-infolevel or -ilevel:   You can use the -infolevel or -ilevel options to specify the 

level of messages you want from POE. There are different levels of informational, 

warning, and error messages, plus several debugging levels. The -infolevel option 

generates large amounts of output. Use it with care. You can also set the 

MP_INFOLEVEL environment variable to do this (-infolevel and -ilevel can be 

used to temporarily override it). 

-pmdlog:   The -pmdlog option lets you specify that diagnostic messages should be 

logged to a file in /tmp on each of the remote nodes of the partition. These 

diagnostic logs are particularly useful for isolating the cause of abnormal 

termination. The -pmdlog option consumes a significant amount of system 

Here  is the output of the C program (threaded or non-threaded): 

$ poe hello_world_c -procs 4 

  

Hello, World! 

Hello, World! 

Hello, World! 

Hello, World! 

And  here is the output of the Fortran program: 

$ poe hello_world_f -procs 4 

  

Hello, World! 

Hello, World! 

Hello, World! 

Hello, World! 

Figure 1. Output from mpcc_r/mpxlf_r
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resources. Use it with care. You can also set the MP_PMDLOG environment 

variable to do this (-pmdlog can be used to temporarily override it). 

-stdoutmode:   The -stdoutmode option lets you specify how you want the output 

data from each task in the program to be displayed. When you set this option to 

ordered, the output data from each parallel task is written to its own buffer, and 

later, all buffers are flushed, in task order, to STDOUT. The examples in this section 

show you how this works. Using the -infolevel option consumes a significant 

amount of system resources, which may affect performance. You can also set the 

MP_STDOUTMODE environment variable to do this (-stdoutmode can be used to 

temporarily override it). 

Who is in control? 

So far, you have explicitly specified to POE the set of nodes on which to run the 

parallel application. You did this by creating a list of hosts in a file called host.list, 

in the directory from which you submitted the parallel job. In the absence of any 

other instructions, POE selected host names out of this file until it had as many as 

the number of processes you told POE to use (with the -procs option). 

Another way to tell POE which hosts to use is with LoadLeveler. LoadLeveler can 

manage jobs on a networked cluster of pSeries servers or RS/6000 workstations. 

Managing jobs 

LoadLeveler is a job management system that allows users to run more jobs in less 

time by matching the jobs’ processing needs with the available resources. 

LoadLeveler allocates nodes, one job at a time. This is necessary if a parallel 

application is communicating directly over the high performance switch. With the 

-euilib command line option (or the MP_EUILIB environment variable), you can 

specify how you want to do message passing. This option lets you specify the 

message passing subsystem library implementation, IP or User Space (US), that 

you wish to use. See IBM Parallel Environment for AIX: Operation and Use, Volume 1 

for more information. With LoadLeveler, you can also dedicate the parallel nodes 

to a single job, so there is no conflict or contention for resources. LoadLeveler 

allocates nodes from either the host list file, or from a predefined pool, which the 

system administrator usually sets up. 

How the nodes are allocated:   To know who is allocating the nodes and where 

they are being allocated from, you must always have a host list file or use the 

MP_RMPOOL environment variable or -rmpool command line option (unless you 

are using the MP_LLFILE environment variable or the -llfile command line 

option). See IBM Parallel Environment for AIX: Operation and Use, Volume 1 for more 

information. 

The default for the host list file is a file named host.list in the directory from which 

the job is submitted. This default may be overridden by the -hostfile command 

line option or the MP_HOSTFILE environment variable. For example, the 

following command: 

$ poe hostname -procs 4 -hostfile $HOME/myHosts 

uses a file called myHosts, located in the home directory. If the value of the 

-hostfile parameter does not start with a slash (/), it is taken as relative to the 

current directory. If the value starts with a slash (/), it is taken as a fully-qualified 

file name. 

For specific examples of how a system administrator defines pools, see IBM 

LoadLeveler for AIX: Using and Administering (SA22-7311). There is another way to 
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designate the pool on which you want the program to run. If myHosts did not 

contain any pool numbers, you could use the: 

v   MP_RMPOOL environment variable which you can set to a number or string. 

This setting would last for the duration of the session. 

v   -rmpool command line option to specify a number or string when you invoke 

the program. This option would override the MP_RMPOOL environment 

variable.

If a host list file named host_list exists, or if a host list file is specified using 

MP_HOSTFILE or -hostfile, anything you specify with MP_RMPOOL or -rmpool 

will be ignored. If a file named host.list exists and you want to use MP_RMPOOL 

or -rmpoolthen MP_HOSTFILE or -hostfile must be set to NULL. 

For more information about the MP_RMPOOL environment variable or the 

-rmpool command line option, see IBM Parallel Environment for AIX: Operation and 

Use, Volume 1 

If the myHosts file contains actual host names, but you want to use the switch 

directly for communication, LoadLeveler allocates only the nodes that are listed in 

myHosts. LoadLeveler keeps track of which parallel jobs are using the switch. 

Since it allows more than one job at a time to use the switch, LoadLeveler makes 

sure that only the allowed number of tasks actually use it. If the host list file 

contains actual host names, but you do not want to use the switch directly for 

communication, POE allocates the nodes from those listed in the host list file. 

You cannot have both host names and pool IDs in the same host list file. 

The program executes exactly the same way, regardless of whether POE or 

LoadLeveler allocated the nodes. In the following example, the host list file 

contains a pool number which causes the job management system to allocate 

nodes. However, the output is identical to Figure 1 on page 10, where POE 

allocated the nodes from the host list file. 

 

 So, if the output looks the same, regardless of how the nodes are allocated, how do 

you know whether LoadLeveler was used? Well, POE knows a lot that it ordinarily 

does not tell you. If you coax it with the -infolevel option, POE will tell you more  

information than you ever wanted to know. 

Getting a little more information 

You can control the level of messages you get from POE as the program executes 

by using the -infolevel option of POE. The default setting is 1 (normal), which 

says that warning and error messages from POE will be written to STDERR. 

However, you can use this option to get more information about how the program 

executes. For example, with -infolevel set to 2, you see a couple of different things. 

First, you will see a message that says that POE has contacted LoadLeveler. 

Following that, you will see messages that indicate which nodes LoadLeveler 

passed back to POE for use. 

For a description of the various -infolevel settings, see IBM Parallel Environment for 

AIX: Operation and Use, Volume 1 

$ poe hello_world_c -procs 4 -hostfile pool.list 

  

Hello, World! 

Hello, World! 

Hello, World! 

Hello, World! 
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Here is the hello world program again: 

 

 You should see output similar to the following: 

INFO: 0031-364  Contacting LoadLeveler to set and query information for 

       interactive job 

INFO: 0031-380  LoadLeveler step ID is c133rp03.ppd.pok.ibm.com.1154.0 

INFO: 0031-118  Host c133rp03.ppd.pok.ibm.com requested for task 0 

INFO: 0031-118  Host c133rp03.ppd.pok.ibm.com requested for task 1 

INFO: 0031-119  Host c133rp03.ppd.pok.ibm.com allocated for task 0 

INFO: 0031-120  Host address 9.114.153.82 allocated for task 0 

INFO: 0031-377  Using en0 for mpi euidevice for task 0 

INFO: 0031-119  Host c133rp03.ppd.pok.ibm.com allocated for task 1 

INFO: 0031-120  Host address 9.114.153.82 allocated for task 1 

INFO: 0031-377  Using en0 for mpi euidevice for task 1 

   0:INFO: 0031-724  Executing program: <hello_world_c> 

   1:INFO: 0031-724  Executing program: <hello_world_c> 

   0:Hello, world! 

   0:INFO: 0031-306  pm_atexit: pm_exit_value is 0. 

   1:Hello, world! 

   1:INFO: 0031-306  pm_atexit: pm_exit_value is 0. 

INFO: 0031-656  I/O file STDOUT closed by task 0 

INFO: 0031-656  I/O file STDERR closed by task 0 

INFO: 0031-656  I/O file STDOUT closed by task 1 

INFO: 0031-656  I/O file STDERR closed by task 1 

INFO: 0031-251  task 0 exited: rc=0 

INFO: 0031-251  task 1 exited: rc=0 

INFO: 0031-639  Exit status from pm_respond = 0 

With -infolevel set to 2, you also see messages from each node that indicate the 

executable they are running and what the return code from the executable is. In 

the example above, you can differentiate between the -infolevel messages that 

come from POE itself and the messages that come from the remote nodes, because 

the remote nodes are prefixed with their task ID. If you did not set -infolevel, you 

would see only the output of the executable (Hello world!, in the previous 

example), interspersed with POE output from remote nodes. 

With -infolevel set to 3, you get more information. In the following example, use 

the host list file that contains host names again (as opposed to a Pool ID), when 

you invoke POE. 

Look at the following output. In this case, POE tells you that it is opening the host 

list file, the nodes it found in the file (along with their Internet addresses), the 

parameters to the executable being run, and the values of some of the POE 

parameters. 

 

 You should see output similar to the following: 

INFO: DEBUG_LEVEL changed from 0 to 1 

D1<L1>: Open of file ./host.list successful 

D1<L1>: mp_euilib = ip 

D1<L1>: 03/04 14:55:13.282519  task 0 c151f1rp02.ppd.pok.ibm.com  10 

D1<L1>: 03/04 14:55:13.282677  task 1 c151f1rp02.ppd.pok.ibm.com  10 

D1<L1>: node allocation strategy = 2 

INFO: 0031-364  Contacting LoadLeveler to set and query information 

for interactive job 

D1<L1>: 03/04 14:55:13.422268  Calling ll_init_job. 

  

D1<L1>: 03/04 14:55:13.460772  ll_init_job returned. 

 

$poe hello_world_c -resd yes -procs 2 -labelio yes -infolevel 2 

$poe hello_world_c -resd yes -procs 2 -labelio yes -ilevel 3 
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D1<L1>: 03/04 14:55:13.461426  Job Command String: 

#@ job_type = parallel 

#@ environment = COPY_ALL 

#@ node_usage = shared 

#@ bulkxfer = NO 

#@ class = No_Class 

#@ queue 

  

INFO: 0031-380  LoadLeveler step ID is c151f1rp02.ppd.pok.ibm.com.324.0 

INFO: 0031-118  Host c151f1rp02.ppd.pok.ibm.com requested for task 0 

INFO: 0031-118  Host c151f1rp02.ppd.pok.ibm.com requested for task 1 

INFO: 0031-119  Host c151f1rp02.ppd.pok.ibm.com allocated for task 0 

INFO: 0031-120  Host address 9.114.127.2 allocated for task 0 

INFO: 0031-377  Using en0 for mpi euidevice for task 0 

INFO: 0031-119  Host c151f1rp02.ppd.pok.ibm.com allocated for task 1 

INFO: 0031-120  Host address 9.114.127.2 allocated for task 1 

INFO: 0031-377  Using en0 for mpi euidevice for task 1 

D1<L1>: Entering pm_contact, jobid is 0 

D1<L1>: Jobid = 1110510899 

D1<L1>: Spawning /etc/pmdv4 on all nodes 

D1<L1>: 1 master nodes 

D1<L1>: 03/04 14:55:15.377008  Calling ll_spawn_connect for node 0, 

host name c151f1rp02.ppd.pok.ibm.com. 

  

D1<L1>: TASKID is 0 

D1<L1>: 03/04 14:55:15.377576  ll_spawn_connect returned for node 0, 

socket fd 6, 

host name c151f1rp02.ppd.pok.ibm.com. 

  

D1<L1>: 03/04 14:55:15.377680  Calling pm_spawn_ready. 

  

D1<L1>: 03/04 14:55:15.378916  returned from pm_spawn_ready. 

  

D1<L1>: Socket file descriptor for master 0 (c151f1rp02.ppd.pok.ibm.com) is 6 

D1<L1>: SSM_read on socket 6, source = 0, task id: 0, nread: 12, type:3. 

D1<L1>: Leaving pm_contact, jobid is 1110510899 

D1<L1>: attempting to bind socket to /tmp/s.pedb.544784.1079 

  

   0:INFO: 0031-724  Executing program: <hello_world_c> 

   0:D1<L1>: Affinity is not requested; MP_TASK_AFFINITY: -1 

   1:INFO: 0031-724  Executing program: <hello_world_c> 

   1:D1<L1>: Affinity is not requested; MP_TASK_AFFINITY: -1 

   0:INFO: DEBUG_LEVEL changed from 0 to 1 

   1:INFO: DEBUG_LEVEL changed from 0 to 1 

   0:D1<L1>: In mp_main, mp_main will not be checkpointable 

   0:D1<L1>: mp_euilib is <ip> 

   0:Hello, World! 

   0:INFO: 0031-306  pm_atexit: pm_exit_value is 0. 

   1:D1<L1>: In mp_main, mp_main will not be checkpointable 

   1:D1<L1>: mp_euilib is <ip> 

   1:Hello, World! 

   1:INFO: 0031-306  pm_atexit: pm_exit_value is 0. 

INFO: 0031-656  I/O file STDOUT closed by task 0 

INFO: 0031-656  I/O file STDERR closed by task 0 

INFO: 0031-656  I/O file STDOUT closed by task 1 

INFO: 0031-656  I/O file STDERR closed by task 1 

D1<L1>: Accounting data from task 1 for source 1: 

D1<L1>: Accounting data from task 0 for source 0: 

INFO: 0031-251  task 0 exited: rc=0 

INFO: 0031-251  task 1 exited: rc=0 

D1<L1>: All remote tasks have exited: maxx_errcode = 0 

INFO: 0031-639  Exit status from pm_respond = 0 

D1<L1>: Maximum return code from user = 0 

The -infolevel messages give you more information about what is happening on 

the home node, but if you want to see what is happening on the remote nodes, 
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you need to use the -pmdlog option. If you set -pmdlog to a value of yes, a log is 

written to each of the remote nodes that tells you what POE did while running 

each task. 

If you issue the following command, a file is written in /tmp, of each remote node, 

called mplog.jobid.taskid, 

$ poe hello_world -procs 4 -pmdlog yes 

If -infolevel is set to 3 or higher, The job ID will be displayed in the output. If you 

do not know what the job ID is, it is probably the most recent log file. If you are 

sharing the node with other POE users, the job ID will be one of the most recent 

log files (but you own the file, so you should be able to tell). 

Here is a sample log file. In this example, all four tasks are running on the same 

node. For more information about how POE runs with multiple tasks on the same 

node, see Appendix A, “A sample program to illustrate messages,” on page 109. 

AIX Parallel Environment pmd4 version @(#) 2003/06/11 13:19:38 

The ID of this process is 520240 

The version of this pmd for version checking is 4100 

The hostname of this node is c151f1rp02.ppd.pok.ibm.com 

The short hostname of this node is c151f1rp02 

The taskid of this task is 0 

HOMENAME: c151f1rp02.ppd.pok.ibm.com 

USERID: 1079 

USERNAME: voe3 

GROUPID: 100 

GROUPNAME: usr 

PWD: /u/voe3/pfc/samples/ch01 

PRIORITY: 0 

NPROCS: 4 

PMDLOG: 1 

NEWJOB: 0 

PDBX: 0 

AFSTOKEN: 5765-F83 AIX Parallel Environment 

LIBPATH: /usr/lpp/ppe.poe/lib/ip 

VERSION (of home node): 4100 

JOBID: 1110380176 

ENVC recv’d 

envc: 31 

envc is 31 

env[0] = _=hello_world_c 

env[1] = MANPATH=/usr/lpp/LoadL/full/man:/usr/lpp/LoadL/so/man 

env[2] = LANG=C 

env[3] = LOGIN=voe3 

env[4] = 

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/u/voe3/bin:/usr/bin/X11:/sbin: 

/usr/local/bin:/usr/lpp/LoadL/full/bin:. 

env[5] = LC__FASTMSG=true 

env[6] = HISTFILE=/u/voe3/.sh_history/sh_history_307370 

env[7] = LOGNAME=voe3 

env[8] = MAIL=/usr/spool/mail/voe3 

env[9] = LOCPATH=/usr/lib/nls/loc 

env[10] = USER=voe3 

env[11] = AUTHSTATE=compat 

env[12] = SHELL=/bin/ksh 

env[13] = ODMDIR=/etc/objrepos 

env[14] = HOME=/u/voe3 

env[15] = TERM=aixterm 

env[16] = MAILMSG=[YOU HAVE NEW MAIL] 

env[17] = PWD=/u/voe3/pfc/samples/ch01 

env[18] = TZ=EST5EDT 

env[19] = ENV=/u/voe3/.kshrc 

env[20] = A__z=! LOGNAME
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env[21] = NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat 

env[22] = MP_PROCS=4 

env[23] = MP_PMDLOG=YES 

env[24] = MP_EUIDEVICE=en0 

env[25] = MP_PGMMODEL=SPMD 

env[26] = MP_TASK_AFFINITY=-1 

env[27] = MP_MSG_API=MPI 

env[28] = MP_ISATTY_STDIN=1 

env[29] = MP_ISATTY_STDOUT=1 

env[30] = MP_ISATTY_STDERR=1 

Couldn’t open /etc/poe.limits 

MASTERS: 1 

TASKS: 4:0:1:2:3 

Total number of tasks is 4 

Task id for task 1 is 0 

Task id for task 2 is 1 

Task id for task 3 is 2 

Task id for task 4 is 3 

TASK_ENV: 0:1 MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 1:1 

MP_CHILD_INET_ADDR=@1:9.114.127.2, 

ip 2:1 MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 3:1 

MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

Number of environment variables is 1 

Environment specific data for task 1, task id 0 : 

 -- MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

Number of environment variables is 1 

Environment specific data for task 2, task id 1 : 

 -- MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

Number of environment variables is 1 

Environment specific data for task 3, task id 2 : 

 -- MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

Number of environment variables is 1 

Environment specific data for task 4, task id 3 : 

 -- MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

Initial data msg received and parsed 

Info level = 1 

Doing ruserok() user validation 

User validation complete 

About to do user root chk 

User root check complete 

spkeyfuncs not found, continuing.... 

ident_match not found, continuing.... 

task information parsed 

sb_max used for sndbuf, sndbuf set to 1048576 

STDOUT socket SO_SNDBUF set to 1048576 

STDOUT socket SO_RCVBUF set to 67424 

main thread id is 1 before Setup signal handler for termination. 

newjob is 0. 

msg read, type is 13 

string = <hello_world_c> SSM_CMD_STR recv’d 

command string is <hello_world_c> 

0: pm_putargs: argc = 1, k = 1 

1: pm_putargs: argc = 1, k = 1 

2: pm_putargs: argc = 1, k = 1 

3: pm_putargs: argc = 1, k = 1 

SSM_CMD_STR parsed 

SSM_EXT_DEBUG msg, type is 46 

child pipes created 

Task 0 OS version 5 , release 2 

child: pipes successfully duped for task 0 

0: MP_COMMON_TASKS is <3:1:2:3> 

0: partition id is <1110380176> 

Task 1 OS version 5 , release 2 

child: pipes successfully duped for task 1 

1: MP_COMMON_TASKS is <3:0:2:3> 

1: partition id is <1110380176> 

after initgroups (*group_struct).gr_gid = 100
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after initgroups (*group_struct).gr_name = usr 

Task 2 OS version 5 , release 2 

child: pipes successfully duped for task 2 

2: MP_COMMON_TASKS is <3:0:1:3> 

2: partition id is <1110380176> 

pmd child: core limit is 9223372036854775807, 

hard limit is 9223372036854775807 

pmd child: rss limit is 9223372036854775807, 

hard limit is 9223372036854775807 

pmd child: stack limit is 9223372036854775807, 

hard limit is 9223372036854775807 

pmd child: data segment limit is 9223372036854775807, 

hard limit is 9223372036854775807 

pmd child: cpu time limit is 9223372036854775807, 

hard limit is 9223372036854775807 

pmd child: file size limit is 9223372036854775807, 

hard limit is 9223372036854775807 

0: (*group_struct).gr_gid = 100 

0: (*group_struct).gr_name = usr 

0: userid, groupid and cwd set! 

0: current directory is /u/voe3/pfc/samples/ch01 

0: about to start the user’s program 

0: argument list: 

argv[0] for task 0 = hello_world_c 

  

argv[1] (in hex) = 0 

child: environment for task 0: 

    task_env[0] = MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

  

child: common environment data for all tasks: 

    env[0] = _=hello_world_c 

    env[1] = MANPATH=/usr/lpp/LoadL/full/man:/usr/lpp/LoadL/so/man 

    env[2] = LANG=C 

    env[3] = LOGIN=voe3 

    env[4] = PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/u/voe3/bin: 

/usr/bin/X11:/sbin:/usr/local/bin:/usr/lpp/LoadL/full/bin:. 

    env[5] = LC__FASTMSG=true 

    env[6] = HISTFILE=/u/voe3/.sh_history/sh_history_307370 

    env[7] = LOGNAME=voe3 

    env[8] = MAIL=/usr/spool/mail/voe3 

    env[9] = LOCPATH=/usr/lib/nls/loc 

    env[10] = USER=voe3 

    env[11] = AUTHSTATE=compat 

    env[12] = SHELL=/bin/ksh 

    env[13] = ODMDIR=/etc/objrepos 

    env[14] = HOME=/u/voe3 

    env[15] = TERM=aixterm 

    env[16] = MAILMSG=[YOU HAVE NEW MAIL] 

    env[17] = PWD=/u/voe3/pfc/samples/ch01 

    env[18] = TZ=EST5EDT 

    env[19] = ENV=/u/voe3/.kshrc 

    env[20] = A__z=! LOGNAME 

    env[21] = NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat 

    env[22] = MP_PROCS=4 

    env[23] = MP_PMDLOG=YES 

    env[24] = MP_EUIDEVICE=en0 

    env[25] = MP_PGMMODEL=SPMD 

    env[26] = MP_TASK_AFFINITY=-1 

    env[27] = MP_MSG_API=MPI 

    env[28] = MP_ISATTY_STDIN=1 

    env[29] = MP_ISATTY_STDOUT=1 

    env[30] = MP_ISATTY_STDERR=1 

  

0: LIBPATH = /usr/lpp/ppe.poe/lib/ip 

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK = 

Affinity is not requested 

parent: task 0 forked, child pid is 524460
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Task 3 OS version 5 , release 2 

child: pipes successfully duped for task 3 

3: MP_COMMON_TASKS is <3:0:1:2> 

3: partition id is <1110380176> 

attach data sent for task 0 

parent: task 1 forked, child pid is 549054 

attach data sent for task 1 

parent: task 2 forked, child pid is 516106 

attach data sent for task 2 

1: (*group_struct).gr_gid = 100 

1: (*group_struct).gr_name = usr 

parent: task 3 forked, child pid is 417868 

attach data sent for task 3 

1: userid, groupid and cwd set! 

1: current directory is /u/voe3/pfc/samples/ch01 

1: about to start the user’s program 

1: argument list: 

argv[0] for task 1 = hello_world_c 

  

argv[1] (in hex) = 0 

child: environment for task 1: 

    task_env[0] = MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

  

1: LIBPATH = /usr/lpp/ppe.poe/lib/ip 

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK = 

Affinity is not requested 

2: (*group_struct).gr_gid = 100 

2: (*group_struct).gr_name = usr 

2: userid, groupid and cwd set! 

2: current directory is /u/voe3/pfc/samples/ch01 

2: about to start the user’s program 

2: argument list: 

argv[0] for task 2 = hello_world_c 

  

argv[1] (in hex) = 0 

child: environment for task 2: 

    task_env[0] = MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

  

2: LIBPATH = /usr/lpp/ppe.poe/lib/ip 

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK = 

Affinity is not requested 

3: (*group_struct).gr_gid = 100 

3: (*group_struct).gr_name = usr 

3: userid, groupid and cwd set! 

3: current directory is /u/voe3/pfc/samples/ch01 

3: about to start the user’s program 

3: argument list: 

argv[0] for task 3 = hello_world_c 

  

argv[1] (in hex) = 0 

child: environment for task 3: 

    task_env[0] = MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 

  

3: LIBPATH = /usr/lpp/ppe.poe/lib/ip 

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK = 

Affinity is not requested 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 0, select time is 600 

pulse sent at 1109966440 count is 0 

0: pmd parent: cntl pipe read OK: 

0: pmd parent: type: 26, srce: 0, dest: -2, bytes: 7 

parent: SSM_CHILD_PID: 524460 

select: rc = 3 

pulse is on, curr_time is 1109966440, send_time is 1109966440, select time is 600 

in pmd select, SSM_read ok, SSM_type=34. 

pulse received at 1109966440 received count is 0 

pmd parent: STDOUT read OK for task 0
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0: STDOUT: Hello, World! 

  

0: pmd parent: cntl pipe read OK: 

0: pmd parent: type: 47, srce: 0, dest: -2, bytes: 5 

parent: childs version is 4100. 

parent: home node version is 4100. 

parent: this pmd version is 4100. 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

0: pmd parent: cntl pipe read OK: 

0: pmd parent: type: 17, srce: 0, dest: -1, bytes: 2 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

1: pmd parent: cntl pipe read OK: 

1: pmd parent: type: 26, srce: 1, dest: -2, bytes: 7 

parent: SSM_CHILD_PID: 549054 

select: rc = 2 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

pmd parent: STDOUT read OK for task 1 

1: STDOUT: Hello, World! 

  

1: pmd parent: cntl pipe read OK: 

1: pmd parent: type: 47, srce: 1, dest: -2, bytes: 5 

parent: childs version is 4100. 

parent: home node version is 4100. 

parent: this pmd version is 4100. 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

1: pmd parent: cntl pipe read OK: 

1: pmd parent: type: 17, srce: 1, dest: -1, bytes: 2 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

2: pmd parent: cntl pipe read OK: 

2: pmd parent: type: 26, srce: 2, dest: -2, bytes: 7 

parent: SSM_CHILD_PID: 516106 

select: rc = 2 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

pmd parent: STDOUT read OK for task 2 

2: STDOUT: Hello, World! 

  

2: pmd parent: cntl pipe read OK: 

2: pmd parent: type: 47, srce: 2, dest: -2, bytes: 5 

parent: childs version is 4100. 

parent: home node version is 4100. 

parent: this pmd version is 4100. 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

2: pmd parent: cntl pipe read OK: 

2: pmd parent: type: 17, srce: 2, dest: -1, bytes: 2 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

3: pmd parent: cntl pipe read OK: 

3: pmd parent: type: 26, srce: 3, dest: -2, bytes: 7 

parent: SSM_CHILD_PID: 417868 

select: rc = 2 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

pmd parent: STDOUT read OK for task 3 

3: STDOUT: Hello, World!
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3: pmd parent: cntl pipe read OK: 

3: pmd parent: type: 47, srce: 3, dest: -2, bytes: 5 

parent: childs version is 4100. 

parent: home node version is 4100. 

parent: this pmd version is 4100. 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

3: pmd parent: cntl pipe read OK: 

3: pmd parent: type: 17, srce: 3, dest: -1, bytes: 2 

select: rc = 1 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

in pmd select, SSM_read ok, SSM_type=5. 

select: rc = 5 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

pmd send SSM_IO_CLOSED to poe for stdout_open 

pmd send SSM_IO_CLOSED to poe for stdout_open 

pmd send SSM_IO_CLOSED to poe for stdout_open 

pmd send SSM_IO_CLOSED to poe for stdout_open 

3: count = 0 on stderr 

pmd send SSM_IO_CLOSED to poe for stderr_open 

select: rc = 7 

pulse is on, curr_time is 1109966440, send_time is 1109966440, 

select time is 600 

0: count = 0 on stderr 

pmd send SSM_IO_CLOSED to poe for stderr_open 

1: count = 0 on stderr 

pmd send SSM_IO_CLOSED to poe for stderr_open 

2: count = 0 on stderr 

pmd send SSM_IO_CLOSED to poe for stderr_open 

in pmd signal handler for task 3, signal 20 

3: wait status is 00000000 

Exiting child for task 3, PID: 417868 

err_data for task 3 is 0 

2: wait status is 00000000 

Exiting child for task 2, PID: 516106 

err_data for task 2 is 0 

1: wait status is 00000000 

Exiting child for task 1, PID: 549054 

err_data for task 1 is 0 

0: wait status is 00000000 

Exiting child for task 0, PID: 524460 

err_data for task 0 is 0 

in pmd signal handler, wait returned -1... 

parent: child exited and all pipes closed for all tasks 

err_data for task 0 is 0 

err_data for task 1 is 0 

err_data for task 2 is 0 

err_data for task 3 is 0 

pmd_exit reached!, exit code is 0 

No collective communication shared memory segments to clean up. 

Appendix A, “A sample program to illustrate messages,” on page 109 includes an 

example of setting -infolevel to 6, and explains the important lines of output. 
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Chapter  2.  Message  passing  

If you are familiar with message passing parallel programming, and you are 

familiar with message passing protocols, you can skip ahead to Chapter 3, “Don’t 

panic,” on page 37 for a discussion on using the PE tools. If you are familiar with 

message passing parallel programming, but you would like to know more about 

the PE message passing protocols, look at the information in “Protocols supported” 

on page 32. 

This section discusses some of the techniques for creating a parallel program, using 

message passing, and the various advantages and pitfalls associated with each 

technique. It does not provide an in-depth tutorial on writing parallel programs. 

Instead, it is an introduction to basic message passing parallel concepts. 

To create a successful parallel program start with a working sequential program. 

Complex sequential programs are difficult to get working correctly, without also 

having to worry about the additional complexity introduced by parallelism and 

message passing. It is easier to convert a working serial program to parallel, than it 

is to create a parallel program from scratch. As you become proficient at creating 

parallel programs, you will develop an awareness of which sequential techniques 

translate better into parallel implementations. Once aware, you can then make a 

point of using these techniques in your sequential programs. In this section, 

contains information on some of the fundamentals of creating parallel programs. 

