
IBM Parallel Environment for AIX 5L

Introduction

Version 4

SA22-7947-02

���

IBM Parallel Environment for AIX 5L

Introduction

Version 4

SA22-7947-02

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 117.

Third Edition (April 2005)

This edition applies to Version 4 of IBM Parallel Environment for AIX 5L (product number 5765-F83) and to all

subsequent releases and modifications until otherwise indicated in new editions. This edition replaces SA22-7947-01.

Significant changes or additions to the text and illustrations are indicated by a vertical line (|) to the left of the

change.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or

you may address your comments to the following address:

 International Business Machines Corporation

 Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States & Canada): 1+845+432-9405

 FAX (Other Countries): Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet e-mail: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

 Title and order number of this book

 Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures . vii

About this book . ix

What is all this? . ix

Conventions and terminology used in this book . x

Abbreviated names . x

Prerequisite and related information . xi

Summary of changes for Parallel Environment 4.2 . xii

Using LookAt to look up message explanations . xii

National language support (NLS) . xii

Chapter 1. Understanding the environment . 1

What is IBM Parallel Environment for AIX? . 1

What is the Parallel Operating Environment? . 1

Before you start . 2

Running POE . 4

Who is in control? . 11

Chapter 2. Message passing . 21

Message passing . 21

Data decomposition . 22

Functional decomposition . 29

Duplication versus redundancy . 32

Protocols supported . 32

Thread debugging implications . 34

Checkpointing and restarting a parallel program . 34

Limitations . 34

How checkpointing and restarting works . 35

A checkpoint/restart scenario . 35

Chapter 3. Don’t panic . 37

Messages . 37

Message catalog errors . 37

Finding PE messages . 37

Logging POE errors to a file . 38

Message format . 38

Diagnosing problems using IVP . 38

Cannot compile a parallel program . 39

Cannot start a parallel job . 39

Cannot execute a parallel program . 41

The program runs but... . 42

The parallel debugger is your friend . 42

When a core dump is created . 43

No output at all . 50

It hangs . 51

Let’s attach the debugger . 53

Other hang ups . 59

Bad output . 60

Debugging and threads . 60

Chapter 4. Is it efficient . 63

Tuning the performance of a parallel application . 63

How much communication is enough? . 64

Tuning the performance of threaded programs . 68

© Copyright IBM Corp. 1995, 2005 iii

||

Why is this so slow? . 68

Profile it . 69

Parallelize it . 79

Wrong answer! . 80

Here is the fix! . 82

It is still not fast enough! . 84

Tuning summary . 93

Chapter 5. MPL to MPI . 95

Point-to-point communication . 95

SEND (Non-Blocking) . 95

RECEIVE (Non-Blocking) . 95

SEND (Blocking) . 95

RECEIVE (Blocking) . 95

SEND/RECEIVE (Blocking) . 96

STATUS . 96

WAIT . 96

TASK_SET . 96

TASK_QUERY . 96

ENVIRON . 97

STOPALL . 97

PACK . 97

UNPACK . 97

VSEND (Blocking) . 98

VRECV (Blocking) . 98

PROBE . 98

Collective communications . 98

BROADCAST . 98

COMBINE . 98

CONCAT . 98

GATHER . 99

INDEX . 99

PREFIX . 99

REDUCE . 99

SCATTER . 99

SHIFT . 99

SYNC . 99

GETLABEL . 100

GETMEMBERS . 100

GETRANK . 100

GETSIZE . 100

GETTASKID . 100

GROUP . 100

PARTITION . 101

Reduction functions . 101

User-defined reduction functions . 102

Global variables and constants . 102

Last error code . 102

Wildcards . 102

Other considerations for converting from MPL to MPI . 102

Task identifiers . 102

Message length . 102

Creating MPI objects . 102

Using wildcard receives . 103

Reduction functions . 103

Error handling . 103

Before and after using MPI functions . 103

Using message passing handlers . 104

Chapter 6. Mostly harmless . 105

iv

What is a safe program? . 105

Safety and threaded programs . 105

Using threaded programs with non-thread-safe libraries 106

Message ordering . 106

Program progress when two processes initiate two matching sends and receives 107

Communication fairness . 107

Resource limitations . 107

Appendix A. A sample program to illustrate messages 109

Figuring out what all of this means . 111

Appendix B. Parallel Environment internals 113

What happens when I compile my applications? . 113

How do my applications start? . 113

How does POE talk to the nodes? . 113

How are signals handled? . 114

What happens when my application ends? . 114

Appendix C. Accessibility . 115

Using assistive technologies . 115

Notices . 117

Trademarks . 119

Acknowledgements . 119

Glossary . 121

Index . 129

Contents v

vi

Figures

 1. Output from mpcc_r/mpxlf_r . 10

 2. Overview window . 71

 3. Load application window . 73

 4. Probe data selection window . 74

 5. Source tree window . 75

 6. Process list, source tree, and probe selection window . 76

 7. Data view area . 77

 8. Data view area (fewer cache misses showing) . 78

 9. Serial and parallel array stencils . 81

10. How the average is computed in a 4-point stencil . 82

11. Sequence of array calculation . 83

12. Jumpshot - skewed program . 87

13. Jumpshot legend - skewed program . 88

14. Jumpshot - pipelined program showing improved load balance 90

15. Jumpshot - pipielined program communication sequence 91

16. Jumpshot legend – pipelined program . 92

© Copyright IBM Corp. 1995, 2005 vii

viii

About this book

This book provides suggestions and guidance for using the IBM Parallel

Environment for AIX to develop and run Fortran, C, and C++ parallel applications.

To make this book a little easier to read, the name IBM Parallel Environment for AIX

has been abbreviated to PE throughout.

In this book, you will find information on basic parallel programming concepts

and the Message Passing Interface (MPI) standard. You will also find information

about the application development tools that are provided by PE such as the

Parallel Operating Environment and the Parallel Debugger.

References to RS/6000® SP™ or SP include currently supported IBM®

Eserver

Cluster 1600 hardware.

What is all this?

To make the best use of this book, you should be familiar with the following:

v The AIX® operating system

v One or more of the supported programming languages (Fortran, C, or C++)

v Basic parallel programming concepts.

This book is not intended to provide comprehensive coverage of the topics, nor is

it intended to tell you everything there is to know about IBM Parallel Environment

for AIX (PE). If you are new to either message passing parallel programming or to

PE, you should find this book useful. For the latest information, always use the

documents at:

http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/

The objective of each chapter is described below:

v Chapter 1, “Understanding the environment,” on page 1 familiarizes you with

the Parallel Operating Environment (POE).

v Chapter 2, “Message passing,” on page 21 covers parallelization techniques and

discusses their advantages and disadvantages. It discusses how you take a

working serial program and create a parallel program that gives the same result.

v Chapter 3, “Don’t panic,” on page 37 outlines the possible causes for a parallel

application to fail to execute correctly, and how the tools available with the PE

can be used to identify and correct problems.

v Chapter 4, “Is it efficient,” on page 63 discusses some of the ways you can

optimize the performance of a parallel program and some hints on tuning the

performance of the program.

v Chapter 5, “MPL to MPI,” on page 95 helps you understand how to translate a

MPL parallel program into a program that conforms to the MPI standard.

v Chapter 6, “Mostly harmless,” on page 105 provides you with some general

guidelines for creating safe parallel MPI programs.

v Appendix A, “A sample program to illustrate messages,” on page 109 provides

a sample program, run with the maximum level of error messages. It points out

the various types of messages you can expect, and tells you what they mean.

v Appendix B, “Parallel Environment internals,” on page 113 provides some

additional information about how the PE works with respect to your application.

© Copyright IBM Corp. 1995, 2005 ix

The purpose of this book is to get you started creating parallel programs with PE.

Once you have mastered these initial concepts, you will need to know more about

how PE works. For information on the Parallel Operating Environment (POE), see

IBM Parallel Environment for AIX: Operation and Use, Volume 1. For information on

PE tools, see IBM Parallel Environment for AIX: Operation and Use, Volume 2.

Conventions and terminology used in this book

This book uses the following typographic conventions:

 Convention Usage

bold Bold words or characters represent system elements that you must

use literally, such as: command names, file names, flag names, path

names, PE component names (pedb, for example), and subroutines.

constant width Examples and information that the system displays appear in

constant-width typeface.

italic Italicized words or characters represent variable values that you

must supply.

Italics are also used for book titles, for the first use of a glossary

term, and for general emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

\ The continuation character is used in coding examples in this book

for formatting purposes.

In addition to the highlighting conventions, this manual uses the following

conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to

enter the tool command, this manual presents the instruction as:

ENTER

tool

Abbreviated names

Some abbreviated names used in this book:

 Short Name Full Name

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

IP Internet Protocol

LAPI Low-level Application Programming Interface

MPI Message Passing Interface

x

Short Name Full Name

PE IBM Parallel Environment for AIX

PE MPI IBM’s implementation of the MPI standard for PE

PE MPI-IO IBM’s implementation of MPI I/O for PE

POE parallel operating environment

pSeries® IBM Eserver pSeries

PSSP IBM Parallel System Support Programs for AIX

RSCT Reliable Scalable Cluster Technology

RISC reduced instruction set computer

rsh remote shell

RS/6000 IBM RS/6000

SP IBM RS/6000 SP

STDERR standard error

STDIN standard input

STDOUT standard output

US user space

Prerequisite and related information

The Parallel Environment library consists of:

v IBM Parallel Environment for AIX: Introduction, SA22-7947, the book you are

reading

v IBM Parallel Environment for AIX: Installation, GA22-7943

v IBM Parallel Environment for AIX: Messages, GA22-7944

v IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7945

v IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7946

v IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7948

v IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7949

To access the most recent PE documentation in PDF and HTML format, refer to the

IBM Eserver Cluster Information Center on the Web at:

http://publib.boulder.ibm.com/clresctr/library/

Both the current PE books and earlier versions of the library are also available in

PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the

book’s publication number. The publication number for each of the Parallel

Environment books is listed after the book title in the preceding list.

For a glossary of terms, see the Glossary at the back of this book.

About this book xi

Summary of changes for Parallel Environment 4.2

This release of IBM Parallel Environment for AIX contains a number of functional

enhancements, including:

v Support for POWER3™, POWER4™, and POWER5™ servers running AIX 5L™

V5.2 or AIX 5L V5.3

v Support for IBM Eserver p5 servers and the High Performance Switch (HPS)

with AIX 5L V5.2 only, and coexistence in a cluster managed by Cluster Systems

Management (CSM)

v Remote Direct Memory Access (RDMA) for bulk data copy and transfer, and

large contiguous messages, only on the HPS

v Support for striping of messages over multiple adapters attached to the pSeries

HPS

v MPI support for 128 tasks per node using shared memory

v Support for LoadLeveler® performance improvements

v Support for up to 8192 tasks in a single job, with improved memory utilization

for large jobs

v MPI collectives algorithm and optimization improvements

v MPI shared memory collectives use AIX 5L V5.3 cross-memory attachment

enhancements

v Point-to-point messages in shared memory use AIX 5L V5.3 cross-memory

attachment enhancements

v MPI/LAPI performance statistics

v The SP Switch is no longer supported

v PE 4.2 is the last release of PE that will support Parallel Systems Support

Programs for AIX (PSSP), the SP Switch2, and POWER3 servers

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

National language support (NLS)

For national language support (NLS), all PE components and tools display

messages that are located in externalized message catalogs. English versions of the

message catalogs are shipped with PE, but your site may be using its own

translated message catalogs. The PE components use the AIX environment variable

NLSPATH to find the appropriate message catalog. NLSPATH specifies a list of

directories to search for message catalogs. The directories are searched, in the order

listed, to locate the message catalog. In resolving the path to the message catalog,

xii

|

|
|

|
|

|
|
|

|
|

|
|

|||

|

|
|

|

|
|

|
|

|

|

|
|

NLSPATH is affected by the values of the environment variables LC_MESSAGES

and LANG. If you get an error saying that a message catalog is not found and you

want the default message catalog:

ENTER

export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following

directories:

 /usr/lib/nls/msg/C

 /usr/lib/nls/msg/En_US

 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your

system administrator for the appropriate value of NLSPATH or LANG. For more

information on NLS and message catalogs, see IBM AIX 5L Version 5.2 General

Programming Concepts: Writing and Debugging Programs.

About this book xiii

xiv

Chapter 1. Understanding the environment

This section will help you understand the new environment, IBM Parallel

Environment for AIX (PE). It covers:

v PE

v The Parallel Operating Environment (POE)

v Starting the POE

v Running simple commands

v Experimenting with parameters and environment variables

v Using a host list file versus a job management system (LoadLeveler) for

requesting processor nodes

v Compiling and running a simple parallel application

v Some simple environment setup and debugging tips.

This book contains examples and illustrates various commands and programs as

well as the output you get as a result of running them. When looking at these

examples, keep in mind that the output you see on the system may not exactly

match what is printed in the book. The included examples here give you a basic

idea of what happens.

What is IBM Parallel Environment for AIX?

IBM Parallel Environment for AIX (PE) software lets you develop, debug, analyze,

tune, and execute parallel applications written in Fortran, C, and C++. PE

conforms to existing standards like UNIX® and MPI. PE runs on either an IBM

pSeries server, or a clustered server.

PE consists of the following:

v The Parallel Operating Environment (POE), for submitting and managing jobs.

v A message passing library (MPI), for communication among the tasks that make

up a parallel program.

v A parallel debugger (pdbx) for debugging parallel programs.

v Parallel utilities for easing file manipulation.

v PE Benchmarker, a suite of applications and utilities you can use to analyze

program performance.

What is the Parallel Operating Environment?

The Parallel Operating Environment (POE) allows you to develop and execute the

parallel applications across multiple operating system images, called nodes. When

using POE, there is a single node (possibly a workstation) that is called the home

node that manages interactions with users.

POE transparently manages the allocation of remote nodes where the parallel

application actually runs. It also handles the various requests and communication

between the home node and the remote nodes via the underlying network.

© Copyright IBM Corp. 1995, 2005 1

*
*
*
*

This approach eases the transition from serial to parallel programming by hiding

the differences, and allowing you to continue using standard AIX tools and

techniques. You have to tell POE what remote nodes to use, but once you have,

POE does the rest.

The processor node is a physical entity or operating system image that is defined to

the network. It can be a standalone machine, or a processor node within an IBM

RS/6000 SP (SP) frame or clustered server. From POE’s point of view, a node is a

single copy of the operating system.

If you are using a Symmetric Multiprocessor (SMP) system, it is important to know

that, although an SMP node has more than one processing unit, it is still

considered, and referred to as, a processor node.

Before you start

Before starting, check that you have addressed the items covered in this section.

Installation

Whoever installed POE should have verified that it was installed successfully by

running the Installation Verification Program (IVP). The IBM Parallel Environment for

AIX: Installation Guide discusses the IVP.

The IVP tests to see if POE can do the following:

v Establish a remote execution environment

v Compile and execute the program

v Initialize the IP message passing environment

v Check that the MPI library is operable.

Access

Before running the job, you must first have access to computer resources in the

system. Here are some things to consider:

v You must have the same user ID on the home node and each remote node on

which you will be running the parallel application.

v POE will not allow you to run the application as root.

If you are using LoadLeveler to submit POE jobs, which includes all user space

applications, then LoadLeveler is responsible for the security authentication. The

security function in POE is not invoked when POE is run under LoadLeveler.

Security methods: PE uses an enhanced set of security methods, based on Cluster

Security Services in RSCT (Reliable Scalable Cluster Technology). RSCT is a set of

software components that provide a comprehensive clustering environment. RSCT

is the infrastructure used by a variety of products to provide clusters with

improved system availability, scalability, and ease of use. POE now has a security

configuration option for the system administrator to determine which set of

security methods are used in the system. Two types of security methods are

supported:

v cluster security services

v AIX or DCE based security (or compatibility) and is the default.

Cluster security services: When cluster based security is the security method of

choice, the system administrator will have to ensure that UNIX Host Based

authentication is enabled and properly configured on all nodes. Refer to IBM

Parallel Environment for AIX: Installation Guide and IBM Reliable Scalable Cluster

Technology for AIX 5L: Guide and Reference for details.

2

*
*
*
*
*
*
*
*

*

*

When using cluster based security, users will be required to have the proper

entries in the /etc/hosts.equiv or .rhosts files, to ensure proper access to each node,

as described in “AIX-based user authorization.”

AIX/DCE based security: When AIX/DCE based security (compatibility) is the

security method of choice (which is also the default), POE will rely on the

following for user authorization. The choices are based on the security services

methods available when using PSSP, as set with the PSSP chauthts command,

primarily for DCE support under PSSP. In the case where PSSP is not being used,

POE defaults to using AIX authentication.

Compatibility

AIX authentication is used, based on entries in the /etc/hosts.equiv or

.rhosts files. This is the default.

DCE DCE authentication is used, for which you need to have:

1. A valid DCE ID and principal, that you use to perform a dce_login.

2. The PMD service principal, which the system administrator set up.

DCE and Compatibility

DCE authentication is attempted first, and if unsuccessful, AIX

authentication is tried.

None No security methods are enabled. POE defaults to use AIX authentication,

as it does with Compatibility.

 User authentication is set on the POE remote nodes. Refer to IBM Parallel

Environment for AIX: Installation Guide for specific details on mixing security

methods in the system.

AIX-based user authorization

You must have remote execution authority on all the nodes in the system that you

will use for parallel execution. The system administrator should:

v Authorize both the home node machine and the user name (or machine names)

in the /etc/hosts.equiv file on each remote node, or

v Set up the .rhosts file in the home directory of the user ID for each node that

you want to use. The contents of each .rhosts file can be either the explicit IP

address of the home node, or the home node name. For more information about

.rhosts files, see the IBM Parallel Environment for AIX: Installation Guide.

/etc/hosts.equiv is checked first, and, if the home node and user/machine name do

not appear there, it then looks to .rhosts.

You can verify that you have remote execution authority by running a remote shell

from the workstation where you intend to submit parallel jobs. For example, to test

whether you have remote execution authority on node 202r1n10, try the following

command:

$ rsh 202r1n10 hostname

The response should be the remote host name. If it is not the remote host name, or

the command cannot run, see the system administrator. Issue this command for

every remote host on which you plan to have POE execute the job.

Refer to IBM Parallel Environment for AIX: Installation Guide for more details.

DFS/DCE-based user authorization

When DCE authentication is enabled, POE expects a valid set of DCE credentials

to submit parallel jobs.

Chapter 1. Understanding the environment 3

*
*
*
*
*
*

*
*
*

When both DCE and Compatibility methods are enabled, POE first tries to use DCE

authentication. If DCE authentication is unsuccessful, POE then uses AIX

authentication.

To use DCE, POE requires the following:

v A valid set of DCE credentials, created by a dce_login to a valid principal.

v A valid set of Kerberos Version 5 principals, created by klogin or an entry in a

.k5login file in the user’s home directory.

v The PMD service principal, which the system administrator must have set up as

part of the system’s security administration and configuration steps. See IBM

Parallel Environment for AIX: Installation Guide for more information on

configuring the PMD service principal.

For more information on DCE user authentication, refer to IBM Parallel Environment

for AIX: Installation Guide and IBM Parallel Environment for AIX: Operation and Use,

Volume 1.

Host list file

One way to tell POE where to run the program is by using a host list file. The host

list file is generally in the current working directory, but you can move it

anywhere you like by specifying certain parameters. This file can be given any

name, but the default name is host.list. Many people use host.list as the name to

avoid having to specify another parameter. This file contains one of two different

kinds of information; node names or pool numbers (a pool can also be designated

by a string).

Node names refer to the hosts on which parallel jobs may be run. They may be

specified as Domain Names (as long as those Domain Names can be resolved from

the workstation where you submit the job) or as Internet addresses. Each host goes

on a separate line in the host list file.

Here is an example of a host list file that specifies the node names on which four

tasks will run:

202r1n09.hpssl.kgn.ibm.com

202r1n10.hpssl.kgn.ibm.com

202r1n11.hpssl.kgn.ibm.com

202r1n12.hpssl.kgn.ibm.com

Running POE

Once you have checked all the items in “Before you start” on page 2, you are

ready to run the POE. You can view POE as a way to run commands and

programs on multiple nodes from a single point. Remember that these commands

and programs are really running on the remote nodes. If you ask POE to perform

some operation on a remote node, everything necessary to perform that operation

must be available on the remote node.

There are two ways to influence the way the parallel program is executed; with

environment variables or command-line option flags. You can set environment

variables at the beginning of the session to influence each program that you

execute. You also get the same effect by specifying the related command-line flag

when you invoke POE, but its influence lasts only for that particular program

execution. This book shows you how to use the command-line option flags to

influence the way the program executes. “Running POE with environment

variables” on page 7 gives you some high-level information, but you may also

4

*
*
*
*

want to refer to IBM Parallel Environment for AIX: Operation and Use, Volume 1 to

learn more about using environment variables.

The following sections show you how to run a parallel job by requesting that POE

use nodes in a host list file and tell you how to use a host list file to request nodes

from LoadLeveler.

Some examples of running POE

The poe command enables you to load and execute programs on remote nodes.

The syntax is:

poe [program] [options]

When you invoke poe, it allocates processor nodes for each task and initializes the

local environment. It then loads the program and reproduces the local shell

environment on each processor node. POE also passes the user program arguments

to each remote node.

The simplest thing to do with POE is to run an AIX command. When you try these

examples on the system, use a host list file that contains the node names (as

opposed to a pool number). These examples assume at least a four-node parallel

environment. If you have more than four nodes, feel free to use more. If you have

fewer than four nodes, you may duplicate lines. This example assumes that the file

is called host.list, and is in the directory from which you are submitting the parallel

job. If either of these conditions are not true, POE will not find the host list file

unless you use the -hostfile option.

The -procs 4 option tells POE to run this command on four nodes. It will use the

first four in the host list file.

 What you see is the output from the hostname command run on each of the

remote nodes. POE has taken care of submitting the command to each node,

collecting the standard output and standard error from each remote node, and

sending it back to the workstation. One thing that you do not see is an indication

of which task is responsible for each line of output. In a simple example like this, it

is not that important. If, however, you had many lines of output from each node,

you would want to know which task was responsible for each line of output. To

do that, you use the -labelio option:

 Notice how each line starts with a number and a colon and that the numbering

started at 0 (zero). The number is the task ID that the line of output came from (it

is also the line number in the host list file that identifies the host which generated

this output). Use this parameter to identify lines from a command that generates

more output. Try this command:

$ poe hostname -procs 4

202r1n10.hpssl.kgn.ibm.com

202r1n11.hpssl.kgn.ibm.com

202r1n09.hpssl.kgn.ibm.com

202r1n12.hpssl.kgn.ibm.com

$ poe hostname -procs 4 -labelio yes

1:202r1n10.hpssl.kgn.ibm.com

2:202r1n11.hpssl.kgn.ibm.com

0:202r1n09.hpssl.kgn.ibm.com

3:202r1n12.hpssl.kgn.ibm.com

Chapter 1. Understanding the environment 5

You should see something similar to this:

0:***

0:* *

0:* Welcome to IBM AIX Version 5.2 on 202r1n09.hpssl.kgn.ibm.com *

0:* *

0:***

0:* *

0:* Message of the Day: Never drink more than 3 *

0:* Blasters unless you are a 50 ton elephant. *

0:* *

0:* *

1:***

1:* *

1:* Welcome to IBM AIX Version 5.2 on 202r1n10.hpssl.kgn.ibm.com *

1:* *

1:***

1:* *

1:* *

1:* Message of the Day: Never drink more than 3 *

1:* Blasters unless you are a 50 ton elephant. *

1:* *

1:* *

1:* *

1:***

0:* *

0:* *

0:* *

0:***

The cat command is listing the contents of the file /etc/motd on each of the remote

nodes. Notice how the output from each of the remote nodes is intermingled. This

is because as soon as a buffer is full on the remote node, POE sends it back to the

workstation for display (in case you had any doubts that these commands were

really being executed in parallel). The result is the jumbled mess that can be

difficult to interpret. Fortunately, POE can clear things up with the -stdoutmode

parameter.

Try this command:

 You should see something similar to this:

0:***

0:* *

0:* Welcome to IBM AIX Version 5.2 on 202r1n09.hpssl.kgn.ibm.com *

0:* *

0:***

0:* *

0:* *

0:* Message of the Day: Never drink more than 3 Blasters *

0:* unless you are a 50 ton elephant. *

0:* *

0:* *

0:* *

0:***

1:***

1:* *

1:* Welcome to IBM AIX Version 5.2 on 202r1n10.hpssl.kgn.ibm.com *

1:* *

1:***

1:* *

$ poe cat /etc/motd -procs 2 -labelio yes

$ poe cat /etc/motd -procs 2 -labelio yes -stdoutmode ordered

6

1:* *

1:* Message of the Day: Never drink more than 3 Blasters *

1:* unless you are a 50 ton elephant. *

1:* *

1:* *

1:* *

1:***

POE holds all the output until the jobs either finish or POE itself runs out of space.

If the jobs finish, POE displays the output from each remote node together. If POE

runs out of space, it prints everything, and then starts a new page of output. You

get less of a sense of the parallel nature of the program, but it is easier to

understand.

Running POE with environment variables

If you are getting tired of typing the same command line options over and over

again, you can set them as environment variables so that you do not have to put

them on the command line. The environment variable names are the same as the

command line option names (without the leading dash), but they start with MP_,

all in upper case. For example, the environment variable name for the -procs

option is MP_PROCS, and for the -labelio option it is MP_LABELIO. Setting these

two variables like this:

$ export MP_PROCS=2

$ export MP_LABELIO=yes

allows you to run the /etc/motd program with two processes and labeled output,

without specifying either with the poe command.

Try this command;

$ poe cat /etc/motd -stdoutmode ordered

You should see something similar to this:

0:***

0:* *

0:* Welcome to IBM AIX Version 5.2 on pe03.pok.ibm.com *

0:* *

0:***

0:* *

0:* *

0:* Message of the Day: Never drink more than 3 Blastes *

0:* unless you are a 50 ton elephant. *

0:* *

0:* *

0:* *

0:***

1:***

1:* *

1:* Welcome to IBM AIX Version 5.2 on pe03.pok.ibm.com *

1:* *

1:***

1:* *

1:* *

1:* Message of the Day: Never drink more than 3 *

1:* Blasters unless you are a 50 ton elephant. *

1:* *

1:* *

1:* *

1:***

In the previous example, the program ran with two processes, and the output was

labeled.

Chapter 1. Understanding the environment 7

*
*
*
*
*

Now, to see that the environment variable setting lasts for the duration of the

session, try running the command below, without specifying the number of

processes or labeled I/O.

 Notice that the program still ran with two processes and you got labeled output.

Now try overriding the environment variables just set. To do this, use command

line options when running POE. Try running the following command:

$ poe hostname -procs 4 -labelio no

202r1n09.hpssl.kgn.ibm.com

202r1n12.hpssl.kgn.ibm.com

202r1n11.hpssl.kgn.ibm.com

202r1n10.hpssl.kgn.ibm.com

This time, notice that the program ran with four processes and that the output was

not labeled? No matter what the environment variables have been set to, you can

always override them when you run POE.

To show that this was a temporary override of the environment variable settings,

try running the following command again, without specifying any command line

options.

$ poe hostname

0:202r1n09.hpssl.kgn.ibm.com

1:202r1n10.hpssl.kgn.ibm.com

Once again, the program ran with two processes, and the output was labeled.

Compiling

You probably have programs that you want to run in parallel. Chapter 2, “Message

passing,” on page 21 talks about creating parallel programs in a more detail. Right

now the topic is compiling a program for POE. You can compile almost any

Fortran, C, or C++ program for execution under POE.

Before compiling, you should verify that the following has happened:

v POE is installed on the system

v You are authorized to use POE

v A Fortran, C Compiler, or C ++ compiler is installed on the system.

See IBM Parallel Environment for AIX: MPI Programming Guide for information on

compilation restrictions for POE.

This example showing how compiling works, uses the Hello World program. Here

it is in C:

$ poe hostname

0:202r1n09.hpssl.kgn.ibm.com

1:202r1n10.hpssl.kgn.ibm.com

8

And here it is in Fortran:

 To compile these programs, you just invoke the appropriate compiler script:

 POE scripts mpcc_r, mpCC_r, and mpxlf_r link the parallel libraries that allow

programs to run in parallel. Script mpcc_r generates thread-aware code by linking

in the threaded version of MPI, including the threaded POE utility library.

Currently, only the threaded version of MPI is provided by POE.

Legacy POE scripts mpcc, mpCC, and mpxlf are now symbolic links to mpcc_r,

mpCC_r, and mpxlf_r, and are used in some of the examples in this book.