There are two common techniques for turning a sequential program into a parallel 

program; data decomposition and functional decomposition. Data decomposition means 

distributing the data that the program is processing among the parallel tasks. Each 

parallel task does approximately the same thing but on a different set of data. With 

functional decomposition, the function that the application is performing is 

distributed among the tasks. Each task operates on the same data, but does 

something different. Most parallel programs do not use data decomposition or 

functional decomposition exclusively. Rather, they use a mixture of the two, 

weighted more toward one type or the other. One way to implement either form of 

decomposition is through the use of message passing. 

Message passing 

The message passing model of communication is typically used in distributed 

memory systems, where each processor node owns private memory, and is linked 

by an interconnection network. The high performance switch provides the 

interconnection network needed for high-speed exchange of messages. With 

message passing, each task operates exclusively in a private environment, but must 

cooperate with other tasks to interact. In this situation, tasks must exchange 

messages to interact with one another. 

The challenge of the message passing model is in reducing message traffic over the 

interconnection network while ensuring that the correct and updated values of the 

passed data are promptly available to the tasks, when required. Optimizing 

message traffic boosts performance. 

Synchronization is the act of forcing events to occur at the same time or in a certain 

order. Synchronization requires taking into account the logical dependence and the 

order of precedence among the tasks. You can describe the message passing model 
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as self-synchronizing because the mechanism of sending and receiving messages 

involves implicit synchronization points. To put it another way, a message cannot 

be received if it has not already been sent. 

Data decomposition 

A good technique for making a sequential application parallel is to look for loops 

where each iteration does not depend on any prior iteration (this is also a 

prerequisite for either unrolling or eliminating loops). An example of a loop that 

has dependencies on prior iterations is the loop for computing the Factorial series. 

The value calculated by each iteration depends on the value resulting from the 

previous pass. If each iteration of a loop does not depend on a previous iteration, 

the data being processed can be processed in parallel, with two or more iterations 

being performed simultaneously. 

The C program example below includes a loop with independent iterations. This 

example does not include the routines for computing the coefficient and 

determinant because they are not part of the parallelization at this point. 

/*********************************************************************** 

* 

* Matrix Inversion Program - serial version 

* 

* To compile: 

* cc -o inverse_serial inverse_serial.c 

* 

***********************************************************************/ 

  

#include<stdlib.h> 

#include<stdio.h> 

#include<assert.h> 

#include<errno.h> 

  

float determinant(float **matrix, 

    int size, 

    int * used_rows, 

    int * used_cols, 

    int depth); 

float coefficient(float **matrix,int size, int row, int col); 

void print_matrix(FILE * fptr,float ** mat,int rows, int cols); 

float test_data[8][8] =  { 

    {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0}, 

    {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 }, 

    {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0}, 

    {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 }, 

    {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 }, 

    {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 }, 

    {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } , 

    {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } , 

  }; 

#define ROWS 8 

  

int main(int argc, char **argv) 

{ 

  

  float **matrix; 

  float **inverse; 

  int   rows,i,j; 

  float determ; 

  int * used_rows, * used_cols; 

  

  rows = ROWS; 

  

  /* Allocate markers to record rows and columns to be skipped */
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/* during determinant calculation                            */ 

  used_rows = (int *)    malloc(rows*sizeof(*used_rows)); 

  used_cols = (int *)    malloc(rows*sizeof(*used_cols)); 

  

  /* Allocate working copy of matrix and initialize it from static copy */ 

  matrix  =   (float **) malloc(rows*sizeof(*matrix)); 

  inverse =   (float **) malloc(rows*sizeof(*inverse)); 

  for(i=0;i<rows;i++) 

    { 

      matrix[i]  = (float *) malloc(rows*sizeof(**matrix)); 

      inverse[i] = (float *) malloc(rows*sizeof(**inverse)); 

      for(j=0;j<rows;j++) 

          matrix[i][j] = test_data[i][j]; 

    } 

  

  /* Compute and print determinant */ 

  printf("The determinant of\n\n"); 

  print_matrix(stdout,matrix,rows,rows); 

  determ=determinant(matrix,rows,used_rows,used_cols,0); 

  printf("\nis %f\n",determ); 

  fflush(stdout); 

  assert(determ!=0); 

  

  for(i=0;i<rows;i++) 

    { 

      for(j=0;j<rows;j++) 

        { 

          inverse[j][i] = coefficient(matrix,rows,i,j)/determ; 

        } 

    } 

  

  printf("The inverse is\n\n"); 

  print_matrix(stdout,inverse,rows,rows); 

  

  return (0); 

} 

Before talking about making the algorithm parallel, look at what is necessary to 

create the program with PE. The example below shows the same program, but it is 

now aware of PE. You do this by using three calls in the beginning of the routine, 

and one at the end. 

The first of these calls (MPI_Init) initializes the MPI  environment, and the last call 

(MPI_Finalize) closes the environment. MPI_Comm_size sets the variable tasks to 

the total number of parallel tasks running this application, and MPI_Comm_rank 

sets me to the task ID of the particular instance of the parallel code that invoked it. 

MPI_Comm_size actually gets the size of the communicator you pass in and 

MPI_COMM_WORLD is a pre-defined communicator that includes everybody. 

For more information about these calls, IBM Parallel Environment for AIX: MPI 

Subroutine Reference or other MPI  publications may be of some help. 

/************************************************************************ 

* 

* Matrix Inversion Program - serial version enabled for parallel environment 

* 

* To compile: 

* mpcc -g -o inverse_parallel_enabled inverse_parallel_enabled.c 

* 

************************************************************************/ 

  

#include<stdlib.h> 

#include<stdio.h> 

#include<assert.h> 

#include<errno.h>
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#include<mpi.h> 

  

float determinant(float **matrix,int size, int * used_rows, int * used_cols, 

                  int depth); 

float coefficient(float **matrix,int size, int row, int col); 

void print_matrix(FILE * fptr,float ** mat,int rows, int cols); 

float test_data[8][8] =  { 

      {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0}, 

      {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 }, 

      {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0}, 

      {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 }, 

      {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 }, 

      {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 }, 

      {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } , 

      {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } , 

}; 

#define ROWS 8 

  

int me, tasks, tag=0; 

  

int main(int argc, char **argv) 

{ 

  

  float **matrix; 

  float **inverse; 

  int rows,i,j; 

  float determ; 

  int * used_rows, * used_cols; 

  

  MPI_Status status[ROWS];   /* Status of messages */ 

  MPI_Request req[ROWS];  /* Message IDs */ 

  

  MPI_Init(&argc,&argv);   /* Initialize MPI */ 

  MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/ 

  MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */ 

  

  rows = ROWS; 

  

  /* Allocate markers to record rows and columns to be skipped */ 

  /* during determinant calculation                            */ 

  used_rows = (int *)    malloc(rows*sizeof(*used_rows)); 

  used_cols = (int *)    malloc(rows*sizeof(*used_cols)); 

  

  /* Allocate working copy of matrix and initialize it from static copy */ 

  matrix  =   (float **) malloc(rows*sizeof(*matrix)); 

  inverse =   (float **) malloc(rows*sizeof(*inverse)); 

  for(i=0;i<rows;i++) 

    { 

      matrix[i]  = (float *) malloc(rows*sizeof(**matrix)); 

      inverse[i] = (float *) malloc(rows*sizeof(**inverse)); 

      for(j=0;j<rows;j++) 

      matrix[i][j] = test_data[i][j]; 

    } 

  

  /* Compute and print determinant */ 

  printf("The determinant of\n\n"); 

  print_matrix(stdout,matrix,rows,rows); 

  determ=determinant(matrix,rows,used_rows,used_cols,0); 

  printf("\nis %f\n",determ); 

  fflush(stdout); 

  

  for(i=0;i<rows;i++) 

    { 

      for(j=0;j<rows;j++) 

        { 

          inverse[j][i] = coefficient(matrix,rows,i,j)/determ; 

        }
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} 

  

  printf("The inverse is\n\n"); 

  print_matrix(stdout,inverse,rows,rows); 

  

  /* Wait for all parallel tasks to get here, then quit */ 

  MPI_Barrier(MPI_COMM_WORLD); 

  MPI_Finalize(); 

  

  exit(0); 

} 

  

float determinant(float **matrix,int size, int * used_rows, int * used_cols, 

                  int depth) 

  { 

    int col1, col2, row1, row2; 

    int j,k; 

    float total=0; 

    int sign = 1; 

  

    /* Find the first unused row */ 

    for(row1=0;row1<size;row1++) 

      { 

        for(k=0;k<depth;k++) 

          { 

            if(row1==used_rows[k]) break; 

          } 

        if(k>=depth)  /* this row is not used */ 

          break; 

      } 

    assert(row1<size); 

  

    if(depth==(size-2)) 

      { 

/* There are only 2 unused rows/columns left */ 

  

/* Find the second unused row */ 

for(row2=row1+1;row2<size;row2++) 

  { 

    for(k=0;k<depth;k++) 

      { 

        if(row2==used_rows[k]) break; 

      } 

    if(k>=depth)  /* this row is not used */ 

      break; 

  } 

assert(row2<size); 

  

/* Find the first unused column */ 

for(col1=0;col1<size;col1++) 

  { 

    for(k=0;k<depth;k++) 

      { 

        if(col1==used_cols[k]) break; 

      } 

    if(k>=depth)  /* this column is not used */ 

      break; 

  } 

assert(col1<size); 

  

/* Find the second unused column */ 

for(col2=col1+1;col2<size;col2++) 

  { 

    for(k=0;k<depth;k++) 

      { 

        if(col2==used_cols[k]) break; 

      }
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if(k>=depth)  /* this column is not used */ 

      break; 

  } 

assert(col2<size); 

  

/* Determinant = m11*m22-m12*m21 */ 

return matrix[row1][col1]*matrix[row2][col2] 

-matrix[row2][col1]*matrix[row1] [col2]; 

     } 

  

   /* There are more than 2 rows/columns in the matrix being processed  */ 

   /* Compute the determinant as the sum of the product of each element */ 

   /* in the first row and the determinant of the matrix with its row   */ 

   /* and column removed                                                */ 

   total = 0; 

  

   used_rows[depth] = row1; 

   for(col1=0;col1<size;col1++) 

     { 

       for(k=0;k<depth;k++) 

         { 

           if(col1==used_cols[k]) break; 

         } 

   if(k<depth)  /* This column is used */ 

     continue; 

   used_cols[depth] = col1; 

  total += sign*matrix[row1][col1]*determinant(matrix,size, 

 used_rows,used_cols,depth+1); 

      sign=(sign==1)?-1:1; 

    } 

  return total; 

 } 

  

void print_matrix(FILE * fptr,float ** mat,int rows, int cols) 

{ 

  int i,j; 

  for(i=0;i<rows;i++) 

    { 

      for(j=0;j<cols;j++) 

        { 

          fprintf(fptr,"%10.4f ",mat[i][j]); 

        } 

      fprintf(fptr,"\n"); 

    } 

  fflush(fptr); 

} 

  

float coefficient(float **matrix,int size, int row, int col) 

{ 

  float coef; 

  int * ur, *uc; 

  

  ur = malloc(size*sizeof(matrix)); 

  uc = malloc(size*sizeof(matrix)); 

  ur[0]=row; 

  uc[0]=col; 

  coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1); 

  return coef; 

} 

In this particular example each parallel task is going to determine the entire 

inverse matrix, and they are all going to print it out. In the previous section, the 

output of all the tasks will be intermixed, so it will be difficult to figure out what 

the answer really is. 
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A better approach is to distribute the work among several parallel tasks and collect 

the results when they are done. In this example, the loop that computes the 

elements of the inverse matrix simply goes through the elements of the inverse 

matrix, computes the coefficient, and divides it by the determinant of the matrix. 

Since there is no relationship between elements of the inverse matrix, they can all 

be computed in parallel. 

Every communication call has an associated cost, so you need to balance the 

benefit of parallelism with the cost of communication. If you were to totally 

parallelize the inverse matrix element computation, each element would be derived 

by a separate task. The cost of collecting those individual values back into the 

inverse matrix would be significant. It might also outweigh the benefit of having 

reduced the computation cost and time by running the job in parallel. So, instead, 

you are going to compute the elements of each row in parallel, and send the 

values back, one row at a time. This way you spread some of the communication 

overhead over several data values. In this case, you will execute loop 1 in parallel 

in this next example. 

************************************************************************* 

* 

* Matrix Inversion Program - First parallel implementation 

* To compile: 

* mpcc -g -o inverse_parallel inverse_parallel.c 

* 

************************************************************************* 

  

#include<stdlib.h> 

#include<stdio.h> 

#include<assert.h> 

#include<errno.h> 

#include<mpi.h> 

float determinant(float **matrix,int size, int * used_rows, 

                  int * used_cols, int depth); 

float coefficient(float **matrix,int size, int row, int col); 

void print_matrix(FILE * fptr,float ** mat,int rows, int cols); 

  

float test_data[8][8] =  { 

    {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0}, 

    {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 }, 

    {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0}, 

    {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 }, 

    {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 }, 

    {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 }, 

    {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 }, 

    {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } , 

  

}; 

#define ROWS 8 

int me, tasks, tag=0; 

  

int main(int argc, char **argv) 

{ 

  

  float **matrix; 

  float **inverse; 

  int rows,i,j; 

  float determ; 

  int * used_rows, * used_cols; 

  

  

  MPI_Status status[ROWS];  /* Status of messages */ 

  MPI_Request req[ROWS];  /* Message IDs */ 

  

  MPI_Init(&argc,&argv);  /* Initialize MPI */
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MPI_Comm_size(MPI_COMM_WORLD,&tasks);  /* How many parallel tasks are there?*/ 

  MPI_Comm_rank(MPI_COMM_WORLD,&me);  /* Who am I? */ 

  

  rows = ROWS; 

  

  /* You need exactly one task for each row of the matrix plus one task */ 

  /* to act as coordinator.  If you didn’t have this, the last task      */ 

  /* reports the error (so everybody doesn’t put out the same message  */ 

  if(tasks!=rows+1) 

    { 

      if(me==tasks-1) 

  fprintf(stderr,"%d tasks required for this demo" 

  "(one more than the number of rows in matrix\n",rows+1)"; 

       exit(-1); 

     } 

  /* Allocate markers to record rows and columns to be skipped */ 

  /* during determinant calculation                            */ 

  used_rows = (int *)    malloc(rows*sizeof(*used_rows)); 

  used_cols = (int *)    malloc(rows*sizeof(*used_cols)); 

  

  /* Allocate working copy of matrix and initialize it from static copy */ 

  matrix = (float **) malloc(rows*sizeof(*matrix)); 

  for(i=0;i<rows;i++) 

   { 

    matrix[i] = (float *) malloc(rows*sizeof(**matrix)); 

    for(j=0;j<rows;j++) 

     matrix[i][j] = test_data[i][j]; 

   } 

  

  /* Everyone computes the determinant (to avoid message transmission) */ 

  determ=determinant(matrix,rows,used_rows,used_cols,0); 

  

  if(me==tasks-1) 

    {/* The last task acts as coordinator */ 

     inverse = (float**) malloc(rows*sizeof(*inverse)); 

     for(i=0;i<rows;i++) 

       { 

        inverse[i] = (float *) malloc(rows*sizeof(**inverse)); 

       } 

     /* Print the determinant */ 

     printf("The determinant of\n\n"); 

     print_matrix(stdout,matrix,rows,rows); 

     printf("\nis %f\n",determ); 

     /* Collect the rows of the inverse matrix from the other tasks */ 

     /* First, post a receive from each task into the appropriate row */ 

     for(i=0;i<rows;i++) 

       } 

        MPI_Irecv(inverse[i],rows,MPI_REAL,i,tag,MPI_COMM_WORLD,&(req[i])); 

       } 

     /* Then wait for all the receives to complete */ 

     MPI_Waitall(rows,req,status); 

     printf("The inverse is\n\n"); 

     print_matrix(stdout,inverse,rows,rows); 

    } 

   else 

    {/* All the other tasks compute a row of the inverse matrix */ 

     int dest = tasks-1; 

     float *one_row; 

     int size = rows*sizeof(*one_row); 

  

     one_row = (float*) malloc(size); 

     for(j=0;j<rows;j++) 

       { 

         one_row[j] = coefficient(matrix,rows,j,me)/determ; 

       } 

     /* Send the row back to the coordinator */ 

     MPI_Send(one_row,rows,MPI_REAL,dest,tag,MPI_COMM_WORLD);
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} 

/* Wait for all parallel tasks to get here, then quit */ 

MPI_Barrier(MPI_COMM_WORLD); 

MPI_Finalize(); 

} 

exit(0); 

Functional decomposition 

Parallel servers and data mining applications are examples of functional 

decomposition. With functional decomposition, the function that the application is 

performing is distributed among the tasks. Each task operates on the same data, 

but does something different. The sine series algorithm is also an example of 

functional decomposition. With this algorithm, the work being done by each task is 

trivial. The cost of distributing data to the parallel tasks could outweigh the value 

of running the program in parallel, and parallelism would increase total time. 

Another approach to parallelism is to invoke different functions, each of which 

processes all of the data simultaneously. This is possible as long as the final or 

intermediate results of any function are not required by another function. For 

example, searching a matrix for the largest and smallest values as well as a specific 

value could be done in parallel. 

This is a simple example, but suppose the elements of the matrix were arrays of 

polynomial coefficients. Further, suppose the search involved actually evaluating 

different polynomial equations using the same coefficients. In this case, it would 

make sense to evaluate each equation separately. 

On a simpler scale, let us look at the series for the sine function: 

 

 The serial approach to solving this problem is to loop through the number of terms 

desired, accumulating the factorial value and the sine value. When the appropriate 

number of terms has been computed, the loop exits. The following example does 

exactly this. In this example, you have an array of values for which you want the 

sine, and an outer loop would repeat this process for each element of the array. 

Since you do not want to recompute the factorial each time, you need to allocate 

an array to hold the factorial values and compute them outside the main loop. 

/************************************************************************ 

* 

* Series Evaluation - serial version 

* 

* To compile: 

* cc -o series_serial series_serial.c -lm 

* 

************************************************************************/ 

  

#include<stdlib.h> 

#include<stdio.h> 

#include<math.h> 

  

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI, 

       0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI }; 

  

#define TERMS 8 

  

int main(int argc, char **argv)
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{ 

  double divisor[TERMS], sine; 

  int a, t, angles = sizeof(angle)/sizeof(angle[0]); 

  

  /* Initialize denominators of series terms */ 

  divisor[0] = 1; 

  for(t=1;t<TERMS;t++) 

    { 

      divisor[t] = -2*t*(2*t+1)*divisor[t-1]; 

    } 

  

  /* Compute sine of each angle */ 

  for(a=0;a<angles;a++) 

    { 

      sine = 0; 

      /* Sum the terms of the series */ 

      for(t=0;t<TERMS;t++) 

        { 

          sine += pow(angle[a],(2*t+1))/divisor[t]; 

        } 

      printf("sin(%lf) + %lf\n",angle[a],sine); 

        } 

} 

In a parallel environment, you could assign each term to one task and just 

accumulate the results on a separate node. In fact, that is what the following 

example does. 

/************************************************************************ 

* 

* Series Evaluation - parallel version 

* 

* To compile: 

* mpcc -g -o series_parallel series_parallel.c -lm 

* 

************************************************************************/ 

  

#include<stdlib.h> 

#include<stdio.h> 

#include<math.h> 

#include<mpi.h> 

  

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI, 

       0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI }; 

  

int main(int argc, char **argv) 

{ 

  double data, divisor, partial, sine; 

  int a, t, angles = sizeof(angle)/sizeof(angle[0]); 

  int me, tasks, term; 

  

  MPI_Init(&argc,&argv);    /* Initialize MPI */ 

  MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/ 

  MPI_Comm_rank(MPI_COMM_WORLD,&me);   /* Who am I? */ 

  

  term = 2*me+1;   /* Each task computes a term */ 

  /* Scan the factorial terms through the group members   */ 

  /* Each member will effectively multiply the product of */ 

  /* the result of all previous members by its factorial  */ 

  /* term, resulting in the factorial up to that point    */ 

  if(me==0) 

    data = 1.0; 

  else 

    data = -(term-1)*term; 

  MPI_Scan(&data,&divisor,1,MPI_DOUBLE,MPI_PROD,MPI_COMM_WORLD); 

  

  /* Compute sine of each angle */
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for(a=0;a<angles;a++) 

    { 

      partial = pow(angle[a],term)/divisor; 

      /* Pass all the partials back to task 0 and   */ 

      /* accumulate them with the MPI_SUM operation */ 

      MPI_Reduce(&partial,&sine,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD); 

      /* The first task has the total value */ 

      if(me==0) 

        { 

          printf("sin(%lf) + %lf\n",angle[a],sine); 

        } 

    } 

  MPI_Finalize(); 

} 

With this approach, each task i uses its position in the MPI_COMM_WORLD 

communicator group to compute the value of one term. It first computes its 

working value as 2i+1 and calculates the factorial of this value. Since (2i+1)! is 

(2i-1)! x 2i x (2i+1), if each task could get the factorial value computed by the 

previous task, all it would have to do is multiply it by 2i x (2i+1). Fortunately, MPI 

provides the capability to do this with the MPI_SCAN function. When 

MPI_SCAN is invoked on the first task in a communication group, the result is the 

input data to MPI_SCAN. When MPI_SCAN is invoked on subsequent members 

of the group, the result is obtained by invoking a function on the result of the 

previous member of the group and its input data. 

The MPI  standard is documented in MPI: A Message-Passing Interface Standard, 

Version 1.1 and is extended in MPI: A Message-Passing Interface Standard, Version 2.0, 

both of which are available from the University of Tennessee. The standard does 

not specify how to implement the scan function, so a particular implementation 

does not have to obtain the result from one task and pass it on to the next for 

processing. This is, however, a convenient way of visualizing the scan function, 

and the remainder of the discussion will assume that this is happening. 

In the example, the function invoked is the built-in multiplication function, 

MPI_PROD. Task 0 (which is computing 1!) sets its result to 1. Task 2 is 

computing 3! which it obtains by multiplying 2 x 3 by 1! (the result of Task 0). 

Task 3 multiplies 3! (the result of Task 2) by 4 to get 4!. This continues until all the 

tasks have computed their factorial values. The input data to the MPI_SCAN calls 

is made negative so the signs of the divisors will alternate between plus and 

minus. 

Once the divisor for a term has been computed, the loop through all the angles (θ) 

can be done. The partial term is computed as: 

 

 Then, MPI_REDUCE is called which is similar to MPI_SCAN except that instead 

of calling a function on each task, the tasks send their raw data to Task 0, which 

invokes the function on all data values. The function being invoked in the example 

is MPI_SUM which just adds the data values from all of the tasks. Then, Task 0 

prints out the result. 
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Duplication versus redundancy 

In the matrix inversion program, each task goes through the process of allocating 

the matrix and copying the initialization data into it. So why does not one task do 

this and send the result to all the other tasks? This example has a trivial 

initialization process, but in a situation where initialization requires complex 

time-consuming calculations, this question is even more important. 

To understand the answer to this question and, more importantly, be able to apply 

the understanding to answering the question for other applications, you need to 

stop and consider the application as a whole. If one task of a parallel application 

takes on the role of initializer, two things happen. First, all of the other tasks must 

wait for the initializer to complete (assuming that no work can be done until 

initialization is completed). Second, some sort of communication must occur to get 

the results of initialization distributed to all the other tasks. This not only means 

that there is nothing for the other tasks to do while one task is doing the 

initializing, there is also a cost associated with sending the results out. Although 

replicating the initialization process on each of the parallel tasks seems like 

unnecessary duplication, it allows the tasks to start processing more quickly 

because they do not have to wait to receive the data. 

So, should all initialization be done in parallel? Not necessarily. If the initialization 

is just computation and setup based on input parameters, each parallel task can 

initialize independently. Although this seems counter-intuitive at first, because the 

effort is redundant, for the reasons given above, it is the right answer. Eventually 

you will get used to it. However, if initialization requires access to system 

resources that are shared by all the parallel tasks (such as file systems and 

networks), having each task attempt to obtain the resources will create contention 

in the system and hinder the initialization process. In this case, it makes sense for 

one task to access the system resources on behalf of the entire application. In fact, 

if multiple system resources are required, you could have multiple tasks access 

each of the resources in parallel. Once the data has been obtained from the 

resource, you need to decide whether to share the raw data among the tasks and 

have each task process it, or have one task perform the initialization processing 

and distribute the results to all the other tasks. You can base this decision on 

whether the amount of data increases or decreases during the initialization 

processing. Of course, you want to transmit the smaller amount. 

Duplicating the same work on all the remote tasks (which is not the same as 

redundancy, which implies something can be eliminated) is not bad if: 

v   The work is inherently serial 

v   The work is parallel, but the cost of computation is less than the cost of 

communication 

v   The work must be completed before tasks can proceed 

v   Communication can be avoided by having each task perform the same work.

Protocols supported 

To perform data communication, PE interfaces with low-level communication API 

(LAPI), a reliable transport provided with AIX. LAPI interfaces with a lower level 

protocol, running in the user space (User Space protocol), which offers a 

low-latency and high-bandwidth communication path to user applications, running 

over a high performance switch. LAPI alternatively interfaces with the IP layer. 
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For optimal performance, PE uses the User Space (US) protocol as its 

communication path. However, PE also lets you run parallel applications that use 

the IP interface of LAPI. 

The User Space interface allows user applications to take full advantage of the high 

speed interconnect, and you should use it whenever communication is a critical 

issue (for instance, when running a parallel application in a production 

environment). With LoadLeveler, you can use the User Space interface by more 

than one process per node at a given time. 

Both the IP and User Space interfaces allow multiple tasks per job on a single 

node. As a result, you can use both interfaces in development or test environments, 

where more attention is paid to the correctness of the parallel program than to its 

speed-up, and therefore, more users can work on the same nodes at a given time. 

In both cases, data exchange always occurs between processes, without involving 

the POE Partition Manager daemon. 

Shared memory message passing 

For MPI programs in which multiple tasks run on the same computing node, using 

shared memory to send messages between tasks may be beneficial. This applies to 

programs running over either the IP or US protocol. 

By setting the MP_SHARED_MEMORY environment variable to YES, you can 

select the shared memory protocol. If all the tasks of your program run on the 

same node, and you specify the shared memory protocol, shared memory is used 

exclusively for all MPI communications. 

For more information on PE’s shared memory support, see IBM Parallel 

Environment for AIX: Operation and Use, Volume 1. 

To thread or not to thread - protocol implications 

If you are unfamiliar with POSIX threads, do not try to learn both threads and MPI 

all at once. Get some experience writing and debugging single process 

multi-threaded programs first, then tackle multi-process multi-threaded programs. 

While each threaded task has more than one independent instruction stream, all of 

a task’s threads share the same address space, file system, and environment 

variables. In addition, all the threads in a threaded MPI task have the same MPI 

communicators, data types, ranks, and so on. 

A parallel program using MPI normally depends on task parallelism with two or 

more tasks (or AIX processes) that communicate by message passing. Each of these 

tasks, by default, has one user thread. An application may explicitly create 

additional threads within each task, resulting in thread level as well as task level 

parallelism. If thread creation is done, the application must manage both levels of 

parallelism properly. 

In each threaded MPI  task, the MPI_INIT routine must be called before any thread 

can make an MPI call, and all MPI  calls must be completed before MPI_FINALIZE 

is called. The principal difference between a threaded task and a non-threaded task 

is that, in each threaded task, more than one blocking call may be in progress at 

any given time. 

The underlying communication subsystem provides thread-dispatching, so that all 

blocking messages are given a chance to run when a message completes. 
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The MPI library creates the following service threads: 

v   A thread that periodically wakes up and calls the message passing dispatcher, 

and handles interrupts generated by arriving packets. 

v   Responder threads used to implement non-blocking collective communication 

calls and MPI I/O.

The service threads above are terminated when MPI_FINALIZE is called. These 

threads are not available to end users. 

Thread debugging implications 

To effectively debug the application, you must be aware of how threads are 

dispatched. When a task is stopped, all threads are stopped. Each time you issue 

an execution command, such as step over, step into, step return, or continue, all 

the threads are released for execution until the next stop (at which time they are 

stopped, even if they have not completed their work). This stop may be at a 

breakpoint you set or the result of a step. A single step over an MPI routine may 

prevent the MPI library threads from completely processing the message that is 

being exchanged. 

For example, if you wanted to debug the transfer of a message from a send node 

to a receiver node, you would step over an MPI_SEND in your program on task 1, 

switch to task 2, then step over the MPI_RECV on task 2. Unless the MPI threads 

on task 1 and 2 have the opportunity to process the message transfer, it will 

appear that the message was lost. Remember that the window of opportunity for 

the MPI threads to process the message is brief, and is open only during the step 

over. Otherwise, the threads will be stopped. Longer-running execution requests, 

of both the sending and receiving nodes, allow the message to be processed and, 

eventually, received. 

For more information on debugging threaded and non-threaded MPI programs 

with the PE debugging tool, (pdbx), see IBM Parallel Environment for AIX: Operation 

and Use, Volume 2, which provides more detailed information on how to manage 

and display threads. 

For more information on the threaded MPI library, see IBM Parallel Environment for 

AIX: MPI  Programming Guide. 

Checkpointing and restarting a parallel program 

Checkpointing a parallel program is a mechanism for temporarily saving the state 

of a parallel program at a specific point (checkpointing), and then later restarting it 

from the saved state. When you checkpoint a program, the checkpointing function 

captures the state of the application as well as all data, and saves it in a file. When 

the program is restarted, the restart function retrieves the application information 

from the file it saved. The program then starts running again from the place at 

which it was saved. 

Limitations 

When checkpointing a program, there are a few limitations of which you should be 

aware. You can find a complete list of the limitations in the IBM Parallel 

Environment for AIX: MPI  Programming Guide. For example, you can only 

checkpoint a POE job that is running an MPI application that is compiled with the 
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threaded libraries (such as programs compiled with mpcc_r, mpCC_r, mpxlf_r, 

xpxlf90_r, or mpxlf95_r). LAPI programs can also be checkpointed if they meet the 

limitations. 

How checkpointing and restarting works 

A checkpoint can occur if you use the poeckpt command or when an application 

makes a call to the mpc_init_ckpt() function. The former is referred to as a 

system-initiated checkpoint, while the latter is referred to as user-initiated 

checkpoint. A system-initiated checkpoint of a job being run under LoadLeveler 

occurs when the llckpt command is issued. 

For a system-initiated checkpoint, the applications are checkpointed at the point in 

their processing they happen to be when the checkpoint is issued. Checkpoint files 

are written for each task of the parallel application and for the POE executable 

itself. The names and locations of these files are controlled by the setting of the 

MP_CKPTFILE and MP_CKPTDIR environment variables. 

For a user-initiated checkpoint, the application may specify whether all tasks must 

issue the checkpoint request before the checkpoint occurs, or that one task of the 

application may cause the checkpoint of all tasks (and POE) to occur. The former is 

called a complete user-initiated checkpoint, and the latter is called a partial 

user-initiated checkpoint. In a complete user-initiated checkpoint, each task 

executes the application up to the point of the mpc_init_ckpt function call. In a 

partial user-initiated checkpoint, only one task executes the application up to the 

point of the mpc_init_ckpt call, and the remaining tasks are checkpointed at 

whatever point in their processing they happen to be when the checkpoint occurs, 

as in a system-initiated checkpoint. 

After a checkpoint of an interactive POE job has been taken, the poerestart 

command is used to restart the parallel application. POE is restarted first and it 

uses the saved information from its checkpoint file to identify the task checkpoint 

files to also restart. You can restart the application on the same set or different set 

of nodes, but the number of tasks and the task geometry must remain the same. 

When the restart function restarts a program, it retrieves the program state and 

data information from the checkpoint file. Note also that the restart function 

restores file pointers to the points at which the checkpoint occurred, but it does not 

restore the file content. 

Since large data files are often produced as a result of checkpointing a program, 

you need to consider the amount of available space in your file system. You should 

also consider the type of file system. Writing and reading checkpointing files may 

yield better performance on Journaled File Systems (JFS) or General Parallel File 

Systems (GPFS) than on Networked File Systems (NFS), Distributed File Systems 

(DFS™), or Andrew File Systems (AFS®). 

 For more information on checkpointing limitations, see IBM Parallel Environment for 

AIX: MPI  Programming Guide or IBM LoadLeveler for AIX: Using and Administering. 

A checkpoint/restart scenario 

A user’s parallel application has been running on two nodes for six hours when 

the user is informed that the nodes must be taken down for service in an hour. The 

user expects the application to run for three more hours, and does not want to 

have to restart the application from the beginning on different nodes. Luckily, the 

user set the CHECKPOINT environment variable to yes before issuing the POE 

command, so that AIX would allow the checkpoint to occur. Furthermore, the user 
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set the MP_CKPTDIR environment variable to a GPFS directory, /gpfs, so that the 

checkpoint files would be accessible from other nodes. The user also set the 

MP_CKPTFILE environment variable to the name of the application, 9hourjob, so it 

can be easily identified later. 

After setting the MP_CKPTDIR and MP_CKPTFILE environment variables, the 

user obtains the process identifier of the POE process. Then, the user issues the 

poeckpt command, along with the -k option so that the tasks will be terminated 

once the checkpoints are successfully completed. The checkpoints of the parallel 

tasks are taken first, and then the checkpoint of POE occurs. The poeckpt 

command reports the following: 

poeckpt: Checkpoint of POE process 12345 has succeeded. 

poeckpt: The /gpfs/9hourjob.0 checkpoint file has been created. 

The filename indicated in the output, /gpfs/9hourjob, is the checkpoint file of the 

POE process which will be used later when the parallel application is restarted. 

The ″.0″ suffix is a tag used to allow one set of previously successful checkpoint 

files to be saved (a subsequent checkpoint on this program, although unlikely in 

this scenario, would use tag 1). 

Being curious about the behavior of the checkpoint function, the user issues: 

ls /gpfs/9hour* 

and sees the following output: 

/gpfs/9hourjob.0    /gpfs/9hourjob.0.0   /gpfs/9hourjob.1.0 

The additional files besides the one reported by the output are the checkpoint files 

from each of the tasks that made up the parallel application. The last ’0’ in the task 

checkpoint files represents the checkpoint tag as described previously. The digit 

before the tag is the task number within the parallel application. 

The user finds two other nodes that can be used to restart the parallel job and sets 

up a host.list, containing these two hostnames, in the directory from which the 

user will run the poerestart command. The user issues: 

poerestart /gpfs/9hourjob.0 

The restarted POE from this checkpoint file ″remembers″ the names of the task 

checkpoint files to restart from, tells the Partition Manager Daemon on each node 

to restart each parallel task from their respective checkpoint file, and the parallel 

application is up and running again. The job completes in three hours, and 

produces the same results as it would have had it run for nine hours on the 

original nodes. 
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Chapter  3.  Don’t  panic  

What do you do when something goes wrong with your parallel program? First, 

Don’t Panic! PE provides ways to identify and correct problems that arise when 

you are developing or executing your parallel program. This all depends on where 

in the process the problem occurred and what the symptoms are. 

This section is probably more useful if you use it in conjunction with IBM Parallel 

Environment for AIX: Operation and Use, Volume 1 and IBM Parallel Environment for 

AIX: Operation and Use, Volume 2. So, you might want to go find them, and keep 

them on hand for reference. 

Here are the steps, greatly abbreviated, in the basic process of creating a parallel 

program: 

1.   Create and compile program 

2.   Start PE 

3.   Execute the program 

4.   Verify the output 

5.   Optimize the performance.

Problems can arise in any one of these steps, and knowing which tools to use to 

identify, analyze and correct the problem is the first step. The remainder of this 

section describes some of the common problems you might run into, and what to 

do when they occur. The sections in this section are labeled according to the 

symptom you might be experiencing. 

Messages 

Messages are an important part of diagnosing problems, so it is essential that you 

have access to them and that they are at the correct level. 

Message catalog errors 

You may get message catalog errors. This usually means that the message catalog 

could not be located or loaded. Check that your NLSPATH environment variable 

includes the path where the message catalog is located. The AIX environment 

variable NLSPATH is used by the various PE components to find the appropriate 

message catalogs. If the message catalogs are not in the proper place, or your 

environment variables are not set properly, your system administrator can help.. 

Refer your system administrator to “National language support (NLS)” on page xii 

for more information. ! 

The following are the PE message catalogs: 

v   pepoe.cat 

v   pempl.cat 

v   pepdbx.cat 

v   peperf.cat

Finding PE messages 

There are a number of places that you can find PE messages: 

v   They are displayed on the home node when it is running POE (STDERR and 

STDOUT). 
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v   If you set either the MP_PMDLOG environment variable or the -pmdlog 

command line option to yes, they are collected in the pmd log file of each task, 

in /tmp (STDERR and STDOUT).

You can also use LookAt to look up message explanations. For more information 

on how to do this see “Using LookAt to look up message explanations” on page 

xii 

Logging POE errors to a file 

You can also specify that diagnostic messages be logged to a file in /tmp on each of 

the remote nodes of your partition by using the MP_PMDLOG environment 

variable. The log file is called /tmp/mplog.jobid.taskid, where jobid is a unique 

identifier and taskid is the task number. The jobid is the same for all remote nodes. 

This file contains additional diagnostic information about why the user connection 

was not made. If the file is not there, then pmd did not start. Check the 

/etc/inetd.conf and /etc/services entries and the executability of pmd for the root 

user ID again. 

For more information about the MP_PMDLOG environment variable, see IBM 

Parallel Environment for AIX: Operation and Use, Volume 1. 

Message format 

Knowing which component a message is associated is helpful when trying to 

resolve a problem. PE messages include prefixes that identify the related 

component. The message identifiers for the PE components are as follows. 

0029-nnnn 

pdbx 

0031-nnnn 

Parallel Operating Environment 

0032-nnnn 

Message Passing Interface 

2554-nnnn 

Benchmarker

where: 

v   The first four digits (such as 0029), identify the component that issued the 

message. 

v   nnnn identifies the sequence of the message in the group.

For  more information about PE messages, see IBM Parallel Environment for AIX: 

Messages. 

Note that you might find it helpful to run POE or the parallel debugger as you use 

this section. 

Diagnosing problems using IVP 

The Installation Verification Program (IVP) can be a useful tool for diagnosing 

problems. When you installed POE, you verified that everything turned out 

correctly by running the IVP. It verified that the: 

v   Location of the libraries was correct 

v   Binaries existed 

v   Partition Manager daemon was executable 

v   POE files were in order 

v   Sample IVP programs compiled correctly.
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The IVP can provide some important first clues when you experience a problem, 

so you may want to rerun this program before you do anything else. 

Cannot compile a parallel program 

Programs for PE must be compiled with the current release of the compiler scripts 

you are using, such as mpxlf_r, mpcc_r, or mpCC_r. If the command you are 

trying to use cannot be found, make sure the installation was successful and that 

your PATH environment variable contains the path to the compiler scripts. These 

commands call the Fortran, C, and C++ compilers respectively, so you also need to 

make sure that the underlying compiler is installed and accessible. Your system 

administrator or local AIX guru should be able to assist you in verifying these 

things. 

Cannot start a parallel job 

Once you have successfully compiled your program, you either invoke it directly 

or start POE and then submit the program to it. In both cases, POE is started to 

establish communication with the parallel nodes. Problems that can occur at this 

point include: POE does not start, or cannot connect to the remote nodes. 

These problems can be caused by other problems on the home node (where you 

are trying to submit the job), on the remote parallel nodes, or in the 

communication subsystem that connects them. You need to make sure that all the 

things POE expects to be set up really are set up. Here is what you do: 

1.   Make sure that you can execute POE. If you are a Korn shell user, type: 

$ whence poe 

If you are a C shell user, type: 

$ which poe 

If the result is just the shell prompt, you do not have POE in your path. It 

might mean that POE is not installed, or that your path does not point to it. 

Check that the file /usr/lpp/ppe.poe/bin/poe exists and is executable, and that 

your PATH includes the directory /usr/lpp/ppe.poe/bin. 

2.   Type: 

$ env | grep MP_ 

Look at the settings of the environment variables beginning with MP_, (the 

POE environment variables). Check their values against what you expect, 

particularly MP_HOSTFILE (where the list of remote host names is to be 

found), MP_RESD (whether a job management system is to be used to allocate 

remote hosts) and MP_RMPOOL (the pool from which the job management 

system is to allocate remote hosts) values. If they are all not set, make sure that 

you have a file named host.list in your current directory. This file must include 

the names of all the remote parallel hosts that can be used. There must be at 

least as many hosts available as the number of parallel processes you specified 

with the MP_PROCS environment variable. 

3.   Type: 

$ poe -procs 1 

You should get the following message: 

  

  

     0031-503   Enter program name and flags for each node: _
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If you do get this message, POE has successfully loaded and established 

communication with the first remote host in your host list file. It has also 

validated your use of that remote host, and is ready to go to work. If you type 

any AIX command, for example, date, hostname, or env, you should get a 

response when the command executes on the remote host (like you would from 

rsh). 

If you get some other set of messages, then the message text should give you 

some idea of where to look. Some common situations include: 

v   Cannot connect with the remote host 

The path to the remote host is unavailable. Check to make sure that you are 

trying to connect to the host you think you are. If you are using LoadLeveler 

to allocate nodes from a pool, you may want to allocate nodes from a known 

list instead. ping the remote hosts in the list to see if a path can be 

established to them. If it can, run rsh remote_host date to verify that the 

remote host can be contacted and recognizes the host from which you 

submitted the job, so it can send results back to you. 

Check the /etc/services file on your home node, to make sure that the IBM 

Parallel Environment for AIX service is defined. Check the /etc/services and 

/etc/inetd.conf files on the remote host to make sure that the PE service is 

defined, and that the Partition Manager Daemon (pmd) program invoked by 

inetd on the remote node is executable. 

v   User not authorized on remote host 

You need an ID on the remote host and your ID on the home host (the one 

from which you are submitting the job) must be authorized to run 

commands on the remote hosts. You do this by placing a $HOME/.rhosts file 

on the remote hosts that identify your home host and ID. Brush up on 

“Access” on page 2 if you need to. Even if you have a $HOME/.rhosts file, 

make sure that you are not denied access the /etc/hosts.equiv file on the 

remote hosts. 

In some installations, your home directory is a mounted file system on both 

your home node and the remote host. On the SP system, this mounted file 

system is managed by AMD, the AutoMount Daemon. Occasionally, during 

user verification, the AutoMount Daemon does not mount your home 

directory fast enough, and pmd does not find your .rhosts file. In this case, 

check with your system administrator. 

Even if the remote host is actually the same machine as your home node, 

you still need an entry in the .rhosts file. Sorry, that is the way AIX 

authentication works. 

v   Other strangeness 

On the home node, you can set or increase the MP_INFOLEVEL 

environment variable (or use the -infolevel command line option) to get 

more information out of POE while it is running. Although this does not give 

you any more information about the error, or prevent it, it gives you an idea 

of where POE was, and what it was trying to do when the error occurred. A 

value of 6 gives you more information than you could ever want. See 

Appendix A, “A sample program to illustrate messages,” on page 109 for an 

example of the output from this setting.
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Cannot execute a parallel program 

Once POE can be started, you need to consider the problems that can arise in 

running a parallel program, specifically initializing the message passing subsystem. 

The way to eliminate this initialization as the source of POE startup problems is to 

run a program that does not use message passing. 

As discussed in “Running POE” on page 4, you can use POE to invoke any AIX 

command or serial program on remote nodes. If you can get an AIX command or 

simple program, like Hello, World!, to run under POE, but a parallel program does 

not, you can be pretty sure the problem is in the message passing subsystem. The 

message passing subsystem is the underlying implementation of the message 

passing calls used by a parallel program (in other words, an MPI_SEND). POE 

code that is linked into your executable by the compiler script (mpcc_r, mpCC_r, 

mpxlf_r) initializes the message passing subsystem. 

The Parallel Operating Environment (POE) supports two distinct communication 

subsystems, an IP-based system, and User Space optimized adapter support. The 

subsystem choice is normally made at run time, by environment variables or 

command line options passed to POE. Use the IP subsystem for diagnosing 

initialization problems before worrying about the User Space (US) subsystem. 

Select the IP subsystem by setting the environment variable: 

$ export MP_EUILIB=ip 

Use specific remote hosts in your host list file and do not use LoadLeveler (set 

MP_RESD=no). If you do not have a small parallel program around, recompile 

hello.c as follows: 

$ mpcc_r -o hello_p hello.c 

and make sure that the executable can be loaded on the remote host that you are 

using. 

Type the following command, and then look at the messages on the console: 

$ poe hello_p -procs 1 -infolevel 4 

If you get 

Hello, World! 

then the communication subsystem has been successfully initialized on the one 

node and things ought to be looking good. Just for kicks, make sure that there are 

two remote nodes in your host list file and try again with the following: 

$ poe hello_p -procs 2 

If and when hello_p works with IP and device en0 (the Ethernet), try again with 

the high speed interconnect. 

Each node has one name that it is known by on the external LAN to which it is 

connected, and another name that it is known by on the interconnect. If the node 

name you use is not the proper name for the network device you specify, the 

connection is not be made. You can put the names in your host list file. Otherwise, 

use LoadLeveler to locate the nodes. 

For example, 
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$ export MP_RESD=yes 

$ export MP_EUILIB=ip 

$ export MP_EUIDEVICE=css0 

$ poe hello_p -procs 2 -ilevel 2 

where css0 is the switch device name. Look at the console lines containing the 

string MPI  euidevice. These identify the device name that is actually being used 

for message passing (as opposed to the IP address that is used to connect the home 

node to the remote hosts.) If these are not device names, check the LoadLeveler 

configuration and the switch configuration. 

Once IP works, and you are on an SP machine or clustered server, you can try 

message passing using the User Space device support. Note that LoadLeveler 

allows you to run multiple tasks over the switch adapter while in User Space. 

You can run hello_p with the User Space library by typing: 

$ export MP_RESD=yes 

$ export MP_EUILIB=us 

$ export MP_EUIDEVICE=css0 

$ poe hello_p -procs 2 -ilevel 6 

The console log should inform you that you are using User Space support, and 

that LoadLeveler is allocating the nodes for you. LoadLeveler tells you that it 

cannot allocate the requested nodes if someone else is already running on them 

and has requested dedicated use of the switch, or if User Space capacity has been 

exceeded. 

You can try for other specific nodes, or you can ask LoadLeveler for non-specific 

nodes from a pool. You can refer to IBM Parallel Environment for AIX: Operation and 

Use, Volume 1. 

The program runs but... 

The parallel debugger is your friend 

An important tool in analyzing your parallel program is the PE parallel debugger 

(pdbx). In some situations, using the parallel debugger is just like using a 

debugger for a serial program. In other situations, however, the parallel nature of 

the problem introduces some subtle and not-so-subtle differences which you 

should understand to use the debugger efficiently. While debugging a serial 

application, you can focus your attention on the single problem area. In a parallel 

application, you have to shift your attention between the various parallel tasks and 

also consider how the interaction among the tasks may be affecting the problem. 

The simplest problem 

The simplest parallel program to debug is one where all the problems exist in a 

single task. In this case, you can unhook all the other tasks from the debugger’s 

control and use the parallel debugger as if it were a serial debugger. However, this 

case is also the most rare. 

The next simplest problem 

The next simplest case is one where all the tasks are doing the same thing and 

they all experience the problem that is being investigated. In this case, you can 

apply the same debug commands to all the tasks, advance them in lockstep and 

interrogate the state of each task before proceeding. In this situation, you need to 

be sure to avoid debugging-introduced deadlocks. These are situations where the 

debugger is trying to single-step a task past a blocking communication call, but the 
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debugger has not stepped the sender of the message past the point where the 

message is sent. In these cases, control will not be returned to the debugger until 

the message is received, but the message will not be sent until control returns to 

the debugger. 

OK, the worst problem 

The most difficult situation to debug, and also the most common, is where not all 

the tasks are doing the same thing and the problem spans two or more tasks. In 

these situations, you have to be aware of the state of each task, and the 

interrelations among tasks. You must ensure that blocking communication events 

either have been or will be satisfied before stepping or continuing through them. 

This means that the debugger has already executed the send for blocking receives, 

or the send will occur at the same time (as observed by the debugger) as the 

receive. Frequently, you may find that tracing back from an error state leads to a 

message from a task to which you were not paying attention. In these situations, 

your only choice may be to run the application again and focus on the events 

leading up to the send. 

When a core dump is created 

If your program creates a core dump, POE saves a copy of the core file so you can 

debug it later. Unless you specify otherwise, POE saves the core file in the 

coredir.taskid directory, under the current working directory, where taskid is the 

task number. For example, if your current directory is /u/mickey, and your 

application creates a core dump (segmentation fault) while running on the node 

that is task 4, the core file will be located in /u/mickey/coredir.4 on that node. 

You can control where POE saves the core file by using the -coredir POE command 

line option or the MP_COREDIR environment variable. 

Standard AIX corefiles can be large and often the information in the files appears 

at a very low level. This can make the files difficult to debug. These large files can 

also consume too much disk space, CPU time, and network bandwidth. To avoid 

this problem, PE allows you to produce corefiles in the Ptools Lightweight Corefile 

Format. Lightweight corefiles provide simple shared stack traces (listings of 

function calls that led to the error), and consume less system resources than 

traditional corefiles. For more information on lightweight corefiles and how to 

generate them, see IBM Parallel Environment for AIX: Operation and Use, Volume 1. 

Debugging core dumps 

There are two ways you can use traditional AIX core dumps to find problems in 

your program. After running the program, you can examine the resulting core file 

to see if you can find the problem. Or, you can try to view your program state by 

catching it at the point where the problem occurs. 

Examining core files:   Before you can debug a core file, you first need to get one. 

Let us just generate it. The example is an MPI program in which even-numbered 

tasks pass the answer to the meaning of life to odd-numbered tasks. It is called 

bad_life.c, and here is what it looks like: 

/******************************************************************* 

* 

* bad_life program 

  

* To compile: 

* mpcc -g -o bad_life bad_life.c 

* 

*******************************************************************/ 
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#include <stdio.h> 

#include <mpi.h> 

  

void main(int argc, char *argv[]) 

{ 

        int  taskid; 

        MPI_Status  stat; 

  

        /* Find out number of tasks/nodes. */ 

        MPI_Init( &argc, &argv); 

        MPI_Comm_rank( MPI_COMM_WORLD, &taskid); 

  

        if ( (taskid % 2) == 0) 

        { 

                char *send_message = NULL; 

  

                send_message = (char *) malloc(10); 

                strcpy(send_message, "Forty Two"); 

                MPI_Send(send_message, 10, MPI_CHAR, taskid+1, 0, 

                        MPI_COMM_WORLD); 

                free(send_message); 

        } else 

        { 

                char *recv_message = NULL; 

  

                MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0, 

                MPI_COMM_WORLD, &stat); 

                printf("The answer is  %s\n", recv_message); 

                free(recv_message); 

        } 

                printf("Task %d complete.\n",taskid); 

                MPI_Finalize(); 

                exit(0); 

} 

bad_life.c complied with the following parameters: 

$ mpcc -g bad_life.c -o bad_life 

and when it runs, you get the following results: 

$ export MP_PROCS=4 

$ export MP_LABELIO=yes 

$ bad_life 

  0:Task 0 complete. 

  2:Task 2 complete. 

ERROR: 0031-250  task 1: Segmentation fault 

ERROR: 0031-250  task 3: Segmentation fault 

ERROR: 0031-250  task 0: Terminated 

ERROR: 0031-250  task 2: Terminated 

As you can see, bad_life.c gets two segmentation faults which generate two core 

files. If you list the current directory, you can see two core files; one for task 1 and 

the other for task 3. 

$ ls -lR core* 

total 88 

-rwxr-xr-x   1 hoov     staff       8472 May 02 09:14 bad_life 

-rw-r--r--   1 hoov     staff        928 May 02 09:13 bad_life.c 

drwxr-xr-x   2 hoov     staff        512 May 02 09:01 coredir.1 

drwxr-xr-x   2 hoov     staff        512 May 02 09:36 coredir.3 

-rwxr-xr-x   1 hoov     staff       8400 May 02 09:14 good_life 

-rw-r--r--   1 hoov     staff        912 May 02 09:13 good_life.c 

-rw-r--r--   1 hoov     staff         72 May 02 08:57 host.list 

./coredir.1: 

total 48 

-rw-r--r--   1 hoov     staff      24427 May 02 09:36 core
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./coredir.3: 

total 48 

-rw-r--r--   1 hoov     staff      24427 May 02 09:36 core 

Run dbx on one of the core files to find the problem. You run dbx like this: 

$ dbx bad_life coredir.1/core 

  

Type ’help’ for help. 

[using memory image in coredir.1/core] 

reading symbolic information ... 

  

Segmentation fault in . at 0xf014 

0x0000f014 warning: Unable to access address 0xf014 from core 

Now, let us see where the program crashed and what its state was at that time. If 

you issue the where command, 

(dbx) where 

You can see the program stack: 

warning: Unable to access address 0xf014 from core 

warning: Unable to access address 0xf014 from core 

warning: Unable to access address 0xf010 from core 

warning: Unable to access address 0xf010 from core 

warning: Unable to access address 0xf014 from core 

warning: Unable to access address 0xf014 from core 

warning: Unable to access address 0xf010 from core 

warning: Unable to access address 0xf010 from core 

warning: Unable to access address 0xf014 from core 

.() at 0xf014 

lapi_recv_vec(??, ??, ??, ??, ??, ??) at 0xd2ccc298 

process_hdr_hndlr_contig(0x0, 0x0, 0xf15433d8, 0x202b5368, 0x20a4bb88) at 0xd31d 

58c0 

_lapi_recv_callback(0x0, 0x20a4bb88, 0x2000) at 0xd31d6a10 

udp_read_dgsp(0x0, 0xf1542608, 0x0, 0x0) at 0xd05b9294 

_receive_processing(0x0) at 0xd31d41b0 

_lapi_dispatcher(0x0, 0x0) at 0xd3193cf4 

_lapi_msgpoll_internal(0x0, 0x1, 0x2ff225e8, 0x0, 0x0) at 0xd31bb8f0 

LAPI_Msgpoll(0x0, 0x1, 0x2ff225e8) at 0xd31bfc60 

mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd2cc6ce0 

_mpi_recv(??, ??, ??, ??, ??, ??, ??) at 0xd3078e94 

MPI__Recv(??, ??, ??, ??, ??, ??, ??) at 0xd3075d44 

unnamed block $b2, line 36 in "bad_life.c" 

main(argc = 1, argv = 0x2ff229bc), line 36 in "bad_life.c" 

(dbx) 

The output of the where command shows that bad_life.c failed at line 36, like this: 

  

(dbx) func main 

(dbx) list 36 

   36                   MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0, 

  

Look at line 36 of bad_life.c, the first guess is that one of the parameters being 

passed into MPI_RECV is bad. Look at some of these parameters to see if you can 

find the source of the error: 

(dbx) print recv_message 

"recv_message" is not active 

Our receive buffer has not been initialized and is NULL. The sample programs for 

this book include a solution called good_life.c. 
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bad_life.c complied with the -g compile flag. This gives all the debugging 

information you need to view the entire program state and to print program 

variables. If you did not compile the programs with the -g flag, and you may have 

turned optimization on (-O). When you do this, there is virtually no information to 

tell you what happened when the iprogram executed. If this is the case, you can 

still use dbx to look at only stack information, which allows you to determine the 

function or subroutine that generated the core dump. 

Viewing the program state:   If collecting core files is impractical, you can also try 

catching the program at the segmentation fault. You do this by running the 

program under the control of the debugger. The debugger gets control of the 

application at the point of the segmentation fault, and this allows you to view your 

program state at the point where the problem occurs. 

The following example uses bad_life again, but uses pdbx instead of dbx. Load 

bad_life under pdbx with the following command: 

> pdbx bad_life -procs 4 -hfile /u/voe3/> 

pdbx Version 4, Release 1.1  -- Feb  5 2004 18:31:06 

  

   0:Core file " 

   0:" is not a valid core file (ignored) 

   2:Core file " 

   2:" is not a valid core file (ignored) 

   1:Core file " 

   1:" is not a valid core file (ignored) 

   3:Core file " 

   3:" is not a valid core file (ignored) 

   0:reading symbolic information ... 

   1:reading symbolic information ... 

   1:[1] stopped in main at line 20 ($t1) 

   1:   20      MPI_Init( &argc, &argv); 

   3:reading symbolic information ... 

   2:reading symbolic information ... 

   0:[1] stopped in main at line 20 ($t1) 

   0:   20      MPI_Init( &argc, &argv); 

   3:[1] stopped in main at line 20 ($t1) 

   3:   20      MPI_Init( &argc, &argv); 

   2:[1] stopped in main at line 20 ($t1) 

   2:   20      MPI_Init( &argc, &argv); 

0031-504  Partition loaded ... 

Next, let the program run to allow it to reach a segmentation fault. 

pdbx(all) cont 

   0:Task 0 complete. 

   2:Task 2 complete. 

   1: 

   1:Segmentation fault in . at 0xf014 ($t1) 

   1:0x0000f014 7ca01d2a      stswx   r5,r0,r3 

   3: 

   3:Segmentation fault in . at 0xf014 ($t1) 

   3:0x0000f014 7ca01d2a      stswx   r5,r0,r3 

Once you get segmentation faults, you can focus your attention on one of the tasks 

that failed. Look at task 1: 

pdbx(all) on 1 

By using the pdbx where command, you can see where the problem originated in 

the source code: 

pdbx(1) where 

   1:.() at 0xf014 

   1:lapi_recv_vec(??, ??, ??, ??, ??, ??) at 0xd2ccc298
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1:process_hdr_hndlr_contig(0x0, 0x0, 0xf15433d8, 0x202b5368, 0x20a35b88) at 

       0xd31d58c0 

   1:_lapi_recv_callback(0x0, 0x20a35b88, 0x2000) at 0xd31d6a10 

   1:udp_read_dgsp(0x0, 0xf1542608, 0x0, 0x0) at 0xd0aa3294 

   1:_receive_processing(0x0) at 0xd31d41b0 

   1:_lapi_dispatcher(0x0, 0x0) at 0xd3193cf4 

   1:_lapi_msgpoll_internal(0x0, 0x3e8, 0x2ff225b8, 0x0, 0x0) at 0xd31bb8f0 

   1:LAPI_Msgpoll(0x0, 0x186a0, 0x2ff225b8) at 0xd31bfc60 

   1:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd2cc7048 

   1:_mpi_recv(??, ??, ??, ??, ??, ??, ??) at 0xd3078e94 

   1:MPI__Recv(??, ??, ??, ??, ??, ??, ??) at 0xd3075d44 

   1:unnamed block $b2, line 36 in "bad_life.c" 

   1:main(argc = 1, argv = 0x2ff2298c), line 36 in "bad_life.c" 

Now, let us move up the stack to function main: 

pdbx(1) func main 

Next, list line 36, which is where the problem is located: 

pdbx(1) l 36 

   1:   36              MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0, 

Print the value of recv_message: 

pdbx(1) p recv_message 

   1:"recv_message" is not active 

The program passes a bad parameter to MPI_RECV. 

Both the techniques help you find the location of the problem in your code. The 

example used makes it look easy, but in many cases it will not be so simple. 

However, knowing where the problem occurred is valuable information if you are 

forced to debug the problem interactively. 

On the lighter side...:   One of the new features in POE is the ability to capture 

more detailed information about a program when it abnormally terminates, while 

also reducing the amount of space needed for it. POE has the ability to produce 

Light Weight Core Files, as opposed to standard AIX core files. This greatly 

reduces the size of the core files while greatly enhancing the information that is 

produced. 

First, you need to tell POE to produce Light Weight Core Files, with the 

-corefile_format flag or MP_COREFILE_FORMAT environment variable. 

> bad_life -procs 4 -labelio yes -corefile_format lwcf               < 

   0:Task 0 complete. 

   2:Task 2 complete. 