All the compiler scripts accept all the same options that the non-parallel compilers

do, as well as some options specific to POE. For a complete list of all

parallel-specific compilation options, see IBM Parallel Environment for AIX:

Operation and Use, Volume 1.

Running one of the POE compiler scripts creates an executable version of the

source program that takes advantage of POE. However, before POE can run the

program, you need to make sure that it is accessible on each remote node. You can

/**

*

* Hello World C Example

*

* To compile:

* mpcc_r -o hello_world_c hello_world.c

*

**/

#include<stdlib.h>

#include<stdio.h>

/* Basic program to demonstrate compilation and execution techniques */

int main()

{

printf("Hello, World!\n");

exit(0);

}

c***

c*

c* Hello World Fortran Example

c*

c* To compile:

c* mpxlf_r -o hello_world_f hello_world.f

c*

c***

c --

c Basic program to demonstrate compilation and execution techniques

c --

c program hello

implicit none

write(6,*)’Hello, World!’

stop

end

$ mpcc_r -o hello_world_c hello_world.c

$ mpxlf_r -o hello_world_f hello_world.f

** main === End of Compilation 1 ===

1501-510 Compilation successful for file hello_world.f.

Chapter 1. Understanding the environment 9

do this by either copying it there, or by mounting the file system that the program

resides in to each remote node.

POE options

There are a number of options (command line flags) that you may want to specify

when invoking POE. These options are covered in full detail in IBM Parallel

Environment for AIX: Operation and Use, Volume 1 but here are the ones you will

most likely need to be familiar with at this stage.

-procs: When you set -procs, you are telling POE how many tasks the program

will run. You can also set the MP_PROCS environment variable to do this (-procs

can be used to temporarily override it).

-hostfile or -hfile: The default host list file used by POE to allocate nodes is

called host.list. You can specify a file other than host.list by setting the -hostfile or

-hfile options when invoking POE. You can also set the MP_HOSTFILE

environment variable to do this (-hostfile and -hfile can be used to temporarily

override it).

-labelio: You can set the -labelio option when invoking POE so that the output

from the parallel tasks of the program are labeled by task id. This becomes

especially useful when you are running a parallel program and the output is

unordered. When you have output that is labeled output, you can easily determine

which message the task returned.

You can also set the MP_LABELIO environment variable to do this (-labelio can

be used to temporarily override it).

-infolevel or -ilevel: You can use the -infolevel or -ilevel options to specify the

level of messages you want from POE. There are different levels of informational,

warning, and error messages, plus several debugging levels. The -infolevel option

generates large amounts of output. Use it with care. You can also set the

MP_INFOLEVEL environment variable to do this (-infolevel and -ilevel can be

used to temporarily override it).

-pmdlog: The -pmdlog option lets you specify that diagnostic messages should be

logged to a file in /tmp on each of the remote nodes of the partition. These

diagnostic logs are particularly useful for isolating the cause of abnormal

termination. The -pmdlog option consumes a significant amount of system

Here is the output of the C program (threaded or non-threaded):

$ poe hello_world_c -procs 4

Hello, World!

Hello, World!

Hello, World!

Hello, World!

And here is the output of the Fortran program:

$ poe hello_world_f -procs 4

Hello, World!

Hello, World!

Hello, World!

Hello, World!

Figure 1. Output from mpcc_r/mpxlf_r

10

resources. Use it with care. You can also set the MP_PMDLOG environment

variable to do this (-pmdlog can be used to temporarily override it).

-stdoutmode: The -stdoutmode option lets you specify how you want the output

data from each task in the program to be displayed. When you set this option to

ordered, the output data from each parallel task is written to its own buffer, and

later, all buffers are flushed, in task order, to STDOUT. The examples in this section

show you how this works. Using the -infolevel option consumes a significant

amount of system resources, which may affect performance. You can also set the

MP_STDOUTMODE environment variable to do this (-stdoutmode can be used to

temporarily override it).

Who is in control?

So far, you have explicitly specified to POE the set of nodes on which to run the

parallel application. You did this by creating a list of hosts in a file called host.list,

in the directory from which you submitted the parallel job. In the absence of any

other instructions, POE selected host names out of this file until it had as many as

the number of processes you told POE to use (with the -procs option).

Another way to tell POE which hosts to use is with LoadLeveler. LoadLeveler can

manage jobs on a networked cluster of pSeries servers or RS/6000 workstations.

Managing jobs

LoadLeveler is a job management system that allows users to run more jobs in less

time by matching the jobs’ processing needs with the available resources.

LoadLeveler allocates nodes, one job at a time. This is necessary if a parallel

application is communicating directly over the high performance switch. With the

-euilib command line option (or the MP_EUILIB environment variable), you can

specify how you want to do message passing. This option lets you specify the

message passing subsystem library implementation, IP or User Space (US), that

you wish to use. See IBM Parallel Environment for AIX: Operation and Use, Volume 1

for more information. With LoadLeveler, you can also dedicate the parallel nodes

to a single job, so there is no conflict or contention for resources. LoadLeveler

allocates nodes from either the host list file, or from a predefined pool, which the

system administrator usually sets up.

How the nodes are allocated: To know who is allocating the nodes and where

they are being allocated from, you must always have a host list file or use the

MP_RMPOOL environment variable or -rmpool command line option (unless you

are using the MP_LLFILE environment variable or the -llfile command line

option). See IBM Parallel Environment for AIX: Operation and Use, Volume 1 for more

information.

The default for the host list file is a file named host.list in the directory from which

the job is submitted. This default may be overridden by the -hostfile command

line option or the MP_HOSTFILE environment variable. For example, the

following command:

$ poe hostname -procs 4 -hostfile $HOME/myHosts

uses a file called myHosts, located in the home directory. If the value of the

-hostfile parameter does not start with a slash (/), it is taken as relative to the

current directory. If the value starts with a slash (/), it is taken as a fully-qualified

file name.

For specific examples of how a system administrator defines pools, see IBM

LoadLeveler for AIX: Using and Administering (SA22-7311). There is another way to

Chapter 1. Understanding the environment 11

*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*

designate the pool on which you want the program to run. If myHosts did not

contain any pool numbers, you could use the:

v MP_RMPOOL environment variable which you can set to a number or string.

This setting would last for the duration of the session.

v -rmpool command line option to specify a number or string when you invoke

the program. This option would override the MP_RMPOOL environment

variable.

If a host list file named host_list exists, or if a host list file is specified using

MP_HOSTFILE or -hostfile, anything you specify with MP_RMPOOL or -rmpool

will be ignored. If a file named host.list exists and you want to use MP_RMPOOL

or -rmpoolthen MP_HOSTFILE or -hostfile must be set to NULL.

For more information about the MP_RMPOOL environment variable or the

-rmpool command line option, see IBM Parallel Environment for AIX: Operation and

Use, Volume 1

If the myHosts file contains actual host names, but you want to use the switch

directly for communication, LoadLeveler allocates only the nodes that are listed in

myHosts. LoadLeveler keeps track of which parallel jobs are using the switch.

Since it allows more than one job at a time to use the switch, LoadLeveler makes

sure that only the allowed number of tasks actually use it. If the host list file

contains actual host names, but you do not want to use the switch directly for

communication, POE allocates the nodes from those listed in the host list file.

You cannot have both host names and pool IDs in the same host list file.

The program executes exactly the same way, regardless of whether POE or

LoadLeveler allocated the nodes. In the following example, the host list file

contains a pool number which causes the job management system to allocate

nodes. However, the output is identical to Figure 1 on page 10, where POE

allocated the nodes from the host list file.

 So, if the output looks the same, regardless of how the nodes are allocated, how do

you know whether LoadLeveler was used? Well, POE knows a lot that it ordinarily

does not tell you. If you coax it with the -infolevel option, POE will tell you more

information than you ever wanted to know.

Getting a little more information

You can control the level of messages you get from POE as the program executes

by using the -infolevel option of POE. The default setting is 1 (normal), which

says that warning and error messages from POE will be written to STDERR.

However, you can use this option to get more information about how the program

executes. For example, with -infolevel set to 2, you see a couple of different things.

First, you will see a message that says that POE has contacted LoadLeveler.

Following that, you will see messages that indicate which nodes LoadLeveler

passed back to POE for use.

For a description of the various -infolevel settings, see IBM Parallel Environment for

AIX: Operation and Use, Volume 1

$ poe hello_world_c -procs 4 -hostfile pool.list

Hello, World!

Hello, World!

Hello, World!

Hello, World!

12

*
*
*
*

Here is the hello world program again:

 You should see output similar to the following:

INFO: 0031-364 Contacting LoadLeveler to set and query information for

 interactive job

INFO: 0031-380 LoadLeveler step ID is c133rp03.ppd.pok.ibm.com.1154.0

INFO: 0031-118 Host c133rp03.ppd.pok.ibm.com requested for task 0

INFO: 0031-118 Host c133rp03.ppd.pok.ibm.com requested for task 1

INFO: 0031-119 Host c133rp03.ppd.pok.ibm.com allocated for task 0

INFO: 0031-120 Host address 9.114.153.82 allocated for task 0

INFO: 0031-377 Using en0 for mpi euidevice for task 0

INFO: 0031-119 Host c133rp03.ppd.pok.ibm.com allocated for task 1

INFO: 0031-120 Host address 9.114.153.82 allocated for task 1

INFO: 0031-377 Using en0 for mpi euidevice for task 1

 0:INFO: 0031-724 Executing program: <hello_world_c>

 1:INFO: 0031-724 Executing program: <hello_world_c>

 0:Hello, world!

 0:INFO: 0031-306 pm_atexit: pm_exit_value is 0.

 1:Hello, world!

 1:INFO: 0031-306 pm_atexit: pm_exit_value is 0.

INFO: 0031-656 I/O file STDOUT closed by task 0

INFO: 0031-656 I/O file STDERR closed by task 0

INFO: 0031-656 I/O file STDOUT closed by task 1

INFO: 0031-656 I/O file STDERR closed by task 1

INFO: 0031-251 task 0 exited: rc=0

INFO: 0031-251 task 1 exited: rc=0

INFO: 0031-639 Exit status from pm_respond = 0

With -infolevel set to 2, you also see messages from each node that indicate the

executable they are running and what the return code from the executable is. In

the example above, you can differentiate between the -infolevel messages that

come from POE itself and the messages that come from the remote nodes, because

the remote nodes are prefixed with their task ID. If you did not set -infolevel, you

would see only the output of the executable (Hello world!, in the previous

example), interspersed with POE output from remote nodes.

With -infolevel set to 3, you get more information. In the following example, use

the host list file that contains host names again (as opposed to a Pool ID), when

you invoke POE.

Look at the following output. In this case, POE tells you that it is opening the host

list file, the nodes it found in the file (along with their Internet addresses), the

parameters to the executable being run, and the values of some of the POE

parameters.

 You should see output similar to the following:

INFO: DEBUG_LEVEL changed from 0 to 1

D1<L1>: Open of file ./host.list successful

D1<L1>: mp_euilib = ip

D1<L1>: 03/04 14:55:13.282519 task 0 c151f1rp02.ppd.pok.ibm.com 10

D1<L1>: 03/04 14:55:13.282677 task 1 c151f1rp02.ppd.pok.ibm.com 10

D1<L1>: node allocation strategy = 2

INFO: 0031-364 Contacting LoadLeveler to set and query information

for interactive job

D1<L1>: 03/04 14:55:13.422268 Calling ll_init_job.

D1<L1>: 03/04 14:55:13.460772 ll_init_job returned.

$poe hello_world_c -resd yes -procs 2 -labelio yes -infolevel 2

$poe hello_world_c -resd yes -procs 2 -labelio yes -ilevel 3

Chapter 1. Understanding the environment 13

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

*
*
*
*
*
*
*
*
*
*
*
*

D1<L1>: 03/04 14:55:13.461426 Job Command String:

#@ job_type = parallel

#@ environment = COPY_ALL

#@ node_usage = shared

#@ bulkxfer = NO

#@ class = No_Class

#@ queue

INFO: 0031-380 LoadLeveler step ID is c151f1rp02.ppd.pok.ibm.com.324.0

INFO: 0031-118 Host c151f1rp02.ppd.pok.ibm.com requested for task 0

INFO: 0031-118 Host c151f1rp02.ppd.pok.ibm.com requested for task 1

INFO: 0031-119 Host c151f1rp02.ppd.pok.ibm.com allocated for task 0

INFO: 0031-120 Host address 9.114.127.2 allocated for task 0

INFO: 0031-377 Using en0 for mpi euidevice for task 0

INFO: 0031-119 Host c151f1rp02.ppd.pok.ibm.com allocated for task 1

INFO: 0031-120 Host address 9.114.127.2 allocated for task 1

INFO: 0031-377 Using en0 for mpi euidevice for task 1

D1<L1>: Entering pm_contact, jobid is 0

D1<L1>: Jobid = 1110510899

D1<L1>: Spawning /etc/pmdv4 on all nodes

D1<L1>: 1 master nodes

D1<L1>: 03/04 14:55:15.377008 Calling ll_spawn_connect for node 0,

host name c151f1rp02.ppd.pok.ibm.com.

D1<L1>: TASKID is 0

D1<L1>: 03/04 14:55:15.377576 ll_spawn_connect returned for node 0,

socket fd 6,

host name c151f1rp02.ppd.pok.ibm.com.

D1<L1>: 03/04 14:55:15.377680 Calling pm_spawn_ready.

D1<L1>: 03/04 14:55:15.378916 returned from pm_spawn_ready.

D1<L1>: Socket file descriptor for master 0 (c151f1rp02.ppd.pok.ibm.com) is 6

D1<L1>: SSM_read on socket 6, source = 0, task id: 0, nread: 12, type:3.

D1<L1>: Leaving pm_contact, jobid is 1110510899

D1<L1>: attempting to bind socket to /tmp/s.pedb.544784.1079

 0:INFO: 0031-724 Executing program: <hello_world_c>

 0:D1<L1>: Affinity is not requested; MP_TASK_AFFINITY: -1

 1:INFO: 0031-724 Executing program: <hello_world_c>

 1:D1<L1>: Affinity is not requested; MP_TASK_AFFINITY: -1

 0:INFO: DEBUG_LEVEL changed from 0 to 1

 1:INFO: DEBUG_LEVEL changed from 0 to 1

 0:D1<L1>: In mp_main, mp_main will not be checkpointable

 0:D1<L1>: mp_euilib is <ip>

 0:Hello, World!

 0:INFO: 0031-306 pm_atexit: pm_exit_value is 0.

 1:D1<L1>: In mp_main, mp_main will not be checkpointable

 1:D1<L1>: mp_euilib is <ip>

 1:Hello, World!

 1:INFO: 0031-306 pm_atexit: pm_exit_value is 0.

INFO: 0031-656 I/O file STDOUT closed by task 0

INFO: 0031-656 I/O file STDERR closed by task 0

INFO: 0031-656 I/O file STDOUT closed by task 1

INFO: 0031-656 I/O file STDERR closed by task 1

D1<L1>: Accounting data from task 1 for source 1:

D1<L1>: Accounting data from task 0 for source 0:

INFO: 0031-251 task 0 exited: rc=0

INFO: 0031-251 task 1 exited: rc=0

D1<L1>: All remote tasks have exited: maxx_errcode = 0

INFO: 0031-639 Exit status from pm_respond = 0

D1<L1>: Maximum return code from user = 0

The -infolevel messages give you more information about what is happening on

the home node, but if you want to see what is happening on the remote nodes,

14

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

you need to use the -pmdlog option. If you set -pmdlog to a value of yes, a log is

written to each of the remote nodes that tells you what POE did while running

each task.

If you issue the following command, a file is written in /tmp, of each remote node,

called mplog.jobid.taskid,

$ poe hello_world -procs 4 -pmdlog yes

If -infolevel is set to 3 or higher, The job ID will be displayed in the output. If you

do not know what the job ID is, it is probably the most recent log file. If you are

sharing the node with other POE users, the job ID will be one of the most recent

log files (but you own the file, so you should be able to tell).

Here is a sample log file. In this example, all four tasks are running on the same

node. For more information about how POE runs with multiple tasks on the same

node, see Appendix A, “A sample program to illustrate messages,” on page 109.

AIX Parallel Environment pmd4 version @(#) 2003/06/11 13:19:38

The ID of this process is 520240

The version of this pmd for version checking is 4100

The hostname of this node is c151f1rp02.ppd.pok.ibm.com

The short hostname of this node is c151f1rp02

The taskid of this task is 0

HOMENAME: c151f1rp02.ppd.pok.ibm.com

USERID: 1079

USERNAME: voe3

GROUPID: 100

GROUPNAME: usr

PWD: /u/voe3/pfc/samples/ch01

PRIORITY: 0

NPROCS: 4

PMDLOG: 1

NEWJOB: 0

PDBX: 0

AFSTOKEN: 5765-F83 AIX Parallel Environment

LIBPATH: /usr/lpp/ppe.poe/lib/ip

VERSION (of home node): 4100

JOBID: 1110380176

ENVC recv’d

envc: 31

envc is 31

env[0] = _=hello_world_c

env[1] = MANPATH=/usr/lpp/LoadL/full/man:/usr/lpp/LoadL/so/man

env[2] = LANG=C

env[3] = LOGIN=voe3

env[4] =

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/u/voe3/bin:/usr/bin/X11:/sbin:

/usr/local/bin:/usr/lpp/LoadL/full/bin:.

env[5] = LC__FASTMSG=true

env[6] = HISTFILE=/u/voe3/.sh_history/sh_history_307370

env[7] = LOGNAME=voe3

env[8] = MAIL=/usr/spool/mail/voe3

env[9] = LOCPATH=/usr/lib/nls/loc

env[10] = USER=voe3

env[11] = AUTHSTATE=compat

env[12] = SHELL=/bin/ksh

env[13] = ODMDIR=/etc/objrepos

env[14] = HOME=/u/voe3

env[15] = TERM=aixterm

env[16] = MAILMSG=[YOU HAVE NEW MAIL]

env[17] = PWD=/u/voe3/pfc/samples/ch01

env[18] = TZ=EST5EDT

env[19] = ENV=/u/voe3/.kshrc

env[20] = A__z=! LOGNAME

Chapter 1. Understanding the environment 15

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

env[21] = NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

env[22] = MP_PROCS=4

env[23] = MP_PMDLOG=YES

env[24] = MP_EUIDEVICE=en0

env[25] = MP_PGMMODEL=SPMD

env[26] = MP_TASK_AFFINITY=-1

env[27] = MP_MSG_API=MPI

env[28] = MP_ISATTY_STDIN=1

env[29] = MP_ISATTY_STDOUT=1

env[30] = MP_ISATTY_STDERR=1

Couldn’t open /etc/poe.limits

MASTERS: 1

TASKS: 4:0:1:2:3

Total number of tasks is 4

Task id for task 1 is 0

Task id for task 2 is 1

Task id for task 3 is 2

Task id for task 4 is 3

TASK_ENV: 0:1 MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 1:1

MP_CHILD_INET_ADDR=@1:9.114.127.2,

ip 2:1 MP_CHILD_INET_ADDR=@1:9.114.127.2,ip 3:1

MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

Number of environment variables is 1

Environment specific data for task 1, task id 0 :

 -- MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

Number of environment variables is 1

Environment specific data for task 2, task id 1 :

 -- MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

Number of environment variables is 1

Environment specific data for task 3, task id 2 :

 -- MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

Number of environment variables is 1

Environment specific data for task 4, task id 3 :

 -- MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

Initial data msg received and parsed

Info level = 1

Doing ruserok() user validation

User validation complete

About to do user root chk

User root check complete

spkeyfuncs not found, continuing....

ident_match not found, continuing....

task information parsed

sb_max used for sndbuf, sndbuf set to 1048576

STDOUT socket SO_SNDBUF set to 1048576

STDOUT socket SO_RCVBUF set to 67424

main thread id is 1 before Setup signal handler for termination.

newjob is 0.

msg read, type is 13

string = <hello_world_c> SSM_CMD_STR recv’d

command string is <hello_world_c>

0: pm_putargs: argc = 1, k = 1

1: pm_putargs: argc = 1, k = 1

2: pm_putargs: argc = 1, k = 1

3: pm_putargs: argc = 1, k = 1

SSM_CMD_STR parsed

SSM_EXT_DEBUG msg, type is 46

child pipes created

Task 0 OS version 5 , release 2

child: pipes successfully duped for task 0

0: MP_COMMON_TASKS is <3:1:2:3>

0: partition id is <1110380176>

Task 1 OS version 5 , release 2

child: pipes successfully duped for task 1

1: MP_COMMON_TASKS is <3:0:2:3>

1: partition id is <1110380176>

after initgroups (*group_struct).gr_gid = 100

16

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

after initgroups (*group_struct).gr_name = usr

Task 2 OS version 5 , release 2

child: pipes successfully duped for task 2

2: MP_COMMON_TASKS is <3:0:1:3>

2: partition id is <1110380176>

pmd child: core limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: rss limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: stack limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: data segment limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: cpu time limit is 9223372036854775807,

hard limit is 9223372036854775807

pmd child: file size limit is 9223372036854775807,

hard limit is 9223372036854775807

0: (*group_struct).gr_gid = 100

0: (*group_struct).gr_name = usr

0: userid, groupid and cwd set!

0: current directory is /u/voe3/pfc/samples/ch01

0: about to start the user’s program

0: argument list:

argv[0] for task 0 = hello_world_c

argv[1] (in hex) = 0

child: environment for task 0:

 task_env[0] = MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

child: common environment data for all tasks:

 env[0] = _=hello_world_c

 env[1] = MANPATH=/usr/lpp/LoadL/full/man:/usr/lpp/LoadL/so/man

 env[2] = LANG=C

 env[3] = LOGIN=voe3

 env[4] = PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/u/voe3/bin:

/usr/bin/X11:/sbin:/usr/local/bin:/usr/lpp/LoadL/full/bin:.

 env[5] = LC__FASTMSG=true

 env[6] = HISTFILE=/u/voe3/.sh_history/sh_history_307370

 env[7] = LOGNAME=voe3

 env[8] = MAIL=/usr/spool/mail/voe3

 env[9] = LOCPATH=/usr/lib/nls/loc

 env[10] = USER=voe3

 env[11] = AUTHSTATE=compat

 env[12] = SHELL=/bin/ksh

 env[13] = ODMDIR=/etc/objrepos

 env[14] = HOME=/u/voe3

 env[15] = TERM=aixterm

 env[16] = MAILMSG=[YOU HAVE NEW MAIL]

 env[17] = PWD=/u/voe3/pfc/samples/ch01

 env[18] = TZ=EST5EDT

 env[19] = ENV=/u/voe3/.kshrc

 env[20] = A__z=! LOGNAME

 env[21] = NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

 env[22] = MP_PROCS=4

 env[23] = MP_PMDLOG=YES

 env[24] = MP_EUIDEVICE=en0

 env[25] = MP_PGMMODEL=SPMD

 env[26] = MP_TASK_AFFINITY=-1

 env[27] = MP_MSG_API=MPI

 env[28] = MP_ISATTY_STDIN=1

 env[29] = MP_ISATTY_STDOUT=1

 env[30] = MP_ISATTY_STDERR=1

0: LIBPATH = /usr/lpp/ppe.poe/lib/ip

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK =

Affinity is not requested

parent: task 0 forked, child pid is 524460

Chapter 1. Understanding the environment 17

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Task 3 OS version 5 , release 2

child: pipes successfully duped for task 3

3: MP_COMMON_TASKS is <3:0:1:2>

3: partition id is <1110380176>

attach data sent for task 0

parent: task 1 forked, child pid is 549054

attach data sent for task 1

parent: task 2 forked, child pid is 516106

attach data sent for task 2

1: (*group_struct).gr_gid = 100

1: (*group_struct).gr_name = usr

parent: task 3 forked, child pid is 417868

attach data sent for task 3

1: userid, groupid and cwd set!

1: current directory is /u/voe3/pfc/samples/ch01

1: about to start the user’s program

1: argument list:

argv[0] for task 1 = hello_world_c

argv[1] (in hex) = 0

child: environment for task 1:

 task_env[0] = MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

1: LIBPATH = /usr/lpp/ppe.poe/lib/ip

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK =

Affinity is not requested

2: (*group_struct).gr_gid = 100

2: (*group_struct).gr_name = usr

2: userid, groupid and cwd set!

2: current directory is /u/voe3/pfc/samples/ch01

2: about to start the user’s program

2: argument list:

argv[0] for task 2 = hello_world_c

argv[1] (in hex) = 0

child: environment for task 2:

 task_env[0] = MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

2: LIBPATH = /usr/lpp/ppe.poe/lib/ip

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK =

Affinity is not requested

3: (*group_struct).gr_gid = 100

3: (*group_struct).gr_name = usr

3: userid, groupid and cwd set!

3: current directory is /u/voe3/pfc/samples/ch01

3: about to start the user’s program

3: argument list:

argv[0] for task 3 = hello_world_c

argv[1] (in hex) = 0

child: environment for task 3:

 task_env[0] = MP_CHILD_INET_ADDR=@1:9.114.127.2,ip

3: LIBPATH = /usr/lpp/ppe.poe/lib/ip

MP_TASK_AFFINITY = -1, MP_MPI_NETWORK =

Affinity is not requested

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 0, select time is 600

pulse sent at 1109966440 count is 0

0: pmd parent: cntl pipe read OK:

0: pmd parent: type: 26, srce: 0, dest: -2, bytes: 7

parent: SSM_CHILD_PID: 524460

select: rc = 3

pulse is on, curr_time is 1109966440, send_time is 1109966440, select time is 600

in pmd select, SSM_read ok, SSM_type=34.

pulse received at 1109966440 received count is 0

pmd parent: STDOUT read OK for task 0

18

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0: STDOUT: Hello, World!

0: pmd parent: cntl pipe read OK:

0: pmd parent: type: 47, srce: 0, dest: -2, bytes: 5

parent: childs version is 4100.

parent: home node version is 4100.

parent: this pmd version is 4100.

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

0: pmd parent: cntl pipe read OK:

0: pmd parent: type: 17, srce: 0, dest: -1, bytes: 2

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

1: pmd parent: cntl pipe read OK:

1: pmd parent: type: 26, srce: 1, dest: -2, bytes: 7

parent: SSM_CHILD_PID: 549054

select: rc = 2

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

pmd parent: STDOUT read OK for task 1

1: STDOUT: Hello, World!

1: pmd parent: cntl pipe read OK:

1: pmd parent: type: 47, srce: 1, dest: -2, bytes: 5

parent: childs version is 4100.

parent: home node version is 4100.

parent: this pmd version is 4100.

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

1: pmd parent: cntl pipe read OK:

1: pmd parent: type: 17, srce: 1, dest: -1, bytes: 2

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

2: pmd parent: cntl pipe read OK:

2: pmd parent: type: 26, srce: 2, dest: -2, bytes: 7

parent: SSM_CHILD_PID: 516106

select: rc = 2

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

pmd parent: STDOUT read OK for task 2

2: STDOUT: Hello, World!

2: pmd parent: cntl pipe read OK:

2: pmd parent: type: 47, srce: 2, dest: -2, bytes: 5

parent: childs version is 4100.

parent: home node version is 4100.

parent: this pmd version is 4100.

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

2: pmd parent: cntl pipe read OK:

2: pmd parent: type: 17, srce: 2, dest: -1, bytes: 2

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

3: pmd parent: cntl pipe read OK:

3: pmd parent: type: 26, srce: 3, dest: -2, bytes: 7

parent: SSM_CHILD_PID: 417868

select: rc = 2

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

pmd parent: STDOUT read OK for task 3

3: STDOUT: Hello, World!

Chapter 1. Understanding the environment 19

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

3: pmd parent: cntl pipe read OK:

3: pmd parent: type: 47, srce: 3, dest: -2, bytes: 5

parent: childs version is 4100.

parent: home node version is 4100.

parent: this pmd version is 4100.

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

3: pmd parent: cntl pipe read OK:

3: pmd parent: type: 17, srce: 3, dest: -1, bytes: 2

select: rc = 1

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

in pmd select, SSM_read ok, SSM_type=5.

select: rc = 5

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

pmd send SSM_IO_CLOSED to poe for stdout_open

pmd send SSM_IO_CLOSED to poe for stdout_open

pmd send SSM_IO_CLOSED to poe for stdout_open

pmd send SSM_IO_CLOSED to poe for stdout_open

3: count = 0 on stderr

pmd send SSM_IO_CLOSED to poe for stderr_open

select: rc = 7

pulse is on, curr_time is 1109966440, send_time is 1109966440,

select time is 600

0: count = 0 on stderr

pmd send SSM_IO_CLOSED to poe for stderr_open

1: count = 0 on stderr

pmd send SSM_IO_CLOSED to poe for stderr_open

2: count = 0 on stderr

pmd send SSM_IO_CLOSED to poe for stderr_open

in pmd signal handler for task 3, signal 20

3: wait status is 00000000

Exiting child for task 3, PID: 417868

err_data for task 3 is 0

2: wait status is 00000000

Exiting child for task 2, PID: 516106

err_data for task 2 is 0

1: wait status is 00000000

Exiting child for task 1, PID: 549054

err_data for task 1 is 0

0: wait status is 00000000

Exiting child for task 0, PID: 524460

err_data for task 0 is 0

in pmd signal handler, wait returned -1...

parent: child exited and all pipes closed for all tasks

err_data for task 0 is 0

err_data for task 1 is 0

err_data for task 2 is 0

err_data for task 3 is 0

pmd_exit reached!, exit code is 0

No collective communication shared memory segments to clean up.