ERROR: 0031-250  task 1: Segmentation fault 

ERROR: 0031-250  task 0: Terminated 

ERROR: 0031-250  task 2: Terminated 

ERROR: 0031-250  task 3: Segmentation fault 

You will notice the same program output, however, now when you look in the 

coredir.1 and coredir.3 directories, you begin to see the difference. 

> cd coredir.1 

Now look in the directory. 

> ls -lt 

total 30768 

-rw-r--r--   1 voe3     usr            1269 Feb 19 13:40 lwcf 

-rw-r--r--   1 voe3     usr        15745755 Feb 19 13:16 core 
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You should notice two differences. First, there is a second file, named lwcf (or 

whatever the file name specified by the -corefile_format option or 

MP_COREFILE_FORMAT environment variable), in addition to the file named 

core. The second difference is in the file sizes - the standard AIX core files are 

much larger. Now look at what you have in the new file. 

The new file is a text output file, that can be viewed with any text viewer or vi. It 

will contain output produced by the Light Weight Core File facility, containing 

stack and thread traces for the entire program. To keep it simple, use cat to view 

the file: 

>cat lwcf 

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.1 

+++LCB 1.0 Wed Feb 19 13:39:14 2004 Generated by IBM AIX 5.2 

# 

+++ID Node 1 Process 622736 Thread 1 

***FAULT "SIGSEGV - Segmentation violation" 

+++STACK 

# At location 0x0000f014 but procedure information unavailable. 

lapi_recv_vec : 0x00000550 

process_hdr_hndlr_contig : 0x00000274 

_lapi_recv_callback : 0x000003c4 

udp_read_dgsp : 0x000000a0 

_receive_processing : 0x00000058 

_lapi_dispatcher : 0x00000150 

_lapi_msgpoll_internal : 0x000004a4 

LAPI_Msgpoll : 0x000001ac 

mpci_recv : 0x00000f38 

_mpi_recv : 0x0000015c 

MPI__Recv : 0x00000630 

main : 36 # in file <bad_life.c> 

---STACK 

---ID Node 1 Process 622736 Thread 1 

# 

+++ID Node 1 Process 622736 Thread 2 

+++STACK 

sigwait : 0x000002d0 

pm_async_thread : 0x000006e8 

_pthread_body : 0x000000e8 

---STACK 

---ID Node 1 Process 622736 Thread 2 

# 

+++ID Node 1 Process 622736 Thread 3 

+++STACK 

_intr_hndlr : 0x00000228 

_pthread_body : 0x000000e8 

---STACK 

---ID Node 1 Process 622736 Thread 3 

# 

+++ID Node 1 Process 622736 Thread 4 

+++STACK 

_event_wait : 0x0000005c 

_cond_wait_local : 0x0000034c 

_cond_wait : 0x00000050 

pthread_cond_wait : 0x000001d8 

_compl_hndlr_thr : 0x00000174 

_pthread_body : 0x000000e8 

---STACK 

---ID Node 1 Process 622736 Thread 4 

---LCB 

The output contains a lot of information for such a small file, a true case where 

less is more. You can see where all of the threads were, and immediately know 

what caused the problem and where it is. 
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For completeness, switch over to the coredir.3 directory, to see what happened 

with the other task that terminated abnormally. 

> cd ../coredir.3 

> ls -lt 

total 30768 

-rw-r--r--   1 voe3     usr            1269 Feb 19 13:40 lwcf 

-rw-r--r--   1 voe3     usr        15745915 Feb 19 13:16 core 

Here you see the same thing, two files, one large standard AIX core file, and a 

small Light Weight Core File. If you look at the lwcf file again, you will see pretty 

much the same thing as before, except it will show things from task 3’s point of 

view: 

> cat lwcf 

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.1 

+++LCB 1.0 Wed Feb 19 13:39:14 2004 Generated by IBM AIX 5.2 

# 

+++ID Node 3 Process 442600 Thread 1 

***FAULT "SIGSEGV - Segmentation violation" 

+++STACK 

# At location 0x0000f014 but procedure information unavailable. 

lapi_recv_vec : 0x00000550 

process_hdr_hndlr_contig : 0x00000274 

_lapi_recv_callback : 0x000003c4 

udp_read_dgsp : 0x000000a0 

_receive_processing : 0x00000058 

_lapi_dispatcher : 0x00000150 

_lapi_msgpoll_internal : 0x000004a4 

LAPI_Msgpoll : 0x000001ac 

mpci_recv : 0x00000f38 

_mpi_recv : 0x0000015c 

MPI__Recv : 0x00000630 

main : 36 # in file <bad_life.c> 

---STACK 

---ID Node 3 Process 442600 Thread 1 

# 

+++ID Node 3 Process 442600 Thread 2 

+++STACK 

sigwait : 0x000002d0 

pm_async_thread : 0x000006e8 

_pthread_body : 0x000000e8 

---STACK 

---ID Node 3 Process 442600 Thread 2 

# 

+++ID Node 3 Process 442600 Thread 3 

+++STACK 

_intr_hndlr : 0x00000228 

_pthread_body : 0x000000e8 

---STACK 

---ID Node 3 Process 442600 Thread 3 

# 

+++ID Node 3 Process 442600 Thread 4 

+++STACK 

_event_wait : 0x0000005c 

_cond_wait_local : 0x0000034c 

_cond_wait : 0x00000050 

pthread_cond_wait : 0x000001d8 

_compl_hndlr_thr : 0x00000174 

_pthread_body : 0x000000e8 

---STACK 

---ID Node 3 Process 442600 Thread 4 

---LCB 

The Light Weight Core File option gives you a quick and efficient way of seeing 

where things went bad, while saving some space along the way. 
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Core dumps and threaded programs:   If a task of a threaded program produces a 

core file, the partial dump produced by default does not contain the stack and 

status information for all threads. Therefore, it has limited usefulness. You can 

request AIX to produce a full core file, but such files are generally larger than 

permitted by user limits (the communication subsystem alone generates more than 

64 MB of core information). As a result, you consider two alternatives: 

v   Request that AIX generate a lightweight corefile. Lightweight corefiles contain less 

detail than standard AIX corefiles and, therefore, consume less disk space, CPU 

time, and network bandwidth. For more information on lightweight corefiles, see 

IBM Parallel Environment for AIX: Operation and Use, Volume 1. 

v   Use the attach capability of dbx, xldb, or pdbx to examine the task while it is 

still running.

No output at all 

Should there be output? 

If you are not getting output from your program and you think you ought to be, 

make sure you have enabled the program to send data back to you. If the 

MP_STDOUTMODE environment variable is set to a number, it is the number of 

the only task for which standard output will be displayed. If that task does not 

generate standard output, you will not see any. 

There should be output 

If MP_STDOUTMODE is set appropriately, the next step is to verify that the 

program is actually doing something. Start by observing how the program 

terminates (or fails to terminate). It will do one of the following things: 

v   Terminate without generating output other than POE messages. 

v   Fail to terminate after a really long time, still without generating output.

In  the first case, you should examine any messages you receive. Since your 

program is not generating any output, all of the messages will be coming from 

POE. 

In the second case, you will have to stop the program yourself (<Ctrl-c> should 

work). 

One possible reason for lack of output could be that your program is terminating 

abnormally before it can generate any. POE will report abnormal termination 

conditions such as being killed, as well as non-zero return codes. Sometimes these 

messages are obscured in the blur of other errata, so it is important to check the 

messages carefully. 

Figuring out return codes:   It is important to understand POE’s interpretation of 

return codes. If the exit code for a task is zero(0) or in the range of 2 to 127, then 

POE will make that task wait until all tasks have exited. If the exit code is 1 or 

greater than 128 (or less than 0), then POE will terminate the entire parallel job 

abruptly (with a SIGTERM signal to each task). In normal program execution, one 

would expect to have each program go through exit(0) or STOP, and exit with an 

exit code of 0. However, if a task encounters an error condition (for example, a full 

file system), then it may exit unexpectedly. In these cases, the exit code is usually 

set to -1. If, however, you have written error handlers which produce exit codes 

other than 1 or -1, then POE’s termination algorithm may cause your program to 

hang because one task has terminated abnormally, while the other tasks continue 

processing (expecting the terminated task to participate). 
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If the POE messages indicate the job was killed (either because of some external 

situation like low page space or because of POE’s interpretation of the return 

codes), it may be enough information to fix the problem. Otherwise, you may  have 

to do more analysis. 

It hangs 

If you have gotten this far and the POE messages, and the additional checking by 

the message passing routines, have not shed any light on why your program is not 

generating output, the next step is to figure out whether your program is doing 

anything at all (besides not giving you output). 

Let us look at the following example...it has a bug in it. 

/************************************************************************ 

* 

* Ray trace program with bug 

* 

* To compile: 

* mpcc -g -o rtrace_bug rtrace_bug.c 

* 

* 

* Description: 

* This is a sample program that partitions N tasks into 

* two groups, a collect node and N - 1 compute nodes. 

* The responsibility of the collect node is to collect the data 

* generated by the compute nodes. The compute nodes send the 

* results of their work to the collect node for collection. 

* 

* There is a bug in this code.  Please do not fix it in this file! 

* 

************************************************************************/ 

  

#include <mpi.h> 

  

#define PIXEL_WIDTH 50 

#define PIXEL_HEIGHT 50 

  

int First_Line = 0; 

int Last_Line  = 0; 

  

void main(int argc, char *argv[]) 

{ 

  int numtask; 

  int taskid; 

  

  /* Find out number of tasks/nodes. */ 

  MPI_Init( &argc, &argv); 

  MPI_Comm_size( MPI_COMM_WORLD, &numtask); 

  MPI_Comm_rank( MPI_COMM_WORLD, &taskid); 

  

  /* Task 0 is the coordinator and collects the processed pixels */ 

  /* All the other tasks process the pixels                      */ 

  if ( taskid == 0 ) 

    collect_pixels(taskid, numtask); 

  else 

    compute_pixels(taskid, numtask); 

  

  printf("Task %d waiting to complete.\n", taskid); 

  /* Wait for everybody to complete */ 

  MPI_Barrier(MPI_COMM_WORLD); 

  printf("Task %d complete.\n",taskid); 

  MPI_Finalize(); 

  exit(); 

} 
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/* In a real implementation, this routine would process the pixel */ 

/* in some manner and send back the processed pixel along with its*/ 

/* location.  Since you did process the pixel. all you do is      */ 

/* send back the location                                         */ 

compute_pixels(int taskid, int numtask) 

{ 

  int  section; 

  int  row, col; 

  int  pixel_data[2]; 

  MPI_Status stat; 

  

  printf("Compute #%d: checking in\n", taskid); 

  

  section = PIXEL_HEIGHT / (numtask -1); 

  

  First_Line = (taskid - 1) * section; 

  Last_Line  = taskid * section; 

  

  for (row = First_Line; row < Last_Line; row ++) 

    for ( col = 0; col < PIXEL_WIDTH; col ++) 

      { 

         pixel_data[0] = row; 

         pixel_data[1] = col; 

         MPI_Send(pixel_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD); 

      } 

  printf("Compute #%d: done sending. ", taskid); 

  return; 

} 

  

/* This routine collects the pixels.  In a real implementation, */ 

/* after receiving the pixel data, the routine would look at the*/ 

/* location information that came back with the pixel and move  */ 

/* the pixel into the appropriate place in the working buffer   */ 

/* Since you aren’t doing anything with the pixel data, you don’t */ 

/* bother and each message overwrites the previous one          */ 

collect_pixels(int taskid, int numtask) 

{ 

  int  pixel_data[2]; 

  MPI_Status stat; 

  int      mx = PIXEL_HEIGHT * PIXEL_WIDTH; 

  

  printf("Control #%d: No. of nodes used is %d\n", taskid,numtask); 

  printf("Control: expect to receive %d messages\n", mx); 

  

  while (mx > 0) 

    { 

      MPI_Recv(pixel_data, 2, MPI_INT, MPI_ANY_SOURCE, 

        MPI_ANY_TAG, MPI_COMM_WORLD, &stat); 

      mx--; 

    } 

  printf("Control node #%d: done receiving. ",taskid); 

  return; 

} 

This example is from a ray tracing program that distributed a display buffer out to 

server nodes. The intent is that each task, other than Task 0, takes an equal number 

of full rows of the display buffer, processes the pixels in those rows, and then 

sends the updated pixel values back to the client. In the real application, the task 

would compute the new pixel value and send it as well, but in this example, you 

are just sending the row and column of the pixel. Because the client is getting the 

row and column location of each pixel in the message, it does not care which 

server each pixel comes from. The client is Task 0, and the servers are all the other 

tasks in the parallel job. 
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This example has a functional bug in it. With a little bit of analysis, the bug is 

probably easy to spot, and you may be tempted to fix it right away. PLEASE DO 

NOT! 

When you run this program, you get the output shown below. Notice that the -g 

option is used when you compile the example. You are cheating a little because 

you know that there is going to be a problem, so you are compiling with debug 

information that is turned on right away. 

$ mpcc -g -o rtrace_bug rtrace_bug.c 

$ rtrace_bug -procs 4 -labelio yes 

  1:Compute #1: checking in 

  0:Control #0: No. of nodes used is 4 

  1:Compute #1: done sending. Task 1 waiting to complete. 

  2:Compute #2: checking in 

  3:Compute #3: checking in 

  0:Control: expect to receive 2500 messages 

  2:Compute #2: done sending. Task 2 waiting to complete. 

  3:Compute #3: done sending. Task 3 waiting to complete. 

^C 

ERROR: 0031-250  task 1: Interrupt 

ERROR: 0031-250  task 2: Interrupt 

ERROR: 0031-250  task 3: Interrupt 

ERROR: 0031-250  task 0: Interrupt 

No matter how long you wait, the program will not terminate until you press 

<Ctrl-c>. 

So, you suspect the program is hanging somewhere. You know it starts executing 

because you get some messages from it. It could be a logical hang or it could be a 

communication hang. 

Hangs and threaded programs 

Coordinating the threads in a task requires careful locking and signaling. 

Deadlocks that occur because the program is waiting on locks that have not been 

released are common, in addition to the deadlock possibilities that arise from 

improper use of the MPI message passing calls. 

Let’s attach the debugger 

Now that you have come to the conclusion that the program is hanging, use the 

debugger to find out why. The best way to diagnose this problem is to attach the 

debugger directly to the POE job. 

Start up POE and run rtrace_bug: 

$ rtrace_bug -procs 4 -labelio yes 

To attach the debugger, you first need to get the process ID (PID) of the POE job, 

using the AIX ps command: 

> ps -ef | grep poe 

    voe3 680044 344226   0 09:52:33  pts/1  0:00 poe 

Next, you need to start the pdbx debugger in attach mode by using the -a flag and 

the process ID (PID) of the POE job: 

$ pdbx -a 680044 

After starting the debugger in attach mode, a pdbx Attach screen appears. 
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> pdbx -a 680044 

pdbx  Version 4, Release 1.1 -- Feb  5 2004 18:31:06 

  

  

To begin debugging in attach mode, select a task or tasks to attach. 

  

Task       IP Addr               Node                        PID        Program 

0       9.114.153.82       c133rp03.ppd.pok.ibm.com         692328     rtrace_bug 

1       9.114.153.82       c133rp03.ppd.pok.ibm.com         553010     rtrace_bug 

2       9.114.153.82       c133rp03.ppd.pok.ibm.com         684222     rtrace_bug 

3       9.114.153.82       c133rp03.ppd.pok.ibm.com         594022     rtrace_bug 

  

At the pdbx prompt enter the attach command followed by a list of tasks or all. 

For example, attach 2 4 5-7 or attach all. You may also type help for more 

information or quit to exit the debugger without attaching. 

The pdbx Attach screen contains a list of tasks from which you can choose, and for 

each task, the following information: 

v   Task — the task number 

v   IP — the ip address of the node on which the task or application is running 

v   Node — the name of the node on which the task or application is running 

v   PID — the process identifier of the task or application 

v   Program — the name of the application and arguments, if any

The  paging tool used to display the menu will default to pg –e unless the PAGER 

environment variable specifies another pager. the debugger displays a list of task 

numbers that comprise the parallel job. The debugger obtains this information by 

reading a configuration file created by POE when it begins a job step. 

After initiating attach mode, select the tasks to which you want to attach. Since 

you do not know which task or set of tasks is causing the problem, attach to all of 

the tasks by typing attach all: 

pdbx(none) attach all  

   0:Waiting to attach to process 692328 ... 

   0:Successfully attached to rtrace_bug. 

   1:Waiting to attach to process 553010 ... 

   1:Successfully attached to rtrace_bug. 

   2:Waiting to attach to process 684222 ... 

   2:Successfully attached to rtrace_bug. 

   3:Waiting to attach to process 594022 ... 

   3:Successfully attached to rtrace_bug. 

   0:reading symbolic information ... 

   0:stopped in _event_sleep at 0xd00575d0 ($t2) 

   0:0xd00575d0 (_event_sleep+0xa8) 80410014        lwz   r2,0x14(r1) 

   1:reading symbolic information ... 

   1:stopped in _event_sleep at 0xd00575d0 ($t2) 

   1:0xd00575d0 (_event_sleep+0xa8) 80410014        lwz   r2,0x14(r1) 

   3:reading symbolic information ... 

   3:stopped in _event_sleep at 0xd00575d0 ($t2) 

   3:0xd00575d0 (_event_sleep+0xa8) 80410014        lwz   r2,0x14(r1) 

   2:reading symbolic information ... 

   2:stopped in _event_sleep at 0xd00575d0 ($t2) 

   2:0xd00575d0 (_event_sleep+0xa8) 80410014        lwz   r2,0x14(r1) 

0029-2013 Debugger attached and ready. 

 

The debugger attaches to the specified tasks. The selected executables are stopped 

wherever their program counters happen to be, and are then under the control of 

the debugger. pdbx displays information about the attached tasks using the task 

numbering of the original POE application partition. 
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Let us start by taking a look at task 0. First, change the current context to task 0 by 

typing 0. Even though the program is not actually threaded, it is using threads 

created by the MPI library. To see the threads that are active, use the threads 

command: 

pdbx(attached) on 0 

  

pdbx(0) threads 

   0: thread  state-k         wchan    state-u    k-tid   mode held scope  function 

   0: $t1     run                      running  2359441     k   no   sys  $PTRGL 

   0:>$t2     run                      blocked  3301487     k   no   sys   _event_sleep 

   0: $t3     wait                     running  2805923     k   no   sys   select 

   0: $t4     wait  0xf10000879001d940 blocked  1937553     k   no   sys  _event_sleep 

   0: $t5     zomb                   terminated 3506425     k   no   sys   pthread_exit 

An aspect to be aware of when attempting to debug a program using threads is 

that when a program is stopped, it can be stopped in any of the running threads. 

In this example, by looking at the list of threads, the current thread you stopped in 

is shown with the > sign next to it (in this case, it is thread 2). Knowing that the 

program is single threaded, you need to switch to the current thread in the 

program, which is thread 1, using the thread current 1 command: 

pdbx(0) thread current 1 

   0:warning: Thread is in kernel mode, not all registers can be accessed. 

To see where you are in task 0, type where: 

pdbx(0) where 

   0:@ptrgl.$PTRGL() at 0xd01d0f88 

   0:@raise.nsleep(??, ??) at 0xd01dedfc 

   0:@raise.nsleep(??, ??) at 0xd01dedfc 

   0:usleep(??) at 0xd01dea48 

   0:mpci_recv_gen(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a8bb90 

   0:mpci_recv(??, ??, ??,  ??, ??, ??, ??, ??) at 0xd0a7c6cc 

   0:_mpi_recv(??, ??, ??,  ??, ??, ??, ??) at 0xd225de94 

   0:MPI__Recv(??, ??, ??,  ??, ??, ??, ??) at 0xd225ad44 

   0:collect_pixels(taskid = 0, numtask = 4), line 101 in "rtrace_bug.c" 

   0:main(argc = 1, argv = 0x2ff229bc), line 43 in "rtrace_bug.c" 

Since the code is hung in low level routines, take a look at the highest line in the 

stack trace that has a line number and a file name associated with it. This indicates 

that source code association is available. In this case, it is the line that contains 

collect_pixels, which is 8 lines up from the entry containing read. To look more 

closely at the collect_pixels routine, type up 8: 

pdbx(0) up 8 

   0:collect_pixels(taskid = 0, numtask = 4), line 101 in "rtrace_bug.c" 

Now, you can list the source code starting at the calling routine in collect_pixels: 

pdbx(0) list 

   0:  101         MPI_Recv(pixel_data, 2, MPI_INT, MPI_ANY_SOURCE, 

   0:  102             MPI_ANY_TAG, MPI_COMM_WORLD, &stat); 

   0:  103         mx--; 

   0:  104       } 

   0:  105     printf("Control node #%d: done receiving. ",taskid); 

   0:  106     return; 

   0:  107   } 

   0:  108 

Now you can see that task 0 is stopped on a MPI_RECV call. To look at the local 

data values, type dump: 
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pdbx(0) dump 

   0:collect_pixels(taskid = 0, numtask = 4),  line 101 in "rtrace_bug.c" 

   0:stat = (source = 2, tag  = 0, error = -804052736, val1 = 8, val2  = 0, val3 = 800, 

 val4 = 2, val5 = -559038737) 

   0:mx = 100  

   0:__func__ = "collect_pixels" 

   0:pixel_data = (31, 49)

 

When you look at the Local Data Values, you find that variable mx is still set to 

100, so task 0 thinks it is still going to receive 100 messages. Now take a look at 

what the other messages are doing. To get the stack information on task 1, switch 

to that task (subcommand on 1), then go the current running thread (thread 1, 

subcommand thread current 1): 

pdbx(0) on 1 

  

pdbx(1) thread current 1 

   1:warning: Thread is in kernel mode, not all  registers can be accessed. 

pdbx(1) where 

   1:@ptrgl.$PTRGL() at 0xd01d0f88 

   1:@raise.nsleep(??, ??)  at 0xd01dedfc 

   1:@raise.nsleep(??, ??)  at 0xd01dedfc 

   1:usleep(??) at 0xd01dea48 

   1:mpci_recv(??, ??,  ??,  ??, ??, ??, ??, ??)  at 0xd0a7c4c4 

   1:barrier_shft_b(??) at 0xd2270438 

   1:_mpi_barrier(??, ??,  ??) at 0xd226fb7c 

   1:MPI__Barrier(??) at 0xd226e678 

   1:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c" 

Task 1 has reached an MPI_BARRIER call. If you quickly check the other tasks, 

you see that they have all reached this point as well. 

pdbx(1) on 2 

  

pdbx(2) thread current 1 

   2:warning: Thread is in kernel mode, not all  registers can be accessed. 

  

pdbx(2) where 

   2:@ptrgl.$PTRGL() at 0xd01d0f88 

   2:@raise.nsleep(??, ??)  at 0xd01dedfc 

   2:@raise.nsleep(??, ??)  at 0xd01dedfc 

   2:usleep(??) at 0xd01dea48 

   2:mpci_recv(??, ??,  ??,  ??, ??, ??, ??, ??)  at 0xd0a7c4c4 

   2:barrier_shft_b(??) at 0xd2270438 

   2:_mpi_barrier(??, ??,  ??) at 0xd226fb7c 

   2:MPI__Barrier(??) at 0xd226e678 

   2:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c" 

  

pdbx(2) on 3 

  

pdbx(3) thread current 1 

  

pdbx(3) where 

   3:_p_nsleep(??, ??)  at 0xd005b7f4 

   3:@raise.nsleep(??, ??)  at 0xd01dedfc 

   3:usleep(??) at 0xd01dea48 

   3:mpci_recv(??, ??,  ??,  ??, ??, ??, ??, ??)  at 0xd0a7c4c4 

   3:barrier_shft_b(??) at 0xd2270438 

   3:_mpi_barrier(??, ??,  ??) at 0xd226fb7c 

   3:MPI__Barrier(??) at 0xd226e678 

   3:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c" 

Problem solved. Tasks 1 through 3 have completed sending messages, but task 0 

still expects to receive more. Task 0 was expecting 2500 messages but only received 
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2400, so it is still waiting for 100 messages. To see how many messages each of the 

other tasks are sending, look at the global variables First_Line and Last_Line. 

You can get the values of First_Line and Last_Line for all of the tasks by first 

changing the context to attached by issuing subcommand on attached and then 

issuing subcommand print: 

pdbx(1) on attached 

  

pdbx(attached) thread current 1 

   0:warning: Thread is in kernel mode, not all registers can be accessed. 

   1:warning: Thread is in kernel mode, not all registers can be accessed. 

   2:warning: Thread is in kernel mode, not all registers can be accessed. 

pdbx(attached) print First_Line 

   0:0 

   1:0 

   2:16 

   3:32 

  

pdbx(attached) print Last_Line 

   0:0 

   1:16 

   2:32 

   3:48

 

As you can see: 

v   Task 1 is processing lines 0 through 16 

v   Task 2 is processing lines 16 through 32 

v   Task 3 is processing lines 32 through 48

So, what happened to lines 48 and 49? Since each row is 50 pixels wide, and you 

are missing 2 rows, that explains the 100 missing messages. The division of the 

total number of lines by the number of tasks is not integral, so you lose part of the 

result when it is converted back to an integer. Where each task is supposed to be 

processing 16 and two-thirds lines, it is only handling 16. 

Fix the problem 

To fix this problem permanently, you can proceed in one of the following ways: 

v   Have the last task always go to the last row as you did in the debugger. 

v   Have the program refuse to run unless the number of tasks are evenly divisible 

by the number of pixels (a rather harsh solution). 

v   Have tasks process the complete row when they have responsibility for half or 

more of a row.

Since Task 1 was responsible for 16 and two thirds rows, it would process rows 0 

through 16. Task 2 would process 17-33, and Task 3 would process 34-49. The way 

to solve it is by creating blocks, with as many rows as there are servers. Each 

server is responsible for one row in each block (the offset of the row in the block is 

determined by the server’s task number). The fixed code is shown in the following 

example. Note that this is only part of the program. 

/************************************************************************ 

* 

* Ray trace program with bug corrected 

* 

* To compile: 

* mpcc -g -o rtrace_good rtrace_good.c 

* 

* 

* Description:
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* This is part of a sample program that partitions N tasks into 

* two groups, a collect node and N - 1 compute nodes. 

* The responsibility of the collect node is to collect the data 

* generated by the compute nodes. The compute nodes send the 

* results of their work to the collect node for collection. 

* 

* The bug in the original code was due to the fact that each processing 

* task determined the rows to cover by dividing the total number of 

* rows by the number of processing tasks.  If that division was not 

* integral, the number of pixels processed was less than the number of 

* pixels expected by the collection task and that task waited 

* indefinitely for more input. 

* 

* The solution is to allocate the pixels among the processing tasks 

* in such a manner as to ensure that all pixels are processed. 

* 

************************************************************************/ 

  

compute_pixels(int taskid, int numtask) 

{ 

  int  offset; 

  int  row, col; 

  int  pixel_data[2]; 

  MPI_Status stat; 

  

  printf("Compute #%d: checking in\n", taskid); 

  

  First_Line = (taskid - 1); 

     /* First n-1 rows are assigned */ 

     /* to processing tasks         */ 

  offset = numtask - 1; 

     /* Each task skips over rows   */ 

     /* processed by other tasks    */ 

  

     /* Go through entire pixel buffer, jumping ahead by numtask-1 each time */ 

for (row = First_Line; row < PIXEL_HEIGHT; row += offset) 

  for ( col = 0; col < PIXEL_WIDTH; col ++) 

    { 

      pixel_data[0] = row; 

      pixel_data[1] = col; 

      MPI_Send(pixel_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD); 

    } 

  printf("Compute #%d: done sending. ", taskid); 

  return; 

} 

This program is the same as the original one except for the loop in 

compute_pixels. Now, each task starts at a row determined by its task number and 

jumps to the next block on each iteration of the loop. The loop is terminated when 

the task jumps past the last row (which will be at different points when the 

number of rows is not evenly divisible by the number of servers). 

What’s the hang up? 

The symptom of the problem in the rtrace_bug program was a hang. Hangs can 

occur for the same reasons they occur in serial programs (in other words, loops 

without exit conditions). They may also occur because of message passing 

deadlocks or because of some subtle differences between the parallel and 

sequential environments. 

Using the debugger to analyze sometimes indicates that the source of a hang is a 

message that was never received, even though it is a valid one, and even though it 

appears to have been sent. In these situations, the problem is probably due to lost 

messages in the communication subsystem. This is especially true if the lost 
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message is intermittent or varies from run to run. This is either the program’s fault 

or the environment’s fault. Before investigating the environment, you should 

analyze the program’s safety with respect to MPI. A safe MPI program is one that 

does not depend on a particular implementation of MPI. You should also examine 

the error logs for evidence of repeated message transmissions (which usually 

indicate a network failure). 

Although MPI  specifies many details about the interface and behavior of 

communication calls, it also leaves many implementation details unspecified (and 

it does not just omit them, it specifies that they are unspecified.) This means that 

certain uses of MPI may work correctly in one implementation and fail in another, 

particularly in the area of how messages are buffered. An application may even 

work with one set of data and fail with another in the same implementation of 

MPI. This is because, when the program works, it has stayed within the limits of 

the implementation. When it fails, it has exceeded the limits. Because the limits are 

unspecified by MPI, both implementations are valid. MPI safety is discussed further 

in Chapter 6, “Mostly harmless,” on page 105. 

Once you have verified that the application is MPI-safe, your only recourse is to 

blame lost messages on the environment. If the communication path is IP, use the 

standard network analysis tools to diagnose the problem. Look particularly at 

mbuf usage. You can examine mbuf usage with the netstat command. Note that 

the netstat command is not a distributed command, which means that it applies 

only to the node on which you execute it. 

$ netstat -m 

If the mbuf line shows any failed allocations, you should increase the thewall 

value of your network options. You can see your current setting with the no 

command. Note that the no command is not a distributed command which means 

that it applies only to the node on which you execute it. 