Appendix A, “A sample program to illustrate messages,” on page 109 includes an

example of setting -infolevel to 6, and explains the important lines of output.

20

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

Chapter 2. Message passing

If you are familiar with message passing parallel programming, and you are

familiar with message passing protocols, you can skip ahead to Chapter 3, “Don’t

panic,” on page 37 for a discussion on using the PE tools. If you are familiar with

message passing parallel programming, but you would like to know more about

the PE message passing protocols, look at the information in “Protocols supported”

on page 32.

This section discusses some of the techniques for creating a parallel program, using

message passing, and the various advantages and pitfalls associated with each

technique. It does not provide an in-depth tutorial on writing parallel programs.

Instead, it is an introduction to basic message passing parallel concepts.

To create a successful parallel program start with a working sequential program.

Complex sequential programs are difficult to get working correctly, without also

having to worry about the additional complexity introduced by parallelism and

message passing. It is easier to convert a working serial program to parallel, than it

is to create a parallel program from scratch. As you become proficient at creating

parallel programs, you will develop an awareness of which sequential techniques

translate better into parallel implementations. Once aware, you can then make a

point of using these techniques in your sequential programs. In this section,

contains information on some of the fundamentals of creating parallel programs.

There are two common techniques for turning a sequential program into a parallel

program; data decomposition and functional decomposition. Data decomposition means

distributing the data that the program is processing among the parallel tasks. Each

parallel task does approximately the same thing but on a different set of data. With

functional decomposition, the function that the application is performing is

distributed among the tasks. Each task operates on the same data, but does

something different. Most parallel programs do not use data decomposition or

functional decomposition exclusively. Rather, they use a mixture of the two,

weighted more toward one type or the other. One way to implement either form of

decomposition is through the use of message passing.

Message passing

The message passing model of communication is typically used in distributed

memory systems, where each processor node owns private memory, and is linked

by an interconnection network. The high performance switch provides the

interconnection network needed for high-speed exchange of messages. With

message passing, each task operates exclusively in a private environment, but must

cooperate with other tasks to interact. In this situation, tasks must exchange

messages to interact with one another.

The challenge of the message passing model is in reducing message traffic over the

interconnection network while ensuring that the correct and updated values of the

passed data are promptly available to the tasks, when required. Optimizing

message traffic boosts performance.

Synchronization is the act of forcing events to occur at the same time or in a certain

order. Synchronization requires taking into account the logical dependence and the

order of precedence among the tasks. You can describe the message passing model

© Copyright IBM Corp. 1995, 2005 21

as self-synchronizing because the mechanism of sending and receiving messages

involves implicit synchronization points. To put it another way, a message cannot

be received if it has not already been sent.

Data decomposition

A good technique for making a sequential application parallel is to look for loops

where each iteration does not depend on any prior iteration (this is also a

prerequisite for either unrolling or eliminating loops). An example of a loop that

has dependencies on prior iterations is the loop for computing the Factorial series.

The value calculated by each iteration depends on the value resulting from the

previous pass. If each iteration of a loop does not depend on a previous iteration,

the data being processed can be processed in parallel, with two or more iterations

being performed simultaneously.

The C program example below includes a loop with independent iterations. This

example does not include the routines for computing the coefficient and

determinant because they are not part of the parallelization at this point.

/***

*

* Matrix Inversion Program - serial version

*

* To compile:

* cc -o inverse_serial inverse_serial.c

*

***/

#include<stdlib.h>

#include<stdio.h>

#include<assert.h>

#include<errno.h>

float determinant(float **matrix,

 int size,

 int * used_rows,

 int * used_cols,

 int depth);

float coefficient(float **matrix,int size, int row, int col);

void print_matrix(FILE * fptr,float ** mat,int rows, int cols);

float test_data[8][8] = {

 {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},

 {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },

 {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},

 {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },

 {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },

 {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },

 {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,

 {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

 };

#define ROWS 8

int main(int argc, char **argv)

{

 float **matrix;

 float **inverse;

 int rows,i,j;

 float determ;

 int * used_rows, * used_cols;

 rows = ROWS;

 /* Allocate markers to record rows and columns to be skipped */

22

/* during determinant calculation */

 used_rows = (int *) malloc(rows*sizeof(*used_rows));

 used_cols = (int *) malloc(rows*sizeof(*used_cols));

 /* Allocate working copy of matrix and initialize it from static copy */

 matrix = (float **) malloc(rows*sizeof(*matrix));

 inverse = (float **) malloc(rows*sizeof(*inverse));

 for(i=0;i<rows;i++)

 {

 matrix[i] = (float *) malloc(rows*sizeof(**matrix));

 inverse[i] = (float *) malloc(rows*sizeof(**inverse));

 for(j=0;j<rows;j++)

 matrix[i][j] = test_data[i][j];

 }

 /* Compute and print determinant */

 printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);

 determ=determinant(matrix,rows,used_rows,used_cols,0);

 printf("\nis %f\n",determ);

 fflush(stdout);

 assert(determ!=0);

 for(i=0;i<rows;i++)

 {

 for(j=0;j<rows;j++)

 {

 inverse[j][i] = coefficient(matrix,rows,i,j)/determ;

 }

 }

 printf("The inverse is\n\n");

 print_matrix(stdout,inverse,rows,rows);

 return (0);

}

Before talking about making the algorithm parallel, look at what is necessary to

create the program with PE. The example below shows the same program, but it is

now aware of PE. You do this by using three calls in the beginning of the routine,

and one at the end.

The first of these calls (MPI_Init) initializes the MPI environment, and the last call

(MPI_Finalize) closes the environment. MPI_Comm_size sets the variable tasks to

the total number of parallel tasks running this application, and MPI_Comm_rank

sets me to the task ID of the particular instance of the parallel code that invoked it.

MPI_Comm_size actually gets the size of the communicator you pass in and

MPI_COMM_WORLD is a pre-defined communicator that includes everybody.

For more information about these calls, IBM Parallel Environment for AIX: MPI

Subroutine Reference or other MPI publications may be of some help.

/**

*

* Matrix Inversion Program - serial version enabled for parallel environment

*

* To compile:

* mpcc -g -o inverse_parallel_enabled inverse_parallel_enabled.c

*

**/

#include<stdlib.h>

#include<stdio.h>

#include<assert.h>

#include<errno.h>

Chapter 2. Message passing 23

#include<mpi.h>

float determinant(float **matrix,int size, int * used_rows, int * used_cols,

 int depth);

float coefficient(float **matrix,int size, int row, int col);

void print_matrix(FILE * fptr,float ** mat,int rows, int cols);

float test_data[8][8] = {

 {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},

 {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },

 {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},

 {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },

 {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },

 {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },

 {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,

 {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

};

#define ROWS 8

int me, tasks, tag=0;

int main(int argc, char **argv)

{

 float **matrix;

 float **inverse;

 int rows,i,j;

 float determ;

 int * used_rows, * used_cols;

 MPI_Status status[ROWS]; /* Status of messages */

 MPI_Request req[ROWS]; /* Message IDs */

 MPI_Init(&argc,&argv); /* Initialize MPI */

 MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/

 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 rows = ROWS;

 /* Allocate markers to record rows and columns to be skipped */

 /* during determinant calculation */

 used_rows = (int *) malloc(rows*sizeof(*used_rows));

 used_cols = (int *) malloc(rows*sizeof(*used_cols));

 /* Allocate working copy of matrix and initialize it from static copy */

 matrix = (float **) malloc(rows*sizeof(*matrix));

 inverse = (float **) malloc(rows*sizeof(*inverse));

 for(i=0;i<rows;i++)

 {

 matrix[i] = (float *) malloc(rows*sizeof(**matrix));

 inverse[i] = (float *) malloc(rows*sizeof(**inverse));

 for(j=0;j<rows;j++)

 matrix[i][j] = test_data[i][j];

 }

 /* Compute and print determinant */

 printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);

 determ=determinant(matrix,rows,used_rows,used_cols,0);

 printf("\nis %f\n",determ);

 fflush(stdout);

 for(i=0;i<rows;i++)

 {

 for(j=0;j<rows;j++)

 {

 inverse[j][i] = coefficient(matrix,rows,i,j)/determ;

 }

24

}

 printf("The inverse is\n\n");

 print_matrix(stdout,inverse,rows,rows);

 /* Wait for all parallel tasks to get here, then quit */

 MPI_Barrier(MPI_COMM_WORLD);

 MPI_Finalize();

 exit(0);

}

float determinant(float **matrix,int size, int * used_rows, int * used_cols,

 int depth)

 {

 int col1, col2, row1, row2;

 int j,k;

 float total=0;

 int sign = 1;

 /* Find the first unused row */

 for(row1=0;row1<size;row1++)

 {

 for(k=0;k<depth;k++)

 {

 if(row1==used_rows[k]) break;

 }

 if(k>=depth) /* this row is not used */

 break;

 }

 assert(row1<size);

 if(depth==(size-2))

 {

/* There are only 2 unused rows/columns left */

/* Find the second unused row */

for(row2=row1+1;row2<size;row2++)

 {

 for(k=0;k<depth;k++)

 {

 if(row2==used_rows[k]) break;

 }

 if(k>=depth) /* this row is not used */

 break;

 }

assert(row2<size);

/* Find the first unused column */

for(col1=0;col1<size;col1++)

 {

 for(k=0;k<depth;k++)

 {

 if(col1==used_cols[k]) break;

 }

 if(k>=depth) /* this column is not used */

 break;

 }

assert(col1<size);

/* Find the second unused column */

for(col2=col1+1;col2<size;col2++)

 {

 for(k=0;k<depth;k++)

 {

 if(col2==used_cols[k]) break;

 }

Chapter 2. Message passing 25

if(k>=depth) /* this column is not used */

 break;

 }

assert(col2<size);

/* Determinant = m11*m22-m12*m21 */

return matrix[row1][col1]*matrix[row2][col2]

-matrix[row2][col1]*matrix[row1] [col2];

 }

 /* There are more than 2 rows/columns in the matrix being processed */

 /* Compute the determinant as the sum of the product of each element */

 /* in the first row and the determinant of the matrix with its row */

 /* and column removed */

 total = 0;

 used_rows[depth] = row1;

 for(col1=0;col1<size;col1++)

 {

 for(k=0;k<depth;k++)

 {

 if(col1==used_cols[k]) break;

 }

 if(k<depth) /* This column is used */

 continue;

 used_cols[depth] = col1;

 total += sign*matrix[row1][col1]*determinant(matrix,size,

 used_rows,used_cols,depth+1);

 sign=(sign==1)?-1:1;

 }

 return total;

 }

void print_matrix(FILE * fptr,float ** mat,int rows, int cols)

{

 int i,j;

 for(i=0;i<rows;i++)

 {

 for(j=0;j<cols;j++)

 {

 fprintf(fptr,"%10.4f ",mat[i][j]);

 }

 fprintf(fptr,"\n");

 }

 fflush(fptr);

}

float coefficient(float **matrix,int size, int row, int col)

{

 float coef;

 int * ur, *uc;

 ur = malloc(size*sizeof(matrix));

 uc = malloc(size*sizeof(matrix));

 ur[0]=row;

 uc[0]=col;

 coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1);

 return coef;

}

In this particular example each parallel task is going to determine the entire

inverse matrix, and they are all going to print it out. In the previous section, the

output of all the tasks will be intermixed, so it will be difficult to figure out what

the answer really is.

26

A better approach is to distribute the work among several parallel tasks and collect

the results when they are done. In this example, the loop that computes the

elements of the inverse matrix simply goes through the elements of the inverse

matrix, computes the coefficient, and divides it by the determinant of the matrix.

Since there is no relationship between elements of the inverse matrix, they can all

be computed in parallel.

Every communication call has an associated cost, so you need to balance the

benefit of parallelism with the cost of communication. If you were to totally

parallelize the inverse matrix element computation, each element would be derived

by a separate task. The cost of collecting those individual values back into the

inverse matrix would be significant. It might also outweigh the benefit of having

reduced the computation cost and time by running the job in parallel. So, instead,

you are going to compute the elements of each row in parallel, and send the

values back, one row at a time. This way you spread some of the communication

overhead over several data values. In this case, you will execute loop 1 in parallel

in this next example.

*

* Matrix Inversion Program - First parallel implementation

* To compile:

* mpcc -g -o inverse_parallel inverse_parallel.c

*

#include<stdlib.h>

#include<stdio.h>

#include<assert.h>

#include<errno.h>

#include<mpi.h>

float determinant(float **matrix,int size, int * used_rows,

 int * used_cols, int depth);

float coefficient(float **matrix,int size, int row, int col);

void print_matrix(FILE * fptr,float ** mat,int rows, int cols);

float test_data[8][8] = {

 {4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},

 {4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },

 {3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},

 {3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },

 {2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },

 {2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },

 {1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 },

 {1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

};

#define ROWS 8

int me, tasks, tag=0;

int main(int argc, char **argv)

{

 float **matrix;

 float **inverse;

 int rows,i,j;

 float determ;

 int * used_rows, * used_cols;

 MPI_Status status[ROWS]; /* Status of messages */

 MPI_Request req[ROWS]; /* Message IDs */

 MPI_Init(&argc,&argv); /* Initialize MPI */

Chapter 2. Message passing 27

MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/

 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 rows = ROWS;

 /* You need exactly one task for each row of the matrix plus one task */

 /* to act as coordinator. If you didn’t have this, the last task */

 /* reports the error (so everybody doesn’t put out the same message */

 if(tasks!=rows+1)

 {

 if(me==tasks-1)

 fprintf(stderr,"%d tasks required for this demo"

 "(one more than the number of rows in matrix\n",rows+1)";

 exit(-1);

 }

 /* Allocate markers to record rows and columns to be skipped */

 /* during determinant calculation */

 used_rows = (int *) malloc(rows*sizeof(*used_rows));

 used_cols = (int *) malloc(rows*sizeof(*used_cols));

 /* Allocate working copy of matrix and initialize it from static copy */

 matrix = (float **) malloc(rows*sizeof(*matrix));

 for(i=0;i<rows;i++)

 {

 matrix[i] = (float *) malloc(rows*sizeof(**matrix));

 for(j=0;j<rows;j++)

 matrix[i][j] = test_data[i][j];

 }

 /* Everyone computes the determinant (to avoid message transmission) */

 determ=determinant(matrix,rows,used_rows,used_cols,0);

 if(me==tasks-1)

 {/* The last task acts as coordinator */

 inverse = (float**) malloc(rows*sizeof(*inverse));

 for(i=0;i<rows;i++)

 {

 inverse[i] = (float *) malloc(rows*sizeof(**inverse));

 }

 /* Print the determinant */

 printf("The determinant of\n\n");

 print_matrix(stdout,matrix,rows,rows);

 printf("\nis %f\n",determ);

 /* Collect the rows of the inverse matrix from the other tasks */

 /* First, post a receive from each task into the appropriate row */

 for(i=0;i<rows;i++)

 }

 MPI_Irecv(inverse[i],rows,MPI_REAL,i,tag,MPI_COMM_WORLD,&(req[i]));

 }

 /* Then wait for all the receives to complete */

 MPI_Waitall(rows,req,status);

 printf("The inverse is\n\n");

 print_matrix(stdout,inverse,rows,rows);

 }

 else

 {/* All the other tasks compute a row of the inverse matrix */

 int dest = tasks-1;

 float *one_row;

 int size = rows*sizeof(*one_row);

 one_row = (float*) malloc(size);

 for(j=0;j<rows;j++)

 {

 one_row[j] = coefficient(matrix,rows,j,me)/determ;

 }

 /* Send the row back to the coordinator */

 MPI_Send(one_row,rows,MPI_REAL,dest,tag,MPI_COMM_WORLD);

28

}

/* Wait for all parallel tasks to get here, then quit */

MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

}

exit(0);

Functional decomposition

Parallel servers and data mining applications are examples of functional

decomposition. With functional decomposition, the function that the application is

performing is distributed among the tasks. Each task operates on the same data,

but does something different. The sine series algorithm is also an example of

functional decomposition. With this algorithm, the work being done by each task is

trivial. The cost of distributing data to the parallel tasks could outweigh the value

of running the program in parallel, and parallelism would increase total time.

Another approach to parallelism is to invoke different functions, each of which

processes all of the data simultaneously. This is possible as long as the final or

intermediate results of any function are not required by another function. For

example, searching a matrix for the largest and smallest values as well as a specific

value could be done in parallel.

This is a simple example, but suppose the elements of the matrix were arrays of

polynomial coefficients. Further, suppose the search involved actually evaluating

different polynomial equations using the same coefficients. In this case, it would

make sense to evaluate each equation separately.

On a simpler scale, let us look at the series for the sine function:

 The serial approach to solving this problem is to loop through the number of terms

desired, accumulating the factorial value and the sine value. When the appropriate

number of terms has been computed, the loop exits. The following example does

exactly this. In this example, you have an array of values for which you want the

sine, and an outer loop would repeat this process for each element of the array.

Since you do not want to recompute the factorial each time, you need to allocate

an array to hold the factorial values and compute them outside the main loop.

/**

*

* Series Evaluation - serial version

*

* To compile:

* cc -o series_serial series_serial.c -lm

*

**/

#include<stdlib.h>

#include<stdio.h>

#include<math.h>

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI,

 0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI };

#define TERMS 8

int main(int argc, char **argv)

Chapter 2. Message passing 29

{

 double divisor[TERMS], sine;

 int a, t, angles = sizeof(angle)/sizeof(angle[0]);

 /* Initialize denominators of series terms */

 divisor[0] = 1;

 for(t=1;t<TERMS;t++)

 {

 divisor[t] = -2*t*(2*t+1)*divisor[t-1];

 }

 /* Compute sine of each angle */

 for(a=0;a<angles;a++)

 {

 sine = 0;

 /* Sum the terms of the series */

 for(t=0;t<TERMS;t++)

 {

 sine += pow(angle[a],(2*t+1))/divisor[t];

 }

 printf("sin(%lf) + %lf\n",angle[a],sine);

 }

}

In a parallel environment, you could assign each term to one task and just

accumulate the results on a separate node. In fact, that is what the following

example does.

/**

*

* Series Evaluation - parallel version

*

* To compile:

* mpcc -g -o series_parallel series_parallel.c -lm

*

**/

#include<stdlib.h>

#include<stdio.h>

#include<math.h>

#include<mpi.h>

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI,

 0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI };

int main(int argc, char **argv)

{

 double data, divisor, partial, sine;

 int a, t, angles = sizeof(angle)/sizeof(angle[0]);

 int me, tasks, term;

 MPI_Init(&argc,&argv); /* Initialize MPI */

 MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/

 MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

 term = 2*me+1; /* Each task computes a term */

 /* Scan the factorial terms through the group members */

 /* Each member will effectively multiply the product of */

 /* the result of all previous members by its factorial */

 /* term, resulting in the factorial up to that point */

 if(me==0)

 data = 1.0;

 else

 data = -(term-1)*term;

 MPI_Scan(&data,&divisor,1,MPI_DOUBLE,MPI_PROD,MPI_COMM_WORLD);

 /* Compute sine of each angle */

30

for(a=0;a<angles;a++)

 {

 partial = pow(angle[a],term)/divisor;

 /* Pass all the partials back to task 0 and */

 /* accumulate them with the MPI_SUM operation */

 MPI_Reduce(&partial,&sine,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);

 /* The first task has the total value */

 if(me==0)

 {

 printf("sin(%lf) + %lf\n",angle[a],sine);

 }

 }

 MPI_Finalize();

}

With this approach, each task i uses its position in the MPI_COMM_WORLD

communicator group to compute the value of one term. It first computes its

working value as 2i+1 and calculates the factorial of this value. Since (2i+1)! is

(2i-1)! x 2i x (2i+1), if each task could get the factorial value computed by the

previous task, all it would have to do is multiply it by 2i x (2i+1). Fortunately, MPI

provides the capability to do this with the MPI_SCAN function. When

MPI_SCAN is invoked on the first task in a communication group, the result is the

input data to MPI_SCAN. When MPI_SCAN is invoked on subsequent members

of the group, the result is obtained by invoking a function on the result of the

previous member of the group and its input data.

The MPI standard is documented in MPI: A Message-Passing Interface Standard,

Version 1.1 and is extended in MPI: A Message-Passing Interface Standard, Version 2.0,

both of which are available from the University of Tennessee. The standard does

not specify how to implement the scan function, so a particular implementation

does not have to obtain the result from one task and pass it on to the next for

processing. This is, however, a convenient way of visualizing the scan function,

and the remainder of the discussion will assume that this is happening.

In the example, the function invoked is the built-in multiplication function,

MPI_PROD. Task 0 (which is computing 1!) sets its result to 1. Task 2 is

computing 3! which it obtains by multiplying 2 x 3 by 1! (the result of Task 0).

Task 3 multiplies 3! (the result of Task 2) by 4 to get 4!. This continues until all the

tasks have computed their factorial values. The input data to the MPI_SCAN calls

is made negative so the signs of the divisors will alternate between plus and

minus.

Once the divisor for a term has been computed, the loop through all the angles (θ)

can be done. The partial term is computed as:

 Then, MPI_REDUCE is called which is similar to MPI_SCAN except that instead

of calling a function on each task, the tasks send their raw data to Task 0, which

invokes the function on all data values. The function being invoked in the example

is MPI_SUM which just adds the data values from all of the tasks. Then, Task 0

prints out the result.

Chapter 2. Message passing 31

Duplication versus redundancy

In the matrix inversion program, each task goes through the process of allocating

the matrix and copying the initialization data into it. So why does not one task do

this and send the result to all the other tasks? This example has a trivial

initialization process, but in a situation where initialization requires complex

time-consuming calculations, this question is even more important.

To understand the answer to this question and, more importantly, be able to apply

the understanding to answering the question for other applications, you need to

stop and consider the application as a whole. If one task of a parallel application

takes on the role of initializer, two things happen. First, all of the other tasks must

wait for the initializer to complete (assuming that no work can be done until

initialization is completed). Second, some sort of communication must occur to get

the results of initialization distributed to all the other tasks. This not only means

that there is nothing for the other tasks to do while one task is doing the

initializing, there is also a cost associated with sending the results out. Although

replicating the initialization process on each of the parallel tasks seems like

unnecessary duplication, it allows the tasks to start processing more quickly

because they do not have to wait to receive the data.

So, should all initialization be done in parallel? Not necessarily. If the initialization

is just computation and setup based on input parameters, each parallel task can

initialize independently. Although this seems counter-intuitive at first, because the

effort is redundant, for the reasons given above, it is the right answer. Eventually

you will get used to it. However, if initialization requires access to system

resources that are shared by all the parallel tasks (such as file systems and

networks), having each task attempt to obtain the resources will create contention

in the system and hinder the initialization process. In this case, it makes sense for

one task to access the system resources on behalf of the entire application. In fact,

if multiple system resources are required, you could have multiple tasks access

each of the resources in parallel. Once the data has been obtained from the

resource, you need to decide whether to share the raw data among the tasks and

have each task process it, or have one task perform the initialization processing

and distribute the results to all the other tasks. You can base this decision on

whether the amount of data increases or decreases during the initialization

processing. Of course, you want to transmit the smaller amount.

Duplicating the same work on all the remote tasks (which is not the same as

redundancy, which implies something can be eliminated) is not bad if:

v The work is inherently serial

v The work is parallel, but the cost of computation is less than the cost of

communication

v The work must be completed before tasks can proceed

v Communication can be avoided by having each task perform the same work.

Protocols supported

To perform data communication, PE interfaces with low-level communication API

(LAPI), a reliable transport provided with AIX. LAPI interfaces with a lower level

protocol, running in the user space (User Space protocol), which offers a

low-latency and high-bandwidth communication path to user applications, running

over a high performance switch. LAPI alternatively interfaces with the IP layer.

32

*
*
*
*
*

For optimal performance, PE uses the User Space (US) protocol as its

communication path. However, PE also lets you run parallel applications that use

the IP interface of LAPI.

The User Space interface allows user applications to take full advantage of the high

speed interconnect, and you should use it whenever communication is a critical

issue (for instance, when running a parallel application in a production

environment). With LoadLeveler, you can use the User Space interface by more

than one process per node at a given time.

Both the IP and User Space interfaces allow multiple tasks per job on a single

node. As a result, you can use both interfaces in development or test environments,

where more attention is paid to the correctness of the parallel program than to its

speed-up, and therefore, more users can work on the same nodes at a given time.

In both cases, data exchange always occurs between processes, without involving

the POE Partition Manager daemon.

Shared memory message passing

For MPI programs in which multiple tasks run on the same computing node, using

shared memory to send messages between tasks may be beneficial. This applies to

programs running over either the IP or US protocol.

By setting the MP_SHARED_MEMORY environment variable to YES, you can

select the shared memory protocol. If all the tasks of your program run on the

same node, and you specify the shared memory protocol, shared memory is used

exclusively for all MPI communications.

For more information on PE’s shared memory support, see IBM Parallel

Environment for AIX: Operation and Use, Volume 1.

To thread or not to thread - protocol implications

If you are unfamiliar with POSIX threads, do not try to learn both threads and MPI

all at once. Get some experience writing and debugging single process

multi-threaded programs first, then tackle multi-process multi-threaded programs.

While each threaded task has more than one independent instruction stream, all of

a task’s threads share the same address space, file system, and environment

variables. In addition, all the threads in a threaded MPI task have the same MPI

communicators, data types, ranks, and so on.

A parallel program using MPI normally depends on task parallelism with two or

more tasks (or AIX processes) that communicate by message passing. Each of these

tasks, by default, has one user thread. An application may explicitly create

additional threads within each task, resulting in thread level as well as task level

parallelism. If thread creation is done, the application must manage both levels of

parallelism properly.

In each threaded MPI task, the MPI_INIT routine must be called before any thread

can make an MPI call, and all MPI calls must be completed before MPI_FINALIZE

is called. The principal difference between a threaded task and a non-threaded task

is that, in each threaded task, more than one blocking call may be in progress at

any given time.

The underlying communication subsystem provides thread-dispatching, so that all

blocking messages are given a chance to run when a message completes.

Chapter 2. Message passing 33

The MPI library creates the following service threads:

v A thread that periodically wakes up and calls the message passing dispatcher,

and handles interrupts generated by arriving packets.

v Responder threads used to implement non-blocking collective communication

calls and MPI I/O.

The service threads above are terminated when MPI_FINALIZE is called. These

threads are not available to end users.

Thread debugging implications

To effectively debug the application, you must be aware of how threads are

dispatched. When a task is stopped, all threads are stopped. Each time you issue

an execution command, such as step over, step into, step return, or continue, all

the threads are released for execution until the next stop (at which time they are

stopped, even if they have not completed their work). This stop may be at a

breakpoint you set or the result of a step. A single step over an MPI routine may

prevent the MPI library threads from completely processing the message that is

being exchanged.

For example, if you wanted to debug the transfer of a message from a send node

to a receiver node, you would step over an MPI_SEND in your program on task 1,

switch to task 2, then step over the MPI_RECV on task 2. Unless the MPI threads

on task 1 and 2 have the opportunity to process the message transfer, it will

appear that the message was lost. Remember that the window of opportunity for

the MPI threads to process the message is brief, and is open only during the step

over. Otherwise, the threads will be stopped. Longer-running execution requests,

of both the sending and receiving nodes, allow the message to be processed and,

eventually, received.

For more information on debugging threaded and non-threaded MPI programs

with the PE debugging tool, (pdbx), see IBM Parallel Environment for AIX: Operation

and Use, Volume 2, which provides more detailed information on how to manage

and display threads.

For more information on the threaded MPI library, see IBM Parallel Environment for

AIX: MPI Programming Guide.

Checkpointing and restarting a parallel program

Checkpointing a parallel program is a mechanism for temporarily saving the state

of a parallel program at a specific point (checkpointing), and then later restarting it

from the saved state. When you checkpoint a program, the checkpointing function

captures the state of the application as well as all data, and saves it in a file. When

the program is restarted, the restart function retrieves the application information

from the file it saved. The program then starts running again from the place at

which it was saved.

Limitations

When checkpointing a program, there are a few limitations of which you should be

aware. You can find a complete list of the limitations in the IBM Parallel

Environment for AIX: MPI Programming Guide. For example, you can only

checkpoint a POE job that is running an MPI application that is compiled with the

34

threaded libraries (such as programs compiled with mpcc_r, mpCC_r, mpxlf_r,

xpxlf90_r, or mpxlf95_r). LAPI programs can also be checkpointed if they meet the

limitations.

How checkpointing and restarting works

A checkpoint can occur if you use the poeckpt command or when an application

makes a call to the mpc_init_ckpt() function. The former is referred to as a

system-initiated checkpoint, while the latter is referred to as user-initiated

checkpoint. A system-initiated checkpoint of a job being run under LoadLeveler

occurs when the llckpt command is issued.

For a system-initiated checkpoint, the applications are checkpointed at the point in

their processing they happen to be when the checkpoint is issued. Checkpoint files

are written for each task of the parallel application and for the POE executable

itself. The names and locations of these files are controlled by the setting of the

MP_CKPTFILE and MP_CKPTDIR environment variables.

For a user-initiated checkpoint, the application may specify whether all tasks must

issue the checkpoint request before the checkpoint occurs, or that one task of the

application may cause the checkpoint of all tasks (and POE) to occur. The former is

called a complete user-initiated checkpoint, and the latter is called a partial

user-initiated checkpoint. In a complete user-initiated checkpoint, each task

executes the application up to the point of the mpc_init_ckpt function call. In a

partial user-initiated checkpoint, only one task executes the application up to the

point of the mpc_init_ckpt call, and the remaining tasks are checkpointed at

whatever point in their processing they happen to be when the checkpoint occurs,

as in a system-initiated checkpoint.

After a checkpoint of an interactive POE job has been taken, the poerestart

command is used to restart the parallel application. POE is restarted first and it

uses the saved information from its checkpoint file to identify the task checkpoint

files to also restart. You can restart the application on the same set or different set

of nodes, but the number of tasks and the task geometry must remain the same.

When the restart function restarts a program, it retrieves the program state and

data information from the checkpoint file. Note also that the restart function

restores file pointers to the points at which the checkpoint occurred, but it does not

restore the file content.

Since large data files are often produced as a result of checkpointing a program,

you need to consider the amount of available space in your file system. You should

also consider the type of file system. Writing and reading checkpointing files may

yield better performance on Journaled File Systems (JFS) or General Parallel File

Systems (GPFS) than on Networked File Systems (NFS), Distributed File Systems

(DFS™), or Andrew File Systems (AFS®).

 For more information on checkpointing limitations, see IBM Parallel Environment for

AIX: MPI Programming Guide or IBM LoadLeveler for AIX: Using and Administering.

A checkpoint/restart scenario

A user’s parallel application has been running on two nodes for six hours when

the user is informed that the nodes must be taken down for service in an hour. The

user expects the application to run for three more hours, and does not want to

have to restart the application from the beginning on different nodes. Luckily, the

user set the CHECKPOINT environment variable to yes before issuing the POE

command, so that AIX would allow the checkpoint to occur. Furthermore, the user

Chapter 2. Message passing 35

set the MP_CKPTDIR environment variable to a GPFS directory, /gpfs, so that the

checkpoint files would be accessible from other nodes. The user also set the

MP_CKPTFILE environment variable to the name of the application, 9hourjob, so it

can be easily identified later.

After setting the MP_CKPTDIR and MP_CKPTFILE environment variables, the

user obtains the process identifier of the POE process. Then, the user issues the

poeckpt command, along with the -k option so that the tasks will be terminated

once the checkpoints are successfully completed. The checkpoints of the parallel

tasks are taken first, and then the checkpoint of POE occurs. The poeckpt

command reports the following:

poeckpt: Checkpoint of POE process 12345 has succeeded.

poeckpt: The /gpfs/9hourjob.0 checkpoint file has been created.

The filename indicated in the output, /gpfs/9hourjob, is the checkpoint file of the

POE process which will be used later when the parallel application is restarted.

The ″.0″ suffix is a tag used to allow one set of previously successful checkpoint

files to be saved (a subsequent checkpoint on this program, although unlikely in

this scenario, would use tag 1).

Being curious about the behavior of the checkpoint function, the user issues:

ls /gpfs/9hour*

and sees the following output:

/gpfs/9hourjob.0 /gpfs/9hourjob.0.0 /gpfs/9hourjob.1.0

The additional files besides the one reported by the output are the checkpoint files

from each of the tasks that made up the parallel application. The last ’0’ in the task

checkpoint files represents the checkpoint tag as described previously. The digit

before the tag is the task number within the parallel application.

The user finds two other nodes that can be used to restart the parallel job and sets

up a host.list, containing these two hostnames, in the directory from which the

user will run the poerestart command. The user issues:

poerestart /gpfs/9hourjob.0

The restarted POE from this checkpoint file ″remembers″ the names of the task

checkpoint files to restart from, tells the Partition Manager Daemon on each node

to restart each parallel task from their respective checkpoint file, and the parallel

application is up and running again. The job completes in three hours, and

produces the same results as it would have had it run for nine hours on the

original nodes.

36

Chapter 3. Don’t panic

What do you do when something goes wrong with your parallel program? First,

Don’t Panic! PE provides ways to identify and correct problems that arise when

you are developing or executing your parallel program. This all depends on where

in the process the problem occurred and what the symptoms are.

This section is probably more useful if you use it in conjunction with IBM Parallel

Environment for AIX: Operation and Use, Volume 1 and IBM Parallel Environment for

AIX: Operation and Use, Volume 2. So, you might want to go find them, and keep

them on hand for reference.

Here are the steps, greatly abbreviated, in the basic process of creating a parallel

program:

1. Create and compile program

2. Start PE

3. Execute the program

4. Verify the output

5. Optimize the performance.

Problems can arise in any one of these steps, and knowing which tools to use to

identify, analyze and correct the problem is the first step. The remainder of this

section describes some of the common problems you might run into, and what to

do when they occur. The sections in this section are labeled according to the

symptom you might be experiencing.

Messages

Messages are an important part of diagnosing problems, so it is essential that you

have access to them and that they are at the correct level.

Message catalog errors

You may get message catalog errors. This usually means that the message catalog

could not be located or loaded. Check that your NLSPATH environment variable

includes the path where the message catalog is located. The AIX environment

variable NLSPATH is used by the various PE components to find the appropriate

message catalogs. If the message catalogs are not in the proper place, or your

environment variables are not set properly, your system administrator can help..

Refer your system administrator to “National language support (NLS)” on page xii

for more information. !

The following are the PE message catalogs:

v pepoe.cat

v pempl.cat

v pepdbx.cat

v peperf.cat

Finding PE messages

There are a number of places that you can find PE messages:

v They are displayed on the home node when it is running POE (STDERR and

STDOUT).

© Copyright IBM Corp. 1995, 2005 37

v If you set either the MP_PMDLOG environment variable or the -pmdlog

command line option to yes, they are collected in the pmd log file of each task,

in /tmp (STDERR and STDOUT).

You can also use LookAt to look up message explanations. For more information

on how to do this see “Using LookAt to look up message explanations” on page

xii

Logging POE errors to a file

You can also specify that diagnostic messages be logged to a file in /tmp on each of

the remote nodes of your partition by using the MP_PMDLOG environment

variable. The log file is called /tmp/mplog.jobid.taskid, where jobid is a unique

identifier and taskid is the task number. The jobid is the same for all remote nodes.

This file contains additional diagnostic information about why the user connection

was not made. If the file is not there, then pmd did not start. Check the

/etc/inetd.conf and /etc/services entries and the executability of pmd for the root

user ID again.

For more information about the MP_PMDLOG environment variable, see IBM

Parallel Environment for AIX: Operation and Use, Volume 1.

Message format

Knowing which component a message is associated is helpful when trying to

resolve a problem. PE messages include prefixes that identify the related

component. The message identifiers for the PE components are as follows.

0029-nnnn

pdbx

0031-nnnn

Parallel Operating Environment

0032-nnnn

Message Passing Interface

2554-nnnn

Benchmarker

where:

v The first four digits (such as 0029), identify the component that issued the

message.

v nnnn identifies the sequence of the message in the group.

For more information about PE messages, see IBM Parallel Environment for AIX:

Messages.

Note that you might find it helpful to run POE or the parallel debugger as you use

this section.

Diagnosing problems using IVP

The Installation Verification Program (IVP) can be a useful tool for diagnosing

problems. When you installed POE, you verified that everything turned out

correctly by running the IVP. It verified that the:

v Location of the libraries was correct

v Binaries existed

v Partition Manager daemon was executable

v POE files were in order

v Sample IVP programs compiled correctly.

38

The IVP can provide some important first clues when you experience a problem,

so you may want to rerun this program before you do anything else.

Cannot compile a parallel program

Programs for PE must be compiled with the current release of the compiler scripts

you are using, such as mpxlf_r, mpcc_r, or mpCC_r. If the command you are

trying to use cannot be found, make sure the installation was successful and that

your PATH environment variable contains the path to the compiler scripts. These

commands call the Fortran, C, and C++ compilers respectively, so you also need to

make sure that the underlying compiler is installed and accessible. Your system

administrator or local AIX guru should be able to assist you in verifying these

things.

Cannot start a parallel job

Once you have successfully compiled your program, you either invoke it directly

or start POE and then submit the program to it. In both cases, POE is started to

establish communication with the parallel nodes. Problems that can occur at this

point include: POE does not start, or cannot connect to the remote nodes.

These problems can be caused by other problems on the home node (where you

are trying to submit the job), on the remote parallel nodes, or in the

communication subsystem that connects them. You need to make sure that all the

things POE expects to be set up really are set up. Here is what you do:

1. Make sure that you can execute POE. If you are a Korn shell user, type:

$ whence poe

If you are a C shell user, type:

$ which poe

If the result is just the shell prompt, you do not have POE in your path. It

might mean that POE is not installed, or that your path does not point to it.

Check that the file /usr/lpp/ppe.poe/bin/poe exists and is executable, and that

your PATH includes the directory /usr/lpp/ppe.poe/bin.

2. Type:

$ env | grep MP_

Look at the settings of the environment variables beginning with MP_, (the

POE environment variables). Check their values against what you expect,

particularly MP_HOSTFILE (where the list of remote host names is to be

found), MP_RESD (whether a job management system is to be used to allocate

remote hosts) and MP_RMPOOL (the pool from which the job management

system is to allocate remote hosts) values. If they are all not set, make sure that

you have a file named host.list in your current directory. This file must include

the names of all the remote parallel hosts that can be used. There must be at

least as many hosts available as the number of parallel processes you specified

with the MP_PROCS environment variable.

3. Type:

$ poe -procs 1

You should get the following message:

 0031-503 Enter program name and flags for each node: _

Chapter 3. Don’t panic 39

If you do get this message, POE has successfully loaded and established

communication with the first remote host in your host list file. It has also

validated your use of that remote host, and is ready to go to work. If you type

any AIX command, for example, date, hostname, or env, you should get a

response when the command executes on the remote host (like you would from

rsh).

If you get some other set of messages, then the message text should give you

some idea of where to look. Some common situations include:

v Cannot connect with the remote host

The path to the remote host is unavailable. Check to make sure that you are

trying to connect to the host you think you are. If you are using LoadLeveler

to allocate nodes from a pool, you may want to allocate nodes from a known

list instead. ping the remote hosts in the list to see if a path can be

established to them. If it can, run rsh remote_host date to verify that the

remote host can be contacted and recognizes the host from which you

submitted the job, so it can send results back to you.

Check the /etc/services file on your home node, to make sure that the IBM

Parallel Environment for AIX service is defined. Check the /etc/services and

/etc/inetd.conf files on the remote host to make sure that the PE service is

defined, and that the Partition Manager Daemon (pmd) program invoked by

inetd on the remote node is executable.

v User not authorized on remote host

You need an ID on the remote host and your ID on the home host (the one

from which you are submitting the job) must be authorized to run

commands on the remote hosts. You do this by placing a $HOME/.rhosts file

on the remote hosts that identify your home host and ID. Brush up on

“Access” on page 2 if you need to. Even if you have a $HOME/.rhosts file,

make sure that you are not denied access the /etc/hosts.equiv file on the

remote hosts.

In some installations, your home directory is a mounted file system on both

your home node and the remote host. On the SP system, this mounted file

system is managed by AMD, the AutoMount Daemon. Occasionally, during

user verification, the AutoMount Daemon does not mount your home

directory fast enough, and pmd does not find your .rhosts file. In this case,

check with your system administrator.

Even if the remote host is actually the same machine as your home node,

you still need an entry in the .rhosts file. Sorry, that is the way AIX

authentication works.

v Other strangeness

On the home node, you can set or increase the MP_INFOLEVEL

environment variable (or use the -infolevel command line option) to get

more information out of POE while it is running. Although this does not give

you any more information about the error, or prevent it, it gives you an idea

of where POE was, and what it was trying to do when the error occurred. A

value of 6 gives you more information than you could ever want. See

Appendix A, “A sample program to illustrate messages,” on page 109 for an

example of the output from this setting.

40

Cannot execute a parallel program

Once POE can be started, you need to consider the problems that can arise in

running a parallel program, specifically initializing the message passing subsystem.

The way to eliminate this initialization as the source of POE startup problems is to

run a program that does not use message passing.

As discussed in “Running POE” on page 4, you can use POE to invoke any AIX

command or serial program on remote nodes. If you can get an AIX command or

simple program, like Hello, World!, to run under POE, but a parallel program does

not, you can be pretty sure the problem is in the message passing subsystem. The

message passing subsystem is the underlying implementation of the message

passing calls used by a parallel program (in other words, an MPI_SEND). POE

code that is linked into your executable by the compiler script (mpcc_r, mpCC_r,

mpxlf_r) initializes the message passing subsystem.

The Parallel Operating Environment (POE) supports two distinct communication

subsystems, an IP-based system, and User Space optimized adapter support. The

subsystem choice is normally made at run time, by environment variables or

command line options passed to POE. Use the IP subsystem for diagnosing

initialization problems before worrying about the User Space (US) subsystem.

Select the IP subsystem by setting the environment variable:

$ export MP_EUILIB=ip

Use specific remote hosts in your host list file and do not use LoadLeveler (set

MP_RESD=no). If you do not have a small parallel program around, recompile

hello.c as follows:

$ mpcc_r -o hello_p hello.c

and make sure that the executable can be loaded on the remote host that you are

using.

Type the following command, and then look at the messages on the console:

$ poe hello_p -procs 1 -infolevel 4

If you get

Hello, World!

then the communication subsystem has been successfully initialized on the one

node and things ought to be looking good. Just for kicks, make sure that there are

two remote nodes in your host list file and try again with the following:

$ poe hello_p -procs 2

If and when hello_p works with IP and device en0 (the Ethernet), try again with

the high speed interconnect.

Each node has one name that it is known by on the external LAN to which it is

connected, and another name that it is known by on the interconnect. If the node

name you use is not the proper name for the network device you specify, the

connection is not be made. You can put the names in your host list file. Otherwise,

use LoadLeveler to locate the nodes.

For example,

Chapter 3. Don’t panic 41

$ export MP_RESD=yes

$ export MP_EUILIB=ip

$ export MP_EUIDEVICE=css0

$ poe hello_p -procs 2 -ilevel 2

where css0 is the switch device name. Look at the console lines containing the

string MPI euidevice. These identify the device name that is actually being used

for message passing (as opposed to the IP address that is used to connect the home

node to the remote hosts.) If these are not device names, check the LoadLeveler

configuration and the switch configuration.

Once IP works, and you are on an SP machine or clustered server, you can try

message passing using the User Space device support. Note that LoadLeveler

allows you to run multiple tasks over the switch adapter while in User Space.

You can run hello_p with the User Space library by typing:

$ export MP_RESD=yes

$ export MP_EUILIB=us

$ export MP_EUIDEVICE=css0

$ poe hello_p -procs 2 -ilevel 6

The console log should inform you that you are using User Space support, and

that LoadLeveler is allocating the nodes for you. LoadLeveler tells you that it

cannot allocate the requested nodes if someone else is already running on them

and has requested dedicated use of the switch, or if User Space capacity has been

exceeded.

You can try for other specific nodes, or you can ask LoadLeveler for non-specific

nodes from a pool. You can refer to IBM Parallel Environment for AIX: Operation and

Use, Volume 1.

The program runs but...

The parallel debugger is your friend

An important tool in analyzing your parallel program is the PE parallel debugger

(pdbx). In some situations, using the parallel debugger is just like using a

debugger for a serial program. In other situations, however, the parallel nature of

the problem introduces some subtle and not-so-subtle differences which you

should understand to use the debugger efficiently. While debugging a serial

application, you can focus your attention on the single problem area. In a parallel

application, you have to shift your attention between the various parallel tasks and

also consider how the interaction among the tasks may be affecting the problem.

The simplest problem

The simplest parallel program to debug is one where all the problems exist in a

single task. In this case, you can unhook all the other tasks from the debugger’s

control and use the parallel debugger as if it were a serial debugger. However, this

case is also the most rare.

The next simplest problem

The next simplest case is one where all the tasks are doing the same thing and

they all experience the problem that is being investigated. In this case, you can

apply the same debug commands to all the tasks, advance them in lockstep and

interrogate the state of each task before proceeding. In this situation, you need to

be sure to avoid debugging-introduced deadlocks. These are situations where the

debugger is trying to single-step a task past a blocking communication call, but the

42

debugger has not stepped the sender of the message past the point where the

message is sent. In these cases, control will not be returned to the debugger until

the message is received, but the message will not be sent until control returns to

the debugger.

OK, the worst problem

The most difficult situation to debug, and also the most common, is where not all

the tasks are doing the same thing and the problem spans two or more tasks. In

these situations, you have to be aware of the state of each task, and the

interrelations among tasks. You must ensure that blocking communication events

either have been or will be satisfied before stepping or continuing through them.

This means that the debugger has already executed the send for blocking receives,

or the send will occur at the same time (as observed by the debugger) as the

receive. Frequently, you may find that tracing back from an error state leads to a

message from a task to which you were not paying attention. In these situations,

your only choice may be to run the application again and focus on the events

leading up to the send.

When a core dump is created

If your program creates a core dump, POE saves a copy of the core file so you can

debug it later. Unless you specify otherwise, POE saves the core file in the

coredir.taskid directory, under the current working directory, where taskid is the

task number. For example, if your current directory is /u/mickey, and your

application creates a core dump (segmentation fault) while running on the node

that is task 4, the core file will be located in /u/mickey/coredir.4 on that node.

You can control where POE saves the core file by using the -coredir POE command

line option or the MP_COREDIR environment variable.

Standard AIX corefiles can be large and often the information in the files appears

at a very low level. This can make the files difficult to debug. These large files can

also consume too much disk space, CPU time, and network bandwidth. To avoid

this problem, PE allows you to produce corefiles in the Ptools Lightweight Corefile

Format. Lightweight corefiles provide simple shared stack traces (listings of

function calls that led to the error), and consume less system resources than

traditional corefiles. For more information on lightweight corefiles and how to

generate them, see IBM Parallel Environment for AIX: Operation and Use, Volume 1.

Debugging core dumps

There are two ways you can use traditional AIX core dumps to find problems in

your program. After running the program, you can examine the resulting core file

to see if you can find the problem. Or, you can try to view your program state by

catching it at the point where the problem occurs.

Examining core files: Before you can debug a core file, you first need to get one.

Let us just generate it. The example is an MPI program in which even-numbered

tasks pass the answer to the meaning of life to odd-numbered tasks. It is called

bad_life.c, and here is what it looks like:

/***

*

* bad_life program

* To compile:

* mpcc -g -o bad_life bad_life.c

*

***/

Chapter 3. Don’t panic 43

#include <stdio.h>

#include <mpi.h>

void main(int argc, char *argv[])

{

 int taskid;

 MPI_Status stat;

 /* Find out number of tasks/nodes. */

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 if ((taskid % 2) == 0)

 {

 char *send_message = NULL;

 send_message = (char *) malloc(10);

 strcpy(send_message, "Forty Two");

 MPI_Send(send_message, 10, MPI_CHAR, taskid+1, 0,

 MPI_COMM_WORLD);

 free(send_message);

 } else

 {

 char *recv_message = NULL;

 MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0,

 MPI_COMM_WORLD, &stat);

 printf("The answer is %s\n", recv_message);

 free(recv_message);

 }

 printf("Task %d complete.\n",taskid);

 MPI_Finalize();

 exit(0);

}

bad_life.c complied with the following parameters:

$ mpcc -g bad_life.c -o bad_life

and when it runs, you get the following results:

$ export MP_PROCS=4

$ export MP_LABELIO=yes

$ bad_life

 0:Task 0 complete.

 2:Task 2 complete.

ERROR: 0031-250 task 1: Segmentation fault

ERROR: 0031-250 task 3: Segmentation fault

ERROR: 0031-250 task 0: Terminated

ERROR: 0031-250 task 2: Terminated

As you can see, bad_life.c gets two segmentation faults which generate two core

files. If you list the current directory, you can see two core files; one for task 1 and

the other for task 3.

$ ls -lR core*

total 88

-rwxr-xr-x 1 hoov staff 8472 May 02 09:14 bad_life

-rw-r--r-- 1 hoov staff 928 May 02 09:13 bad_life.c

drwxr-xr-x 2 hoov staff 512 May 02 09:01 coredir.1

drwxr-xr-x 2 hoov staff 512 May 02 09:36 coredir.3

-rwxr-xr-x 1 hoov staff 8400 May 02 09:14 good_life

-rw-r--r-- 1 hoov staff 912 May 02 09:13 good_life.c

-rw-r--r-- 1 hoov staff 72 May 02 08:57 host.list

./coredir.1:

total 48

-rw-r--r-- 1 hoov staff 24427 May 02 09:36 core

44

./coredir.3:

total 48

-rw-r--r-- 1 hoov staff 24427 May 02 09:36 core

Run dbx on one of the core files to find the problem. You run dbx like this:

$ dbx bad_life coredir.1/core

Type ’help’ for help.

[using memory image in coredir.1/core]

reading symbolic information ...

Segmentation fault in . at 0xf014

0x0000f014 warning: Unable to access address 0xf014 from core

Now, let us see where the program crashed and what its state was at that time. If

you issue the where command,

(dbx) where

You can see the program stack:

warning: Unable to access address 0xf014 from core

warning: Unable to access address 0xf014 from core

warning: Unable to access address 0xf010 from core

warning: Unable to access address 0xf010 from core

warning: Unable to access address 0xf014 from core

warning: Unable to access address 0xf014 from core

warning: Unable to access address 0xf010 from core

warning: Unable to access address 0xf010 from core

warning: Unable to access address 0xf014 from core

.() at 0xf014

lapi_recv_vec(??, ??, ??, ??, ??, ??) at 0xd2ccc298

process_hdr_hndlr_contig(0x0, 0x0, 0xf15433d8, 0x202b5368, 0x20a4bb88) at 0xd31d

58c0

_lapi_recv_callback(0x0, 0x20a4bb88, 0x2000) at 0xd31d6a10

udp_read_dgsp(0x0, 0xf1542608, 0x0, 0x0) at 0xd05b9294

_receive_processing(0x0) at 0xd31d41b0

_lapi_dispatcher(0x0, 0x0) at 0xd3193cf4

_lapi_msgpoll_internal(0x0, 0x1, 0x2ff225e8, 0x0, 0x0) at 0xd31bb8f0

LAPI_Msgpoll(0x0, 0x1, 0x2ff225e8) at 0xd31bfc60

mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd2cc6ce0

_mpi_recv(??, ??, ??, ??, ??, ??, ??) at 0xd3078e94

MPI__Recv(??, ??, ??, ??, ??, ??, ??) at 0xd3075d44

unnamed block $b2, line 36 in "bad_life.c"

main(argc = 1, argv = 0x2ff229bc), line 36 in "bad_life.c"

(dbx)

The output of the where command shows that bad_life.c failed at line 36, like this:

(dbx) func main

(dbx) list 36

 36 MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0,

Look at line 36 of bad_life.c, the first guess is that one of the parameters being

passed into MPI_RECV is bad. Look at some of these parameters to see if you can

find the source of the error:

(dbx) print recv_message

"recv_message" is not active

Our receive buffer has not been initialized and is NULL. The sample programs for

this book include a solution called good_life.c.

Chapter 3. Don’t panic 45

bad_life.c complied with the -g compile flag. This gives all the debugging

information you need to view the entire program state and to print program

variables. If you did not compile the programs with the -g flag, and you may have

turned optimization on (-O). When you do this, there is virtually no information to

tell you what happened when the iprogram executed. If this is the case, you can

still use dbx to look at only stack information, which allows you to determine the

function or subroutine that generated the core dump.

Viewing the program state: If collecting core files is impractical, you can also try

catching the program at the segmentation fault. You do this by running the

program under the control of the debugger. The debugger gets control of the

application at the point of the segmentation fault, and this allows you to view your

program state at the point where the problem occurs.

The following example uses bad_life again, but uses pdbx instead of dbx. Load

bad_life under pdbx with the following command:

> pdbx bad_life -procs 4 -hfile /u/voe3/>

pdbx Version 4, Release 1.1 -- Feb 5 2004 18:31:06

 0:Core file "

 0:" is not a valid core file (ignored)

 2:Core file "

 2:" is not a valid core file (ignored)

 1:Core file "

 1:" is not a valid core file (ignored)

 3:Core file "

 3:" is not a valid core file (ignored)

 0:reading symbolic information ...

 1:reading symbolic information ...

 1:[1] stopped in main at line 20 ($t1)

 1: 20 MPI_Init(&argc, &argv);

 3:reading symbolic information ...

 2:reading symbolic information ...

 0:[1] stopped in main at line 20 ($t1)

 0: 20 MPI_Init(&argc, &argv);

 3:[1] stopped in main at line 20 ($t1)

 3: 20 MPI_Init(&argc, &argv);

 2:[1] stopped in main at line 20 ($t1)

 2: 20 MPI_Init(&argc, &argv);

0031-504 Partition loaded ...

Next, let the program run to allow it to reach a segmentation fault.

pdbx(all) cont

 0:Task 0 complete.

 2:Task 2 complete.

 1:

 1:Segmentation fault in . at 0xf014 ($t1)

 1:0x0000f014 7ca01d2a stswx r5,r0,r3

 3:

 3:Segmentation fault in . at 0xf014 ($t1)

 3:0x0000f014 7ca01d2a stswx r5,r0,r3

Once you get segmentation faults, you can focus your attention on one of the tasks

that failed. Look at task 1:

pdbx(all) on 1

By using the pdbx where command, you can see where the problem originated in

the source code:

pdbx(1) where

 1:.() at 0xf014

 1:lapi_recv_vec(??, ??, ??, ??, ??, ??) at 0xd2ccc298

46

1:process_hdr_hndlr_contig(0x0, 0x0, 0xf15433d8, 0x202b5368, 0x20a35b88) at

 0xd31d58c0

 1:_lapi_recv_callback(0x0, 0x20a35b88, 0x2000) at 0xd31d6a10

 1:udp_read_dgsp(0x0, 0xf1542608, 0x0, 0x0) at 0xd0aa3294

 1:_receive_processing(0x0) at 0xd31d41b0

 1:_lapi_dispatcher(0x0, 0x0) at 0xd3193cf4

 1:_lapi_msgpoll_internal(0x0, 0x3e8, 0x2ff225b8, 0x0, 0x0) at 0xd31bb8f0

 1:LAPI_Msgpoll(0x0, 0x186a0, 0x2ff225b8) at 0xd31bfc60

 1:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd2cc7048

 1:_mpi_recv(??, ??, ??, ??, ??, ??, ??) at 0xd3078e94

 1:MPI__Recv(??, ??, ??, ??, ??, ??, ??) at 0xd3075d44

 1:unnamed block $b2, line 36 in "bad_life.c"

 1:main(argc = 1, argv = 0x2ff2298c), line 36 in "bad_life.c"

Now, let us move up the stack to function main:

pdbx(1) func main

Next, list line 36, which is where the problem is located:

pdbx(1) l 36

 1: 36 MPI_Recv(recv_message, 10, MPI_CHAR, taskid-1, 0,

Print the value of recv_message:

pdbx(1) p recv_message

 1:"recv_message" is not active

The program passes a bad parameter to MPI_RECV.

Both the techniques help you find the location of the problem in your code. The

example used makes it look easy, but in many cases it will not be so simple.

However, knowing where the problem occurred is valuable information if you are

forced to debug the problem interactively.