$ no -a 

The value presented for thewall is in KBytes. You can use the no command to 

change this value. You will have to have root access to do this. For example, 

$ no -o thewall=16384 

sets thewall to 16 MBytes. 

Message passing between lots of remote hosts can tax the underlying IP system. 

Make sure that you look at all the remote nodes, not just the home node. Allow 

lots of buffers. If the communication path is user space (US), you will need to get 

your system support people involved to isolate the problem. 

Other hang ups 

One final cause for no output is a problem on the home node (POE is hung). 

Normally, a hang is associated with the remote hosts waiting for each other, or for 

a termination signal. POE running on the home node is alive and well, waiting 

patiently for some action on the remote hosts. If you type <Ctrl-c> on the POE 

console, you will be able to successfully interrupt and terminate the set of remote 

hosts. See IBM Parallel Environment for AIX: Operation and Use, Volume 1 for 

information on the poekill command. 

There are situations where POE itself can hang. Usually these situations are 

associated with large volumes of input or output. Remember that POE normally 

gets standard output from each node. If each task writes a large amount of data to 
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standard output, it may chew up the IP buffers on the machine running POE, 

causing it (and all the other processes on that machine) to block and hang. The 

only way to know that this is the problem is by seeing that the rest of the home 

node has hung. If you think that POE is hung on the home node, your only 

solution may be to kill POE there. Press <Ctrl-c> several times, or use the 

command kill -9. At present, there are only partial approaches to avoiding the 

problem. You can allocate lots of mbufs on the home node, and do not make the 

send and receive buffers too large. 

Bad output 

Bad output includes unexpected error messages. After all, who expects error 

messages or bad results (results that are not correct). 

Error messages 

You can track down the causes of error messages and correct them in parallel 

programs using techniques similar to those used for serial programs. One 

difference, however, is that you need to identify which task is producing the 

message, if it is not coming from all tasks. You can do this by setting the 

MP_LABELIO environment variable to yes, or using the -labelio yes command 

line parameter. Generally, the message will give you enough information to 

identify the location of the problem. 

You may also want to generate more error and warning messages by setting the 

MP_EUIDEVELOP environment variable to yes when you first start running a 

new parallel application. This will give you more information about the things that 

the message passing library considers errors or unsafe practices. 

Bad results 

You can track down bad results and correct them in a parallel program in a 

fashion similar to that used for serial programs. The process in the previous 

debugging exercise can be more complicated because the processing and control 

flow on one task may be affected by other tasks. In a serial program, you can 

follow the exact sequence of instructions that were executed and observe the 

values of all variables that affect the control flow. However, in a parallel program, 

both the control flow and the data processing on a task may be affected by 

messages sent from other tasks. For one thing, you may not have been watching 

those other tasks. For another, the messages could have been sent a long time ago. 

Therefore, it is very difficult to correlate a message that you receive with a 

particular series of events. 

Debugging and threads 

So far, the discussion has been about debugging normal old serial or parallel 

programs, but you may want to debug a threaded program (or be aware of the 

threads used in the library). If this is the case, there are a few things you should 

consider. 

Before you do anything else, you first need to understand the environment in 

which you are working. You have the potential to create a multi-threaded 

application, using a multi-threaded library, that consists of multiple distributed 

tasks. As a result, finding and diagnosing bugs in this environment may require a 

different set of debugging techniques that you are not used to using. Here are 

some things to remember. 

When you attach to a running program, all the tasks you selected in your program 

will be stopped at their current points of execution. Typically, you want to see the 

 

60 



current point of execution of your task. This stop point is the position of the 

program counter, and may be in any one of the many threads that your program 

may create OR any one of the threads that the MPI  library creates. With 

non-threaded programs, it was adequate to just travel up the program stack until 

you reached your application code (assuming you compiled your program with 

the -g option). But with threaded programs, you now need to traverse across other 

threads to get to your thread(s) and then up the program stack to view the current 

point of execution of your code. 

The MPI  library itself will create a set of threads to process message requests. 

When you attach to a program that uses the MPI library, all of the threads 

associated with the POE job are stopped, including the ones created and used by 

MPI. 

For more information on the threaded MPI library, see IBM Parallel Environment for 

AIX: MPI  Programming Guide. 
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Chapter  4.  Is  it efficient  

So far, the discussions have been about getting PE working, creating message 

passing parallel programs, debugging problems, and debugging parallel 

applications. When you get a parallel program running so that it gives us the 

correct answer, you are done. Not necessarily. In this area, parallel programs are 

just like sequential programs; just because they give you the correct answer does 

not mean they are doing it in the most efficient manner. For a program that is 

relatively short running or is run infrequently, it may not matter how efficient it is. 

For a program that consumes a significant portion of the system resources, you 

need to make the best use of those resources by tuning its performance. 

Tuning  the performance of a parallel application 

There are two approaches to tuning the performance of a parallel application. 

v   You can tune a sequential program and then parallelize it. 

With this approach, the process is the same as for any sequential program, and 

you use the same tools; prof, gprof, and tprof. In this case, the parallelization 

process must take performance into account, and should avoid anything that 

adversely affects it. 

v   You can parallelize a sequential program and then tune the result. With this 

approach, the individual parallel tasks are optimized together, taking both 

algorithm and parallel performance into account simultaneously.

Both  of these techniques yield comparable results. The difference is in the tools 

that are used in each of the approaches, and how they are used. 

Note:  It may not be possible to use some tools in a parallel environment in the 

same way that they are used in a sequential environment. This may be 

because the tool requires root authority and POE restricts the root ID from 

running parallel jobs. Or, it may be because, when the tool is run in parallel, 

each task attempts to write into the same files, thus corrupting the data. 

tprof is an example of a tool that falls into both of these categories. 

With either approach, you use the standard sequential tools in the traditional 

manner. When you tune an application and then parallelize it, observe the 

communication performance, how it affects the performance of each of the 

individual tasks, and how the tasks affect each other. For example, does one task 

spend a lot of time waiting for messages from another? If so, perhaps you need to 

rebalance the workload. Or if a task starts waiting for a message long before it 

arrives, perhaps it could do more algorithmic processing before waiting for the 

message. When an application is made parallel and then tuned, you need a way to 

collect the performance data in a manner that includes both communication and 

algorithmic information. That way, if the performance of a task needs to be 

improved, you can decide between tuning the algorithm or tuning the 

communication. 

This section will not deal with standard algorithmic tuning techniques. Rather, the 

discussion will be about some of the ways PE can help you tune the parallel nature 

of the application, regardless of the approach you take. 
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How much communication is enough? 

A significant factor that affects the performance of a parallel application is the 

balance between communication and workload. In some cases, the workload is 

unevenly distributed or is duplicated across multiple tasks. Ideally, you would like 

perfect balance among the tasks, but doing so may require additional 

communication that actually makes the performance worse. Sometimes it is better 

to have all the tasks do the same thing rather than have one do it and try to send 

the results to the rest. 

An example of where the decision is not so clear cut is the matrix inversion 

program in Chapter 2, “Message passing,” on page 21. In that section you saw how 

to start making the sequential program into a parallel one by distributing the 

element calculation once the determinant was found. That start is actually a poor 

one. Part of the program is shown below. 

/************************************************************************* 

* 

* Matrix Inversion Program - First parallel implementation 

* 

* To compile: 

* mpcc -g -o inverse_parallel inverse_parallel.c 

* 

*************************************************************************/ 

     { 

/* There are only 2 unused rows/columns left */ 

  

/* Find the second unused row */ 

for(row2=row1+1;row2<size;row2++) 

  { 

    for(k=0;k<depth;k++) 

      { 

        if(row2==used_rows[k]) break; 

      } 

    if(k>=depth)  /* this row is not used */ 

      break; 

  } 

assert(row2<size); 

  

/* Find the first unused column */ 

for(col1=0;col1<size;col1++) 

  { 

    for(k=0;k<depth;k++) 

      { 

         if(col1==used_cols[k]) break; 

      } 

    if(k>=depth)  /* this column is not used */ 

      break; 

  } 

assert(col1<size); 

  

/* Find the second unused column */ 

for(col2=col1+1;col2<size;col2++) 

  { 

    for(k=0;k<depth;k++) 

      { 

        if(col2==used_cols[k]) break; 

      } 

    if(k>=depth)  /* this column is not used */ 

      break; 

  } 

assert(col2<size); 

  

/* Determinant = m11*m22-m12*m21 */ 

return matrix[row1][col1]*matrix[row2][col2]-matrix
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[row1][col2]*matrix[row2][col1]; 

        } 

  

        /* There are more than 2 rows/columns in the matrix being processed  */ 

        /* Compute the determinant as the sum of the product of each element */ 

        /* in the first row and the determinant of the matrix with its row   */ 

        /* and column removed                                                */ 

        total = 0; 

  

        used_rows[depth] = row1; 

        for(col1=0;col1<size;col1++) 

          { 

            for(k=0;k<depth;k++) 

              { 

                if(col1==used_cols[k]) break; 

              } 

             if(k<depth)  /* This column is used -- skip it*/ 

               continue; 

            used_cols[depth] = col1; 

            total += sign*matrix[row1][col1]*determinant(matrix,size,used_rows, 

            used_cols,depth+1); 

            sign=(sign==1)?-1:1; 

          } 

        return total; 

  

  } 

  

void print_matrix(FILE * fptr,float ** mat,int rows, int cols) 

{ 

  int i,j; 

  for(i=0;i<rows;i++) 

    { 

      for(j=0;j<cols;j++) 

        { 

          fprintf(fptr,"%10.4f ",mat[i][j]); 

        } 

      fprintf(fptr,"\n"); 

    } 

} 

  

float coefficient(float **matrix,int size, int row, int col) 

{ 

  float coef; 

  int * ur, *uc; 

  

  ur = malloc(size*sizeof(matrix)); 

  uc = malloc(size*sizeof(matrix)); 

  ur[0]=row; 

  uc[0]=col; 

  coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1); 

  return coef; 

} 

The suspicion is there is a problem, and that it is not a communication bottleneck, 

but rather a computation problem. To illustrate this, compile the parallel matrix 

inversion program, inverse_parallel.c, with the -pg flag. Next, run gprof on the 

monitor files for tasks 0-7 ( task 8 just collects the results so its performance is not 

a concern). 

 $ mpcc -g -pg -o inverse_parallel inverse_parallel.c 

 $ inverse_parallel -procs 9 

 $ gprof inverse_parallel gmon.out.[0-7] > gprof.out 

  

You want to look in the output file (pick you favorite viewer, such as vi), and to 

get to the part we are really interested in, search for cumulative. In this case gprof 
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produces a lot of output, so we will be skipping over a lot of it, and focusing on 

just a portion of what you will really see. What you are interested in is: 

 

You see that you spend a lot of time in determinant, first to compute the 

determinant for the entire matrix and then in computing the determinant as part of 

computing the element values. That seems like a good place to start optimizing. 

This algorithm computes the determinant of a matrix by using the determinants of 

the submatrices formed by eliminating the first row and a column from the matrix. 

The result of this recursion is that, eventually, the algorithm computes the 

determinants of all the 2 by 2 matrixes formed from the last two rows and each 

combination of columns. This is not so bad, but the same 2 by 2 matrix formed in 

this manner is computed n-2 times (once for each column except the 2 from which 

it is formed) each time a determinant is computed and there are n*(n-1)/2 such 

matrixes. If the 2 by 2 matrix determinants can be captured and reused, it would 

provide some improvements. 

Not only is this a good approach for optimizing a sequential program, but 

parallelism capitalizes on this approach as well. Because the 2 by 2 determinants 

are independent, they can be computed in parallel and distributed among the 

tasks. Each task can take one of the columns and compute the determinants for all 

the matrixes formed by that column and subsequent columns. Then the 

determinants can be distributed among all the tasks and used to compute the 

inverse elements. 

The following example shows only the important parts of the program. 

Here is the call to partial determinant: 

/************************************************************************ 

* 

* Matrix Inversion Program - First optimized parallel version 

* 

* To compile: 

* mpcc -g -o inverse_parallel_fast inverse_parallel_fast.c 

* 

************************************************************************/ 

  

  /* Compute determinant of last two rows */ 

  pd = partial_determinant(matrix,rows); 

  /* Everyone computes the determinant (to avoid message transmission) */ 

  determ=determinant(matrix,rows,used_rows,used_cols,0,pd); 

And here is the partial determinant call: 

/* Compute the determinants of all 2x2 matrixes created by combinations */ 

/* of columns of the bottom 2 rows                                      */ 

/* partial_determinant[i] points to the first determinant of all the 2x2*/ 

/* matrixes formed by combinations with column i.  There are n-i-1     */

%   cumulative   self            self     total  

time    seconds  seconds   calls  ms/call  ms/call  name  

 38.5     2.22      2.22                        ._lapi_shm_dispatcher  [1]  

 26.3    3.74      1.52     72   21.11    21.11   .determinant  [2]  

 16.3    4.68      0.94                         ._lapi_dispatcher  [6]  

  5.7    5.01      0.33                         ._is_yield_queue_empty  [7]  

  5.0    5.30      0.29                         .LAPI__Msgpoll  [8]  

  2.9    5.47      0.17                         .__divu64  [9]  

  0.9    5.52      0.05                         .__mcount  [10]  

  0.7    5.56      0.04                         ._lapi_shm_setup  [11]  

  0.5    5.59      0.03                         .time_base_to_time  [12]  

  0.3    5.61      0.02                         .__mcount  [13]  

  0.3    5.63      0.02                         .read_real_time  [15]  

  0.2    5.64      0.01    216     0.05    0.05    .std::_LFS_ON::locale::id::id(unsigned  long)  [16]  

  0.2    5.65      0.01     32    0.31    0.31    ._alloc_pthread  [17]  

  0.2    5.66      0.01     24    0.42    0.42    .pthread_exit  [32]  
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/* such matrixes (duplicates are eliminated)                           */ 

float **partial_determinant(float **matrix,int size) 

{ 

  int col1, col2, row1=(size-2), row2=(size-1); 

  int i,j,k; 

  int terms=0; 

  float **partial_det,  /* pointers into the 2x2 determinants*/ 

                        /* by column                         */ 

        *buffer,        /* the 2x2 determinants              */ 

        *my_row;        /* the determinants computed by this */ 

                        /* task                              */ 

  int * recv_counts, * recv_displacements; /* the size and offsets for the */ 

                                        /* determinants to be received from*/ 

                                           /* the other tasks        */ 

  

  terms = (size-1)*(size)/2;  /* number of combinations of columns */ 

  

  /* Allocate work areas for partial determinants and message passing, */ 

  partial_det = (float **) malloc((size-1)*sizeof(*partial_det)); 

  buffer      = (float *)  malloc(terms*sizeof(buffer)); 

  my_row      = (float *)  malloc((size-me-1)*sizeof(my_row)); 

  recv_counts = (int *)    malloc(tasks*sizeof(*recv_counts)); 

  recv_displacements = (int *) malloc(tasks*sizeof(*recv_displacements)); 

  

  /* the tasks after the column size - 2 don’t have to do anything */ 

  for(i=tasks-1;i>size-2;i--) 

    { 

        recv_counts[i]=0; 

        recv_displacements[i]=terms; 

    } 

  /* all the other tasks compute the determinants for combinations */ 

  /* with its column                                               */ 

  terms--; 

  for(i=size-2;i>=0;i--) 

    { 

        partial_det[i]=&(buffer[terms]); 

        recv_displacements[i]=terms; 

        recv_counts[i]=size-i-1; 

        terms-=(size-i); 

    } 

  for(j=0;j<(size-me-1);j++) 

    { 

      my_row[j]=matrix[row1][me]*matrix[row2][me+j+1] 

      -matrix[row1][me+j+1]*matrix[row2][me]; 

    } 

  

  /* Now everybody sends their columns determinants to everybody else */ 

  /* Even the tasks that did not compute determinants will get the    */ 

  /* results from everyone else (doesn’t sound fair, does it?)        */ 

  MPI_Allgatherv(my_row, 

                 ((size-me-1)>0)?(size-me-1):0, 

                 MPI_REAL, 

                 buffernts, 

                 recv_displacements, 

                 MPI_REAL,MPI_COMM_WORLD); 

  

  /* Free up the work area and return the array of pointers into the */ 

  /* determinants                                                    */ 

  free(my_row); 

  return partial_det; 

} 

The question is whether the cost of the additional communication offsets the 

advantage of computing the 2 by 2 determinants in parallel. In this example, it 

may not be because the small message sizes (the largest is three times the size of a 

float). As the matrix size increases, the cost of computing the 2 by 2 determinants 
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will increase with the square of n (the size of the matrix) but the cost of computing 

the determinants in parallel will increase with n (each additional dimension 

increases the work of each parallel task by only one additional 2 by 2 matrix) so, 

eventually, the parallel benefit will offset the communication cost. 

Tuning  the performance of threaded programs 

There are some things you need to consider when you want to get the maximum 

performance out of the program. 

v   Two environment variables affect the overhead of an MPI  call in the threaded 

library: 

–   MP_SINGLE_THREAD=[no|yes] 

–   MP_EUIDEVELOP=[no|yes|deb|min]

A program that has only one MPI  communication thread may set the environment 

variable MP_SINGLE_THREAD=yes before calling MPI_INIT. This will avoid 

some locking which is otherwise required to maintain consistent internal MPI state. 

The program may have other threads that do computation or other work, as long 

as they do not make MPI calls. Note that the implementation of MPI I/O and MPI 

one-sided communication is thread-based, and that these facilities may not be used 

when MP_SINGLE_THREAD is set to yes. 

The MP_EUIDEVELOP environment variable lets you control how much checking 

is done when you run the program. Eliminating checking altogether (setting 

MP_EUIDEVELOP to min) provides performance (latency) benefits, but may cause 

critical information to be unavailable if the executable hangs due to message 

passing errors. For more information on MP_EUIDEVELOP and other POE 

environment variables, see IBM Parallel Environment for AIX: Operation and Use, 

Volume 1. 

v   Programs (threaded or non-threaded) that use the threaded MPI  library can be 

profiled by using the -pg flag on the compilation and linking step of the 

program. 

The profile results (gmon.out) will contain only a summary of the information 

from all the threads per task together. Viewing the data using gprof or Xprofiler 

is limited to showing only this summarized data on a per task basis, not per 

thread.

Note:  AIX supports thread profiling. There are changes to the format, content, 

and naming of the profiling output files produced by prof and gprof. For 

additional details, see IBM Parallel Environment for AIX: Operation and Use, 

Volume 2.

For more information on profiling, see AIX 5L Version 5.2: Performance Tools Guide 

and Reference. 

Why is this so slow? 

You have a serial program and you want it to execute faster. In this situation, it is 

best not to jump into parallelizing the program right away. Instead, you start by 

tuning the serial algorithm. 

The program in this next example approximates the two-dimensional Laplace 

equation and uses a 4-point stencil. 
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The algorithm is very straightforward. For each array element, you will assign that 

element the average of the four elements that are adjacent to it (except the rows 

and columns that represent the boundary conditions of the problem). 

You may find it helpful to refer to In Search of Clusters by Gregory F. Pfister for 

more information on this problem and how to parallelize it. 

The 4-point stencil program is central to this entire section, so you may want to 

spend some time to understand how it works. 

The first step is to compile the serial program. However, before you do this, be 

sure you have a copy of stencil.dat in the program directory, or run the init 

program to generate one. Once you have done this, you can compile the serial 

program with the xlf command: 

$ xlf -O2 naive.f -o naive 

Next, you need to run the program and collect some information to see how it 

performs. You can use the UNIX time command to do this: 

$ time naive 

The following table shows the result: 

 Program Name  Tasks Wallclock Time Array Size per Task 

naive 1 (single processor) 11min. 1.94sec. 1000x1000
  

The figures in the table above, as well as the others in this section, provide results 

that were gathered on an IBM RS/6000 SP. the execution time may vary, 

depending on the system you are using. 

Looking at these results, there is room for improvement, especially if you scale the 

problem to a much larger array. So, how can you improve the performance? 

Profile it 

The first step in tuning the program is to find the areas within the program that 

execute most of the work. Locating these compute-intensive areas within the 

program lets you focus on the areas that give you the most benefit from tuning. 

The best way to find them is to profile the program. 

Profile the program using Xprofiler 

When you profile your program, you need to compile it with the -pg flag to 

generate profiling data. Note that the -O2 flag is a capital letter O followed by the 

number 2: 

$ xlf -pg -O2 naive.f -o naive 

The -pg flag compiles and links the executable so that when you run the program, 

the performance data gets written to output. 

Now that you have compiled your program with the -pg flag, run it again to see 

what you get: 

$ naive 

This generates a file called gmon.out in the current working directory. you can 

look at the contents of gmon.out with the Xprofiler profiling tool. This tool is part 
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of the AIX operating system. For more information about Xprofiler, see AIX 5L 

Versionee5.2: Performance Tools Guide and Reference. 

AIX supports thread profiling and, in doing so, has changed the format and name 

of the profiling output files. For more information on the default profiling output 

file names, see IBM Parallel Environment for AIX: Operation and Use, Volume 2. 

To start Xprofiler, you will use the xprofiler command, like, this: 

$ xprofiler naive gmon.out 

The Xprofiler main window appears, and in this window you will see the function 

call tree. The function call tree is a graphical representation of the functions within 

the application and their inter-relationships. Each function is represented by a 

green, solid-filled box called a function box. In simple terms, the larger this box, the 

greater percentage of the total running time it consumes. So, the largest box 

represents the function doing the most work. The calls between functions are 

represented by blue arrows drawn between them call arcs. The arrowhead of the 

call arc points to the function that is being called. The function boxes and call arcs 

that belong to each library in the application appear within a fenced-in area called 

a cluster box. For the purposes of this section, you will remove the cluster boxes 

from the display. 

PLACE 

the mouse cursor over the Filter menu. 

CLICK 

the left mouse button 

 The Filter menu appears. 

SELECT 

the Hide All Library Calls option. 

 The library calls disappear from the function call tree. 

PLACE 

the mouse cursor over the Filter menu. 

CLICK 

the left mouse button. 

 The Filter menu appears. 

SELECT 

the Uncluster Functions option. 

 The functions expand to fill the screen.

 Locate the largest function box in the function call tree. You can get the name of 

the function by looking a little more closely at it: 

PLACE 

the mouse cursor over the View menu. 

 The View menu appears. 

PLACE 

the mouse cursor over the Overview option. 

CLICK 

the left mouse button. 

 The Overview Window appears.
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The Overview Window includes a light blue highlight area that lets you zoom in 

and out of specific areas of the function call tree. To take a closer look at the 

largest function of naive: 

PLACE 

the mouse cursor over the lower left corner of the blue highlight area. You 

know that the cursor is over the corner when the cursor icon changes to a 

right angle with an arrow pointing into it. 

PRESS and HOLD 

the left mouse button, and drag it diagonally upward and to the right 

(toward the center of the sizing box) to shrink the box. When it is about 

half its original size, release the mouse button. 

 The corresponding area of the function call tree, in the main window, 

appears magnified.

 If the largest function was not within the highlight area, it did not get magnified. If 

this was the case, you will need to move the highlight area: 

PLACE 

the cursor over the highlighted area. 

PRESS and HOLD 

the left mouse button. 

  

Figure 2. Overview window
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DRAG 

the highlight area, using the mouse, and place it over the largest function. 

Release the mouse button. 

 The largest function appears magnified in the function call tree.

 Just below the function is its name, so you can now see that most of the work is 

being done in the compute_stencil() subroutine. This subroutine is where you 

should focus your attention. 

It is important to note that the programming style you choose can influence the 

program’s performance just as much as the algorithm you use. In some cases, this 

will be clear by looking at the data you collect when the program executes. In 

other cases, you will know this from experience. There are many books that cover 

the subject of code optimization, many of which are extremely complex. 

The goal here is not to use every optimization trick but to focus on some basic 

techniques that can produce the biggest performance boost for the time and effort 

spent. 

Profile the program using the Performance Collection Tool 

The best way to begin is to look at your use of memory (including hardware data 

cache) as well as what you are doing in the critical section of your code. To do 

this, use the Performance Collection Tool to count the number of cache misses. The 

fewer the number of cache misses, the better the performance of your code will be. 

When you profile your program using PCT, you need to compile it with the 

required -g flag to generate profiling data. You can also include the optional -o flag 

to specify an output file: 

$ xlf -g -o naive naive.f 

Once you have generated the profiling data, you can use PCT to examine the data 

in detail. 

TYPE pct to start up the Performance Collection Tool graphical user interface. 

From the main window, you are prompted to either load and start an 

application or connect to one that is already running. 

SELECT 

the Load a new application option and click on OK. 

 The Load Application window opens and you are prompted to select the 

application you want to load.
 

 

72 



CLICK 

the Browse button next to the Executable Name field and select the naive 

program and identify it as a serial application. 

CLICK 

the Load button to load the application. 

 The Probe Data Selection window opens.
 

  

Figure 3. Load application window
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SELECT 

the type of data you want to collect. Select the Hardware and operating 

system profiles option. 

SPECIFY 

the directory and base name for the output file and click OK. Note that the 

base name you specify will have a .cdf suffix and a task number suffix 

appended to it. 

 The main window comes to the foreground and the source tree for the 

naive executable is expanded.
 

  

Figure 4. Probe data selection window

 

74 



SELECT 

the naive task from the Process List. 

SELECT 

the naive_f function to expand it. 

SELECT 

the compute_stencil() subroutine from the naive.f file in the source tree. 

SELECT 

the hardware counter probe to collect cache information. You will want to 

select the L1 option to display level one information. For example, the 

option you select may look like: 

2 L1_TLB 

 

  

Figure 5. Source tree window
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CLICK 

the Add button. If you look at the compute_stencil() subroutine in the 

source tree, you will see that a Probe ID has been added. 

SELECT 

Application → Start from the menu bar to run the program. 

 When the application program has finished executing, the Target 

Application Exited window appears. Click on the OK button to exit PCT.

Profile the program using the Profile Visualization Tool 

Now that you have collected your data on cache misses, you want to be able to 

view it and you can do that using the Profile Visualization Tool (PVT). PCT 

generates a NetCDF file (Network Common Data File) which you can view using 

PVT. 

TYPE pvt to start up the Profile Visualization Tool. 

SELECT 

File → Load from the menu bar to select and load the CDF file. Locate the 

CDF file that was generated from PCT from the list of files that appears 

and select it. 

CLICK 

the Open button to load the file. 

SELECT 

View → Expand All to expand the tree to view the function 

compute_stencil()
 

  

Figure 6. Process list, source tree, and probe selection window
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CLICK 

the Function Call Count option in the pulldown menu located in the top 

right side of the Data View area. Select the Data cache miss option to view 

the number of cache misses for the function compute_stencil. The amount 

of L1 cache misses for each function are listed in the Data View window 

area.

 Let us look at your code: 

iter_count = 0 

100  CONTINUE 

local_err = 0.0 

iter_count = iter_count + 1 

  

DO i=1, m-2 

DO j=1, n-2 

old_value = stencil(i,j) 

  

stencil(i,j) = ( stencil(i-1, j ) + 

1                          stencil(i+1, j ) + 

2                          stencil( i ,j-1) + 

3                          stencil( i ,j+1) ) / 4 

local_err = MAX(local_err,ABS(old_value-stencil(i,j))) 

END DO 

END DO 

IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, local_err 

IF (close_enough.LT.local_err) GOTO 100 

PRINT *, "convergence reached after ", iter_count, " iterations." 

By looking at the two DO loops above, you can see that your compute subroutine 

is traversing your array first across rows, and then down columns. This program 

must have been written by some alien being from the planet C because Fortran 

arrays are stored in column major form rather than row major form. 

The first improvement you should make is to reorder your loops so that they 

traverse down columns rather than across rows. This should provide a reasonable 

  

Figure 7. Data view area
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performance boost. Note that it is not always possible to change the order of loops; 

it depends on the data referenced within the loop body. As long as the values used 

in every loop iteration do not change when the loops are reordered, then it is safe 

to change their order. In the example it was safe to reorder the loops, so here is 

what the revised program looks like. Notice that only the order of the loops was 

swapped. 

  

DO j=1, n-2 

DO i=1, m-2 

old_value = stencil(i,j) 

The second thing you should look at is the type of work that is being done in your 

loop. If you look carefully, you will notice that the MAX  and ABS subroutines are 

called in each iteration of the loop, so you should make sure these subroutines are 

compiled inline. Because these subroutines are intrinsic to your Fortran compiler, 

this is already done for us. 

$ xlf -O2 reordered.f -o reordered 

In the last scenario, you ran the naive program. You should now run the same 

scenario using the reordered program to more accurately compare the cache 

misses. You should see that the number of cache misses for reordered has 

decreased, thereby increasing the program’s efficiency. 

If you run the previous scenario again using the reordered subroutine, you notice 

that the cache misses are lower:
 

As before, you need to time your run, like this: 

$ time reordered 

  

Figure 8. Data view area (fewer cache misses showing)
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And here are the results as compared to the original naive version: 

 Program Name  Tasks Wallclock Time Array Size per Task 

naive 1 (single processor) 11min. 1.94sec. 1000x1000 

reordered 1 (single processor) 5min. 35.38sec. 1000x1000
  

As you can see by the results, with just a small amount of analysis, you doubled 

performance. And you have not even considered parallelism yet. However, this 

still is not the performance that you want, especially for very large arrays (the 

CPU time is good, but the elapsed time is not). 

Parallelize it 

Now feeling confident that your serial program is reasonably efficient, you should 

look at ways to parallelize it. There are many ways to parallelize a program, but 

the two most commonly used techniques are functional decomposition and data 

decomposition. You will focus on data decomposition. 

How do youI decompose your data? Start by dividing the work across the 

processors. Each task will compute a section of an array, and each program will 

solve 1/n of the problem when using n processors. 

Here is the algorithm: 

v   First, divide up the array space across each processor (each task will solve a 

subset of the problem independently). 

v   Second, loop: 

–   exchange shared array boundaries 

–   solve the problem on each sub array 

–   share a global max

until the global max is within the tolerance.

The section of code for your algorithm looks like this: 

      iter_count = 0 

 100  CONTINUE 

         local_err = 0.0 

         iter_count = iter_count + 1 

         CALL exchange(stencil, m, n) 

  

         DO j=1, n-2 

            DO i=1, m-2 

               old_value = stencil(i,j) 

  

               stencil(i,j) = ( stencil(i-1, j ) + 

     1                          stencil(i+1, j ) + 

     2                          stencil( i ,j-1) + 

     3                          stencil( i ,j+1) ) / 4 

  

               local_err = MAX(local_err,ABS(old_value-stencil(i,j))) 

           END DO 

        END DO 

        CALL MPI_Allreduce(local_err, global_error, 1, MPI_Real, 

     1      MPI_Max, MPI_Comm_world, ierror) 

  

        IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_error 

      IF (close_enough.LT.global_error) GOTO 100 

      PRINT *, "convergence reached after", iter_count, "iterations." 

Now, let us compile your parallelized version: 
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$ mpxlf -02 chaotic.f -o chaotic 

Next, let us run it and look at the results: 

$ export MP_PROCS=4 

$ export MP_LABELIO=yes 

$ time poe chaotic 

 Program Name  Tasks Wallclock Time Array Size per Task 

naive 1 (single processor) 11min. 1.94sec. 1000x1000 

reordered 1 (single processor) 5min. 35.38sec. 1000x1000 

chaotic 4 (processors) 2min. 4.58sec. 500x500
  

The previous results show that you more than doubled performance by 

parallelizing your program. Since you divided up the work between four 

processors, you expected your program to execute four times faster. Why  did it not 

do so? This could be due to one of several factors that tend to influence overall 

performance: 

v   Message passing overhead 

v   Load imbalance 

v   Convergence rates

Right now you need to ask something more important; does the parallel program 

get the same answer? 

The algorithm you chose gives us a correct answer, but as you will see, it does not 

give us the same answer as your serial version. In practical applications, this may 

be acceptable. In fact, it is very common for this to be acceptable in Gauss/Seidel 

chaotic relaxation. But what if it is not acceptable? How can you tell? What 

methods or tools can be used to help us diagnose the problem and find a solution? 

Wrong  answer! 

You have now invested all this time and energy in parallelizing your program 

using message passing, so why can you not get the same answer as the serial 

version of the program? This is a problem that many people encounter when 

parallelizing applications from serial code and can be the result of algorithmic 

differences, program defects, or environment changes. 

Both the serial and parallel versions of your program give correct answers based 

on the problem description, but that does not mean they both cannot compute 

different answers! Let us examine the problem more closely by running the 

chaotic.f program under the pdbx debugger: 

$ pdbx chaotic 

By looking at the main program, you can see that both versions of your program 

(reorder.f and chaotic.f) read in the same data file as input. And after you initialize 

your parallel environment, you can see that the compute_stencil subroutine 

performs exactly the same step to average stencil cells. 

Run each version under the control of the debugger to view and compare the 

results of your arrays. 

With this test, you will be looking at the upper left quadrant of the entire array. 

This allows us to compare the array subset on task 0 of the parallel version with 

the same subset on the serial version. 
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Here is the serial (reordered) array and parallel (chaotic) array stencils: 

 

 In chaotic.f, set a breakpoint within the call compute_stencil at line 168. 

pdbx(all) stop at 168 

all:[0] stop at "chaotic.f":168 

After you do this, all tasks should have a breakpoint set at line 168. 

Continue to execute the program up to the breakpoints. The program counter 

should now be positioned at line 168. 

pdbx(all) cont 

   0: initializing the array. 

   0: computing the stencil. 

   0: 100 1.397277832 

   1: 100 1.397277832 

   ... 

   ... 

   1:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1) 

   1:  168         PRINT *, "convergence reached after", iter_count, "iterations." 

   2:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1) 

   2:  168         PRINT *, "convergence reached after", iter_count, "iterations." 

   3:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1) 

   3:  168         PRINT *, "convergence reached after", iter_count, "iterations." 

   0:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1) 

   0:  168         PRINT *, "convergence reached after", iter_count, "iterations." 

Next, you will need to examine the array stencil. Switch the context to task 0, then 

print the 499th row of the array: 

pdbx print stencil(499,1..10) 

  

0:(499,1) = 8.00365734 

0:(499,2) = 15.9983482 

0:(499,3) = 23.9780369 

0:(499,4) = 31.9367294 

0:(499,5) = 39.8684845 

0:(499,6) = 47.7674294 

0:(499,7) = 55.6277695 

0:(499,8) = 63.4438095 

0:(499,9) = 71.2099609 

0:(499,10) = 78.9207458      ...

 

  

Figure 9. Serial and parallel array stencils
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Let us take a close look at the data of each. 

Here is the reordered data: 

(row, col) 

 (499,1)    (499,2)      (499,3)      (499,4)      (499,5)      (499,6) 

 8.00365734  15.9983482   23.9780369   31.9367294   39.8684845   47.7674294 

 (499,7)    (499,8)      (499,9)      (499,10) 

  55.6277695 63.4438095   71.2099609   78.9207458 

Here is the chaotic data: 

(row, col) 

(499,1)     (499,2)      (499,3)      (499,4)      (499,5)      (499,6) 

 8.04555225  16.0820065   24.1032257   32.1031151   40.0756378   48.0148277 

(499,7)     (499,8)      (499,9)      (499,10) 

 55.9147987  63.7697601   71.5740356   79.3220673 

After looking at the data, you see that your answers are definitely similar, but 

different. Why? You can blame it on a couple of things, but it is mostly due to the 

chaotic nature of your algorithm. By looking at how the average is computed in 

the serial version of your program, you can see that within each iteration of your 

loop, two array cells are from the old iteration and two are from new ones. 

 

 Another factor is that the north and west borders contain old values at the 

beginning of each new sweep for all tasks except the northwest corner. The serial 

version would use new values in each of those quadrants instead of old values. In 

the parallel version of your program, this is true for the interior array cells but not 

for your shared boundaries. For more information, you may find In Search of 

Clusters by Gregory F. Pfister, Prentice Hall, 1998, helpful. 

OK, now that you know why you get different answers, is there a fix? 

Here is the fix! 

So, you have a serial and parallel program that do not give you the same answers. 

One way to fix this is to skew the processing of the global array. You skew the 

processing of the array, computing the upper left process coordinate first, then each 

successive diagonal to the lower right process coordinate. Each process sends the 

east and south boundary to its neighboring task. 

 

  

Figure 10. How  the average is computed in a 4-point stencil
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The only thing you need to modify in your new program is the message passing 

sequence. Prior to the compute_stencil() subroutine, each task receives boundary 

cells from its north and west neighbors. Each task then sends its east and south 

boundary cells to its neighbor. This guarantees that the array cells are averaged in 

the same order as in your serial version. 

Here is your modified (skewed) parallel program. It is called skewed.f. 

      iter_count = 0 

 100  CONTINUE 

         local_err = 0.0 

         iter_count = iter_count + 1 

         CALL exch_in(stencil, m, n) 

  

         DO j=1, n-2 

            DO i=1, m-2 

               old_value = stencil(i,j) 

  

               stencil(i,j) = ( stencil(i-1, j ) + 

     1                          stencil(i+1, j ) + 

     2                          stencil( i ,j-1) + 

     3                          stencil( i ,j+1) ) / 4 

  

               local_err = MAX(local_err,ABS(old_value-stencil(i,j))) 

            END DO 

         END DO 

  

         CALL exch_out(stencil, m, n) 

         CALL MPI_Allreduce(local_err, global_error, 1, MPI_Real, 

     1      MPI_Max, MPI_Comm_world, ierror) 

  

         IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_error 

      IF (close_enough.LT.global_error) GOTO 100 

      PRINT *, "convergence reached after", iter_count, "iterations." 

Now let us run this new version and look at the results: 

$ time poe skewed 

 Program Name  Tasks Wallclock Time Array Size per Task 

naive 1 (single processor) 11min. 1.94sec. 1000x1000 

reordered 1 (single processor) 5min. 35.38sec. 1000x1000 

chaotic 4 (processors) 2min. 4.58sec. 500x500 

skewed 4 (processors) 4min. 41.87sec. 500x500
 

  

Figure 11. Sequence of array calculation

 

Chapter 4. Is it efficient 83



If you do the same array comparison again, you can see that you do indeed get the 

same results. But, of course, nothing is that easy. By correcting the differences in 

answers, you slowed down execution significantly, so the hidden cost here is time. 

Now what do you do? 

It is still not fast enough! 

You have obtained the right answers now, but you still want your program to 

move faster. Look at your new code to see what other techniques you can use to 

speed up execution. You will look at: 

v   Convergence rates (total number of iterations) 

v   Load balance 

v   Synchronization/communication time.

One way to further analyze your program is to use the Argonne National 

Laboratory’s Jumpshot tool. Using the PE Benchmarker traceTOslog2 utility, you 

can generate a SLOG2 file which you can then load into Jumpshot and use to 

determine how you can get your program to run faster. You are going to use 

Jumpshot to determine the effectiveness of the program’s message passing 

characteristics. 

The traceTOslog2 command, which is used to invoke the PE traceTOslog2 utility, is 

provided as part of the slog2 package available from Argonne National Laboratory. 

Step 1 - Determine which SLOG file to generate 

PE has the ability to produce two types of SLOG files (called SLOG and SLOG2), 

which have incompatible formats. IBM recommends you produce SLOG2 files, and 

the following examples illustrate this. The SLOG and SLOG2 files must be used 

with the correct utilities, according to these rules: 

v   SLOG files are created by the PE slogmerge utility, and are passed as input to 

the Jumpshot-3 utility. 

v   SLOG2 files are created by the PE traceTOslog2 utility and passed to the 

Jumpshot-4 utility.

Both Jumpshot-3 and Jumpshot-4 are public domain programs developed by 

Argonne National Laboratory. If you are not sure which one is installed on the 

system, ask the administrator. 

For information about SLOG2 files, see http://www-
unix.mcs.anl.gov/perfvis/software/log_format/index.htm#SLOG-2. For information 

about Jumpshot-4, see http://www-
unix.mcs.anl.gov/perfvis/software/viewers/index.htm#Jumpshot-4. For information 

about performance visualization from Argonne National Laboratory, see 

http://www.mcs.anl.gov/perfvis. 

Step 2 - Link program with the library that created MPI trace files 

Before analyzing the program using Jumpshot, you must link the program with the 

library that creates the MPI trace files used in the analysis. You do this by setting 

the MP_UTE environment variable to YES before compiling the program. 

Assuming you are using ksh, issue the command export MP_UTE=YES before 

compiling the program. Once you set the environment variable, it remains set for 

the duration of the login session. 

Step 3 - Gather performance data to AIX trace file 

TYPE pct to start up the Performance Collection Tool graphical user interface. 

From the Welcome window, you are prompted to either load and start an 

application or to connect to one that is already running. 
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SELECT 

the Load a new application option and click on OK. 

 The Load Application window opens and you are prompted to select the 

application you want to load. 

CLICK 

the Browse button next to the Executable Name field and select the 

chaotic program and identify it as an SPMD application. 

TYPE the POE arguments in the POE Arguments field. For example, the 

following argument specifies that you are running a 4–way parallel job: 

-procs 4 

CLICK 

the Load button to load the application. 

 The Probe Data Selection window opens. 

SELECT 

the type of data you want to collect. You want to select the MPI and user 

event traces option. 

SPECIFY 

the directory and base name for the output file. In this scenario, you are 

using the base name mytrace. Then click on OK. 

 The main window appears again with the source tree for the skewed 

executable expanded. 

SELECT 

Process → Select All Tasks 

SELECT 

the chaotic.f () subroutine from the source tree. 

SELECT 

the All MPI  events to collect trace information from the Probe Selection 

area on the side of the main window. 

CLICK 

the Add button. 

SELECT 

Application → Start from the menu bar to run the program. 

 When the application program has finished executing, the Target 

Application Exited window appears. Click on the OK button to exit PCT.

Step 4 - Convert AIX trace file to UTE interval files 

You have successfully collected data on message passing that now exists in a 

standard AIX trace file. To view and analyze the data using Jumpshot, you first 

need to convert the AIX trace file, using the uteconvert utility, into UTE (Unified 

Trace Environment) interval files. 

TYPE 

uteconvert mytrace 

where mytrace is the name of the trace file located in the current directory. 

mytrace is the prefix of the filename of the trace file. For example, if you 

had three tasks, the trace files would be named mytrace0, mytrace1, and 

mytrace2. This trace file has the same name as the file you specified for the 
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output earlier in your example. This command will convert the trace file 

from AIX trace format into the UTE interval file.

 Using the -o flag, you can optionally specify the name of the output UTE interval 

file. For example, to specify that the output file should be named outputfile, 

TYPE 

uteconvert -o outputfile mytrace 

To convert a set of AIX trace files into a set of UTE interval files, specify the 

number of files using the –n option, and supply the common ″base name″ prefix 

shared by all of the files. For example, to convert five trace files with the prefix 

mytraces into UTE interval files, copy the trace files into a common directory, 

TYPE 

uteconvert -n 5 mytraces 

Step 5 - Convert UTE interval files to SLOG2 files 

First, review the differences between SLOG and SLOG2 files, to ensure that you are 

using the correct PE conversion utility. This is explained in “Step 1 - Determine 

which SLOG file to generate” on page 84. 

Convert the UTE interval files into SLOG2 files using the traceTOslog2 utility. 

TYPE 

traceTOslog2 mytrace.ute 

where mytrace is the name of the UTE interval file.

The default output file name is the name of the input file, with .slog2 appended. If 

more than one input file is processed, an output file name must be specified. 

Use the -o option on the traceTOslog2 command to specify an output file name. 

For example: 

TYPE 

traceTOslog2 -o mergedtrc.slog mytrace.ute 

If you have multiple interval files, use –n to specify the number of files. 

Note:  If the traces were generated on a system without access to a switch, the -g 

flag is required when processing more than one input file. 

Step 6 - Run Jumpshot 

First, review the differences between SLOG and SLOG2 files, to ensure that you are 

using the correct PE conversion utility. This is explained in “Step 1 - Determine 

which SLOG file to generate” on page 84. Jumpshot is a public domain tool 

developed by Argonne National Laboratory and is not part of the PE Benchmarker 

Toolset. 

TYPE jumpshot to display the Jumpshot graphical user interface. (You have 

already downloaded the Jumpshot program available from Argonne 

National Laboratory). 

SELECT 

File → Select from the menu bar to load the SLOG2 file. Then select the 

SLOG2 file using the file selector dialog. 
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The window that appears displays the events of the program across a time 

line. To see detailed load balancing information, continue on with the next 

step. 

CLICK 

the Display button.

 Figure 12 illustrates the MPI functions occurring during the execution of the 

skewed program. Each box shown represents an MPI function and the arrows and 

lines represent communications calls between or within the functions. 

 

Figure 13 on page 88 shows the colors used to draw each interval. It also allows 

classes of intervals to be selected for display or searching, and to modify the colors 

of the intervals while viewing.
 

  

Figure 12. Jumpshot - skewed program

 

Chapter 4. Is it efficient 87



Step 7 - Analyze results, make changes, verify improvements 

By looking at the message passing, you can see some peculiar characteristics of 

your program. For instance, you notice that many of the processors waste time by 

waiting for others to complete before they continue. These kinds of characteristics 

lead us to the conclusion that you have introduced very poor load balancing across 

tasks. 

One way to alleviate this problem is to allow some processors to work ahead if 

they can deduce that another iteration will be necessary to find a solution. If a 

task’s individual max is large enough on one iteration to force the global max to 

reiterate across the entire array, that task may continue on the next iteration when 

its west and north boundaries are received. 

To illustrate this, use the pipelined.f program. 

      iter_count = 0 

      local_err = close_enough + 1 

 100  CONTINUE 

         iter_count = iter_count + 1

  

Figure 13. Jumpshot legend - skewed program
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CALL exch_in(stencil, m, n, local_err, global_err, 

     1      iter_count, close_enough) 

  

         IF (MAX(global_err,local_err).GE.close_enough) THEN 

            local_err = 0.0 

            DO j=1, n-2 

               DO i=1, m-2 

                  old_val = stencil(i,j) 

  

                  stencil(i,j) = ( stencil( i-1, j ) + 

     1                             stencil( i+1, j ) + 

     2                             stencil( i ,j-1) + 

     3                             stencil( i ,j+1) ) / 4 

  

                  local_err = MAX(local_err, ABS(old_val-stencil(i,j))) 

               END DO 

            END DO 

         END IF 

  

         CALL exch_out(stencil, m, n, global_err, local_err) 

  

         IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_err 

     IF (MAX(global_err,local_err).GE.close_enough) GOTO 100 

     PRINT *, "convergence reached after", iter_count, "iterations." 

As you can see on the following line: 

IF(MAX(global_err,local_err).GE.close_enough) THEN 

the program checks to see if the value of local_err is enough to allow this task to 

continue on the next iteration. These improvements to your program should result 

in improvement in your load balance as well. 

Now, let us run your new code to see how this new version fares. 

$ time poe pipelined 

 Program Name  Tasks Wallclock Time Array Size per Task 

naive 1 (single processor) 11min. 1.94sec. 1000x1000 

reordered 1 (single processor) 5min. 35.38sec. 1000x1000 

chaotic 4 (processors) 2min. 4.58sec. 500x500 

skewed 4 (processors) 4min. 41.87sec. 500x500 

pipelined 4 (processors) 2min. 7.42sec. 500x500
  

You were able to significantly improve the performance of your program and, at 

the same time, get a consistent, correct answer. 

You can further analyze the pipelined program’s load balance using Jumpshot. 

Figure 14 on page 90 illustrates that the load balance has improved in the 

pipelined program. This picture shows the communication patterns, but the 

interval between communications is so large that no detail can be seen in any 

sequence.
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Figure 15 on page 91 is a closer look at a single communication sequence to see the 

detail of that sequence.
 

  

Figure 14. Jumpshot - pipelined program showing improved load balance
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Figure 16 on page 92 shows the colors for the intervals in the following figures. It 

also allows classes of intervals to be selected for display or searching, and to 

modify the colors of the intervals while viewing.
 

  

Figure 15. Jumpshot - pipielined program communication sequence
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Figure 16. Jumpshot legend – pipelined program
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Tuning  summary 

Tuning the performance of a parallel application is no easier than tuning the 

performance of a sequential application. If anything, the parallel nature introduces 

another factor into the tuning equation. The approach PE has taken toward 

performance tuning is to provide tools which give you the information necessary 

to perform the tuning. 
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Chapter  5.  MPL  to MPI  

In earlier versions of PE, a messages passing library called MPL  was supported. 

This is not supported in PE Version 4. MPL programs must be converted to MPI 

programs. 

This section provides information that will help you translate a MPL parallel 

program into a program that conforms to the MPI standard. In particular, it tells 

you which MPI calls to substitute for the ones you use right now in MPL. In this 

section you will find informatrion to help you determine how to perform the 

equivalent or comparable function in MPI that you did with MPL. 

The syntax in this section is in C unless noted otherwise. For the corresponding 

Fortran MPI syntax, see IBM Parallel Environment for AIX: MPI Subroutine Reference. 

Other documents that may be helpful are A Message-Passing Interface Standard, 

Version 1.1 and MPI: A Message-Passing Interface Standard, Version 2.0, both of which 

are available from the University of Tennessee. 

Point-to-point communication 

SEND (Non-Blocking) 

 MPL/MPI Description 

MPL  mpc_send(&buf,msglen,dest,tag,&msgid) 

MPI  MPI_Isend(&buf,count,datatype,dest,tag,comm,&request)
  

RECEIVE (Non-Blocking) 

 MPL/MPI Description 

MPL  mpc_recv(&buf,msglen,&source,&tag,&msgid) 

MPI  MPI_Irecv(&buf,count,datatype,source,tag,comm,&request)
  

SEND (Blocking) 

 MPL/MPI Description 

MPL  mpc_bsend(&buf,msglen,dest,tag) 

MPI  MPI_Send(&buf,count,datatype,dest,tag,comm) 

Do not confuse MPI_Bsend with MPI_Send. MPI_Bsend is a BUFFERED send, not a BLOCKING  send.
  

RECEIVE (Blocking) 

 MPL/MPI Description 

MPL  mpc_brecv(&buf,msglen,&source,&tag,&nbytes) 

MPI  MPI_Recv(&buf,count,datatype,source,tag,comm,&status)
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SEND/RECEIVE (Blocking) 

 MPI/MPL  Description 

MPL mpc_bsendrecv(&sendbuf,sendlen,dest,tag,&recvbuf,recvlen,&source,&nbytes) 

MPI MPI_Sendrecv(&sendbuf,sendcount,sendtype,dest,tag,&recvbuf,recvcount,recvtype,source,tag,comm,&status)
  

STATUS  

 MPI/MPL Description 

MPL nbytes = mpc_status(msgid) 

MPI  MPI_Get_count(&status,MPI_BYTE,&nbytes)
  

WAIT 

 MPI/MPL Description 

MPL mpc_wait(&msgid,&nbytes) 

MPI  For a specific msgid: 

v   MPI_Wait(&request,&status)

For msgid = DONTCARE:  

v   MPI_Waitany(count,requests,&index,&status) 

v   The requests array must be maintained by the user.

For msgid = ALLMSG:  

v   MPI_Waitall(count,requests,statuses) 

v   The requests array must be maintained by the user.
  

TASK_SET  

 MPI/MPL Description 

MPL mpc_task_set(nbuf,stype) 

MPI  Truncation Mode: 

v   No MPI  equivalent. Can  be simulated by setting the error handler to ″return″: 

MPI_Errhandler_set(comm,MPI_ERRORS_RETURN); 

and testing the return code for receives, waits for receives, etc.: 

MPI_Error_class(rc,&class);if(class != MPI_ERR_TRUNCATE){ (handle error) } 

Develop/Run Mode: 

v   Enable DEVELOP  mode by setting MP_EUIDEVELOP environment variable to YES.

Buffer Mode: 

v   Use  MPI_Buffer_attach.
  

TASK_QUERY  

 MPI/MPL Description 

MPL mpc_task_query(nbuf,nelem,qtype) 
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MPI/MPL Description 

MPI  Truncation Mode: 

v   No MPI  equivalent

Message Type Bounds: 

lower bound = 0 

       upper bound: int *valptr; 

       MPI_Attr_get(MPI_COMM_WORLD,MPI_TAG_UB, &valptr,&flag) tag_up_bound = *valptr; 

Wildcards: 

ALLGRP  ( 0) 

MPI_COMM_WORLD  

DONTCARE  (-1) 

MPI_ANY_SOURCE, MPI_ANY_TAG 

ALLMSG (-2) 

No MPI  equivalent - see mpc_wait 

NULLTASK  (-3) 

MPI_PROC_NULL
  

ENVIRON 

 MPI/MPL Description 

MPL  mpc_environ(&numtask,&taskid) 

MPI  MPI_Comm_size(MPI_COMM_WORLD,&numtask)MPI_Comm_rank(MPI_COMM_WORLD,&taskid) 

  

STOPALL  

 MPI/MPL Description 

MPL  mpc_stopall(errcode) 

MPI  MPI_Abort(comm,errcode)
  

PACK  

 MPI/MPL  Description 

MPL mpc_pack(&inbuf,&outbuf,blklen,offset,blknum)  

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)position = 0;outcount = (blknum-1)*offset + blklen;  

MPI_Pack(&inbuf,blknum,datatype,&outbuf,outcount,&position,comm) 

  

UNPACK  

 MPI/MPL  Description 

MPL mpc_unpack(&inbuf,&outbuf,blklen,offset,blknum)  

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)position = 0; 

insize = (blknum-1)*offset + blklen;MPI_Unpack(&inbuf,insize,&position,&outbuf,blknum,datatype,comm) 
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VSEND (Blocking) 

 MPI/MPL  Description 

MPL mpc_bvsend(&buf,blklen,offset,blknum,dest,tag) 

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)MPI_Send(&buf,blknum,datatype,dest,tag,comm) 

  

VRECV (Blocking) 

 MPI/MPL Description 

MPL mpc_bvrecv(&buf,blklen,offset,blknum,&source,&tag,&nbytes) 

MPI  MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)MPI_Recv 

(&buf,blknum,datatype,source,tag,comm,&status) 

  

PROBE 

 MPI/MPL Description 

MPL mpc_probe(&source,&tag,&nbytes) 

MPI  MPI_Iprobe(source,tag,comm,&flag,&status) 

MPI  also provides a blocking version of probe: MPI_Probe, which can be substituted for an MPL probe in an 

infinite loop.
  

Collective communications 

BROADCAST 

 MPI/MPL Description 

MPL mpc_bcast(&buf,msglen,root,gid) 

MPI  MPI_Bcast(&buf,count,datatype,root,comm)
  

COMBINE 

 MPI/MPL Description 

MPL mpc_combine(&sendbuf,&recvbuf,msglen,func,gid) 

MPI  MPI_Allreduce(&sendbuf,&recvbuf,count,datatype,op,comm) 

See “Reduction functions” on page 101.
  

CONCAT  

 MPI/MPL  Description 

MPL mpc_concat(&sendbuf,&recvbuf,blklen,gid)  

MPI MPI_Allgather(&sendbuf,sendcount,sendtype,&recvbuf,recvcount,recvtype,comm)
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GATHER  

 MPI/MPL Description 

MPL  mpc_gather(&sendbuf,&recvbuf,blklen,root,gid) 

MPI  MPI_Gather(&sendbuf,count,datatype,&recvbuf,count,datatype,root,comm)
  

INDEX 

 MPI/MPL Description 

MPL  mpc_index(&sendbuf,&recvbuf,blklen,gid) 

MPI  MPI_Alltoall(&sendbuf,count,datatype,&recvbuf,count,datatype,comm)
  

PREFIX 

 MPI/MPL Description 

MPL  mpc_prefix(&sendbuf,&recvbuf,msglen,func,gid) 

MPI  MPI_Scan(&sendbuf,&recvbuf,count,datatype,op,comm) 

See “Reduction functions” on page 101.
  

REDUCE 

 MPI/MPL Description 

MPL  mpc_reduce(&sendbuf,&recvbuf,msglen,root,func,gid) 

MPI  MPI_Reduce(&sendbuf,&recvbuf,count,datatype,op,root,comm) 

See “Reduction functions” on page 101.
  

SCATTER  

 MPI/MPL Description 

MPL  mpc_scatter(&sendbuf,&recvbuf,blklen,root,gid) 

MPI  MPI_Scatter(&sendbuf,count,datatype,&recvbuf,count,datatype,root,comm)
  

SHIFT 

 MPI/MPL  Description 

MPL mpc_shift(&sendbuf,&recvbuf,msglen,step,flag,gid) 

MPI MPI_Cart_shift(comm,direction,step,&source,&dest)MPI_Sendrecv(&sendbuf,count,datatype,dest,tag, 

&recvbuf,count,datatype,source,tag,comm,&status); 

comm must  be a communicator  with a Cartesian topology.  See  MPI_CART_CREATE  in IBM Parallel Environment  for AIX:  MPI 

Subroutine  Reference
  

SYNC 

 MPI/MPL Description 

MPL  mpc_sync(gid) 

 

Chapter 5. MPL to MPI 99



MPI/MPL Description 

MPI  MPI_Barrier(comm)
  

GETLABEL 

 MPI/MPL Description 

MPL mpc_getlabel(&label,gid) 

MPI  No MPI  equivalent. Can  be simulated by creating a label attribute key with MPI_Keyval_create, 

attaching a label attribute to a communicator with MPI_Attr_put, and retrieving it with MPI_Attr_get.
  

GETMEMBERS 

 MPI/MPL  Description 

MPL mpc_getmembers(&glist,gid) 

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)MPI_Group_size(group_world,&gsize)for(i=0;i<gsize;i++) 

  ranks  ]i[ = i;MPI_Group_translate_ranks(group,gsize,&ranks,group_world,&glist) 

  

GETRANK 

 MPI/MPL  Description 

MPL mpc_getrank(&rank,taskid,gid) 

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)MPI_Group_translate_ranks(group_world,1, 

&taskid,group2, &rank) 

  

GETSIZE 

 MPI/MPL Description 

MPL mpc_getsize(&gsize,gid) 

MPI  MPI_Group_size(group,&gsize)
  

GETTASKID  

 MPI/MPL  Description 

MPL mpc_gettaskid(rank,&taskid,gid) 

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world) 

MPI_Group_translate_ranks(group1,1,&rank,group_world,&taskid) 

  

GROUP 

 MPI/MPL  Description 

MPL mpc_group(gsize,&glist,label,&gid) 

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)MPI_Group_incl(group_world,gsize,&glist,&gid) 
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PARTITION  

 MPI/MPL Description 

MPL  mpc_partition(parent_gid,key,label,&gid) 

MPI  MPI_Comm_split(comm,label,key,&newcomm)
  

Reduction functions 

 MPL  Function MPI  Equivalent 

i_vadd    Operator: MPI_SUM 

   Datatype: MPI_INT, MPI_INTEGER 

s_vadd    Operator: MPI_SUM 

   Datatype: MPI_FLOAT, MPI_REAL 

d_vadd    Operator: MPI_SUM 

   Datatype: MPI_DOUBLE, MPI_DOUBLE_PRECISION 

i_vmul    Operator: MPI_PROD 

   Datatype: MPI_INT, MPI_INTEGER 

s_vmul    Operator: MPI_PROD 

   Datatype: MPI_FLOAT, MPI_REAL 

d_vmul    Operator: MPI_PROD 

   Datatype: MPI_DOUBLE, MPI_DOUBLE_PRECISION 

i_vmax    Operator: MPI_MAX  

   Datatype: MPI_INT, MPI_INTEGER 

s_vmax    Operator: MPI_MAX  

   Datatype: MPI_FLOAT, MPI_REAL 

d_vmax    Operator: MPI_MAX  

   Datatype: MPI_DOUBLE, MPI_DOUBLE_PRECISION 

i_vmin    Operator: MPI_MIN 

   Datatype: MPI_INT, MPI_INTEGER 

s_vmin    Operator: MPI_MIN 

   Datatype: MPI_FLOAT, MPI_REAL 

d_vmin    Operator: MPI_MIN 

   Datatype: MPI_DOUBLE, MPI_DOUBLE_PRECISION 

b_vand    Operator: MPI_BAND  

   Datatype: MPI_BYTE 

b_vor    Operator: MPI_BOR 

   Datatype: MPI_BYTE 

b_vxor    Operator: MPI_BXOR 

   Datatype: MPI_BYTE 

l_vand    Operator: MPI_LAND  

   Datatype: MPI_BYTE 

l_vor    Operator: MPI_LOR 

   Datatype: MPI_BYTE 

The count parameter can be computed as follows: 

MPI_Type_size(datatype,&size) 

count = msglen/size; 
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User-defined reduction functions 

 MPL/MPI Description 

MPL void func(&inbuf1,&inbuf2,&outbuf,&len) 

func is passed as an argument to the Collective Communication Library (CCL) function. 