On the lighter side...: One of the new features in POE is the ability to capture

more detailed information about a program when it abnormally terminates, while

also reducing the amount of space needed for it. POE has the ability to produce

Light Weight Core Files, as opposed to standard AIX core files. This greatly

reduces the size of the core files while greatly enhancing the information that is

produced.

First, you need to tell POE to produce Light Weight Core Files, with the

-corefile_format flag or MP_COREFILE_FORMAT environment variable.

> bad_life -procs 4 -labelio yes -corefile_format lwcf <

 0:Task 0 complete.

 2:Task 2 complete.

ERROR: 0031-250 task 1: Segmentation fault

ERROR: 0031-250 task 0: Terminated

ERROR: 0031-250 task 2: Terminated

ERROR: 0031-250 task 3: Segmentation fault

You will notice the same program output, however, now when you look in the

coredir.1 and coredir.3 directories, you begin to see the difference.

> cd coredir.1

Now look in the directory.

> ls -lt

total 30768

-rw-r--r-- 1 voe3 usr 1269 Feb 19 13:40 lwcf

-rw-r--r-- 1 voe3 usr 15745755 Feb 19 13:16 core

Chapter 3. Don’t panic 47

You should notice two differences. First, there is a second file, named lwcf (or

whatever the file name specified by the -corefile_format option or

MP_COREFILE_FORMAT environment variable), in addition to the file named

core. The second difference is in the file sizes - the standard AIX core files are

much larger. Now look at what you have in the new file.

The new file is a text output file, that can be viewed with any text viewer or vi. It

will contain output produced by the Light Weight Core File facility, containing

stack and thread traces for the entire program. To keep it simple, use cat to view

the file:

>cat lwcf

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.1

+++LCB 1.0 Wed Feb 19 13:39:14 2004 Generated by IBM AIX 5.2

+++ID Node 1 Process 622736 Thread 1

***FAULT "SIGSEGV - Segmentation violation"

+++STACK

At location 0x0000f014 but procedure information unavailable.

lapi_recv_vec : 0x00000550

process_hdr_hndlr_contig : 0x00000274

_lapi_recv_callback : 0x000003c4

udp_read_dgsp : 0x000000a0

_receive_processing : 0x00000058

_lapi_dispatcher : 0x00000150

_lapi_msgpoll_internal : 0x000004a4

LAPI_Msgpoll : 0x000001ac

mpci_recv : 0x00000f38

_mpi_recv : 0x0000015c

MPI__Recv : 0x00000630

main : 36 # in file <bad_life.c>

---STACK

---ID Node 1 Process 622736 Thread 1

+++ID Node 1 Process 622736 Thread 2

+++STACK

sigwait : 0x000002d0

pm_async_thread : 0x000006e8

_pthread_body : 0x000000e8

---STACK

---ID Node 1 Process 622736 Thread 2

+++ID Node 1 Process 622736 Thread 3

+++STACK

_intr_hndlr : 0x00000228

_pthread_body : 0x000000e8

---STACK

---ID Node 1 Process 622736 Thread 3

+++ID Node 1 Process 622736 Thread 4

+++STACK

_event_wait : 0x0000005c

_cond_wait_local : 0x0000034c

_cond_wait : 0x00000050

pthread_cond_wait : 0x000001d8

_compl_hndlr_thr : 0x00000174

_pthread_body : 0x000000e8

---STACK

---ID Node 1 Process 622736 Thread 4

---LCB

The output contains a lot of information for such a small file, a true case where

less is more. You can see where all of the threads were, and immediately know

what caused the problem and where it is.

48

For completeness, switch over to the coredir.3 directory, to see what happened

with the other task that terminated abnormally.

> cd ../coredir.3

> ls -lt

total 30768

-rw-r--r-- 1 voe3 usr 1269 Feb 19 13:40 lwcf

-rw-r--r-- 1 voe3 usr 15745915 Feb 19 13:16 core

Here you see the same thing, two files, one large standard AIX core file, and a

small Light Weight Core File. If you look at the lwcf file again, you will see pretty

much the same thing as before, except it will show things from task 3’s point of

view:

> cat lwcf

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.1

+++LCB 1.0 Wed Feb 19 13:39:14 2004 Generated by IBM AIX 5.2

+++ID Node 3 Process 442600 Thread 1

***FAULT "SIGSEGV - Segmentation violation"

+++STACK

At location 0x0000f014 but procedure information unavailable.

lapi_recv_vec : 0x00000550

process_hdr_hndlr_contig : 0x00000274

_lapi_recv_callback : 0x000003c4

udp_read_dgsp : 0x000000a0

_receive_processing : 0x00000058

_lapi_dispatcher : 0x00000150

_lapi_msgpoll_internal : 0x000004a4

LAPI_Msgpoll : 0x000001ac

mpci_recv : 0x00000f38

_mpi_recv : 0x0000015c

MPI__Recv : 0x00000630

main : 36 # in file <bad_life.c>

---STACK

---ID Node 3 Process 442600 Thread 1

+++ID Node 3 Process 442600 Thread 2

+++STACK

sigwait : 0x000002d0

pm_async_thread : 0x000006e8

_pthread_body : 0x000000e8

---STACK

---ID Node 3 Process 442600 Thread 2

+++ID Node 3 Process 442600 Thread 3

+++STACK

_intr_hndlr : 0x00000228

_pthread_body : 0x000000e8

---STACK

---ID Node 3 Process 442600 Thread 3

+++ID Node 3 Process 442600 Thread 4

+++STACK

_event_wait : 0x0000005c

_cond_wait_local : 0x0000034c

_cond_wait : 0x00000050

pthread_cond_wait : 0x000001d8

_compl_hndlr_thr : 0x00000174

_pthread_body : 0x000000e8

---STACK

---ID Node 3 Process 442600 Thread 4

---LCB

The Light Weight Core File option gives you a quick and efficient way of seeing

where things went bad, while saving some space along the way.

Chapter 3. Don’t panic 49

Core dumps and threaded programs: If a task of a threaded program produces a

core file, the partial dump produced by default does not contain the stack and

status information for all threads. Therefore, it has limited usefulness. You can

request AIX to produce a full core file, but such files are generally larger than

permitted by user limits (the communication subsystem alone generates more than

64 MB of core information). As a result, you consider two alternatives:

v Request that AIX generate a lightweight corefile. Lightweight corefiles contain less

detail than standard AIX corefiles and, therefore, consume less disk space, CPU

time, and network bandwidth. For more information on lightweight corefiles, see

IBM Parallel Environment for AIX: Operation and Use, Volume 1.

v Use the attach capability of dbx, xldb, or pdbx to examine the task while it is

still running.

No output at all

Should there be output?

If you are not getting output from your program and you think you ought to be,

make sure you have enabled the program to send data back to you. If the

MP_STDOUTMODE environment variable is set to a number, it is the number of

the only task for which standard output will be displayed. If that task does not

generate standard output, you will not see any.

There should be output

If MP_STDOUTMODE is set appropriately, the next step is to verify that the

program is actually doing something. Start by observing how the program

terminates (or fails to terminate). It will do one of the following things:

v Terminate without generating output other than POE messages.

v Fail to terminate after a really long time, still without generating output.

In the first case, you should examine any messages you receive. Since your

program is not generating any output, all of the messages will be coming from

POE.

In the second case, you will have to stop the program yourself (<Ctrl-c> should

work).

One possible reason for lack of output could be that your program is terminating

abnormally before it can generate any. POE will report abnormal termination

conditions such as being killed, as well as non-zero return codes. Sometimes these

messages are obscured in the blur of other errata, so it is important to check the

messages carefully.

Figuring out return codes: It is important to understand POE’s interpretation of

return codes. If the exit code for a task is zero(0) or in the range of 2 to 127, then

POE will make that task wait until all tasks have exited. If the exit code is 1 or

greater than 128 (or less than 0), then POE will terminate the entire parallel job

abruptly (with a SIGTERM signal to each task). In normal program execution, one

would expect to have each program go through exit(0) or STOP, and exit with an

exit code of 0. However, if a task encounters an error condition (for example, a full

file system), then it may exit unexpectedly. In these cases, the exit code is usually

set to -1. If, however, you have written error handlers which produce exit codes

other than 1 or -1, then POE’s termination algorithm may cause your program to

hang because one task has terminated abnormally, while the other tasks continue

processing (expecting the terminated task to participate).

50

If the POE messages indicate the job was killed (either because of some external

situation like low page space or because of POE’s interpretation of the return

codes), it may be enough information to fix the problem. Otherwise, you may have

to do more analysis.

It hangs

If you have gotten this far and the POE messages, and the additional checking by

the message passing routines, have not shed any light on why your program is not

generating output, the next step is to figure out whether your program is doing

anything at all (besides not giving you output).

Let us look at the following example...it has a bug in it.

/**

*

* Ray trace program with bug

*

* To compile:

* mpcc -g -o rtrace_bug rtrace_bug.c

*

*

* Description:

* This is a sample program that partitions N tasks into

* two groups, a collect node and N - 1 compute nodes.

* The responsibility of the collect node is to collect the data

* generated by the compute nodes. The compute nodes send the

* results of their work to the collect node for collection.

*

* There is a bug in this code. Please do not fix it in this file!

*

**/

#include <mpi.h>

#define PIXEL_WIDTH 50

#define PIXEL_HEIGHT 50

int First_Line = 0;

int Last_Line = 0;

void main(int argc, char *argv[])

{

 int numtask;

 int taskid;

 /* Find out number of tasks/nodes. */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtask);

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 /* Task 0 is the coordinator and collects the processed pixels */

 /* All the other tasks process the pixels */

 if (taskid == 0)

 collect_pixels(taskid, numtask);

 else

 compute_pixels(taskid, numtask);

 printf("Task %d waiting to complete.\n", taskid);

 /* Wait for everybody to complete */

 MPI_Barrier(MPI_COMM_WORLD);

 printf("Task %d complete.\n",taskid);

 MPI_Finalize();

 exit();

}

Chapter 3. Don’t panic 51

/* In a real implementation, this routine would process the pixel */

/* in some manner and send back the processed pixel along with its*/

/* location. Since you did process the pixel. all you do is */

/* send back the location */

compute_pixels(int taskid, int numtask)

{

 int section;

 int row, col;

 int pixel_data[2];

 MPI_Status stat;

 printf("Compute #%d: checking in\n", taskid);

 section = PIXEL_HEIGHT / (numtask -1);

 First_Line = (taskid - 1) * section;

 Last_Line = taskid * section;

 for (row = First_Line; row < Last_Line; row ++)

 for (col = 0; col < PIXEL_WIDTH; col ++)

 {

 pixel_data[0] = row;

 pixel_data[1] = col;

 MPI_Send(pixel_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);

 }

 printf("Compute #%d: done sending. ", taskid);

 return;

}

/* This routine collects the pixels. In a real implementation, */

/* after receiving the pixel data, the routine would look at the*/

/* location information that came back with the pixel and move */

/* the pixel into the appropriate place in the working buffer */

/* Since you aren’t doing anything with the pixel data, you don’t */

/* bother and each message overwrites the previous one */

collect_pixels(int taskid, int numtask)

{

 int pixel_data[2];

 MPI_Status stat;

 int mx = PIXEL_HEIGHT * PIXEL_WIDTH;

 printf("Control #%d: No. of nodes used is %d\n", taskid,numtask);

 printf("Control: expect to receive %d messages\n", mx);

 while (mx > 0)

 {

 MPI_Recv(pixel_data, 2, MPI_INT, MPI_ANY_SOURCE,

 MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

 mx--;

 }

 printf("Control node #%d: done receiving. ",taskid);

 return;

}

This example is from a ray tracing program that distributed a display buffer out to

server nodes. The intent is that each task, other than Task 0, takes an equal number

of full rows of the display buffer, processes the pixels in those rows, and then

sends the updated pixel values back to the client. In the real application, the task

would compute the new pixel value and send it as well, but in this example, you

are just sending the row and column of the pixel. Because the client is getting the

row and column location of each pixel in the message, it does not care which

server each pixel comes from. The client is Task 0, and the servers are all the other

tasks in the parallel job.

52

This example has a functional bug in it. With a little bit of analysis, the bug is

probably easy to spot, and you may be tempted to fix it right away. PLEASE DO

NOT!

When you run this program, you get the output shown below. Notice that the -g

option is used when you compile the example. You are cheating a little because

you know that there is going to be a problem, so you are compiling with debug

information that is turned on right away.

$ mpcc -g -o rtrace_bug rtrace_bug.c

$ rtrace_bug -procs 4 -labelio yes

 1:Compute #1: checking in

 0:Control #0: No. of nodes used is 4

 1:Compute #1: done sending. Task 1 waiting to complete.

 2:Compute #2: checking in

 3:Compute #3: checking in

 0:Control: expect to receive 2500 messages

 2:Compute #2: done sending. Task 2 waiting to complete.

 3:Compute #3: done sending. Task 3 waiting to complete.

^C

ERROR: 0031-250 task 1: Interrupt

ERROR: 0031-250 task 2: Interrupt

ERROR: 0031-250 task 3: Interrupt

ERROR: 0031-250 task 0: Interrupt

No matter how long you wait, the program will not terminate until you press

<Ctrl-c>.

So, you suspect the program is hanging somewhere. You know it starts executing

because you get some messages from it. It could be a logical hang or it could be a

communication hang.

Hangs and threaded programs

Coordinating the threads in a task requires careful locking and signaling.

Deadlocks that occur because the program is waiting on locks that have not been

released are common, in addition to the deadlock possibilities that arise from

improper use of the MPI message passing calls.

Let’s attach the debugger

Now that you have come to the conclusion that the program is hanging, use the

debugger to find out why. The best way to diagnose this problem is to attach the

debugger directly to the POE job.

Start up POE and run rtrace_bug:

$ rtrace_bug -procs 4 -labelio yes

To attach the debugger, you first need to get the process ID (PID) of the POE job,

using the AIX ps command:

> ps -ef | grep poe

 voe3 680044 344226 0 09:52:33 pts/1 0:00 poe

Next, you need to start the pdbx debugger in attach mode by using the -a flag and

the process ID (PID) of the POE job:

$ pdbx -a 680044

After starting the debugger in attach mode, a pdbx Attach screen appears.

Chapter 3. Don’t panic 53

*

> pdbx -a 680044

pdbx Version 4, Release 1.1 -- Feb 5 2004 18:31:06

To begin debugging in attach mode, select a task or tasks to attach.

Task IP Addr Node PID Program

0 9.114.153.82 c133rp03.ppd.pok.ibm.com 692328 rtrace_bug

1 9.114.153.82 c133rp03.ppd.pok.ibm.com 553010 rtrace_bug

2 9.114.153.82 c133rp03.ppd.pok.ibm.com 684222 rtrace_bug

3 9.114.153.82 c133rp03.ppd.pok.ibm.com 594022 rtrace_bug

At the pdbx prompt enter the attach command followed by a list of tasks or all.

For example, attach 2 4 5-7 or attach all. You may also type help for more

information or quit to exit the debugger without attaching.

The pdbx Attach screen contains a list of tasks from which you can choose, and for

each task, the following information:

v Task — the task number

v IP — the ip address of the node on which the task or application is running

v Node — the name of the node on which the task or application is running

v PID — the process identifier of the task or application

v Program — the name of the application and arguments, if any

The paging tool used to display the menu will default to pg –e unless the PAGER

environment variable specifies another pager. the debugger displays a list of task

numbers that comprise the parallel job. The debugger obtains this information by

reading a configuration file created by POE when it begins a job step.

After initiating attach mode, select the tasks to which you want to attach. Since

you do not know which task or set of tasks is causing the problem, attach to all of

the tasks by typing attach all:

pdbx(none) attach all

 0:Waiting to attach to process 692328 ...

 0:Successfully attached to rtrace_bug.

 1:Waiting to attach to process 553010 ...

 1:Successfully attached to rtrace_bug.

 2:Waiting to attach to process 684222 ...

 2:Successfully attached to rtrace_bug.

 3:Waiting to attach to process 594022 ...

 3:Successfully attached to rtrace_bug.

 0:reading symbolic information ...

 0:stopped in _event_sleep at 0xd00575d0 ($t2)

 0:0xd00575d0 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

 1:reading symbolic information ...

 1:stopped in _event_sleep at 0xd00575d0 ($t2)

 1:0xd00575d0 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

 3:reading symbolic information ...

 3:stopped in _event_sleep at 0xd00575d0 ($t2)

 3:0xd00575d0 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

 2:reading symbolic information ...

 2:stopped in _event_sleep at 0xd00575d0 ($t2)

 2:0xd00575d0 (_event_sleep+0xa8) 80410014 lwz r2,0x14(r1)

0029-2013 Debugger attached and ready.

The debugger attaches to the specified tasks. The selected executables are stopped

wherever their program counters happen to be, and are then under the control of

the debugger. pdbx displays information about the attached tasks using the task

numbering of the original POE application partition.

54

Let us start by taking a look at task 0. First, change the current context to task 0 by

typing 0. Even though the program is not actually threaded, it is using threads

created by the MPI library. To see the threads that are active, use the threads

command:

pdbx(attached) on 0

pdbx(0) threads

 0: thread state-k wchan state-u k-tid mode held scope function

 0: $t1 run running 2359441 k no sys $PTRGL

 0:>$t2 run blocked 3301487 k no sys _event_sleep

 0: $t3 wait running 2805923 k no sys select

 0: $t4 wait 0xf10000879001d940 blocked 1937553 k no sys _event_sleep

 0: $t5 zomb terminated 3506425 k no sys pthread_exit

An aspect to be aware of when attempting to debug a program using threads is

that when a program is stopped, it can be stopped in any of the running threads.

In this example, by looking at the list of threads, the current thread you stopped in

is shown with the > sign next to it (in this case, it is thread 2). Knowing that the

program is single threaded, you need to switch to the current thread in the

program, which is thread 1, using the thread current 1 command:

pdbx(0) thread current 1

 0:warning: Thread is in kernel mode, not all registers can be accessed.

To see where you are in task 0, type where:

pdbx(0) where

 0:@ptrgl.$PTRGL() at 0xd01d0f88

 0:@raise.nsleep(??, ??) at 0xd01dedfc

 0:@raise.nsleep(??, ??) at 0xd01dedfc

 0:usleep(??) at 0xd01dea48

 0:mpci_recv_gen(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a8bb90

 0:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a7c6cc

 0:_mpi_recv(??, ??, ??, ??, ??, ??, ??) at 0xd225de94

 0:MPI__Recv(??, ??, ??, ??, ??, ??, ??) at 0xd225ad44

 0:collect_pixels(taskid = 0, numtask = 4), line 101 in "rtrace_bug.c"

 0:main(argc = 1, argv = 0x2ff229bc), line 43 in "rtrace_bug.c"

Since the code is hung in low level routines, take a look at the highest line in the

stack trace that has a line number and a file name associated with it. This indicates

that source code association is available. In this case, it is the line that contains

collect_pixels, which is 8 lines up from the entry containing read. To look more

closely at the collect_pixels routine, type up 8:

pdbx(0) up 8

 0:collect_pixels(taskid = 0, numtask = 4), line 101 in "rtrace_bug.c"

Now, you can list the source code starting at the calling routine in collect_pixels:

pdbx(0) list

 0: 101 MPI_Recv(pixel_data, 2, MPI_INT, MPI_ANY_SOURCE,

 0: 102 MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

 0: 103 mx--;

 0: 104 }

 0: 105 printf("Control node #%d: done receiving. ",taskid);

 0: 106 return;

 0: 107 }

 0: 108

Now you can see that task 0 is stopped on a MPI_RECV call. To look at the local

data values, type dump:

Chapter 3. Don’t panic 55

pdbx(0) dump

 0:collect_pixels(taskid = 0, numtask = 4), line 101 in "rtrace_bug.c"

 0:stat = (source = 2, tag = 0, error = -804052736, val1 = 8, val2 = 0, val3 = 800,

 val4 = 2, val5 = -559038737)

 0:mx = 100

 0:__func__ = "collect_pixels"

 0:pixel_data = (31, 49)

When you look at the Local Data Values, you find that variable mx is still set to

100, so task 0 thinks it is still going to receive 100 messages. Now take a look at

what the other messages are doing. To get the stack information on task 1, switch

to that task (subcommand on 1), then go the current running thread (thread 1,

subcommand thread current 1):

pdbx(0) on 1

pdbx(1) thread current 1

 1:warning: Thread is in kernel mode, not all registers can be accessed.

pdbx(1) where

 1:@ptrgl.$PTRGL() at 0xd01d0f88

 1:@raise.nsleep(??, ??) at 0xd01dedfc

 1:@raise.nsleep(??, ??) at 0xd01dedfc

 1:usleep(??) at 0xd01dea48

 1:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a7c4c4

 1:barrier_shft_b(??) at 0xd2270438

 1:_mpi_barrier(??, ??, ??) at 0xd226fb7c

 1:MPI__Barrier(??) at 0xd226e678

 1:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c"

Task 1 has reached an MPI_BARRIER call. If you quickly check the other tasks,

you see that they have all reached this point as well.

pdbx(1) on 2

pdbx(2) thread current 1

 2:warning: Thread is in kernel mode, not all registers can be accessed.

pdbx(2) where

 2:@ptrgl.$PTRGL() at 0xd01d0f88

 2:@raise.nsleep(??, ??) at 0xd01dedfc

 2:@raise.nsleep(??, ??) at 0xd01dedfc

 2:usleep(??) at 0xd01dea48

 2:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a7c4c4

 2:barrier_shft_b(??) at 0xd2270438

 2:_mpi_barrier(??, ??, ??) at 0xd226fb7c

 2:MPI__Barrier(??) at 0xd226e678

 2:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c"

pdbx(2) on 3

pdbx(3) thread current 1

pdbx(3) where

 3:_p_nsleep(??, ??) at 0xd005b7f4

 3:@raise.nsleep(??, ??) at 0xd01dedfc

 3:usleep(??) at 0xd01dea48

 3:mpci_recv(??, ??, ??, ??, ??, ??, ??, ??) at 0xd0a7c4c4

 3:barrier_shft_b(??) at 0xd2270438

 3:_mpi_barrier(??, ??, ??) at 0xd226fb7c

 3:MPI__Barrier(??) at 0xd226e678

 3:main(argc = 1, argv = 0x2ff229b4), line 49 in "rtrace_bug.c"

Problem solved. Tasks 1 through 3 have completed sending messages, but task 0

still expects to receive more. Task 0 was expecting 2500 messages but only received

56

2400, so it is still waiting for 100 messages. To see how many messages each of the

other tasks are sending, look at the global variables First_Line and Last_Line.

You can get the values of First_Line and Last_Line for all of the tasks by first

changing the context to attached by issuing subcommand on attached and then

issuing subcommand print:

pdbx(1) on attached

pdbx(attached) thread current 1

 0:warning: Thread is in kernel mode, not all registers can be accessed.

 1:warning: Thread is in kernel mode, not all registers can be accessed.

 2:warning: Thread is in kernel mode, not all registers can be accessed.

pdbx(attached) print First_Line

 0:0

 1:0

 2:16

 3:32

pdbx(attached) print Last_Line

 0:0

 1:16

 2:32

 3:48

As you can see:

v Task 1 is processing lines 0 through 16

v Task 2 is processing lines 16 through 32

v Task 3 is processing lines 32 through 48

So, what happened to lines 48 and 49? Since each row is 50 pixels wide, and you

are missing 2 rows, that explains the 100 missing messages. The division of the

total number of lines by the number of tasks is not integral, so you lose part of the

result when it is converted back to an integer. Where each task is supposed to be

processing 16 and two-thirds lines, it is only handling 16.

Fix the problem

To fix this problem permanently, you can proceed in one of the following ways:

v Have the last task always go to the last row as you did in the debugger.

v Have the program refuse to run unless the number of tasks are evenly divisible

by the number of pixels (a rather harsh solution).

v Have tasks process the complete row when they have responsibility for half or

more of a row.

Since Task 1 was responsible for 16 and two thirds rows, it would process rows 0

through 16. Task 2 would process 17-33, and Task 3 would process 34-49. The way

to solve it is by creating blocks, with as many rows as there are servers. Each

server is responsible for one row in each block (the offset of the row in the block is

determined by the server’s task number). The fixed code is shown in the following

example. Note that this is only part of the program.

/**

*

* Ray trace program with bug corrected

*

* To compile:

* mpcc -g -o rtrace_good rtrace_good.c

*

*

* Description:

Chapter 3. Don’t panic 57

* This is part of a sample program that partitions N tasks into

* two groups, a collect node and N - 1 compute nodes.

* The responsibility of the collect node is to collect the data

* generated by the compute nodes. The compute nodes send the

* results of their work to the collect node for collection.

*

* The bug in the original code was due to the fact that each processing

* task determined the rows to cover by dividing the total number of

* rows by the number of processing tasks. If that division was not

* integral, the number of pixels processed was less than the number of

* pixels expected by the collection task and that task waited

* indefinitely for more input.

*

* The solution is to allocate the pixels among the processing tasks

* in such a manner as to ensure that all pixels are processed.

*

**/

compute_pixels(int taskid, int numtask)

{

 int offset;

 int row, col;

 int pixel_data[2];

 MPI_Status stat;

 printf("Compute #%d: checking in\n", taskid);

 First_Line = (taskid - 1);

 /* First n-1 rows are assigned */

 /* to processing tasks */

 offset = numtask - 1;

 /* Each task skips over rows */

 /* processed by other tasks */

 /* Go through entire pixel buffer, jumping ahead by numtask-1 each time */

for (row = First_Line; row < PIXEL_HEIGHT; row += offset)

 for (col = 0; col < PIXEL_WIDTH; col ++)

 {

 pixel_data[0] = row;

 pixel_data[1] = col;

 MPI_Send(pixel_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);

 }

 printf("Compute #%d: done sending. ", taskid);

 return;

}

This program is the same as the original one except for the loop in

compute_pixels. Now, each task starts at a row determined by its task number and

jumps to the next block on each iteration of the loop. The loop is terminated when

the task jumps past the last row (which will be at different points when the

number of rows is not evenly divisible by the number of servers).

What’s the hang up?

The symptom of the problem in the rtrace_bug program was a hang. Hangs can

occur for the same reasons they occur in serial programs (in other words, loops

without exit conditions). They may also occur because of message passing

deadlocks or because of some subtle differences between the parallel and

sequential environments.

Using the debugger to analyze sometimes indicates that the source of a hang is a

message that was never received, even though it is a valid one, and even though it

appears to have been sent. In these situations, the problem is probably due to lost

messages in the communication subsystem. This is especially true if the lost

58

message is intermittent or varies from run to run. This is either the program’s fault

or the environment’s fault. Before investigating the environment, you should

analyze the program’s safety with respect to MPI. A safe MPI program is one that

does not depend on a particular implementation of MPI. You should also examine

the error logs for evidence of repeated message transmissions (which usually

indicate a network failure).

Although MPI specifies many details about the interface and behavior of

communication calls, it also leaves many implementation details unspecified (and

it does not just omit them, it specifies that they are unspecified.) This means that

certain uses of MPI may work correctly in one implementation and fail in another,

particularly in the area of how messages are buffered. An application may even

work with one set of data and fail with another in the same implementation of

MPI. This is because, when the program works, it has stayed within the limits of

the implementation. When it fails, it has exceeded the limits. Because the limits are

unspecified by MPI, both implementations are valid. MPI safety is discussed further

in Chapter 6, “Mostly harmless,” on page 105.

Once you have verified that the application is MPI-safe, your only recourse is to

blame lost messages on the environment. If the communication path is IP, use the

standard network analysis tools to diagnose the problem. Look particularly at

mbuf usage. You can examine mbuf usage with the netstat command. Note that

the netstat command is not a distributed command, which means that it applies

only to the node on which you execute it.

$ netstat -m

If the mbuf line shows any failed allocations, you should increase the thewall

value of your network options. You can see your current setting with the no

command. Note that the no command is not a distributed command which means

that it applies only to the node on which you execute it.

$ no -a

The value presented for thewall is in KBytes. You can use the no command to

change this value. You will have to have root access to do this. For example,

$ no -o thewall=16384

sets thewall to 16 MBytes.

Message passing between lots of remote hosts can tax the underlying IP system.

Make sure that you look at all the remote nodes, not just the home node. Allow

lots of buffers. If the communication path is user space (US), you will need to get

your system support people involved to isolate the problem.

Other hang ups

One final cause for no output is a problem on the home node (POE is hung).

Normally, a hang is associated with the remote hosts waiting for each other, or for

a termination signal. POE running on the home node is alive and well, waiting

patiently for some action on the remote hosts. If you type <Ctrl-c> on the POE

console, you will be able to successfully interrupt and terminate the set of remote

hosts. See IBM Parallel Environment for AIX: Operation and Use, Volume 1 for

information on the poekill command.