MPI  void func(&inbuf,&inoutbuf,&count,&datatype)MPI_Op_create(func,commute,&op) 

op is passed as an argument to the CCL  function.
  

Global variables and constants 

Last error code 

 MPL/MPI Description 

MPL mperrno 

MPI  No equivalent; error codes are returned by each function.
  

Wildcards 

 MPL Wildcard MPI  Equivalent 

ALLGRP ( 0) MPI_COMM_WORLD 

DONTCARE  (-1) MPI_ANY_SOURCE, MPI_ANY_TAG 

ALLMSG (-2) no MPI  equivalent - see mpc_wait 

NULLTASK (-3) MPI_PROC_NULL
  

Other considerations for converting from MPL to MPI 

This section provides some specific things to keep in mind when translating a 

program from MPL to MPI. 

Task  identifiers 

In MPL, task identifiers such as src and dest are absolute task IDs. In MPI, they are 

ranks within a communicator group. For the communicator 

MPI_COMM_WORLD, they are the same. 

Message length 

v   In MPL, message lengths are expressed in bytes. In MPI, they are expressed as 

count,datatype. Thus, a message consisting of ten 4-byte integers would be coded 

as 40 in MPL, and as 10,MPI_INT or 10,MPI_INTEGER in MPI. 

v   For send and receive operations, MPL returned the message length in the nbytes 

parameter. MPI  returns this information in status. It can be accessed as follows: 

MPI_Get_count(&status,MPI_BYTE,&nbytes) 

Creating MPI objects 

MPI Objects should be created as follows: 
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Object C Fortran 

Communicators MPI_Comm commid integer commid 

Groups MPI_Group groupid integer groupid 

Requests MPI_Request requestid integer reqestid 

Reduction Ops  MPI_Op opid integer opid 

Error Handlers MPI_Errhandler handlerid integer handlerid 

Data Types MPI_Datatype typeid integer typeid 

Attribute Keys int keyid integer keyid 

Status MPI_Status status integer status(MPI_STATUS_SIZE)
  

Using wildcard receives 

For wildcard receives, MPL asynchronously updated the actual source and message 

type variables passed by reference to the receive call. In MPI, the actual values are 

returned in the status parameter and may be retrieved as follows: 

For programs written in C: 

source = status.MPI_SOURCE; 

tag    = status.MPI_TAG; 

For programs written in Fortran: 

source = status(MPI_SOURCE) 

tag    = status(MPI_TAG) 

Also note the following for C applications. In MPL, the source and type parameters 

were passed by reference, whereas in MPI, they are passed by value. 

Reduction functions 

In MPI, you can define user-defined reduction functions as commutative or 

non-commutative (see MPI_Op_create), whereas in MPL, all reduction functions 

are assumed to be commutative. Reduction functions must be associative in both 

MPL and MPI. 

Error handling 

In MPL, C functions provided return codes that you could check to determine if an 

error occurred, and Fortran functions printed error messages and terminated the 

job. In MPI, the default for both C and Fortran is to print a message and terminate 

the job. If you want return codes, you must set the error handler as follows (per 

communicator): 

 MPI_Errhandler_set(comm,MPI_ERRORS_RETURN); 

In Fortran, error codes are returned in the last parameter of each function, ierror. 

Also, IBM’s MPI implementation provides a third predefined error handler, 

MPE_ERRORS_WARN, which prints a message and returns an error code without 

terminating the job. In DEVELOP mode, messages are always printed. 

Before and after using MPI functions 

All application programs that use MPI functions must call MPI_Init before calling 

any other MPI function (except MPI_Initialized). All applications that use MPI 

functions should call MPI_Finalize as the last MPI  call they make. Failure to do 

this may make the application non-portable. 
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If an application makes no MPI  calls, then it is not necessary for it to call MPI_Init 

or MPI_Finalize. 

Using message passing handlers 

Standard MPI has no facility directly matching the MPL Receive and Call function 

(mpc_rcvncall or MP_RCVNCALL). Depending on what the MPL Receive and 

Call function is used for, it may be possible to use MPI  Generalized Requests, but 

there are too many variations possible in MPL Receive and Call usage for this book 

to provide a simple translation guide. 

 

104 



Chapter  6.  Mostly  harmless  

Going from serial to parallel programming means that you are on a different scale 

now. This section alerts you to some of the things you need to pay attention to as 

you create your parallel programs. In particular, the section provides information 

on creating a safe (mostly harmless) MPI program. MPI: A Message-Passing Interface 

Standard, Version 1.1 which is available from the University of Tennessee 

(http://www.mpi-forum.org/) provides additional. information. You may want to 

refer to that document. 

What is a safe program? 

Many people consider a program to be safe if message buffering is not required for 

the program to complete. In a program like this, you should be able to replace all 

standard sends with synchronous sends, and the program will still run correctly. 

This type of programming style is conservative; it provides good portability 

because program completion does not depend on the amount of available buffer 

space. 

With PE, setting the MP_EAGER_LIMIT environment variable to 0 is equivalent to 

making all sends synchronous, including those used in collective communication.A 

good test of your program’s safety is to set the MP_EAGER_LIMIT to 0. 

Some programmers prefer more flexibility and use an unsafe style that relies on 

buffering. In such cases, the use of standard send operations provides a 

compromise between performance and robustness. MPI attempts to supply 

sufficient buffering so that these programs will not result in deadlock. You can use 

the buffered send mode for programs that require more buffering, or in situations 

where you want more control. Since buffer overflow conditions are easier to 

diagnose than deadlock, you can also use this mode for debugging purposes. 

You can use non-blocking message passing operations to avoid the need for 

buffering outgoing messages. This prevents deadlock situations due to a lack of 

buffer space, and improves performance by allowing computation and 

communication to overlap. It also avoids the overhead associated with allocating 

buffers and copying messages into buffers. 

Safety and threaded programs 

Sometimes message passing programs can hang or deadlock. This can occur when 

one task waits for a message that is never sent or when each task is waiting for the 

other task to send or receive a message. Within a task, a similar situation can occur 

when one thread is waiting for another thread to release a lock on a shared 

resource, such as a piece of memory. If thread A, which holds the lock, cannot run 

to the point at which it is ready to release it, the waiting thread B will never run. 

This may occur because thread B holds some other lock that thread A needs. 

Thread A cannot proceed until thread B does, and thread B cannot proceed until 

thread A does. 

When programs are both multi-thread and multi-task, there is risk of deadly embrace 

involving both mutex and communication blocks. Say threads A and B are on task 

0, and thread A holds a lock while waiting for a message from task 1. Thread B 

will send a message to task 1 only after it gets the lock that thread A holds. If task 
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1 will send the message that thread A is waiting for only after getting the one that 

thread B cannot send, the job is in a 3-way deadly embrace, involving two threads 

at task 0 and one thread at task 1. 

A problem that is more subtle occurs when two threads simultaneously access a 

shared resource without a lock protocol. The result may be incorrect without any 

obvious sign. For example, the following function is not thread-safe, because the 

thread may be preempted after the variable c is updated, but before it is stored. 

int c;  /* external, used by two threads */ 

void update_it() 

 { 

     c++;  /* this is not thread safe */ 

 { 

You probably should avoid writing threaded message passing programs until you 

are familiar with writing and debugging threaded, single-task programs. 

Using threaded programs with non-thread-safe libraries 

A threaded MPI program must meet the same criteria as any other threaded 

program; it must avoid using non-thread-safe functions in more than one thread 

(for example, strtok). In addition, it must use only thread-safe libraries, if library 

functions are called on more than one thread. In the AIX operating system, all of 

the libraries may not be thread-safe, so you should carefully examine how they are 

used in your program. 

Message ordering 

With MPI, messages are non-overtaking. This means that the order of sends must 

match the order of receives. Assume a sender sends two messages (Message 1 and 

Message 2) in succession, to the same destination, and both match the same 

receive. The receive operation will receive Message 1 before Message 2. Likewise, if 

a receiver posts two receives (Receive 1 and Receive 2), in succession, and both are 

looking for the same message, Receive 1 will receive the message before Receive 2. 

Adhering to this rule ensures that sends are always matched with receives. 

If a process in your program has a single thread of execution, then the sends and 

receives that occur follow a natural order. However, if a process has multiple 

threads, the various threads may not execute their relative send operations in any 

defined order. In this case, the messages can be received in any order. 

Order rules apply within each communicator. Weakly synchronized threads can 

each use independent communicators to avoid many order problems. 

The following is an example of using non-overtaking messages. The message sent 

by the first send must be received by the first receive, and the message sent by the 

second send must be received by the second receive. 

CALL MPI_COMM_RANK(comm, rank, ierr) 

IF (rank.EQ.0) THEN 

    CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr) 

    CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr) 

ELSE    ! rank.EQ.1 

    CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr) 

    CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr) 

END IF 
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Program progress when two processes initiate two matching sends 

and receives 

If two processes (or ″tasks″) initiate two matching sends and receives, at least one 

of the operations (the send or the receive) will complete, regardless of other actions 

that occur in the system. The send operation will complete unless its matching 

receive operation has already been satisfied by another message, and has itself 

completed. Likewise, the receive operation will complete unless its matching send 

message is claimed by another matching receive that was posted at the same 

destination. 

The following example shows two matching pairs that are intertwined in this 

manner. Here is what happens: 

1.   Both processes invoke their first calls. 

2.   process 0’s first send indicates buffered mode, which means it must complete, 

even if there is no matching receive. Since the first receive posted by process 1 

does not match, the send message gets copied into buffer space. 

3.   Next, process 0 posts its second send operation, which matches process 1’s first 

receive, and both operations complete. 

4.   process 1 then posts its second receive, which matches the buffered message, so 

both complete.
CALL MPI_COMM_RANK(comm, rank, ierr) 

IF (rank.EQ.0) THEN 

    CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr) 

    CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr) 

ELSE    ! rank.EQ.1 

    CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr) 

    CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr) 

END IF 

Communication fairness 

MPI does not guarantee fairness in the way communications are handled. It is your 

responsibility to prevent starvation among the operations in your program. 

One example of an unfair situation might be where a send, with a matching receive 

on another process, does not complete because another message, from a different 

process, overtakes the receive. 

Resource limitations 

If a lack of resources prevents an MPI call from executing, errors may result. 

Pending send and receive operations consume a portion of your system resources. 

MPI attempts to use a minimal amount of resource for each pending send and 

receive, but buffer space is required for storing messages sent in either standard or 

buffered mode when no matching receive is available. 

When a buffered send operation cannot complete due to a lack of buffer space, the 

resulting error could cause your program to terminate abnormally. On the other 

hand, a standard send operation that cannot complete because of a lack of buffer 

space, will block and wait for buffer space to become available or for the matching 

receive to be posted. In some situations, this behavior is preferable because it 

avoids the error condition associated with buffer overflow. 
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Sometimes a lack of buffer space can lead to deadlock. The program in the 

following example will succeed even if no buffer space for data is available. 

CALL MPI_COMM_RANK(comm, rank, ierr) 

IF (rank.EQ.0) THEN 

    CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr) 

    CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr) 

ELSE    ! rank.EQ.1 

    CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr) 

    CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr) 

END IF 

In this next example, neither process will send until the other process sends first. 

As a result, this program will always result in deadlock. 

CALL MPI_COMM_RANK(comm, rank, ierr) 

IF (rank.EQ.0) THEN 

    CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr) 

    CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr) 

ELSE    ! rank.EQ.1 

    CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr) 

    CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr) 

END IF 

The example below shows how message exchange relies on buffer space. The 

message send by each process must be copied out before the send returns and the 

receive starts. Consequently, at least one of the two messages sent needs to be 

buffered for the program to complete. As a result, this program can execute 

successfully only if the communication system can buffer at least the words of data 

specified by count. 

CALL MPI_COMM_RANK(comm, rank, ierr) 

IF (rank.EQ.0) THEN 

    CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr) 

    CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr) 

ELSE    ! rank.EQ.1 

    CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr) 

    CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr) 

END IF 

When standard send operations are used, deadlock can occur where both processes 

are blocked because buffer space is not available. This is also true for synchronous 

send operations. For buffered sends, if the required amount of buffer space is not 

available, the program will not complete either, and instead of deadlock, you will 

have buffer overflow. 
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Appendix  A.  A sample  program  to illustrate  messages  

This appendix provides sample output for a program run under POE with the 

maximum level of message reporting. It also points out the different types of 

messages you can expect, and explains what they mean. 

To set the level of messages that get reported when you run your program, you 

can use the -infolevel (or -ilevel) option when you invoke POE. You can also use 

the MP_INFOLEVEL environment variable. Setting either of these to 6 gives you 

the maximum number of diagnostic messages when you run your program. For 

more information about setting the POE message level, see IBM Parallel 

Environment for AIX: Operation and Use, Volume 1. 

Note that we are using numbered prefixes along the left-hand edge of the 

following output as a way to refer to particular lines. The prefixes are not part of 

the output you will see when you run your program. For an explanation of the 

messages denoted by these numbered prefixes, see “Figuring out what all of this 

means” on page 111.  

This command produces output similar to the following: 

> poe hello_world_c -procs 2  -rmpool 1 -infolevel 6 

    +1  INFO: DEBUG_LEVEL changed from 0 to 4 

    +2  D1<L4>: Open of file ./host.list successful 

    +3  ATTENTION: 0031-379  Pool setting ignored when 

        hostfile used 

    +4  D1<L4>: mp_euilib = ip 

    +5  D1<L4>: 03/04 13:55:37.682266  task 0 

        c151f1rp02.ppd.pok.ibm.com 9.114.127.2 10 

    +6  D1<L4>: 03/04 13:55:37.684025  task 1 

        c151f1rp02.ppd.pok.ibm.com 9.114.127.2 10 

    +7  D1<L4>: node allocation strategy = 0 

    +8  D1<L4>: Entering pm_contact, jobid is 0 

    +9  D1<L4>: Jobid = 1110376467 

   +10  D1<L4>: POE security method is COMPAT 

   +11  D1<L4>: Requesting service pmv4 

   +12  D1<L4>: 1 master nodes 

   +13  D4<L4>: LoadLeveler Version 0 Release 0 

   +14  D1<L4>: Socket file descriptor for master 0 

        (c151f1rp02.ppd.pok.ibm.com) is 4 

   +15  D1<L4>: SSM_read on socket 4, source = 0, 

        task id: 0, nread: 12, type:3. 

   +16  D1<L4>: Leaving pm_contact, jobid 

        is 1110376467 

   +17  D1<L4>: attempting to bind socket 

        to /tmp/s.pedb.413930.1079 

   +18 

   +19  D4<L4>: Command args:<> 

   +20  D3<L4>: Message type 34 from source 0 

   +21  D4<L4>: Task 0 pulse received,count is 0 

        curr_time is 1109962537 

   +22  D4<L4>: Task 0 pulse acknowledged, count is 0 

        curr_time is 1109962537 

   +23  D3<L4>: Message type 21 from source 0 

   +24  INFO: 0031-724  Executing program: 

        <../../hello_world_c> 

   +25  D3<L4>: Message type 21 from source 0 

   +26  D1<L4>: Affinity is not requested; 

        MP_TASK_AFFINITY: -1 

   +27  D3<L4>: Message type 21 from source 1
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+28  D3<L4>: Message type 21 from source 1 

   +29  INFO: 0031-724  Executing program: 

        <../../hello_world_c> 

   +30  D1<L4>: Affinity is not requested; 

        MP_TASK_AFFINITY: -1 

   +31  D3<L4>: Message type 21 from source 0 

   +32  INFO: DEBUG_LEVEL changed from 0 to 4 

   +33  D3<L4>: Message type 21 from source 0 

   +34  D3<L4>: Message type 21 from source 0 

   +35  D4<L4>: pm_async_thread sends cond sig 

   +36  D4<L4>: pm_async_thread calls sigwait, 

         in_async_thread=0 

   +37  D4<L4>: pm_main, wake up from timed cond wait 

   +38  D1<L4>: In mp_main, mp_main will not 

        be checkpointable 

   +39  D3<L4>: Message type 21 from source 0 

   +40  D1<L4>: mp_euilib is <ip> 

   +41  D3<L4>: Message type 21 from source 0 

   +42  D1<L4>: Executing _mp_init_msg_passing() 

        from MPI_Init()... 

   +43  D3<L4>: Message type 21 from source 0 

   +44  D1<L4>: mp_css_interrupt is <0> 

   +45  D1<L4>: About to call mpci_connect 

   +46  D3<L4>: Message type 21 from source 1 

   +47  INFO: DEBUG_LEVEL changed from 0 to 4 

   +48  D3<L4>: Message type 21 from source 1 

   +49  D4<L4>: pm_async_thread sends cond sig 

   +50  D3<L4>: Message type 21 from source 0 

   +51  INFO: 0031-619  32bit(ip) 

        MPCI shared object was compiled at 

        Wed Mar  2 13:44:02 2005 

   +52 

   +53  D3<L4>: Message type 21 from source 1 

   +54  D4<L4>: pm_async_thread calls sigwait, in_async_thread=0 

   +55  D4<L4>: pm_main, wake up from timed cond wait 

   +56  D1<L4>: In mp_main, mp_main will not be checkpointable 

   +57  D1<L4>: mp_euilib is <ip> 

   +58  D3<L4>: Message type 21 from source 1 

   +59  D1<L4>: Executing _mp_init_msg_passing() from MPI_Init()... 

   +60  D3<L4>: Message type 21 from source 1 

   +61  D1<L4>: mp_css_interrupt is <0> 

   +62  D1<L4>: About to call mpci_connect 

   +63  D3<L4>: Message type 21 from source 0 

   +64  LAPI version #6.61 2005/01/28 1.143.1.3 src/rsct/lapi/lapi.c, 

        lapi, rsct_rag2, rag20508a 32bit(ip)  library compiled on 

        Wed Mar  2 11:46:57 2005 

   +65  . 

   +66  D3<L4>: Message type 21 from source 0 

   +67  LAPI is using lightweight lock. 

   +68  D3<L4>: Message type 21 from source 1 

   +69  LAPI version #6.61 2005/01/28 1.143.1.3 src/rsct/lapi/lapi.c, lapi, 

         rsct_rag2, rag20508a 32bit(ip)  library compiled on 

         Wed Mar  2 11:46:57 2005 

   +70  . 

   +71  D3<L4>: Message type 21 from source 1 

   +72  LAPI is using lightweight lock. 

   +73  D3<L4>: Message type 23 from source 0 

   +74  D1<L4>: init_data for instance number 0, 

        task 0: <158498562:37292> 

   +75  D3<L4>: Message type 23 from source 1 

   +76  D1<L4>: init_data for instance number 0, 

        task 1: <158498562:37293> 

   +77  D3<L4>: Message type 21 from source 1 

   +78  The MPI shared memory protocol is used for the job 

   +79  D3<L4>: Message type 21 from source 0 

   +80  The MPI shared memory protocol is used for the job 

   +81  D1<L4>: Elapsed time for mpci_connect: 1 seconds
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+82  D3<L4>: Message type 21 from source 1 

   +83  D1<L4>: Elapsed time for mpci_connect: 1 seconds 

   +84  D3<L4>: Message type 21 from source 0 

   +85  D1<L4>: _css_init: rc from HPSOclk_init is 1 

   +86 

   +87  D1<L4>: About to call _ccl_init 

   +88  D3<L4>: Message type 21 from source 1 

   +89  D1<L4>: _css_init: rc from HPSOclk_init is 1 

   +90 

   +91  D1<L4>: About to call _ccl_init 

   +92  D3<L4>: Message type 88 from source 0 

   +93  D3<L4>: Message type 88 from source 1 

   +94  D3<L4>: Message type 21 from source 0 

   +95  D2<L4>: Global Data for 

        task 0: 1;0,9.114.127.2,-3;778658413,9.114.127.2,-3; 

   +96  D3<L4>: Message type 21 from source 1 

   +97  D2<L4>: Global Data for 

        task 1: 1;0,9.114.127.2,-3;778658413,9.114.127.2,-3; 

   +98  D3<L4>: Message type 21 from source 0 

   +99  D1<L4>: Elapsed time for _ccl_init: 0 seconds 

  +100  D3<L4>: Message type 21 from source 1 

  +101  D1<L4>: Elapsed time for _ccl_init: 0 seconds 

  +102  D3<L4>: Message type 20 from source 0 

  +103  Hello World !! 

  +104  D3<L4>: Message type 62 from source 0 

  +105  D3<L4>: Message type 20 from source 1 

  +106  Hello World !! 

  +107  D3<L4>: Message type 62 from source 1 

  +108  D3<L4>: Message type 21 from source 0 

  +109  INFO: 0031-306  pm_atexit: pm_exit_value is 0. 

  +110  D3<L4>: Message type 17 from source 0 

  +111  D3<L4>: Message type 21 from source 1 

  +112  INFO: 0031-306  pm_atexit: pm_exit_value is 0. 

  +113  D3<L4>: Message type 17 from source 1 

  +114  D3<L4>: Message type 22 from source 0 

  +115  INFO: 0031-656  I/O file STDOUT closed by task 0 

  +116  D3<L4>: Message type 22 from source 0 

  +117  INFO: 0031-656  I/O file STDERR closed by task 0 

  +118  D3<L4>: Message type 22 from source 1 

  +119  INFO: 0031-656  I/O file STDOUT closed by task 1 

  +120  D3<L4>: Message type 22 from source 1 

  +121  INFO: 0031-656  I/O file STDERR closed by task 1 

  +122  D3<L4>: Message type 15 from source 0 

  +123  D1<L4>: Accounting data from task 0 for source 0: 

  +124  D3<L4>: Message type 15 from source 1 

  +125  D1<L4>: Accounting data from task 1 for source 1: 

  +126  D3<L4>: Message type 1 from source 0 

  +127  INFO: 0031-251  task 0 exited: rc=0 

  +128  D3<L4>: Message type 1 from source 1 

  +129  INFO: 0031-251  task 1 exited: rc=0 

  +130  D1<L4>: All remote tasks have exited: maxx_errcode = 0 

  +131  INFO: 0031-639  Exit status from pm_respond = 0 

  +132  D1<L4>: Maximum return code from user = 0 

  +133  D2<L4>: In pm_exit... About to call pm_remote_shutdown 

  +134  D2<L4>: Sending PMD_EXIT to task 0 

  +135  D2<L4>: Elapsed time for pm_remote_shutdown: 0 seconds 

  +136  D2<L4>: In pm_exit... Calling exit with status = 0 at 

         Fri Mar  4 13:55:38 2005 

Figuring out what all of this means 

When you set -infolevel to 6, you get the full complement of diagnostic messages, 

which we will explain here. 

The previous example includes numbered prefixes along the left-hand edge of the 

output so that we can refer to particular lines, and then explain what they mean. 
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Remember, that these prefixes are not part of your output. The table below points 

you to the line number of the messages that are of most interest, and provides a 

short explanation. 

 Lines Message description 

5-6 Names  hosts that are used. 

10 Indicates security method defined on the remote node. 

11 Indicates that service pmv4, from /etc/services is being used. 

14 Indicates node with partition manager running. 

20 Message type 34 indicates pulse activity (the pulse mechanism checked 

that each remote node was  actively participating with the home node). 

23 Message type 21 indicates a STDERR message. 

40, 57 Indicates that the euilib message passing protocol was  specified. 

42, 59 Indicates message passing initialization has begun. 

51 Timestamp of MPCI  shared object being executed. 

64, 69 Timestamp of LAPI library being executed. 

78, 80 Indicates MPI  shared memory is being used. 

81,83 Indicates initialization of MPCI  has completed. 

92, 93, 95, 97 Message type 88 shows MPI  global task information. 

102, 103, 105, 106 Message type 20 shows STDOUT  from your program.. 

109, 112 Indicates that the user’s program has reached the exit handler. The exit 

code is 0. 

110, 113 Message type 17 indicates the tasks have requested to exit. 

115, 117, 119, 121 Indicates that the STDOUT  and STDERR pipes have been closed. 

122, 124 Message type 15 indicates accounting data. 

134 Indicates that the home node is sending an exit.
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Appendix  B.  Parallel  Environment  internals  

This appendix provides some additional information about how the IBM Parallel 

Environment for AIX (PE) works with respect to your application. Much of this 

information is also explained in the IBM Parallel Environment for AIX: MPI 

Programming Guide. 

What happens when I compile my applications? 

In order to run your program in parallel, you first need to compile your 

application source code with one of the following scripts: 

1.   mpcc_r 

2.   mpCC_r 

3.   mpxlf_r 

4.   mpxlf95_r 

5.   mpxlf90_r

To make sure the parallel execution works, these scripts add the following to your 

application executable: 

v   POE initialization module, so POE can determine that all nodes can 

communicate successfully, before giving control to the user application’s main() 

routine. 

v   Signal handlers, for additional control in terminating the program during 

parallel tracing, and enabling the handling of the process termination signals. 

The IBM Parallel Environment for AIX: MPI  Programming Guide explains the 

signals that are handled in this manner.

The compile scripts dynamically link the Message Passing library interfaces in such 

a way that the specific communication library that is used is determined when 

your application executes. 

Applications created as static executables are not supported. 

How do my applications start? 

Because POE adds its entry point to each application executable, user applications 

do not need to be run under the poe command. When a parallel application is 

invoked directly, as opposed to under the control of the poe command, POE is 

started automatically. It then sets up the parallel execution environment and then 

re-invokes the application on each of the remote nodes. 

Serial applications can be run in parallel only using the poe command. However, 

such applications cannot take advantage of the function and performance provided 

with the message passing libraries. 

How does POE talk to the nodes? 

A parallel job running under POE consists of a home node (where POE was started) 

and n tasks. Each task runs under the control of a Partition Manager daemon 

(pmd). There is one pmd for each job on each node on which the job’s tasks run. 
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When you start a parallel job, POE contacts the nodes assigned to run the job 

(called remote nodes), and starts a pmd instance on each node. POE sends 

environment information to the pmd daemons for the parallel job (including the 

name of the executable) and the pmd daemons spawn processes to run the 

executable. For tasks that run on the same node, the pmd daemon forks and 

manages all tasks for that job on that node. It routes messages to and from each 

remote task, and also coordinates with the home node to terminate each task. 

The spawned processes have standard I/O redirected to socket connections back to 

the pmd daemons. Therefore, any output the application writes to STDOUT or 

STDERR is sent back to the pmd daemons. The pmd daemons, in turn, send the 

output back to POE via another socket connection, and POE writes the output to 

its STDOUT or STDERR. Any input that POE receives on STDIN is delivered to the 

remote tasks in a similar fashion. 

The socket connections between POE and the pmd daemons are also used to 

exchange control messages for providing task synchronization, exit status, and 

signaling. These capabilities are available to control any parallel program run by 

POE, and they do not depend on the message passing library. 

When POE executes without LoadLeveler, it is assumed that the Partition Manager 

Daemon (PMD) is started under inetd. There is no consideration for running the 

PMD without inetd. 

When POE executes under LoadLeveler (including all User Space applications), the 

PMD is started by LoadLeveler. 

How are signals handled? 

POE installs signal handlers for most signals that cause program termination and 

interrupts, in order to control and notify all tasks of the signal. POE will exit the 

program normally with a code of (128 + signal). If the user program installs a 

signal handler for any of the signals POE supports, it should follow the guidelines 

presented in IBM Parallel Environment for AIX: MPI  Programming Guide. 

What happens when my application ends? 

POE returns exit status (a return code value between 0 and 255) on the home node 

which reflects the composite exit status of the user application. The exit status can 

have various conditions and values and each can have a specific meaning. These 

are explained in The IBM Parallel Environment for AIX: MPI  Programming Guide. 

In addition, if the POE job-step function is used, the job control mechanism is the 

program’s exit code. When the task exit code is 0 (zero), or in the range of 2 to 127, 

the job-step will be continued. If the task exit code is 1 or greater than 127, POE 

terminates the parallel job, as well as any remaining user programs in the job-step 

list. Also, any POE infrastructure failure detected (such as failure to open pipes to 

the child process) will terminate the parallel job as well as any remaining programs 

in the job-step list. 
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Appendix  C.  Accessibility  

Accessibility features help a user who has a physical disability, such as restricted 

mobility or limited vision, to use software products successfully. The major 

accessibility features enable users to: 

v   Use assistive technologies such as screen readers and screen magnifier software 

v   Operate specific or equivalent features using only the keyboard 

v   Customize display attributes such as color, contrast, and font size.

Using assistive technologies 

Assistive technology products, such as screen readers, function with user 

interfaces. Consult the assistive technology documentation for specific information 

when using such products to access interfaces. 
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Notices  

This information was developed for products and services offered in the U.S.A. 

IBM may not offer the products, services, or features discussed in this document in 

other countries. Consult your local IBM representative for information on the 

products and services currently available in your area. Any reference to an IBM 

product, program, or service is not intended to state or imply that only that IBM 

product, program, or service may be used. Any functionally equivalent product, 

program, or service that does not infringe any IBM intellectual property right may 

be used instead. However, it is the user’s responsibility to evaluate and verify the 

operation of any non-IBM product, program, or service. 

IBM may have patents or pending patent applications covering subject matter 

described in this document. The furnishing of this document does not give you 

any license to these patents. You can send license inquiries, in writing, to: 

IBM Director of Licensing 

IBM Corporation 

North Castle Drive 

Armonk, NY 10504-1785 

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM 

Intellectual Property Department in your country or send inquiries, in writing, to: 

IBM World Trade Asia Corporation 

Licensing 

2-31 Roppongi 3-chome, Minato-ku 

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other 

country where such provisions are inconsistent with local law: 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS 

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER 

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS 

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or 

implied warranties in certain transactions, therefore, this statement may not apply 

to you. 

This information could include technical inaccuracies or typographical errors. 

Changes are periodically made to the information herein; these changes will be 

incorporated in new editions of the publication. IBM may make improvements 

and/or changes in the product(s) and/or the program(s) described in this 

publication at any time without notice. 

This book refers to IBM’s implementation of the Message Passing Interface (MPI) 

standard for Parallel Environment for AIX (PE). PE MPI intends to comply with 

the requirements of the Message Passing Interface Forum described below. PE MPI  

provides an implementation of MPI which is complete except for omitting the 

features described in the ″Process Creation and Management″ chapter of MPI-2. 
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Permission to copy without fee all or part of these Message Passing Interface 

Forum documents: 

   MPI: A Message Passing Interface Standard, Version 1.1 

   MPI-2: Extensions to the Message Passing Interface, Version 2.0 

is granted, provided the University of Tennessee copyright notice and the title of 

the document appear, and notice is given that copying is by permission of the 

University of Tennessee. ©1993, 1997 University of Tennessee, Knoxville, Tennessee. 

Any references in this information to non-IBM Web sites are provided for 

convenience only and do not in any manner serve as an endorsement of those Web 

sites. The materials at those Web sites are not part of the materials for this IBM 

product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it 

believes appropriate without incurring any obligation to you. 

Licensees of this program who wish to have information about it for the purpose 

of enabling: (i) the exchange of information between independently created 

programs and other programs (including this one) and (ii) the mutual use of the 

information which has been exchanged, should contact: 

IBM Corporation 

Department LJEB/P905 

522 South Road 

Poughkeepsie, NY 12601-5400 

U.S.A

Such information may be available, subject to appropriate terms and conditions, 

including in some cases, payment of a fee. 

The licensed program described in this document and all licensed material 

available for it are provided by IBM under terms of the IBM Customer Agreement, 

IBM International Program License Agreement or any equivalent agreement 

between us. 

Any performance data contained herein was determined in a controlled 

environment. Therefore, the results obtained in other operating environments may 

vary significantly. Some measurements may have been made on development-level 

systems and there is no guarantee that these measurements will be the same on 

generally available systems. Furthermore, some measurement may have been 

estimated through extrapolation. Actual results may vary. Users of this document 

should verify the applicable data for their specific environment. 

Information concerning non-IBM products was obtained from the suppliers of 

those products, their published announcements or other publicly available sources. 

IBM has not tested those products and cannot confirm the accuracy of 

performance, compatibility or any other claims related to non-IBM products. 

Questions on the capabilities of non-IBM products should be addressed to the 

suppliers of those products. 

This information contains examples of data and reports used in daily business 

operations. To illustrate them as completely as possible, the examples include the 

names of individuals, companies, brands, and products. All of these names are 

fictitious and any similarity to the names and addresses used by an actual business 

enterprise is entirely coincidental. 
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COPYRIGHT LICENSE: 

This information contains sample application programs in source language, which 

illustrates programming techniques on various operating platforms. You may copy, 

modify, and distribute these sample programs in any form without payment to 

IBM, for the purposes of developing, using, marketing or distributing application 

programs conforming to the application programming interface for the operating 

platform for which the sample programs are written. These examples have not 

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or 

imply reliability, serviceability, or function of these programs. You may copy, 

modify, and distribute these sample programs in any form without payment to 

IBM for the purposes of developing, using, marketing, or distributing application 

programs conforming to IBM’s application programming interfaces. 

If you are viewing this information softcopy, the photographs and color 

illustrations may not appear. 

Trademarks  

The following terms are trademarks of the International Business Machines 

Corporation in the United States or other countries or both: 

v   AIX 

v   AIX 5L 

v   DFS® 
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v   IBMLink™ 

v   LoadLeveler 
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licensed exclusively through X/Open Company Limited. 

Other company, product, and service names may be the trademarks or service 

marks of others. 
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Glossary  

A  

AFS.  Andrew File System. 

address.  A value, possibly a character or group of 

characters that identifies a register, a device, a 

particular part of storage, or some other data source or 

destination. 

AIX.  Abbreviation for Advanced Interactive Executive, 

IBM’s licensed version of the UNIX  operating system. 

AIX  is particularly suited to support technical 

computing applications, including high-function 

graphics and floating-point computations. 

AIXwindows®  Environment/6000.  A graphical user 

interface (GUI)  for the RS/6000. It has the following 

components: 

v   A graphical user interface and toolkit based on 

OSF/Motif 

v   Enhanced X-Windows, an enhanced version of the 

MIT  X Window System 

v   Graphics Library (GL), a graphical interface library 

for the application programmer that is compatible 

with Silicon Graphics’ GL interface.

API.  Application programming interface. 

application.  The use to which a data processing 

system is put; for example, a payroll application, an 

airline reservation application. 

argument.  A parameter passed between a calling 

program and a called program or subprogram. 

attribute.  A named property of an entity. 

Authentication.  The process of validating the identity 

of a user or server. 

Authorization.  The process of obtaining permission to 

perform specific actions. 

B  

bandwidth.  The difference, expressed in hertz, 

between the highest and the lowest frequencies of a 

range of frequencies. For example, analog transmission 

by recognizable voice telephone requires a bandwidth 

of about 3000 hertz (3 kHz). The bandwidth of an 

optical link designates the information-carrying 

capacity of the link and is related to the maximum bit 

rate that a fiber link can support. 

blocking operation.  An operation that does not 

complete until the operation either succeeds or fails. 

For example, a blocking receive will not return until a 

message is received or until the channel is closed and 

no further messages can be received. 

breakpoint.  A place in a program, specified by a 

command or a condition, where the system halts 

execution and gives control to the workstation user or 

to a specified program. 

broadcast operation.  A communication operation 

where one processor sends (or broadcasts) a message to 

all other processors. 

buffer.  A portion of storage used to hold input or 

output data temporarily. 

C 

C.  A general-purpose programming language. It was  

formalized by Uniforum in 1983 and the ANSI  

standards committee for the C language in 1984. 

C++.  A general-purpose programming language that 

is based on the C language. C++ includes extensions 

that support an object-oriented programming 

paradigm. Extensions include: 

v   strong typing 

v   data abstraction and encapsulation 

v   polymorphism through function overloading and 

templates 

v   class inheritance.

chaotic relaxation.  An iterative relaxation method that 

uses a combination of the Gauss-Seidel and 

Jacobi-Seidel methods. The array of discrete values is 

divided into subregions that can be operated on in 

parallel. The subregion boundaries are calculated using 

the Jacobi-Seidel method, while the subregion interiors 

are calculated using the Gauss-Seidel method. See also 

Gauss-Seidel. 

client.  A function that requests services from a server 

and makes them available to the user. 

cluster.  A group of processors interconnected through 

a high-speed network that can be used for 

high-performance computing. 

Cluster 1600.  See IBM Eserver  Cluster 1600. 

collective communication.  A communication 

operation that involves more than two  processes or 

tasks. Broadcasts, reductions, and the MPI_Allreduce 

subroutine are all examples of collective 

communication operations. All  tasks in a communicator 

must participate. 
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command alias.  When using the PE command-line 

debugger pdbx, you can create abbreviations for 

existing commands using the pdbx alias command. 

These abbreviations are known as command aliases. 

Communication Subsystem (CSS).  A component of 

the IBM AIX  Parallel System Support Programs that 

provides software support for the high performance 

switch. CSS  provides two  protocols: Internet Protocol 

(IP) for LAN-based communication and User Space 

protocol as a message passing interface that is 

optimized for performance over the switch. See also 

Internet Protocol and User Space. 

communicator.  An MPI  object that describes the 

communication context and an associated group of 

processes. 

compile.  To translate a source program into an 

executable program. 

condition.  One  of a set of specified values that a data 

item can assume. 

control workstation.  A workstation attached to the 

IBM RS/6000 SP that serves as a single point of control 

allowing the administrator or operator to monitor and 

manage the system using IBM AIX  Parallel System 

Support Programs. 

core dump.  A process by which the current state of a 

program is preserved in a file. Core dumps are usually 

associated with programs that have encountered an 

unexpected, system-detected fault, such as a 

Segmentation Fault or a severe user error. The current 

program state is needed for the programmer to 

diagnose and correct the problem. 

core file.  A file that preserves the state of a program, 

usually just before a program is terminated for an 

unexpected error. See also core dump. 

current context.  When using the pdbx debugger, 

control of the parallel program and the display of its 

data can be limited to a subset of the tasks belonging to 

that program. This subset of tasks is called the current 

context. You can set the current context to be a single 

task, multiple tasks, or all the tasks in the program. 

D 

data decomposition.  A method of breaking up (or 

decomposing) a program into smaller parts to exploit 

parallelism. One  divides the program by dividing the 

data (usually arrays) into smaller parts and operating 

on each part independently. 

data parallelism.  Refers to situations where parallel 

tasks perform the same computation on different sets of 

data. 

dbx.  A symbolic command-line debugger that is often 

provided with UNIX  systems. The PE command-line 

debugger pdbx is based on the dbx debugger. 

debugger.  A debugger provides an environment in 

which you can manually control the execution of a 

program. It also provides the ability to display the 

program’ data and operation. 

distributed shell (dsh).  An IBM AIX  Parallel System 

Support Programs command that lets you issue 

commands to a group of hosts in parallel. See IBM 

Parallel System Support Programs for AIX: Command and 

Technical Reference for details. 

domain name.  The hierarchical identification of a host 

system (in a network), consisting of human-readable 

labels, separated by decimal points. 

DPCL  target application.  The executable program that 

is instrumented by a Dynamic Probe Class Library 

(DPCL) analysis tool. It is the process (or processes) 

into which the DPCL analysis tool inserts probes. A 

target application could be a serial or parallel program. 

Furthermore, if the target application is a parallel 

program, it could follow either the SPMD or the 

MPMD  model, and may  be designed for either a 

message-passing or a shared-memory system. 

E 

environment variable.  (1) A variable that describes the 

operating environment of the process. Common 

environment variables describe the home directory, 

command search path, and the current time zone. (2) A 

variable that is included in the current software 

environment and is therefore available to any called 

program that requests it. 

Ethernet.  A baseband local area network (LAN)  that 

allows multiple stations to access the transmission 

medium at will without prior coordination, avoids 

contention by using carrier sense and deference, and 

resolves contention by using collision detection and 

delayed retransmission. Ethernet uses carrier sense 

multiple access with collision detection (CSMA/CD). 

event.  An occurrence of significance to a task — the 

completion of an asynchronous operation such as an 

input/output operation, for example. 

executable.  A program that has been link-edited and 

therefore can be run in a processor. 

execution.  To perform the actions specified by a 

program or a portion of a program. 

expression.  In programming languages, a language 

construct for computing a value from one or more 

operands. 
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F 

fairness.  A policy in which tasks, threads, or processes 

must be allowed eventual access to a resource for 

which they are competing. For example, if multiple 

threads are simultaneously seeking a lock, no set of 

circumstances can cause any thread to wait indefinitely 

for access to the lock. 

FDDI.   Fiber Distributed Data Interface. 

Fiber Distributed Data Interface (FDDI).  An 

American National Standards Institute (ANSI) standard 

for a local area network (LAN)  using optical fiber 

cables. An FDDI  LAN can be up to 100 kilometers (62 

miles) long, and can include up to 500 system units. 

There can be up to 2 kilometers (1.24 miles) between 

system units and concentrators. 

file system.  In the AIX  operating system, the 

collection of files and file management structures on a 

physical or logical mass storage device, such as a 

diskette or minidisk. 

fileset.  (1) An individually-installable option or 

update. Options provide specific functions. Updates 

correct an error in, or enhance, a previously installed 

program. (2) One  or more  separately-installable, 

logically-grouped units in an installation package. See 

also licensed program and package. 

foreign host.  See remote host. 

FORTRAN.   One  of the oldest of the modern 

programming languages, and the most popular 

language for scientific and engineering computations. 

Its name is a contraction of FORmula TRANslation. The 

two  most common FORTRAN versions are FORTRAN 

77, originally standardized in 1978, and FORTRAN 90. 

FORTRAN  77 is a proper subset of FORTRAN 90. 

function cycle.  A chain of calls in which the first 

caller is also the last to be called. A function that calls 

itself recursively is not considered a function cycle. 

functional decomposition.  A method of dividing the 

work in a program to exploit parallelism. The program 

is divided into independent pieces of functionality, 

which are distributed to independent processors. This 

method is in contrast to data decomposition, which 

distributes the same work over different data to 

independent processors. 

functional parallelism.  Refers to situations where 

parallel tasks specialize in particular work. 

G  

Gauss-Seidel.  An iterative relaxation method for 

solving Laplace’s equation. It calculates the general 

solution by finding particular solutions to a set of 

discrete points distributed throughout the area in 

question. The values of the individual points are 

obtained by averaging the values of nearby points. 

Gauss-Seidel differs from Jacobi-Seidel in that, for the 

i+1st iteration, Jacobi-Seidel uses only values calculated 

in the ith iteration. Gauss-Seidel uses a mixture of 

values calculated in the ith and i+1st iterations. 

global max.  The maximum value across all processors 

for a given variable. It is global in the sense that it is 

global to the available processors. 

global variable.  A variable defined in one portion of a 

computer program and used in at least one other 

portion of the computer program. 

gprof.  A UNIX  command that produces an execution 

profile of C, COBOL,  FORTRAN,  or Pascal programs. 

The execution profile is in a textual and tabular format. 

It is useful for identifying which routines use the most 

CPU time. See the man  page on gprof. 

graphical user interface (GUI).  A type of computer 

interface consisting of a visual metaphor of a 

real-world scene, often of a desktop. Within that scene 

are icons, which represent actual objects, that the user 

can access and manipulate with a pointing device. 

GUI.   Graphical user interface. 

H 

high performance switch.  The high-performance 

message-passing network of the IBM RS/6000 SP that 

connects all processor nodes. 

HIPPI.  High performance parallel interface. 

hook.  A pdbx command that lets you re-establish 

control over all tasks in the current context that were  

previously unhooked with this command. 

home node.  The node from which an application 

developer compiles and runs his program. The home 

node can be any workstation on the LAN.  

host.  A computer connected to a network that 

provides an access method to that network. A host 

provides end-user services. 

host list file.  A file that contains a list of host names, 

and possibly other information, that was  defined by the 

application that reads it. 

host name.  The name used to uniquely identify any 

computer on a network. 

hot spot.  A memory location or synchronization 

resource for which multiple processors compete 

excessively. This competition can cause a 

disproportionately large performance degradation when 

one processor that seeks the resource blocks, preventing 

many other processors from having it, thereby forcing 

them to become idle. 
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IBM Eserver  Cluster 1600.  An IBM Eserver  Cluster 

1600 is any PSSP or CSM-managed cluster comprised of 

POWER™  microprocessor based systems (including 

RS/6000 SMPs, RS/6000 SP nodes, and pSeries SMPs). 

IBM Parallel Environment (PE) for AIX.  A licensed 

program that provides an execution and development 

environment for parallel C, C++, and FORTRAN 

programs. It also includes tools for debugging, 

profiling, and tuning parallel programs. 

installation image.  A file or collection of files that are 

required in order to install a software product on a 

RS/6000 workstation or on SP system nodes. These 

files are in a form that allows them to be installed or 

removed with the AIX  installp command. See also 

fileset, licensed program, and package. 

Internet.  The collection of worldwide networks and 

gateways that function as a single, cooperative virtual 

network. 

Internet Protocol (IP).  (1) The TCP/IP protocol that 

provides packet delivery between the hardware and 

user processes. (2) The SP switch library, provided with 

the IBM AIX  Parallel System Support Programs, that 

follows the IP protocol of TCP/IP. 

IP.  Internet Protocol. 

J 

Jacobi-Seidel.  See Gauss-Seidel. 

K 

Kerberos.  A publicly available security and 

authentication product that works with the IBM AIX  

Parallel System Support Programs software to 

authenticate the execution of remote commands. 

kernel.  The core portion of the UNIX  operating 

system that controls the resources of the CPU  and 

allocates them to the users. The kernel is 

memory-resident, is said to run in kernel mode (in other 

words, at higher execution priority level than user 

mode), and is protected from user tampering by the 

hardware. 

L 

Laplace’s equation.  A homogeneous partial 

differential equation used to describe heat transfer, 

electric fields, and many other applications. 

latency.  The time interval between the instant when 

an instruction control unit initiates a call for data 

transmission, and the instant when the actual transfer 

of data (or receipt of data at the remote end) begins. 

Latency is related to the hardware characteristics of the 

system and to the different layers of software that are 

involved in initiating the task of packing and 

transmitting the data. 

licensed program.  A collection of software packages 

sold as a product that customers pay for to license. A 

licensed program can consist of packages and file sets a 

customer would install. These packages and file sets 

bear a copyright and are offered under the terms and 

conditions of a licensing agreement. See also fileset and 

package. 

lightweight corefiles.  An alternative to standard AIX  

corefiles. Corefiles produced in the Standardized 

Lightweight Corefile Format provide simple process stack 

traces (listings of function calls that led to the error) 

and consume fewer system resources than traditional 

corefiles. 

LoadLeveler.  A job management system that works 

with POE  to let users run jobs and match processing 

needs with system resources, in order to make better 

use of the system. 

local variable.  A variable that is defined and used 

only in one specified portion of a computer program. 

loop unrolling.  A program transformation that makes 

multiple copies of the body of a loop, also placing the 

copies within the body of the loop. The loop trip count 

and index are adjusted appropriately so the new loop 

computes the same values as the original. This 

transformation makes it possible for a compiler to take 

additional advantage of instruction pipelining, data 

cache effects, and software pipelining. 

 See also optimization. 

M 

management domain .  A set of nodes configured for 

manageability by the Clusters Systems Management 

(CSM)  product. Such a domain has a management 

server that is used to administer a number of managed 

nodes. Only management servers have knowledge of 

the whole domain. Managed nodes only know about 

the servers managing them; they know nothing of each 

other. Contrast with peer domain. 

menu.  A list of options displayed to the user by a 

data processing system, from which the user can select 

an action to be initiated. 

message catalog.  A file created using the AIX  Message 

Facility from a message source file that contains 

application error and other messages, which can later 

be translated into other languages without having to 

recompile the application source code. 

message passing.  Refers to the process by which 

parallel tasks explicitly exchange program data. 
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Message Passing Interface (MPI).  A standardized API  

for implementing the message-passing model. 

MIMD.   Multiple instruction stream, multiple data 

stream. 

Multiple instruction stream, multiple data stream 

(MIMD).   A parallel programming model in which 

different processors perform different instructions on 

different sets of data. 

MPMD.   Multiple program, multiple data. 

Multiple program, multiple data (MPMD).   A parallel 

programming model in which different, but related, 

programs are run on different sets of data. 

MPI.  Message Passing Interface. 

N  

network.  An interconnected group of nodes, lines, and 

terminals. A network provides the ability to transmit 

data to and receive data from other systems and users. 

Network Information Services.  A set of UNIX  

network services (for example, a distributed service for 

retrieving information about the users, groups, network 

addresses, and gateways in a network) that resolve 

naming and addressing differences among computers 

in a network. 

NIS.  See Network Information Services. 

node.  (1) In a network, the point where one or more 

functional units interconnect transmission lines. A 

computer location defined in a network. (2) In terms of 

the IBM RS/6000 SP, a single location or workstation in 

a network. An SP node is a physical entity (a 

processor). 

node ID.   A string of unique characters that identifies 

the node on a network. 

nonblocking operation.  An operation, such as 

sending or receiving a message, that returns 

immediately whether or not the operation was  

completed. For example, a nonblocking receive will not 

wait until a message is sent, but a blocking receive will 

wait. A nonblocking receive will return a status value 

that indicates whether or not a message was  received. 

O  

object code.  The result of translating a computer 

program to a relocatable, low-level form. Object code 

contains machine instructions, but symbol names (such 

as array, scalar, and procedure names), are not yet 

given a location in memory. Contrast with source code. 

optimization.  A widely-used (though not strictly 

accurate) term for program performance improvement, 

especially for performance improvement done by a 

compiler or other program translation software. An 

optimizing compiler is one that performs extensive 

code transformations in order to obtain an executable 

that runs faster but gives the same answer as the 

original. Such code transformations, however, can make 

code debugging and performance analysis very difficult 

because complex code transformations obscure the 

correspondence between compiled and original source 

code. 

option flag.  Arguments or any other additional 

information that a user specifies with a program name. 

Also referred to as parameters or command-line options. 

P 

package.  A number of file sets that have been 

collected into a single installable image of licensed 

programs. Multiple file sets can be bundled together for 

installing groups of software together. See also fileset 

and licensed program. 

parallelism.  The degree to which parts of a program 

may  be concurrently executed. 

parallelize.  To convert a serial program for parallel 

execution. 

Parallel Operating Environment (POE).  An execution 

environment that smooths the differences between 

serial and parallel execution. It lets you submit and 

manage parallel jobs. It is abbreviated and commonly 

known as POE. 

parameter.  (1) In FORTRAN,  a symbol that is given a 

constant value for a specified application. (2) An item 

in a menu for which the operator specifies a value or 

for which the system provides a value when the menu 

is interpreted. (3) A name in a procedure that is used to 

refer to an argument that is passed to the procedure. (4) 

A particular piece of information that a system or 

application program needs to process a request. 

partition.  (1) A fixed-size division of storage. (2) In 

terms of the IBM RS/6000 SP, a logical collection of 

nodes to be viewed as one system or domain. System 

partitioning is a method of organizing the SP system 

into groups of nodes for testing or running different 

levels of software of product environments. 

Partition Manager.  The component of the Parallel 

Operating Environment (POE) that allocates nodes, sets 

up the execution environment for remote tasks, and 

manages distribution or collection of standard input 

(STDIN), standard output (STDOUT), and standard 

error (STDERR). 

pdbx.  The parallel, symbolic command-line debugging 

facility of PE. pdbx is based on the dbx debugger and 

has a similar interface. 
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PE.  The IBM Parallel Environment for AIX  licensed 

program. 

peer domain.  A set of nodes configured for high 

availability by the RSCT configuration manager. Such a 

domain has no distinguished or master node. All  nodes 

are aware of all other nodes, and administrative 

commands can be issued from any node in the domain. 

All  nodes also have a consistent view of the domain 

membership. Contrast with management domain. 

performance monitor.  A utility that displays how 

effectively a system is being used by programs. 

PID.  Process identifier. 

POE.  Parallel Operating Environment. 

pool.  Groups of nodes on an SP system that are 

known to LoadLeveler, and are identified by a pool 

name or number. 

point-to-point communication.  A communication 

operation that involves exactly two  processes or tasks. 

One  process initiates the communication through a send 

operation. The partner process issues a receive operation 

to accept the data being sent. 

procedure.  (1) In a programming language, a block, 

with or without formal parameters, whose execution is 

invoked by means of a procedure call. (2) A set of 

related control statements that cause one or more 

programs to be performed. 

process.  A program or command that is actually 

running the computer. It consists of a loaded version of 

the executable file, its data, its stack, and its kernel data 

structures that represent the process’s state within a 

multitasking environment. The executable file contains 

the machine instructions (and any calls to shared 

objects) that will be executed by the hardware. A 

process can contain multiple threads of execution. 

 The process is created with a fork() system call and 

ends using an exit() system call. Between fork and exit, 

the process is known to the system by a unique process 

identifier (PID). 

 Each process has its own  virtual memory space and 

cannot access another process’s memory directly. 

Communication methods across processes include 

pipes, sockets, shared memory, and message passing. 

prof.  A utility that produces an execution profile of an 

application or program. It is useful to identify which 

routines use the most CPU  time. See the man  page for 

prof. 

profiling.  The act of determining how much CPU 

time is used by each function or subroutine in a 

program. The histogram or table produced is called the 

execution profile. 

Program Marker Array.  An X-Windows run time 

monitor tool provided with Parallel Operating 

Environment, used to provide immediate visual 

feedback on a program’s execution. 

pthread.  A thread that conforms to the POSIX Threads 

Programming Model. 

R 

reduced instruction-set computer.  A computer that 

uses a small, simplified set of frequently-used 

instructions for rapid execution. 

reduction operation.  An operation, usually 

mathematical, that reduces a collection of data by one 

or more dimensions. For example, the arithmetic SUM 

operation is a reduction operation that reduces an array 

to a scalar value. Other reduction operations include 

MAXVAL  and MINVAL.  

Reliable Scalable Cluster Technology.  A set of 

software components that together provide a 

comprehensive clustering environment for AIX. RSCT is 

the infrastructure used by a variety of IBM products to 

provide clusters with improved system availability, 

scalability, and ease of use. 

remote host.  Any  host on a network except the one 

where a particular operator is working. 

remote shell (rsh).  A command supplied with both 

AIX  and the IBM AIX  Parallel System Support 

Programs that lets you issue commands on a remote 

host. 

RISC.  See reduced instruction-set computer. 

RSCT.  See Reliable Scalable Cluster Technology. 

RSCT peer domain.  See peer domain. 

S 

shell script.  A sequence of commands that are to be 

executed by a shell interpreter such as the Bourne shell 

(sh), the C shell (csh), or the Korn shell (ksh). Script 

commands are stored in a file in the same format as if 

they were  typed at a terminal. 

segmentation fault.  A system-detected error, usually 

caused by referencing an non-valid memory address. 

server.  A functional unit that provides shared services 

to workstations over a network — a file server, a print 

server, or a mail server, for example. 

signal handling.  A type of communication that is 

used by message passing libraries. Signal handling 

involves using AIX  signals as an asynchronous way  to 

move data in and out of message buffers. 
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Single program, multiple data (SPMD).  A parallel 

programming model in which different processors 

execute the same program on different sets of data. 

source code.  The input to a compiler or assembler, 

written in a source language. Contrast with object code. 

source line.  A line of source code. 

SP.  IBM RS/6000 SP; a scalable system arranged in 

various physical configurations, that provides a 

high-powered computing environment. 

SPMD.   Single program, multiple data. 

standard input (STDIN).  In the AIX  operating system, 

the primary source of data entered into a command. 

Standard input comes from the keyboard unless 

redirection or piping is used, in which case standard 

input can be from a file or the output from another 

command. 

standard output (STDOUT).  In the AIX  operating 

system, the primary destination of data produced by a 

command. Standard output goes to the display unless 

redirection or piping is used, in which case standard 

output can go to a file or to another command. 

STDIN.  Standard input. 

STDOUT.   Standard output. 

stencil.  A pattern of memory references used for 

averaging. A 4-point stencil in two  dimensions for a 

given array cell, x(i,j), uses the four adjacent cells, 

x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1). 

subroutine.  (1) A sequence of instructions whose 

execution is invoked by a call. (2) A sequenced set of 

instructions or statements that can be used in one or 

more  computer programs and at one or more points in 

a computer program. (3) A group of instructions that 

can be part of another routine or can be called by 

another program or routine. 

synchronization.  The action of forcing certain points 

in the execution sequences of two  or more  

asynchronous procedures to coincide in time. 

system administrator.  (1) The person at a computer 

installation who  designs, controls, and manages the use 

of the computer system. (2) The person who  is 

responsible for setting up, modifying, and maintaining 

the Parallel Environment. 

System Data Repository.  A component of the IBM 

AIX  Parallel System Support Programs software that 

provides configuration management for the SP system. 

It manages the storage and retrieval of system data 

across the control workstation, file servers, and nodes. 

T 

target application.  See DPCL target application. 

task.  A unit of computation analogous to an AIX  

process. 

thread.  A single, separately dispatchable, unit of 

execution. There can be one or more threads in a 

process, and each thread is executed by the operating 

system concurrently. 

tracing.  In PE, the collection of information about the 

execution of the program. This information is 

accumulated into a trace file that can later be examined. 

tracepoint.  Tracepoints are places in the program that, 

when reached during execution, cause the debugger to 

print information about the state of the program. 

trace record.  In PE, a collection of information about a 

specific event that occurred during the execution of 

your program. For example, a trace record is created 

for each send and receive operation that occurs in your 

program (this is optional and might not be 

appropriate). These records are then accumulated into a 

trace file that can later be examined. 

U 

unrolling loops.  See loop unrolling. 

user.  (1) A person who  requires the services of a 

computing system. (2) Any  person or any thing that 

can issue or receive commands and message to or from 

the information processing system. 

User Space.  A version of the message passing library 

that is optimized for direct access to the high 

performance switch, that maximizes the performance 

capabilities of the SP hardware. 

utility program.  A computer program in general 

support of computer processes; for example, a 

diagnostic program, a trace program, a sort program. 

utility routine.  A routine in general support of the 

processes of a computer; for example, an input routine. 

V 

variable.  (1) In programming languages, a named 

object that may  take different values, one at a time. The 

values of a variable are usually restricted to one data 

type. (2) A quantity that can assume any of a given set 

of values. (3) A name used to represent a data item 

whose value can be changed while the program is 

running. (4) A name used to represent data whose 

value can be changed, while the program is running, 

by referring to the name of the variable. 
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view.  (1) To display and look at data on screen. (2) A 

special display of data, created as needed. A view 

temporarily ties two  or more  files together so that the 

combined files can be displayed, printed, or queried. 

The user specifies the fields to be included. The 

original files are not permanently linked or altered; 

however, if the system allows editing, the data in the 

original files will be changed. 

X 

X Window System.  The UNIX  industry’s graphics 

windowing standard that provides simultaneous views 

of several executing programs or processes on high 

resolution graphics displays.
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