There are situations where POE itself can hang. Usually these situations are

associated with large volumes of input or output. Remember that POE normally

gets standard output from each node. If each task writes a large amount of data to

Chapter 3. Don’t panic 59

standard output, it may chew up the IP buffers on the machine running POE,

causing it (and all the other processes on that machine) to block and hang. The

only way to know that this is the problem is by seeing that the rest of the home

node has hung. If you think that POE is hung on the home node, your only

solution may be to kill POE there. Press <Ctrl-c> several times, or use the

command kill -9. At present, there are only partial approaches to avoiding the

problem. You can allocate lots of mbufs on the home node, and do not make the

send and receive buffers too large.

Bad output

Bad output includes unexpected error messages. After all, who expects error

messages or bad results (results that are not correct).

Error messages

You can track down the causes of error messages and correct them in parallel

programs using techniques similar to those used for serial programs. One

difference, however, is that you need to identify which task is producing the

message, if it is not coming from all tasks. You can do this by setting the

MP_LABELIO environment variable to yes, or using the -labelio yes command

line parameter. Generally, the message will give you enough information to

identify the location of the problem.

You may also want to generate more error and warning messages by setting the

MP_EUIDEVELOP environment variable to yes when you first start running a

new parallel application. This will give you more information about the things that

the message passing library considers errors or unsafe practices.

Bad results

You can track down bad results and correct them in a parallel program in a

fashion similar to that used for serial programs. The process in the previous

debugging exercise can be more complicated because the processing and control

flow on one task may be affected by other tasks. In a serial program, you can

follow the exact sequence of instructions that were executed and observe the

values of all variables that affect the control flow. However, in a parallel program,

both the control flow and the data processing on a task may be affected by

messages sent from other tasks. For one thing, you may not have been watching

those other tasks. For another, the messages could have been sent a long time ago.

Therefore, it is very difficult to correlate a message that you receive with a

particular series of events.

Debugging and threads

So far, the discussion has been about debugging normal old serial or parallel

programs, but you may want to debug a threaded program (or be aware of the

threads used in the library). If this is the case, there are a few things you should

consider.

Before you do anything else, you first need to understand the environment in

which you are working. You have the potential to create a multi-threaded

application, using a multi-threaded library, that consists of multiple distributed

tasks. As a result, finding and diagnosing bugs in this environment may require a

different set of debugging techniques that you are not used to using. Here are

some things to remember.

When you attach to a running program, all the tasks you selected in your program

will be stopped at their current points of execution. Typically, you want to see the

60

current point of execution of your task. This stop point is the position of the

program counter, and may be in any one of the many threads that your program

may create OR any one of the threads that the MPI library creates. With

non-threaded programs, it was adequate to just travel up the program stack until

you reached your application code (assuming you compiled your program with

the -g option). But with threaded programs, you now need to traverse across other

threads to get to your thread(s) and then up the program stack to view the current

point of execution of your code.

The MPI library itself will create a set of threads to process message requests.

When you attach to a program that uses the MPI library, all of the threads

associated with the POE job are stopped, including the ones created and used by

MPI.

For more information on the threaded MPI library, see IBM Parallel Environment for

AIX: MPI Programming Guide.

Chapter 3. Don’t panic 61

62

Chapter 4. Is it efficient

So far, the discussions have been about getting PE working, creating message

passing parallel programs, debugging problems, and debugging parallel

applications. When you get a parallel program running so that it gives us the

correct answer, you are done. Not necessarily. In this area, parallel programs are

just like sequential programs; just because they give you the correct answer does

not mean they are doing it in the most efficient manner. For a program that is

relatively short running or is run infrequently, it may not matter how efficient it is.

For a program that consumes a significant portion of the system resources, you

need to make the best use of those resources by tuning its performance.

Tuning the performance of a parallel application

There are two approaches to tuning the performance of a parallel application.

v You can tune a sequential program and then parallelize it.

With this approach, the process is the same as for any sequential program, and

you use the same tools; prof, gprof, and tprof. In this case, the parallelization

process must take performance into account, and should avoid anything that

adversely affects it.

v You can parallelize a sequential program and then tune the result. With this

approach, the individual parallel tasks are optimized together, taking both

algorithm and parallel performance into account simultaneously.

Both of these techniques yield comparable results. The difference is in the tools

that are used in each of the approaches, and how they are used.

Note: It may not be possible to use some tools in a parallel environment in the

same way that they are used in a sequential environment. This may be

because the tool requires root authority and POE restricts the root ID from

running parallel jobs. Or, it may be because, when the tool is run in parallel,

each task attempts to write into the same files, thus corrupting the data.

tprof is an example of a tool that falls into both of these categories.

With either approach, you use the standard sequential tools in the traditional

manner. When you tune an application and then parallelize it, observe the

communication performance, how it affects the performance of each of the

individual tasks, and how the tasks affect each other. For example, does one task

spend a lot of time waiting for messages from another? If so, perhaps you need to

rebalance the workload. Or if a task starts waiting for a message long before it

arrives, perhaps it could do more algorithmic processing before waiting for the

message. When an application is made parallel and then tuned, you need a way to

collect the performance data in a manner that includes both communication and

algorithmic information. That way, if the performance of a task needs to be

improved, you can decide between tuning the algorithm or tuning the

communication.

This section will not deal with standard algorithmic tuning techniques. Rather, the

discussion will be about some of the ways PE can help you tune the parallel nature

of the application, regardless of the approach you take.

© Copyright IBM Corp. 1995, 2005 63

How much communication is enough?

A significant factor that affects the performance of a parallel application is the

balance between communication and workload. In some cases, the workload is

unevenly distributed or is duplicated across multiple tasks. Ideally, you would like

perfect balance among the tasks, but doing so may require additional

communication that actually makes the performance worse. Sometimes it is better

to have all the tasks do the same thing rather than have one do it and try to send

the results to the rest.

An example of where the decision is not so clear cut is the matrix inversion

program in Chapter 2, “Message passing,” on page 21. In that section you saw how

to start making the sequential program into a parallel one by distributing the

element calculation once the determinant was found. That start is actually a poor

one. Part of the program is shown below.

/***

*

* Matrix Inversion Program - First parallel implementation

*

* To compile:

* mpcc -g -o inverse_parallel inverse_parallel.c

*

***/

 {

/* There are only 2 unused rows/columns left */

/* Find the second unused row */

for(row2=row1+1;row2<size;row2++)

 {

 for(k=0;k<depth;k++)

 {

 if(row2==used_rows[k]) break;

 }

 if(k>=depth) /* this row is not used */

 break;

 }

assert(row2<size);

/* Find the first unused column */

for(col1=0;col1<size;col1++)

 {

 for(k=0;k<depth;k++)

 {

 if(col1==used_cols[k]) break;

 }

 if(k>=depth) /* this column is not used */

 break;

 }

assert(col1<size);

/* Find the second unused column */

for(col2=col1+1;col2<size;col2++)

 {

 for(k=0;k<depth;k++)

 {

 if(col2==used_cols[k]) break;

 }

 if(k>=depth) /* this column is not used */

 break;

 }

assert(col2<size);

/* Determinant = m11*m22-m12*m21 */

return matrix[row1][col1]*matrix[row2][col2]-matrix

64

[row1][col2]*matrix[row2][col1];

 }

 /* There are more than 2 rows/columns in the matrix being processed */

 /* Compute the determinant as the sum of the product of each element */

 /* in the first row and the determinant of the matrix with its row */

 /* and column removed */

 total = 0;

 used_rows[depth] = row1;

 for(col1=0;col1<size;col1++)

 {

 for(k=0;k<depth;k++)

 {

 if(col1==used_cols[k]) break;

 }

 if(k<depth) /* This column is used -- skip it*/

 continue;

 used_cols[depth] = col1;

 total += sign*matrix[row1][col1]*determinant(matrix,size,used_rows,

 used_cols,depth+1);

 sign=(sign==1)?-1:1;

 }

 return total;

 }

void print_matrix(FILE * fptr,float ** mat,int rows, int cols)

{

 int i,j;

 for(i=0;i<rows;i++)

 {

 for(j=0;j<cols;j++)

 {

 fprintf(fptr,"%10.4f ",mat[i][j]);

 }

 fprintf(fptr,"\n");

 }

}

float coefficient(float **matrix,int size, int row, int col)

{

 float coef;

 int * ur, *uc;

 ur = malloc(size*sizeof(matrix));

 uc = malloc(size*sizeof(matrix));

 ur[0]=row;

 uc[0]=col;

 coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1);

 return coef;

}

The suspicion is there is a problem, and that it is not a communication bottleneck,

but rather a computation problem. To illustrate this, compile the parallel matrix

inversion program, inverse_parallel.c, with the -pg flag. Next, run gprof on the

monitor files for tasks 0-7 (task 8 just collects the results so its performance is not

a concern).

 $ mpcc -g -pg -o inverse_parallel inverse_parallel.c

 $ inverse_parallel -procs 9

 $ gprof inverse_parallel gmon.out.[0-7] > gprof.out

You want to look in the output file (pick you favorite viewer, such as vi), and to

get to the part we are really interested in, search for cumulative. In this case gprof

Chapter 4. Is it efficient 65

*
*
*
*

*

produces a lot of output, so we will be skipping over a lot of it, and focusing on

just a portion of what you will really see. What you are interested in is:

You see that you spend a lot of time in determinant, first to compute the

determinant for the entire matrix and then in computing the determinant as part of

computing the element values. That seems like a good place to start optimizing.

This algorithm computes the determinant of a matrix by using the determinants of

the submatrices formed by eliminating the first row and a column from the matrix.

The result of this recursion is that, eventually, the algorithm computes the

determinants of all the 2 by 2 matrixes formed from the last two rows and each

combination of columns. This is not so bad, but the same 2 by 2 matrix formed in

this manner is computed n-2 times (once for each column except the 2 from which

it is formed) each time a determinant is computed and there are n*(n-1)/2 such

matrixes. If the 2 by 2 matrix determinants can be captured and reused, it would

provide some improvements.

Not only is this a good approach for optimizing a sequential program, but

parallelism capitalizes on this approach as well. Because the 2 by 2 determinants

are independent, they can be computed in parallel and distributed among the

tasks. Each task can take one of the columns and compute the determinants for all

the matrixes formed by that column and subsequent columns. Then the

determinants can be distributed among all the tasks and used to compute the

inverse elements.

The following example shows only the important parts of the program.

Here is the call to partial determinant:

/**

*

* Matrix Inversion Program - First optimized parallel version

*

* To compile:

* mpcc -g -o inverse_parallel_fast inverse_parallel_fast.c

*

**/

 /* Compute determinant of last two rows */

 pd = partial_determinant(matrix,rows);

 /* Everyone computes the determinant (to avoid message transmission) */

 determ=determinant(matrix,rows,used_rows,used_cols,0,pd);

And here is the partial determinant call:

/* Compute the determinants of all 2x2 matrixes created by combinations */

/* of columns of the bottom 2 rows */

/* partial_determinant[i] points to the first determinant of all the 2x2*/

/* matrixes formed by combinations with column i. There are n-i-1 */

% cumulative self self total

time seconds seconds calls ms/call ms/call name

 38.5 2.22 2.22 ._lapi_shm_dispatcher [1]

 26.3 3.74 1.52 72 21.11 21.11 .determinant [2]

 16.3 4.68 0.94 ._lapi_dispatcher [6]

 5.7 5.01 0.33 ._is_yield_queue_empty [7]

 5.0 5.30 0.29 .LAPI__Msgpoll [8]

 2.9 5.47 0.17 .__divu64 [9]

 0.9 5.52 0.05 .__mcount [10]

 0.7 5.56 0.04 ._lapi_shm_setup [11]

 0.5 5.59 0.03 .time_base_to_time [12]

 0.3 5.61 0.02 .__mcount [13]

 0.3 5.63 0.02 .read_real_time [15]

 0.2 5.64 0.01 216 0.05 0.05 .std::_LFS_ON::locale::id::id(unsigned long) [16]

 0.2 5.65 0.01 32 0.31 0.31 ._alloc_pthread [17]

 0.2 5.66 0.01 24 0.42 0.42 .pthread_exit [32]

66

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/* such matrixes (duplicates are eliminated) */

float **partial_determinant(float **matrix,int size)

{

 int col1, col2, row1=(size-2), row2=(size-1);

 int i,j,k;

 int terms=0;

 float **partial_det, /* pointers into the 2x2 determinants*/

 /* by column */

 buffer, / the 2x2 determinants */

 my_row; / the determinants computed by this */

 /* task */

 int * recv_counts, * recv_displacements; /* the size and offsets for the */

 /* determinants to be received from*/

 /* the other tasks */

 terms = (size-1)*(size)/2; /* number of combinations of columns */

 /* Allocate work areas for partial determinants and message passing, */

 partial_det = (float **) malloc((size-1)*sizeof(*partial_det));

 buffer = (float *) malloc(terms*sizeof(buffer));

 my_row = (float *) malloc((size-me-1)*sizeof(my_row));

 recv_counts = (int *) malloc(tasks*sizeof(*recv_counts));

 recv_displacements = (int *) malloc(tasks*sizeof(*recv_displacements));

 /* the tasks after the column size - 2 don’t have to do anything */

 for(i=tasks-1;i>size-2;i--)

 {

 recv_counts[i]=0;

 recv_displacements[i]=terms;

 }

 /* all the other tasks compute the determinants for combinations */

 /* with its column */

 terms--;

 for(i=size-2;i>=0;i--)

 {

 partial_det[i]=&(buffer[terms]);

 recv_displacements[i]=terms;

 recv_counts[i]=size-i-1;

 terms-=(size-i);

 }

 for(j=0;j<(size-me-1);j++)

 {

 my_row[j]=matrix[row1][me]*matrix[row2][me+j+1]

 -matrix[row1][me+j+1]*matrix[row2][me];

 }

 /* Now everybody sends their columns determinants to everybody else */

 /* Even the tasks that did not compute determinants will get the */

 /* results from everyone else (doesn’t sound fair, does it?) */

 MPI_Allgatherv(my_row,

 ((size-me-1)>0)?(size-me-1):0,

 MPI_REAL,

 buffernts,

 recv_displacements,

 MPI_REAL,MPI_COMM_WORLD);

 /* Free up the work area and return the array of pointers into the */

 /* determinants */

 free(my_row);

 return partial_det;

}

The question is whether the cost of the additional communication offsets the

advantage of computing the 2 by 2 determinants in parallel. In this example, it

may not be because the small message sizes (the largest is three times the size of a

float). As the matrix size increases, the cost of computing the 2 by 2 determinants

Chapter 4. Is it efficient 67

will increase with the square of n (the size of the matrix) but the cost of computing

the determinants in parallel will increase with n (each additional dimension

increases the work of each parallel task by only one additional 2 by 2 matrix) so,

eventually, the parallel benefit will offset the communication cost.

Tuning the performance of threaded programs

There are some things you need to consider when you want to get the maximum

performance out of the program.

v Two environment variables affect the overhead of an MPI call in the threaded

library:

– MP_SINGLE_THREAD=[no|yes]

– MP_EUIDEVELOP=[no|yes|deb|min]

A program that has only one MPI communication thread may set the environment

variable MP_SINGLE_THREAD=yes before calling MPI_INIT. This will avoid

some locking which is otherwise required to maintain consistent internal MPI state.

The program may have other threads that do computation or other work, as long

as they do not make MPI calls. Note that the implementation of MPI I/O and MPI

one-sided communication is thread-based, and that these facilities may not be used

when MP_SINGLE_THREAD is set to yes.

The MP_EUIDEVELOP environment variable lets you control how much checking

is done when you run the program. Eliminating checking altogether (setting

MP_EUIDEVELOP to min) provides performance (latency) benefits, but may cause

critical information to be unavailable if the executable hangs due to message

passing errors. For more information on MP_EUIDEVELOP and other POE

environment variables, see IBM Parallel Environment for AIX: Operation and Use,

Volume 1.

v Programs (threaded or non-threaded) that use the threaded MPI library can be

profiled by using the -pg flag on the compilation and linking step of the

program.

The profile results (gmon.out) will contain only a summary of the information

from all the threads per task together. Viewing the data using gprof or Xprofiler

is limited to showing only this summarized data on a per task basis, not per

thread.

Note: AIX supports thread profiling. There are changes to the format, content,

and naming of the profiling output files produced by prof and gprof. For

additional details, see IBM Parallel Environment for AIX: Operation and Use,

Volume 2.

For more information on profiling, see AIX 5L Version 5.2: Performance Tools Guide

and Reference.

Why is this so slow?

You have a serial program and you want it to execute faster. In this situation, it is

best not to jump into parallelizing the program right away. Instead, you start by

tuning the serial algorithm.

The program in this next example approximates the two-dimensional Laplace

equation and uses a 4-point stencil.

68

*
*
*
*

The algorithm is very straightforward. For each array element, you will assign that

element the average of the four elements that are adjacent to it (except the rows

and columns that represent the boundary conditions of the problem).

You may find it helpful to refer to In Search of Clusters by Gregory F. Pfister for

more information on this problem and how to parallelize it.

The 4-point stencil program is central to this entire section, so you may want to

spend some time to understand how it works.

The first step is to compile the serial program. However, before you do this, be

sure you have a copy of stencil.dat in the program directory, or run the init

program to generate one. Once you have done this, you can compile the serial

program with the xlf command:

$ xlf -O2 naive.f -o naive

Next, you need to run the program and collect some information to see how it

performs. You can use the UNIX time command to do this:

$ time naive

The following table shows the result:

 Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11min. 1.94sec. 1000x1000

The figures in the table above, as well as the others in this section, provide results

that were gathered on an IBM RS/6000 SP. the execution time may vary,

depending on the system you are using.

Looking at these results, there is room for improvement, especially if you scale the

problem to a much larger array. So, how can you improve the performance?

Profile it

The first step in tuning the program is to find the areas within the program that

execute most of the work. Locating these compute-intensive areas within the

program lets you focus on the areas that give you the most benefit from tuning.

The best way to find them is to profile the program.

Profile the program using Xprofiler

When you profile your program, you need to compile it with the -pg flag to

generate profiling data. Note that the -O2 flag is a capital letter O followed by the

number 2:

$ xlf -pg -O2 naive.f -o naive

The -pg flag compiles and links the executable so that when you run the program,

the performance data gets written to output.

Now that you have compiled your program with the -pg flag, run it again to see

what you get:

$ naive

This generates a file called gmon.out in the current working directory. you can

look at the contents of gmon.out with the Xprofiler profiling tool. This tool is part

Chapter 4. Is it efficient 69

of the AIX operating system. For more information about Xprofiler, see AIX 5L

Versionee5.2: Performance Tools Guide and Reference.

AIX supports thread profiling and, in doing so, has changed the format and name

of the profiling output files. For more information on the default profiling output

file names, see IBM Parallel Environment for AIX: Operation and Use, Volume 2.

To start Xprofiler, you will use the xprofiler command, like, this:

$ xprofiler naive gmon.out

The Xprofiler main window appears, and in this window you will see the function

call tree. The function call tree is a graphical representation of the functions within

the application and their inter-relationships. Each function is represented by a

green, solid-filled box called a function box. In simple terms, the larger this box, the

greater percentage of the total running time it consumes. So, the largest box

represents the function doing the most work. The calls between functions are

represented by blue arrows drawn between them call arcs. The arrowhead of the

call arc points to the function that is being called. The function boxes and call arcs

that belong to each library in the application appear within a fenced-in area called

a cluster box. For the purposes of this section, you will remove the cluster boxes

from the display.

PLACE

the mouse cursor over the Filter menu.

CLICK

the left mouse button

 The Filter menu appears.

SELECT

the Hide All Library Calls option.

 The library calls disappear from the function call tree.

PLACE

the mouse cursor over the Filter menu.

CLICK

the left mouse button.

 The Filter menu appears.

SELECT

the Uncluster Functions option.

 The functions expand to fill the screen.

 Locate the largest function box in the function call tree. You can get the name of

the function by looking a little more closely at it:

PLACE

the mouse cursor over the View menu.

 The View menu appears.

PLACE

the mouse cursor over the Overview option.

CLICK

the left mouse button.

 The Overview Window appears.

70

*
*
*

The Overview Window includes a light blue highlight area that lets you zoom in

and out of specific areas of the function call tree. To take a closer look at the

largest function of naive:

PLACE

the mouse cursor over the lower left corner of the blue highlight area. You

know that the cursor is over the corner when the cursor icon changes to a

right angle with an arrow pointing into it.

PRESS and HOLD

the left mouse button, and drag it diagonally upward and to the right

(toward the center of the sizing box) to shrink the box. When it is about

half its original size, release the mouse button.

 The corresponding area of the function call tree, in the main window,

appears magnified.

 If the largest function was not within the highlight area, it did not get magnified. If

this was the case, you will need to move the highlight area:

PLACE

the cursor over the highlighted area.

PRESS and HOLD

the left mouse button.

Figure 2. Overview window

Chapter 4. Is it efficient 71

DRAG

the highlight area, using the mouse, and place it over the largest function.

Release the mouse button.

 The largest function appears magnified in the function call tree.

 Just below the function is its name, so you can now see that most of the work is

being done in the compute_stencil() subroutine. This subroutine is where you

should focus your attention.

It is important to note that the programming style you choose can influence the

program’s performance just as much as the algorithm you use. In some cases, this

will be clear by looking at the data you collect when the program executes. In

other cases, you will know this from experience. There are many books that cover

the subject of code optimization, many of which are extremely complex.

The goal here is not to use every optimization trick but to focus on some basic

techniques that can produce the biggest performance boost for the time and effort

spent.

Profile the program using the Performance Collection Tool

The best way to begin is to look at your use of memory (including hardware data

cache) as well as what you are doing in the critical section of your code. To do

this, use the Performance Collection Tool to count the number of cache misses. The

fewer the number of cache misses, the better the performance of your code will be.

When you profile your program using PCT, you need to compile it with the

required -g flag to generate profiling data. You can also include the optional -o flag

to specify an output file:

$ xlf -g -o naive naive.f

Once you have generated the profiling data, you can use PCT to examine the data

in detail.

TYPE pct to start up the Performance Collection Tool graphical user interface.

From the main window, you are prompted to either load and start an

application or connect to one that is already running.

SELECT

the Load a new application option and click on OK.

 The Load Application window opens and you are prompted to select the

application you want to load.

72

CLICK

the Browse button next to the Executable Name field and select the naive

program and identify it as a serial application.

CLICK

the Load button to load the application.

 The Probe Data Selection window opens.

Figure 3. Load application window

Chapter 4. Is it efficient 73

SELECT

the type of data you want to collect. Select the Hardware and operating

system profiles option.

SPECIFY

the directory and base name for the output file and click OK. Note that the

base name you specify will have a .cdf suffix and a task number suffix

appended to it.

 The main window comes to the foreground and the source tree for the

naive executable is expanded.

Figure 4. Probe data selection window

74

SELECT

the naive task from the Process List.

SELECT

the naive_f function to expand it.

SELECT

the compute_stencil() subroutine from the naive.f file in the source tree.

SELECT

the hardware counter probe to collect cache information. You will want to

select the L1 option to display level one information. For example, the

option you select may look like:

2 L1_TLB

Figure 5. Source tree window

Chapter 4. Is it efficient 75

CLICK

the Add button. If you look at the compute_stencil() subroutine in the

source tree, you will see that a Probe ID has been added.

SELECT

Application → Start from the menu bar to run the program.

 When the application program has finished executing, the Target

Application Exited window appears. Click on the OK button to exit PCT.

Profile the program using the Profile Visualization Tool

Now that you have collected your data on cache misses, you want to be able to

view it and you can do that using the Profile Visualization Tool (PVT). PCT

generates a NetCDF file (Network Common Data File) which you can view using

PVT.

TYPE pvt to start up the Profile Visualization Tool.

SELECT

File → Load from the menu bar to select and load the CDF file. Locate the

CDF file that was generated from PCT from the list of files that appears

and select it.

CLICK

the Open button to load the file.

SELECT

View → Expand All to expand the tree to view the function

compute_stencil()

Figure 6. Process list, source tree, and probe selection window

76

CLICK

the Function Call Count option in the pulldown menu located in the top

right side of the Data View area. Select the Data cache miss option to view

the number of cache misses for the function compute_stencil. The amount

of L1 cache misses for each function are listed in the Data View window

area.

 Let us look at your code:

iter_count = 0

100 CONTINUE

local_err = 0.0

iter_count = iter_count + 1

DO i=1, m-2

DO j=1, n-2

old_value = stencil(i,j)

stencil(i,j) = (stencil(i-1, j) +

1 stencil(i+1, j) +

2 stencil(i ,j-1) +

3 stencil(i ,j+1)) / 4

local_err = MAX(local_err,ABS(old_value-stencil(i,j)))

END DO

END DO

IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, local_err

IF (close_enough.LT.local_err) GOTO 100

PRINT *, "convergence reached after ", iter_count, " iterations."

By looking at the two DO loops above, you can see that your compute subroutine

is traversing your array first across rows, and then down columns. This program

must have been written by some alien being from the planet C because Fortran

arrays are stored in column major form rather than row major form.

The first improvement you should make is to reorder your loops so that they

traverse down columns rather than across rows. This should provide a reasonable

Figure 7. Data view area

Chapter 4. Is it efficient 77

performance boost. Note that it is not always possible to change the order of loops;

it depends on the data referenced within the loop body. As long as the values used

in every loop iteration do not change when the loops are reordered, then it is safe

to change their order. In the example it was safe to reorder the loops, so here is

what the revised program looks like. Notice that only the order of the loops was

swapped.

DO j=1, n-2

DO i=1, m-2

old_value = stencil(i,j)

The second thing you should look at is the type of work that is being done in your

loop. If you look carefully, you will notice that the MAX and ABS subroutines are

called in each iteration of the loop, so you should make sure these subroutines are

compiled inline. Because these subroutines are intrinsic to your Fortran compiler,

this is already done for us.

$ xlf -O2 reordered.f -o reordered

In the last scenario, you ran the naive program. You should now run the same

scenario using the reordered program to more accurately compare the cache

misses. You should see that the number of cache misses for reordered has

decreased, thereby increasing the program’s efficiency.

If you run the previous scenario again using the reordered subroutine, you notice

that the cache misses are lower:

As before, you need to time your run, like this:

$ time reordered

Figure 8. Data view area (fewer cache misses showing)

78

And here are the results as compared to the original naive version:

 Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11min. 1.94sec. 1000x1000

reordered 1 (single processor) 5min. 35.38sec. 1000x1000

As you can see by the results, with just a small amount of analysis, you doubled

performance. And you have not even considered parallelism yet. However, this

still is not the performance that you want, especially for very large arrays (the

CPU time is good, but the elapsed time is not).

Parallelize it

Now feeling confident that your serial program is reasonably efficient, you should

look at ways to parallelize it. There are many ways to parallelize a program, but

the two most commonly used techniques are functional decomposition and data

decomposition. You will focus on data decomposition.

How do youI decompose your data? Start by dividing the work across the

processors. Each task will compute a section of an array, and each program will

solve 1/n of the problem when using n processors.

Here is the algorithm:

v First, divide up the array space across each processor (each task will solve a

subset of the problem independently).

v Second, loop:

– exchange shared array boundaries

– solve the problem on each sub array

– share a global max

until the global max is within the tolerance.

The section of code for your algorithm looks like this:

 iter_count = 0

 100 CONTINUE

 local_err = 0.0

 iter_count = iter_count + 1

 CALL exchange(stencil, m, n)

 DO j=1, n-2

 DO i=1, m-2

 old_value = stencil(i,j)

 stencil(i,j) = (stencil(i-1, j) +

 1 stencil(i+1, j) +

 2 stencil(i ,j-1) +

 3 stencil(i ,j+1)) / 4

 local_err = MAX(local_err,ABS(old_value-stencil(i,j)))

 END DO

 END DO

 CALL MPI_Allreduce(local_err, global_error, 1, MPI_Real,

 1 MPI_Max, MPI_Comm_world, ierror)

 IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_error

 IF (close_enough.LT.global_error) GOTO 100

 PRINT *, "convergence reached after", iter_count, "iterations."

Now, let us compile your parallelized version:

Chapter 4. Is it efficient 79

$ mpxlf -02 chaotic.f -o chaotic

Next, let us run it and look at the results:

$ export MP_PROCS=4

$ export MP_LABELIO=yes

$ time poe chaotic

 Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11min. 1.94sec. 1000x1000

reordered 1 (single processor) 5min. 35.38sec. 1000x1000

chaotic 4 (processors) 2min. 4.58sec. 500x500

The previous results show that you more than doubled performance by

parallelizing your program. Since you divided up the work between four

processors, you expected your program to execute four times faster. Why did it not

do so? This could be due to one of several factors that tend to influence overall

performance:

v Message passing overhead

v Load imbalance

v Convergence rates

Right now you need to ask something more important; does the parallel program

get the same answer?

The algorithm you chose gives us a correct answer, but as you will see, it does not

give us the same answer as your serial version. In practical applications, this may

be acceptable. In fact, it is very common for this to be acceptable in Gauss/Seidel

chaotic relaxation. But what if it is not acceptable? How can you tell? What

methods or tools can be used to help us diagnose the problem and find a solution?

Wrong answer!

You have now invested all this time and energy in parallelizing your program

using message passing, so why can you not get the same answer as the serial

version of the program? This is a problem that many people encounter when

parallelizing applications from serial code and can be the result of algorithmic

differences, program defects, or environment changes.

Both the serial and parallel versions of your program give correct answers based

on the problem description, but that does not mean they both cannot compute

different answers! Let us examine the problem more closely by running the

chaotic.f program under the pdbx debugger:

$ pdbx chaotic

By looking at the main program, you can see that both versions of your program

(reorder.f and chaotic.f) read in the same data file as input. And after you initialize

your parallel environment, you can see that the compute_stencil subroutine

performs exactly the same step to average stencil cells.

Run each version under the control of the debugger to view and compare the

results of your arrays.

With this test, you will be looking at the upper left quadrant of the entire array.

This allows us to compare the array subset on task 0 of the parallel version with

the same subset on the serial version.

80

Here is the serial (reordered) array and parallel (chaotic) array stencils:

 In chaotic.f, set a breakpoint within the call compute_stencil at line 168.

pdbx(all) stop at 168

all:[0] stop at "chaotic.f":168

After you do this, all tasks should have a breakpoint set at line 168.

Continue to execute the program up to the breakpoints. The program counter

should now be positioned at line 168.

pdbx(all) cont

 0: initializing the array.

 0: computing the stencil.

 0: 100 1.397277832

 1: 100 1.397277832

 ...

 ...

 1:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1)

 1: 168 PRINT *, "convergence reached after", iter_count, "iterations."

 2:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1)

 2: 168 PRINT *, "convergence reached after", iter_count, "iterations."

 3:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1)

 3: 168 PRINT *, "convergence reached after", iter_count, "iterations."

 0:[6] stopped in compute_stencil at line 168 in file "chaotic.f" ($t1)

 0: 168 PRINT *, "convergence reached after", iter_count, "iterations."

Next, you will need to examine the array stencil. Switch the context to task 0, then

print the 499th row of the array:

pdbx print stencil(499,1..10)

0:(499,1) = 8.00365734

0:(499,2) = 15.9983482

0:(499,3) = 23.9780369

0:(499,4) = 31.9367294

0:(499,5) = 39.8684845

0:(499,6) = 47.7674294

0:(499,7) = 55.6277695

0:(499,8) = 63.4438095

0:(499,9) = 71.2099609

0:(499,10) = 78.9207458 ...

Figure 9. Serial and parallel array stencils

Chapter 4. Is it efficient 81

Let us take a close look at the data of each.

Here is the reordered data:

(row, col)

 (499,1) (499,2) (499,3) (499,4) (499,5) (499,6)

 8.00365734 15.9983482 23.9780369 31.9367294 39.8684845 47.7674294

 (499,7) (499,8) (499,9) (499,10)

 55.6277695 63.4438095 71.2099609 78.9207458

Here is the chaotic data:

(row, col)

(499,1) (499,2) (499,3) (499,4) (499,5) (499,6)

 8.04555225 16.0820065 24.1032257 32.1031151 40.0756378 48.0148277

(499,7) (499,8) (499,9) (499,10)

 55.9147987 63.7697601 71.5740356 79.3220673

After looking at the data, you see that your answers are definitely similar, but

different. Why? You can blame it on a couple of things, but it is mostly due to the

chaotic nature of your algorithm. By looking at how the average is computed in

the serial version of your program, you can see that within each iteration of your

loop, two array cells are from the old iteration and two are from new ones.

 Another factor is that the north and west borders contain old values at the

beginning of each new sweep for all tasks except the northwest corner. The serial

version would use new values in each of those quadrants instead of old values. In

the parallel version of your program, this is true for the interior array cells but not

for your shared boundaries. For more information, you may find In Search of

Clusters by Gregory F. Pfister, Prentice Hall, 1998, helpful.

OK, now that you know why you get different answers, is there a fix?

Here is the fix!

So, you have a serial and parallel program that do not give you the same answers.

One way to fix this is to skew the processing of the global array. You skew the

processing of the array, computing the upper left process coordinate first, then each

successive diagonal to the lower right process coordinate. Each process sends the

east and south boundary to its neighboring task.

Figure 10. How the average is computed in a 4-point stencil

82

The only thing you need to modify in your new program is the message passing

sequence. Prior to the compute_stencil() subroutine, each task receives boundary

cells from its north and west neighbors. Each task then sends its east and south

boundary cells to its neighbor. This guarantees that the array cells are averaged in

the same order as in your serial version.

Here is your modified (skewed) parallel program. It is called skewed.f.

 iter_count = 0

 100 CONTINUE

 local_err = 0.0

 iter_count = iter_count + 1

 CALL exch_in(stencil, m, n)

 DO j=1, n-2

 DO i=1, m-2

 old_value = stencil(i,j)

 stencil(i,j) = (stencil(i-1, j) +

 1 stencil(i+1, j) +

 2 stencil(i ,j-1) +

 3 stencil(i ,j+1)) / 4

 local_err = MAX(local_err,ABS(old_value-stencil(i,j)))

 END DO

 END DO

 CALL exch_out(stencil, m, n)

 CALL MPI_Allreduce(local_err, global_error, 1, MPI_Real,

 1 MPI_Max, MPI_Comm_world, ierror)

 IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_error

 IF (close_enough.LT.global_error) GOTO 100

 PRINT *, "convergence reached after", iter_count, "iterations."

Now let us run this new version and look at the results:

$ time poe skewed

 Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11min. 1.94sec. 1000x1000

reordered 1 (single processor) 5min. 35.38sec. 1000x1000

chaotic 4 (processors) 2min. 4.58sec. 500x500

skewed 4 (processors) 4min. 41.87sec. 500x500

Figure 11. Sequence of array calculation

Chapter 4. Is it efficient 83

If you do the same array comparison again, you can see that you do indeed get the

same results. But, of course, nothing is that easy. By correcting the differences in

answers, you slowed down execution significantly, so the hidden cost here is time.

Now what do you do?

It is still not fast enough!

You have obtained the right answers now, but you still want your program to

move faster. Look at your new code to see what other techniques you can use to

speed up execution. You will look at:

v Convergence rates (total number of iterations)

v Load balance

v Synchronization/communication time.

One way to further analyze your program is to use the Argonne National

Laboratory’s Jumpshot tool. Using the PE Benchmarker traceTOslog2 utility, you

can generate a SLOG2 file which you can then load into Jumpshot and use to

determine how you can get your program to run faster. You are going to use

Jumpshot to determine the effectiveness of the program’s message passing

characteristics.

The traceTOslog2 command, which is used to invoke the PE traceTOslog2 utility, is

provided as part of the slog2 package available from Argonne National Laboratory.

Step 1 - Determine which SLOG file to generate

PE has the ability to produce two types of SLOG files (called SLOG and SLOG2),

which have incompatible formats. IBM recommends you produce SLOG2 files, and

the following examples illustrate this. The SLOG and SLOG2 files must be used

with the correct utilities, according to these rules:

v SLOG files are created by the PE slogmerge utility, and are passed as input to

the Jumpshot-3 utility.

v SLOG2 files are created by the PE traceTOslog2 utility and passed to the

Jumpshot-4 utility.

Both Jumpshot-3 and Jumpshot-4 are public domain programs developed by

Argonne National Laboratory. If you are not sure which one is installed on the

system, ask the administrator.

For information about SLOG2 files, see http://www-
unix.mcs.anl.gov/perfvis/software/log_format/index.htm#SLOG-2. For information

about Jumpshot-4, see http://www-
unix.mcs.anl.gov/perfvis/software/viewers/index.htm#Jumpshot-4. For information

about performance visualization from Argonne National Laboratory, see

http://www.mcs.anl.gov/perfvis.

Step 2 - Link program with the library that created MPI trace files

Before analyzing the program using Jumpshot, you must link the program with the

library that creates the MPI trace files used in the analysis. You do this by setting

the MP_UTE environment variable to YES before compiling the program.

Assuming you are using ksh, issue the command export MP_UTE=YES before

compiling the program. Once you set the environment variable, it remains set for

the duration of the login session.

Step 3 - Gather performance data to AIX trace file

TYPE pct to start up the Performance Collection Tool graphical user interface.

From the Welcome window, you are prompted to either load and start an

application or to connect to one that is already running.

84

SELECT

the Load a new application option and click on OK.

 The Load Application window opens and you are prompted to select the

application you want to load.

CLICK

the Browse button next to the Executable Name field and select the

chaotic program and identify it as an SPMD application.

TYPE the POE arguments in the POE Arguments field. For example, the

following argument specifies that you are running a 4–way parallel job:

-procs 4

CLICK

the Load button to load the application.

 The Probe Data Selection window opens.

SELECT

the type of data you want to collect. You want to select the MPI and user

event traces option.

SPECIFY

the directory and base name for the output file. In this scenario, you are

using the base name mytrace. Then click on OK.

 The main window appears again with the source tree for the skewed

executable expanded.

SELECT

Process → Select All Tasks

SELECT

the chaotic.f () subroutine from the source tree.

SELECT

the All MPI events to collect trace information from the Probe Selection

area on the side of the main window.

CLICK

the Add button.

SELECT

Application → Start from the menu bar to run the program.

 When the application program has finished executing, the Target

Application Exited window appears. Click on the OK button to exit PCT.

Step 4 - Convert AIX trace file to UTE interval files

You have successfully collected data on message passing that now exists in a

standard AIX trace file. To view and analyze the data using Jumpshot, you first

need to convert the AIX trace file, using the uteconvert utility, into UTE (Unified

Trace Environment) interval files.

TYPE

uteconvert mytrace

where mytrace is the name of the trace file located in the current directory.

mytrace is the prefix of the filename of the trace file. For example, if you

had three tasks, the trace files would be named mytrace0, mytrace1, and

mytrace2. This trace file has the same name as the file you specified for the

Chapter 4. Is it efficient 85

output earlier in your example. This command will convert the trace file

from AIX trace format into the UTE interval file.

 Using the -o flag, you can optionally specify the name of the output UTE interval

file. For example, to specify that the output file should be named outputfile,

TYPE

uteconvert -o outputfile mytrace

To convert a set of AIX trace files into a set of UTE interval files, specify the

number of files using the –n option, and supply the common ″base name″ prefix

shared by all of the files. For example, to convert five trace files with the prefix

mytraces into UTE interval files, copy the trace files into a common directory,

TYPE

uteconvert -n 5 mytraces

Step 5 - Convert UTE interval files to SLOG2 files

First, review the differences between SLOG and SLOG2 files, to ensure that you are

using the correct PE conversion utility. This is explained in “Step 1 - Determine

which SLOG file to generate” on page 84.

Convert the UTE interval files into SLOG2 files using the traceTOslog2 utility.

TYPE

traceTOslog2 mytrace.ute

where mytrace is the name of the UTE interval file.

The default output file name is the name of the input file, with .slog2 appended. If

more than one input file is processed, an output file name must be specified.

Use the -o option on the traceTOslog2 command to specify an output file name.

For example:

TYPE

traceTOslog2 -o mergedtrc.slog mytrace.ute

If you have multiple interval files, use –n to specify the number of files.

Note: If the traces were generated on a system without access to a switch, the -g

flag is required when processing more than one input file.

Step 6 - Run Jumpshot

First, review the differences between SLOG and SLOG2 files, to ensure that you are

using the correct PE conversion utility. This is explained in “Step 1 - Determine

which SLOG file to generate” on page 84. Jumpshot is a public domain tool

developed by Argonne National Laboratory and is not part of the PE Benchmarker

Toolset.

TYPE jumpshot to display the Jumpshot graphical user interface. (You have

already downloaded the Jumpshot program available from Argonne

National Laboratory).

SELECT

File → Select from the menu bar to load the SLOG2 file. Then select the

SLOG2 file using the file selector dialog.

86

The window that appears displays the events of the program across a time

line. To see detailed load balancing information, continue on with the next

step.

CLICK

the Display button.

 Figure 12 illustrates the MPI functions occurring during the execution of the

skewed program. Each box shown represents an MPI function and the arrows and

lines represent communications calls between or within the functions.

Figure 13 on page 88 shows the colors used to draw each interval. It also allows

classes of intervals to be selected for display or searching, and to modify the colors

of the intervals while viewing.

Figure 12. Jumpshot - skewed program

Chapter 4. Is it efficient 87

Step 7 - Analyze results, make changes, verify improvements

By looking at the message passing, you can see some peculiar characteristics of

your program. For instance, you notice that many of the processors waste time by

waiting for others to complete before they continue. These kinds of characteristics

lead us to the conclusion that you have introduced very poor load balancing across

tasks.

One way to alleviate this problem is to allow some processors to work ahead if

they can deduce that another iteration will be necessary to find a solution. If a

task’s individual max is large enough on one iteration to force the global max to

reiterate across the entire array, that task may continue on the next iteration when

its west and north boundaries are received.

To illustrate this, use the pipelined.f program.

 iter_count = 0

 local_err = close_enough + 1

 100 CONTINUE

 iter_count = iter_count + 1

Figure 13. Jumpshot legend - skewed program

88

CALL exch_in(stencil, m, n, local_err, global_err,

 1 iter_count, close_enough)

 IF (MAX(global_err,local_err).GE.close_enough) THEN

 local_err = 0.0

 DO j=1, n-2

 DO i=1, m-2

 old_val = stencil(i,j)

 stencil(i,j) = (stencil(i-1, j) +

 1 stencil(i+1, j) +

 2 stencil(i ,j-1) +

 3 stencil(i ,j+1)) / 4

 local_err = MAX(local_err, ABS(old_val-stencil(i,j)))

 END DO

 END DO

 END IF

 CALL exch_out(stencil, m, n, global_err, local_err)

 IF(MOD(iter_count,100).EQ.0)PRINT *, iter_count, global_err

 IF (MAX(global_err,local_err).GE.close_enough) GOTO 100

 PRINT *, "convergence reached after", iter_count, "iterations."

As you can see on the following line:

IF(MAX(global_err,local_err).GE.close_enough) THEN

the program checks to see if the value of local_err is enough to allow this task to

continue on the next iteration. These improvements to your program should result

in improvement in your load balance as well.

Now, let us run your new code to see how this new version fares.

$ time poe pipelined

 Program Name Tasks Wallclock Time Array Size per Task

naive 1 (single processor) 11min. 1.94sec. 1000x1000

reordered 1 (single processor) 5min. 35.38sec. 1000x1000

chaotic 4 (processors) 2min. 4.58sec. 500x500

skewed 4 (processors) 4min. 41.87sec. 500x500

pipelined 4 (processors) 2min. 7.42sec. 500x500

You were able to significantly improve the performance of your program and, at

the same time, get a consistent, correct answer.

You can further analyze the pipelined program’s load balance using Jumpshot.

Figure 14 on page 90 illustrates that the load balance has improved in the

pipelined program. This picture shows the communication patterns, but the

interval between communications is so large that no detail can be seen in any

sequence.

Chapter 4. Is it efficient 89

Figure 15 on page 91 is a closer look at a single communication sequence to see the

detail of that sequence.

Figure 14. Jumpshot - pipelined program showing improved load balance

90

Figure 16 on page 92 shows the colors for the intervals in the following figures. It

also allows classes of intervals to be selected for display or searching, and to

modify the colors of the intervals while viewing.

Figure 15. Jumpshot - pipielined program communication sequence

Chapter 4. Is it efficient 91

Figure 16. Jumpshot legend – pipelined program

92

Tuning summary

Tuning the performance of a parallel application is no easier than tuning the

performance of a sequential application. If anything, the parallel nature introduces

another factor into the tuning equation. The approach PE has taken toward

performance tuning is to provide tools which give you the information necessary

to perform the tuning.

Chapter 4. Is it efficient 93

94

Chapter 5. MPL to MPI

In earlier versions of PE, a messages passing library called MPL was supported.

This is not supported in PE Version 4. MPL programs must be converted to MPI

programs.

This section provides information that will help you translate a MPL parallel

program into a program that conforms to the MPI standard. In particular, it tells

you which MPI calls to substitute for the ones you use right now in MPL. In this

section you will find informatrion to help you determine how to perform the

equivalent or comparable function in MPI that you did with MPL.

The syntax in this section is in C unless noted otherwise. For the corresponding

Fortran MPI syntax, see IBM Parallel Environment for AIX: MPI Subroutine Reference.

Other documents that may be helpful are A Message-Passing Interface Standard,

Version 1.1 and MPI: A Message-Passing Interface Standard, Version 2.0, both of which

are available from the University of Tennessee.

Point-to-point communication

SEND (Non-Blocking)

 MPL/MPI Description

MPL mpc_send(&buf,msglen,dest,tag,&msgid)

MPI MPI_Isend(&buf,count,datatype,dest,tag,comm,&request)

RECEIVE (Non-Blocking)

 MPL/MPI Description

MPL mpc_recv(&buf,msglen,&source,&tag,&msgid)

MPI MPI_Irecv(&buf,count,datatype,source,tag,comm,&request)

SEND (Blocking)

 MPL/MPI Description

MPL mpc_bsend(&buf,msglen,dest,tag)

MPI MPI_Send(&buf,count,datatype,dest,tag,comm)

Do not confuse MPI_Bsend with MPI_Send. MPI_Bsend is a BUFFERED send, not a BLOCKING send.

RECEIVE (Blocking)

 MPL/MPI Description

MPL mpc_brecv(&buf,msglen,&source,&tag,&nbytes)

MPI MPI_Recv(&buf,count,datatype,source,tag,comm,&status)

© Copyright IBM Corp. 1995, 2005 95

SEND/RECEIVE (Blocking)

 MPI/MPL Description

MPL mpc_bsendrecv(&sendbuf,sendlen,dest,tag,&recvbuf,recvlen,&source,&nbytes)

MPI MPI_Sendrecv(&sendbuf,sendcount,sendtype,dest,tag,&recvbuf,recvcount,recvtype,source,tag,comm,&status)

STATUS

 MPI/MPL Description

MPL nbytes = mpc_status(msgid)

MPI MPI_Get_count(&status,MPI_BYTE,&nbytes)

WAIT

 MPI/MPL Description

MPL mpc_wait(&msgid,&nbytes)

MPI For a specific msgid:

v MPI_Wait(&request,&status)

For msgid = DONTCARE:

v MPI_Waitany(count,requests,&index,&status)

v The requests array must be maintained by the user.

For msgid = ALLMSG:

v MPI_Waitall(count,requests,statuses)

v The requests array must be maintained by the user.

TASK_SET

 MPI/MPL Description

MPL mpc_task_set(nbuf,stype)

MPI Truncation Mode:

v No MPI equivalent. Can be simulated by setting the error handler to ″return″:

MPI_Errhandler_set(comm,MPI_ERRORS_RETURN);

and testing the return code for receives, waits for receives, etc.:

MPI_Error_class(rc,&class);if(class != MPI_ERR_TRUNCATE){ (handle error) }

Develop/Run Mode:

v Enable DEVELOP mode by setting MP_EUIDEVELOP environment variable to YES.

Buffer Mode:

v Use MPI_Buffer_attach.

TASK_QUERY

 MPI/MPL Description

MPL mpc_task_query(nbuf,nelem,qtype)

96

MPI/MPL Description

MPI Truncation Mode:

v No MPI equivalent

Message Type Bounds:

lower bound = 0

 upper bound: int *valptr;

 MPI_Attr_get(MPI_COMM_WORLD,MPI_TAG_UB, &valptr,&flag) tag_up_bound = *valptr;

Wildcards:

ALLGRP (0)

MPI_COMM_WORLD

DONTCARE (-1)

MPI_ANY_SOURCE, MPI_ANY_TAG

ALLMSG (-2)

No MPI equivalent - see mpc_wait

NULLTASK (-3)

MPI_PROC_NULL

ENVIRON

 MPI/MPL Description

MPL mpc_environ(&numtask,&taskid)

MPI MPI_Comm_size(MPI_COMM_WORLD,&numtask)MPI_Comm_rank(MPI_COMM_WORLD,&taskid)

STOPALL

 MPI/MPL Description

MPL mpc_stopall(errcode)

MPI MPI_Abort(comm,errcode)

PACK

 MPI/MPL Description

MPL mpc_pack(&inbuf,&outbuf,blklen,offset,blknum)

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)position = 0;outcount = (blknum-1)*offset + blklen;

MPI_Pack(&inbuf,blknum,datatype,&outbuf,outcount,&position,comm)

UNPACK

 MPI/MPL Description

MPL mpc_unpack(&inbuf,&outbuf,blklen,offset,blknum)

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)position = 0;

insize = (blknum-1)*offset + blklen;MPI_Unpack(&inbuf,insize,&position,&outbuf,blknum,datatype,comm)

Chapter 5. MPL to MPI 97

VSEND (Blocking)

 MPI/MPL Description

MPL mpc_bvsend(&buf,blklen,offset,blknum,dest,tag)

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)MPI_Send(&buf,blknum,datatype,dest,tag,comm)

VRECV (Blocking)

 MPI/MPL Description

MPL mpc_bvrecv(&buf,blklen,offset,blknum,&source,&tag,&nbytes)

MPI MPI_Type_hvector(1,blklen,offset,MPI_BYTE,&datatype)MPI_Recv

(&buf,blknum,datatype,source,tag,comm,&status)

PROBE

 MPI/MPL Description

MPL mpc_probe(&source,&tag,&nbytes)

MPI MPI_Iprobe(source,tag,comm,&flag,&status)

MPI also provides a blocking version of probe: MPI_Probe, which can be substituted for an MPL probe in an

infinite loop.

Collective communications

BROADCAST

 MPI/MPL Description

MPL mpc_bcast(&buf,msglen,root,gid)

MPI MPI_Bcast(&buf,count,datatype,root,comm)

COMBINE

 MPI/MPL Description

MPL mpc_combine(&sendbuf,&recvbuf,msglen,func,gid)

MPI MPI_Allreduce(&sendbuf,&recvbuf,count,datatype,op,comm)

See “Reduction functions” on page 101.

CONCAT

 MPI/MPL Description

MPL mpc_concat(&sendbuf,&recvbuf,blklen,gid)

MPI MPI_Allgather(&sendbuf,sendcount,sendtype,&recvbuf,recvcount,recvtype,comm)

98

GATHER

 MPI/MPL Description

MPL mpc_gather(&sendbuf,&recvbuf,blklen,root,gid)

MPI MPI_Gather(&sendbuf,count,datatype,&recvbuf,count,datatype,root,comm)

INDEX

 MPI/MPL Description

MPL mpc_index(&sendbuf,&recvbuf,blklen,gid)

MPI MPI_Alltoall(&sendbuf,count,datatype,&recvbuf,count,datatype,comm)

PREFIX

 MPI/MPL Description

MPL mpc_prefix(&sendbuf,&recvbuf,msglen,func,gid)

MPI MPI_Scan(&sendbuf,&recvbuf,count,datatype,op,comm)

See “Reduction functions” on page 101.

REDUCE

 MPI/MPL Description

MPL mpc_reduce(&sendbuf,&recvbuf,msglen,root,func,gid)

MPI MPI_Reduce(&sendbuf,&recvbuf,count,datatype,op,root,comm)

See “Reduction functions” on page 101.

SCATTER

 MPI/MPL Description

MPL mpc_scatter(&sendbuf,&recvbuf,blklen,root,gid)

MPI MPI_Scatter(&sendbuf,count,datatype,&recvbuf,count,datatype,root,comm)

SHIFT

 MPI/MPL Description

MPL mpc_shift(&sendbuf,&recvbuf,msglen,step,flag,gid)

MPI MPI_Cart_shift(comm,direction,step,&source,&dest)MPI_Sendrecv(&sendbuf,count,datatype,dest,tag,

&recvbuf,count,datatype,source,tag,comm,&status);

comm must be a communicator with a Cartesian topology. See MPI_CART_CREATE in IBM Parallel Environment for AIX: MPI

Subroutine Reference

SYNC

 MPI/MPL Description

MPL mpc_sync(gid)

Chapter 5. MPL to MPI 99

MPI/MPL Description

MPI MPI_Barrier(comm)

GETLABEL

 MPI/MPL Description

MPL mpc_getlabel(&label,gid)

MPI No MPI equivalent. Can be simulated by creating a label attribute key with MPI_Keyval_create,

attaching a label attribute to a communicator with MPI_Attr_put, and retrieving it with MPI_Attr_get.

GETMEMBERS

 MPI/MPL Description

MPL mpc_getmembers(&glist,gid)

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)MPI_Group_size(group_world,&gsize)for(i=0;i<gsize;i++)

 ranks]i[= i;MPI_Group_translate_ranks(group,gsize,&ranks,group_world,&glist)

GETRANK

 MPI/MPL Description

MPL mpc_getrank(&rank,taskid,gid)

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)MPI_Group_translate_ranks(group_world,1,

&taskid,group2, &rank)

GETSIZE

 MPI/MPL Description

MPL mpc_getsize(&gsize,gid)

MPI MPI_Group_size(group,&gsize)

GETTASKID

 MPI/MPL Description

MPL mpc_gettaskid(rank,&taskid,gid)

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)

MPI_Group_translate_ranks(group1,1,&rank,group_world,&taskid)

GROUP

 MPI/MPL Description

MPL mpc_group(gsize,&glist,label,&gid)

MPI MPI_Comm_group(MPI_COMM_WORLD,&group_world)MPI_Group_incl(group_world,gsize,&glist,&gid)

100

PARTITION

 MPI/MPL Description

MPL mpc_partition(parent_gid,key,label,&gid)

MPI MPI_Comm_split(comm,label,key,&newcomm)

Reduction functions

 MPL Function MPI Equivalent

i_vadd Operator: MPI_SUM

 Datatype: MPI_INT, MPI_INTEGER

s_vadd Operator: MPI_SUM

 Datatype: MPI_FLOAT, MPI_REAL

d_vadd Operator: MPI_SUM

 Datatype: MPI_DOUBLE, MPI_DOUBLE_PRECISION

i_vmul Operator: MPI_PROD

 Datatype: MPI_INT, MPI_INTEGER

s_vmul Operator: MPI_PROD

 Datatype: MPI_FLOAT, MPI_REAL

d_vmul Operator: MPI_PROD

 Datatype: MPI_DOUBLE, MPI_DOUBLE_PRECISION

i_vmax Operator: MPI_MAX

 Datatype: MPI_INT, MPI_INTEGER

s_vmax Operator: MPI_MAX

 Datatype: MPI_FLOAT, MPI_REAL

d_vmax Operator: MPI_MAX

 Datatype: MPI_DOUBLE, MPI_DOUBLE_PRECISION

i_vmin Operator: MPI_MIN

 Datatype: MPI_INT, MPI_INTEGER

s_vmin Operator: MPI_MIN

 Datatype: MPI_FLOAT, MPI_REAL

d_vmin Operator: MPI_MIN

 Datatype: MPI_DOUBLE, MPI_DOUBLE_PRECISION

b_vand Operator: MPI_BAND

 Datatype: MPI_BYTE

b_vor Operator: MPI_BOR

 Datatype: MPI_BYTE

b_vxor Operator: MPI_BXOR

 Datatype: MPI_BYTE

l_vand Operator: MPI_LAND

 Datatype: MPI_BYTE

l_vor Operator: MPI_LOR

 Datatype: MPI_BYTE

The count parameter can be computed as follows:

MPI_Type_size(datatype,&size)

count = msglen/size;

Chapter 5. MPL to MPI 101

User-defined reduction functions

 MPL/MPI Description

MPL void func(&inbuf1,&inbuf2,&outbuf,&len)

func is passed as an argument to the Collective Communication Library (CCL) function.

MPI void func(&inbuf,&inoutbuf,&count,&datatype)MPI_Op_create(func,commute,&op)

op is passed as an argument to the CCL function.

Global variables and constants

Last error code

 MPL/MPI Description

MPL mperrno

MPI No equivalent; error codes are returned by each function.

Wildcards

 MPL Wildcard MPI Equivalent

ALLGRP (0) MPI_COMM_WORLD

DONTCARE (-1) MPI_ANY_SOURCE, MPI_ANY_TAG

ALLMSG (-2) no MPI equivalent - see mpc_wait

NULLTASK (-3) MPI_PROC_NULL

Other considerations for converting from MPL to MPI

This section provides some specific things to keep in mind when translating a

program from MPL to MPI.

Task identifiers

In MPL, task identifiers such as src and dest are absolute task IDs. In MPI, they are

ranks within a communicator group. For the communicator

MPI_COMM_WORLD, they are the same.

Message length

v In MPL, message lengths are expressed in bytes. In MPI, they are expressed as

count,datatype. Thus, a message consisting of ten 4-byte integers would be coded

as 40 in MPL, and as 10,MPI_INT or 10,MPI_INTEGER in MPI.

v For send and receive operations, MPL returned the message length in the nbytes

parameter. MPI returns this information in status. It can be accessed as follows:

MPI_Get_count(&status,MPI_BYTE,&nbytes)

Creating MPI objects

MPI Objects should be created as follows:

102

Object C Fortran

Communicators MPI_Comm commid integer commid

Groups MPI_Group groupid integer groupid

Requests MPI_Request requestid integer reqestid

Reduction Ops MPI_Op opid integer opid

Error Handlers MPI_Errhandler handlerid integer handlerid

Data Types MPI_Datatype typeid integer typeid

Attribute Keys int keyid integer keyid

Status MPI_Status status integer status(MPI_STATUS_SIZE)

Using wildcard receives

For wildcard receives, MPL asynchronously updated the actual source and message

type variables passed by reference to the receive call. In MPI, the actual values are

returned in the status parameter and may be retrieved as follows:

For programs written in C:

source = status.MPI_SOURCE;

tag = status.MPI_TAG;

For programs written in Fortran:

source = status(MPI_SOURCE)

tag = status(MPI_TAG)

Also note the following for C applications. In MPL, the source and type parameters

were passed by reference, whereas in MPI, they are passed by value.

Reduction functions

In MPI, you can define user-defined reduction functions as commutative or

non-commutative (see MPI_Op_create), whereas in MPL, all reduction functions

are assumed to be commutative. Reduction functions must be associative in both

MPL and MPI.

Error handling

In MPL, C functions provided return codes that you could check to determine if an

error occurred, and Fortran functions printed error messages and terminated the

job. In MPI, the default for both C and Fortran is to print a message and terminate

the job. If you want return codes, you must set the error handler as follows (per

communicator):

 MPI_Errhandler_set(comm,MPI_ERRORS_RETURN);

In Fortran, error codes are returned in the last parameter of each function, ierror.

Also, IBM’s MPI implementation provides a third predefined error handler,

MPE_ERRORS_WARN, which prints a message and returns an error code without

terminating the job. In DEVELOP mode, messages are always printed.

Before and after using MPI functions

All application programs that use MPI functions must call MPI_Init before calling

any other MPI function (except MPI_Initialized). All applications that use MPI

functions should call MPI_Finalize as the last MPI call they make. Failure to do

this may make the application non-portable.

Chapter 5. MPL to MPI 103

If an application makes no MPI calls, then it is not necessary for it to call MPI_Init

or MPI_Finalize.

Using message passing handlers

Standard MPI has no facility directly matching the MPL Receive and Call function

(mpc_rcvncall or MP_RCVNCALL). Depending on what the MPL Receive and

Call function is used for, it may be possible to use MPI Generalized Requests, but

there are too many variations possible in MPL Receive and Call usage for this book

to provide a simple translation guide.

104

Chapter 6. Mostly harmless

Going from serial to parallel programming means that you are on a different scale

now. This section alerts you to some of the things you need to pay attention to as

you create your parallel programs. In particular, the section provides information

on creating a safe (mostly harmless) MPI program. MPI: A Message-Passing Interface

Standard, Version 1.1 which is available from the University of Tennessee

(http://www.mpi-forum.org/) provides additional. information. You may want to

refer to that document.

What is a safe program?

Many people consider a program to be safe if message buffering is not required for

the program to complete. In a program like this, you should be able to replace all

standard sends with synchronous sends, and the program will still run correctly.

This type of programming style is conservative; it provides good portability

because program completion does not depend on the amount of available buffer

space.

With PE, setting the MP_EAGER_LIMIT environment variable to 0 is equivalent to

making all sends synchronous, including those used in collective communication.A

good test of your program’s safety is to set the MP_EAGER_LIMIT to 0.

Some programmers prefer more flexibility and use an unsafe style that relies on

buffering. In such cases, the use of standard send operations provides a

compromise between performance and robustness. MPI attempts to supply

sufficient buffering so that these programs will not result in deadlock. You can use

the buffered send mode for programs that require more buffering, or in situations

where you want more control. Since buffer overflow conditions are easier to

diagnose than deadlock, you can also use this mode for debugging purposes.

You can use non-blocking message passing operations to avoid the need for

buffering outgoing messages. This prevents deadlock situations due to a lack of

buffer space, and improves performance by allowing computation and

communication to overlap. It also avoids the overhead associated with allocating

buffers and copying messages into buffers.

Safety and threaded programs

Sometimes message passing programs can hang or deadlock. This can occur when

one task waits for a message that is never sent or when each task is waiting for the

other task to send or receive a message. Within a task, a similar situation can occur

when one thread is waiting for another thread to release a lock on a shared

resource, such as a piece of memory. If thread A, which holds the lock, cannot run

to the point at which it is ready to release it, the waiting thread B will never run.

This may occur because thread B holds some other lock that thread A needs.

Thread A cannot proceed until thread B does, and thread B cannot proceed until

thread A does.

When programs are both multi-thread and multi-task, there is risk of deadly embrace

involving both mutex and communication blocks. Say threads A and B are on task

0, and thread A holds a lock while waiting for a message from task 1. Thread B

will send a message to task 1 only after it gets the lock that thread A holds. If task

© Copyright IBM Corp. 1995, 2005 105

1 will send the message that thread A is waiting for only after getting the one that

thread B cannot send, the job is in a 3-way deadly embrace, involving two threads

at task 0 and one thread at task 1.

A problem that is more subtle occurs when two threads simultaneously access a

shared resource without a lock protocol. The result may be incorrect without any

obvious sign. For example, the following function is not thread-safe, because the

thread may be preempted after the variable c is updated, but before it is stored.

int c; /* external, used by two threads */

void update_it()

 {

 c++; /* this is not thread safe */

 {

You probably should avoid writing threaded message passing programs until you

are familiar with writing and debugging threaded, single-task programs.

Using threaded programs with non-thread-safe libraries

A threaded MPI program must meet the same criteria as any other threaded

program; it must avoid using non-thread-safe functions in more than one thread

(for example, strtok). In addition, it must use only thread-safe libraries, if library

functions are called on more than one thread. In the AIX operating system, all of

the libraries may not be thread-safe, so you should carefully examine how they are

used in your program.

Message ordering

With MPI, messages are non-overtaking. This means that the order of sends must

match the order of receives. Assume a sender sends two messages (Message 1 and

Message 2) in succession, to the same destination, and both match the same

receive. The receive operation will receive Message 1 before Message 2. Likewise, if

a receiver posts two receives (Receive 1 and Receive 2), in succession, and both are

looking for the same message, Receive 1 will receive the message before Receive 2.

Adhering to this rule ensures that sends are always matched with receives.

If a process in your program has a single thread of execution, then the sends and

receives that occur follow a natural order. However, if a process has multiple

threads, the various threads may not execute their relative send operations in any

defined order. In this case, the messages can be received in any order.

Order rules apply within each communicator. Weakly synchronized threads can

each use independent communicators to avoid many order problems.

The following is an example of using non-overtaking messages. The message sent

by the first send must be received by the first receive, and the message sent by the

second send must be received by the second receive.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)

 CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr)

 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

106

Program progress when two processes initiate two matching sends

and receives

If two processes (or ″tasks″) initiate two matching sends and receives, at least one

of the operations (the send or the receive) will complete, regardless of other actions

that occur in the system. The send operation will complete unless its matching

receive operation has already been satisfied by another message, and has itself

completed. Likewise, the receive operation will complete unless its matching send

message is claimed by another matching receive that was posted at the same

destination.

The following example shows two matching pairs that are intertwined in this

manner. Here is what happens:

1. Both processes invoke their first calls.

2. process 0’s first send indicates buffered mode, which means it must complete,

even if there is no matching receive. Since the first receive posted by process 1

does not match, the send message gets copied into buffer space.

3. Next, process 0 posts its second send operation, which matches process 1’s first

receive, and both operations complete.

4. process 1 then posts its second receive, which matches the buffered message, so

both complete.
CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)

 CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)

 CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

Communication fairness

MPI does not guarantee fairness in the way communications are handled. It is your

responsibility to prevent starvation among the operations in your program.

One example of an unfair situation might be where a send, with a matching receive

on another process, does not complete because another message, from a different

process, overtakes the receive.

Resource limitations

If a lack of resources prevents an MPI call from executing, errors may result.

Pending send and receive operations consume a portion of your system resources.

MPI attempts to use a minimal amount of resource for each pending send and

receive, but buffer space is required for storing messages sent in either standard or

buffered mode when no matching receive is available.

When a buffered send operation cannot complete due to a lack of buffer space, the

resulting error could cause your program to terminate abnormally. On the other

hand, a standard send operation that cannot complete because of a lack of buffer

space, will block and wait for buffer space to become available or for the matching

receive to be posted. In some situations, this behavior is preferable because it

avoids the error condition associated with buffer overflow.

Chapter 6. Mostly harmless 107

Sometimes a lack of buffer space can lead to deadlock. The program in the

following example will succeed even if no buffer space for data is available.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

In this next example, neither process will send until the other process sends first.

As a result, this program will always result in deadlock.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE ! rank.EQ.1

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

The example below shows how message exchange relies on buffer space. The

message send by each process must be copied out before the send returns and the

receive starts. Consequently, at least one of the two messages sent needs to be

buffered for the program to complete. As a result, this program can execute

successfully only if the communication system can buffer at least the words of data

specified by count.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE ! rank.EQ.1

 CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

 CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

When standard send operations are used, deadlock can occur where both processes

are blocked because buffer space is not available. This is also true for synchronous

send operations. For buffered sends, if the required amount of buffer space is not

available, the program will not complete either, and instead of deadlock, you will

have buffer overflow.

108

Appendix A. A sample program to illustrate messages

This appendix provides sample output for a program run under POE with the

maximum level of message reporting. It also points out the different types of

messages you can expect, and explains what they mean.

To set the level of messages that get reported when you run your program, you

can use the -infolevel (or -ilevel) option when you invoke POE. You can also use

the MP_INFOLEVEL environment variable. Setting either of these to 6 gives you

the maximum number of diagnostic messages when you run your program. For

more information about setting the POE message level, see IBM Parallel

Environment for AIX: Operation and Use, Volume 1.

Note that we are using numbered prefixes along the left-hand edge of the

following output as a way to refer to particular lines. The prefixes are not part of

the output you will see when you run your program. For an explanation of the

messages denoted by these numbered prefixes, see “Figuring out what all of this

means” on page 111.

This command produces output similar to the following:

> poe hello_world_c -procs 2 -rmpool 1 -infolevel 6

 +1 INFO: DEBUG_LEVEL changed from 0 to 4

 +2 D1<L4>: Open of file ./host.list successful

 +3 ATTENTION: 0031-379 Pool setting ignored when

 hostfile used

 +4 D1<L4>: mp_euilib = ip

 +5 D1<L4>: 03/04 13:55:37.682266 task 0

 c151f1rp02.ppd.pok.ibm.com 9.114.127.2 10

 +6 D1<L4>: 03/04 13:55:37.684025 task 1

 c151f1rp02.ppd.pok.ibm.com 9.114.127.2 10

 +7 D1<L4>: node allocation strategy = 0

 +8 D1<L4>: Entering pm_contact, jobid is 0

 +9 D1<L4>: Jobid = 1110376467

 +10 D1<L4>: POE security method is COMPAT

 +11 D1<L4>: Requesting service pmv4

 +12 D1<L4>: 1 master nodes

 +13 D4<L4>: LoadLeveler Version 0 Release 0

 +14 D1<L4>: Socket file descriptor for master 0

 (c151f1rp02.ppd.pok.ibm.com) is 4

 +15 D1<L4>: SSM_read on socket 4, source = 0,

 task id: 0, nread: 12, type:3.

 +16 D1<L4>: Leaving pm_contact, jobid

 is 1110376467

 +17 D1<L4>: attempting to bind socket

 to /tmp/s.pedb.413930.1079

 +18

 +19 D4<L4>: Command args:<>

 +20 D3<L4>: Message type 34 from source 0

 +21 D4<L4>: Task 0 pulse received,count is 0

 curr_time is 1109962537

 +22 D4<L4>: Task 0 pulse acknowledged, count is 0

 curr_time is 1109962537

 +23 D3<L4>: Message type 21 from source 0

 +24 INFO: 0031-724 Executing program:

 <../../hello_world_c>

 +25 D3<L4>: Message type 21 from source 0

 +26 D1<L4>: Affinity is not requested;

 MP_TASK_AFFINITY: -1

 +27 D3<L4>: Message type 21 from source 1

© Copyright IBM Corp. 1995, 2005 109

*

*

*

+28 D3<L4>: Message type 21 from source 1

 +29 INFO: 0031-724 Executing program:

 <../../hello_world_c>

 +30 D1<L4>: Affinity is not requested;

 MP_TASK_AFFINITY: -1

 +31 D3<L4>: Message type 21 from source 0

 +32 INFO: DEBUG_LEVEL changed from 0 to 4

 +33 D3<L4>: Message type 21 from source 0

 +34 D3<L4>: Message type 21 from source 0

 +35 D4<L4>: pm_async_thread sends cond sig

 +36 D4<L4>: pm_async_thread calls sigwait,

 in_async_thread=0

 +37 D4<L4>: pm_main, wake up from timed cond wait

 +38 D1<L4>: In mp_main, mp_main will not

 be checkpointable

 +39 D3<L4>: Message type 21 from source 0

 +40 D1<L4>: mp_euilib is <ip>

 +41 D3<L4>: Message type 21 from source 0

 +42 D1<L4>: Executing _mp_init_msg_passing()

 from MPI_Init()...

 +43 D3<L4>: Message type 21 from source 0

 +44 D1<L4>: mp_css_interrupt is <0>

 +45 D1<L4>: About to call mpci_connect

 +46 D3<L4>: Message type 21 from source 1

 +47 INFO: DEBUG_LEVEL changed from 0 to 4

 +48 D3<L4>: Message type 21 from source 1

 +49 D4<L4>: pm_async_thread sends cond sig

 +50 D3<L4>: Message type 21 from source 0

 +51 INFO: 0031-619 32bit(ip)

 MPCI shared object was compiled at

 Wed Mar 2 13:44:02 2005

 +52

 +53 D3<L4>: Message type 21 from source 1

 +54 D4<L4>: pm_async_thread calls sigwait, in_async_thread=0

 +55 D4<L4>: pm_main, wake up from timed cond wait

 +56 D1<L4>: In mp_main, mp_main will not be checkpointable

 +57 D1<L4>: mp_euilib is <ip>

 +58 D3<L4>: Message type 21 from source 1

 +59 D1<L4>: Executing _mp_init_msg_passing() from MPI_Init()...

 +60 D3<L4>: Message type 21 from source 1

 +61 D1<L4>: mp_css_interrupt is <0>

 +62 D1<L4>: About to call mpci_connect

 +63 D3<L4>: Message type 21 from source 0

 +64 LAPI version #6.61 2005/01/28 1.143.1.3 src/rsct/lapi/lapi.c,

 lapi, rsct_rag2, rag20508a 32bit(ip) library compiled on

 Wed Mar 2 11:46:57 2005

 +65 .

 +66 D3<L4>: Message type 21 from source 0

 +67 LAPI is using lightweight lock.

 +68 D3<L4>: Message type 21 from source 1

 +69 LAPI version #6.61 2005/01/28 1.143.1.3 src/rsct/lapi/lapi.c, lapi,

 rsct_rag2, rag20508a 32bit(ip) library compiled on

 Wed Mar 2 11:46:57 2005

 +70 .

 +71 D3<L4>: Message type 21 from source 1

 +72 LAPI is using lightweight lock.

 +73 D3<L4>: Message type 23 from source 0

 +74 D1<L4>: init_data for instance number 0,

 task 0: <158498562:37292>

 +75 D3<L4>: Message type 23 from source 1

 +76 D1<L4>: init_data for instance number 0,

 task 1: <158498562:37293>

 +77 D3<L4>: Message type 21 from source 1

 +78 The MPI shared memory protocol is used for the job

 +79 D3<L4>: Message type 21 from source 0

 +80 The MPI shared memory protocol is used for the job

 +81 D1<L4>: Elapsed time for mpci_connect: 1 seconds

110

+82 D3<L4>: Message type 21 from source 1

 +83 D1<L4>: Elapsed time for mpci_connect: 1 seconds

 +84 D3<L4>: Message type 21 from source 0

 +85 D1<L4>: _css_init: rc from HPSOclk_init is 1

 +86

 +87 D1<L4>: About to call _ccl_init

 +88 D3<L4>: Message type 21 from source 1

 +89 D1<L4>: _css_init: rc from HPSOclk_init is 1

 +90

 +91 D1<L4>: About to call _ccl_init

 +92 D3<L4>: Message type 88 from source 0

 +93 D3<L4>: Message type 88 from source 1

 +94 D3<L4>: Message type 21 from source 0

 +95 D2<L4>: Global Data for

 task 0: 1;0,9.114.127.2,-3;778658413,9.114.127.2,-3;

 +96 D3<L4>: Message type 21 from source 1

 +97 D2<L4>: Global Data for

 task 1: 1;0,9.114.127.2,-3;778658413,9.114.127.2,-3;

 +98 D3<L4>: Message type 21 from source 0

 +99 D1<L4>: Elapsed time for _ccl_init: 0 seconds

 +100 D3<L4>: Message type 21 from source 1

 +101 D1<L4>: Elapsed time for _ccl_init: 0 seconds

 +102 D3<L4>: Message type 20 from source 0

 +103 Hello World !!

 +104 D3<L4>: Message type 62 from source 0

 +105 D3<L4>: Message type 20 from source 1

 +106 Hello World !!

 +107 D3<L4>: Message type 62 from source 1

 +108 D3<L4>: Message type 21 from source 0

 +109 INFO: 0031-306 pm_atexit: pm_exit_value is 0.

 +110 D3<L4>: Message type 17 from source 0

 +111 D3<L4>: Message type 21 from source 1

 +112 INFO: 0031-306 pm_atexit: pm_exit_value is 0.

 +113 D3<L4>: Message type 17 from source 1

 +114 D3<L4>: Message type 22 from source 0

 +115 INFO: 0031-656 I/O file STDOUT closed by task 0

 +116 D3<L4>: Message type 22 from source 0

 +117 INFO: 0031-656 I/O file STDERR closed by task 0

 +118 D3<L4>: Message type 22 from source 1

 +119 INFO: 0031-656 I/O file STDOUT closed by task 1

 +120 D3<L4>: Message type 22 from source 1

 +121 INFO: 0031-656 I/O file STDERR closed by task 1

 +122 D3<L4>: Message type 15 from source 0

 +123 D1<L4>: Accounting data from task 0 for source 0:

 +124 D3<L4>: Message type 15 from source 1

 +125 D1<L4>: Accounting data from task 1 for source 1:

 +126 D3<L4>: Message type 1 from source 0

 +127 INFO: 0031-251 task 0 exited: rc=0

 +128 D3<L4>: Message type 1 from source 1

 +129 INFO: 0031-251 task 1 exited: rc=0

 +130 D1<L4>: All remote tasks have exited: maxx_errcode = 0

 +131 INFO: 0031-639 Exit status from pm_respond = 0

 +132 D1<L4>: Maximum return code from user = 0

 +133 D2<L4>: In pm_exit... About to call pm_remote_shutdown

 +134 D2<L4>: Sending PMD_EXIT to task 0

 +135 D2<L4>: Elapsed time for pm_remote_shutdown: 0 seconds

 +136 D2<L4>: In pm_exit... Calling exit with status = 0 at

 Fri Mar 4 13:55:38 2005

Figuring out what all of this means

When you set -infolevel to 6, you get the full complement of diagnostic messages,

which we will explain here.

The previous example includes numbered prefixes along the left-hand edge of the

output so that we can refer to particular lines, and then explain what they mean.

Appendix A. A sample program to illustrate messages 111

Remember, that these prefixes are not part of your output. The table below points

you to the line number of the messages that are of most interest, and provides a

short explanation.

 Lines Message description

5-6 Names hosts that are used.

10 Indicates security method defined on the remote node.

11 Indicates that service pmv4, from /etc/services is being used.

14 Indicates node with partition manager running.

20 Message type 34 indicates pulse activity (the pulse mechanism checked

that each remote node was actively participating with the home node).

23 Message type 21 indicates a STDERR message.

40, 57 Indicates that the euilib message passing protocol was specified.

42, 59 Indicates message passing initialization has begun.

51 Timestamp of MPCI shared object being executed.

64, 69 Timestamp of LAPI library being executed.

78, 80 Indicates MPI shared memory is being used.

81,83 Indicates initialization of MPCI has completed.

92, 93, 95, 97 Message type 88 shows MPI global task information.

102, 103, 105, 106 Message type 20 shows STDOUT from your program..

109, 112 Indicates that the user’s program has reached the exit handler. The exit

code is 0.

110, 113 Message type 17 indicates the tasks have requested to exit.

115, 117, 119, 121 Indicates that the STDOUT and STDERR pipes have been closed.

122, 124 Message type 15 indicates accounting data.

134 Indicates that the home node is sending an exit.

112

Appendix B. Parallel Environment internals

This appendix provides some additional information about how the IBM Parallel

Environment for AIX (PE) works with respect to your application. Much of this

information is also explained in the IBM Parallel Environment for AIX: MPI

Programming Guide.

What happens when I compile my applications?

In order to run your program in parallel, you first need to compile your

application source code with one of the following scripts:

1. mpcc_r

2. mpCC_r

3. mpxlf_r

4. mpxlf95_r

5. mpxlf90_r

To make sure the parallel execution works, these scripts add the following to your

application executable:

v POE initialization module, so POE can determine that all nodes can

communicate successfully, before giving control to the user application’s main()

routine.

v Signal handlers, for additional control in terminating the program during

parallel tracing, and enabling the handling of the process termination signals.

The IBM Parallel Environment for AIX: MPI Programming Guide explains the

signals that are handled in this manner.

The compile scripts dynamically link the Message Passing library interfaces in such

a way that the specific communication library that is used is determined when

your application executes.

Applications created as static executables are not supported.

How do my applications start?

Because POE adds its entry point to each application executable, user applications

do not need to be run under the poe command. When a parallel application is

invoked directly, as opposed to under the control of the poe command, POE is

started automatically. It then sets up the parallel execution environment and then

re-invokes the application on each of the remote nodes.

Serial applications can be run in parallel only using the poe command. However,

such applications cannot take advantage of the function and performance provided

with the message passing libraries.

How does POE talk to the nodes?

A parallel job running under POE consists of a home node (where POE was started)

and n tasks. Each task runs under the control of a Partition Manager daemon

(pmd). There is one pmd for each job on each node on which the job’s tasks run.

© Copyright IBM Corp. 1995, 2005 113

*

When you start a parallel job, POE contacts the nodes assigned to run the job

(called remote nodes), and starts a pmd instance on each node. POE sends

environment information to the pmd daemons for the parallel job (including the

name of the executable) and the pmd daemons spawn processes to run the

executable. For tasks that run on the same node, the pmd daemon forks and

manages all tasks for that job on that node. It routes messages to and from each

remote task, and also coordinates with the home node to terminate each task.

The spawned processes have standard I/O redirected to socket connections back to

the pmd daemons. Therefore, any output the application writes to STDOUT or

STDERR is sent back to the pmd daemons. The pmd daemons, in turn, send the

output back to POE via another socket connection, and POE writes the output to

its STDOUT or STDERR. Any input that POE receives on STDIN is delivered to the

remote tasks in a similar fashion.

The socket connections between POE and the pmd daemons are also used to

exchange control messages for providing task synchronization, exit status, and

signaling. These capabilities are available to control any parallel program run by

POE, and they do not depend on the message passing library.

When POE executes without LoadLeveler, it is assumed that the Partition Manager

Daemon (PMD) is started under inetd. There is no consideration for running the

PMD without inetd.

When POE executes under LoadLeveler (including all User Space applications), the

PMD is started by LoadLeveler.

How are signals handled?

POE installs signal handlers for most signals that cause program termination and

interrupts, in order to control and notify all tasks of the signal. POE will exit the

program normally with a code of (128 + signal). If the user program installs a

signal handler for any of the signals POE supports, it should follow the guidelines

presented in IBM Parallel Environment for AIX: MPI Programming Guide.

What happens when my application ends?

POE returns exit status (a return code value between 0 and 255) on the home node

which reflects the composite exit status of the user application. The exit status can

have various conditions and values and each can have a specific meaning. These

are explained in The IBM Parallel Environment for AIX: MPI Programming Guide.

In addition, if the POE job-step function is used, the job control mechanism is the

program’s exit code. When the task exit code is 0 (zero), or in the range of 2 to 127,

the job-step will be continued. If the task exit code is 1 or greater than 127, POE

terminates the parallel job, as well as any remaining user programs in the job-step

list. Also, any POE infrastructure failure detected (such as failure to open pipes to

the child process) will terminate the parallel job as well as any remaining programs

in the job-step list.

114

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size.

Using assistive technologies

Assistive technology products, such as screen readers, function with user

interfaces. Consult the assistive technology documentation for specific information

when using such products to access interfaces.

© Copyright IBM Corp. 1995, 2005 115

116

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This book refers to IBM’s implementation of the Message Passing Interface (MPI)

standard for Parallel Environment for AIX (PE). PE MPI intends to comply with

the requirements of the Message Passing Interface Forum described below. PE MPI

provides an implementation of MPI which is complete except for omitting the

features described in the ″Process Creation and Management″ chapter of MPI-2.

© Copyright IBM Corp. 1995, 2005 117

Permission to copy without fee all or part of these Message Passing Interface

Forum documents:

 MPI: A Message Passing Interface Standard, Version 1.1

 MPI-2: Extensions to the Message Passing Interface, Version 2.0

is granted, provided the University of Tennessee copyright notice and the title of

the document appear, and notice is given that copying is by permission of the

University of Tennessee. ©1993, 1997 University of Tennessee, Knoxville, Tennessee.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department LJEB/P905

522 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

118

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of the International Business Machines

Corporation in the United States or other countries or both:

v AIX

v AIX 5L

v DFS®

v ESCON

v IBM

v IBMLink™

v LoadLeveler

v Micro Channel®

v pSeries

v RS/6000

v SP

UNIX is a registered trademark in the United States, other countries, or both and is

licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be the trademarks or service

marks of others.

Acknowledgements

The PE Benchmarker product includes software developed by the Apache Software

Foundation, http://www.apache.org.

Notices 119

120

Glossary

A

AFS. Andrew File System.

address. A value, possibly a character or group of

characters that identifies a register, a device, a

particular part of storage, or some other data source or

destination.

AIX. Abbreviation for Advanced Interactive Executive,

IBM’s licensed version of the UNIX operating system.

AIX is particularly suited to support technical

computing applications, including high-function

graphics and floating-point computations.

AIXwindows® Environment/6000. A graphical user

interface (GUI) for the RS/6000. It has the following

components:

v A graphical user interface and toolkit based on

OSF/Motif

v Enhanced X-Windows, an enhanced version of the

MIT X Window System

v Graphics Library (GL), a graphical interface library

for the application programmer that is compatible

with Silicon Graphics’ GL interface.

API. Application programming interface.

application. The use to which a data processing

system is put; for example, a payroll application, an

airline reservation application.

argument. A parameter passed between a calling

program and a called program or subprogram.

attribute. A named property of an entity.

Authentication. The process of validating the identity

of a user or server.

Authorization. The process of obtaining permission to

perform specific actions.

B

bandwidth. The difference, expressed in hertz,

between the highest and the lowest frequencies of a

range of frequencies. For example, analog transmission

by recognizable voice telephone requires a bandwidth

of about 3000 hertz (3 kHz). The bandwidth of an

optical link designates the information-carrying

capacity of the link and is related to the maximum bit

rate that a fiber link can support.

blocking operation. An operation that does not

complete until the operation either succeeds or fails.

For example, a blocking receive will not return until a

message is received or until the channel is closed and

no further messages can be received.

breakpoint. A place in a program, specified by a

command or a condition, where the system halts

execution and gives control to the workstation user or

to a specified program.

broadcast operation. A communication operation

where one processor sends (or broadcasts) a message to

all other processors.

buffer. A portion of storage used to hold input or

output data temporarily.

C

C. A general-purpose programming language. It was

formalized by Uniforum in 1983 and the ANSI

standards committee for the C language in 1984.

C++. A general-purpose programming language that

is based on the C language. C++ includes extensions

that support an object-oriented programming

paradigm. Extensions include:

v strong typing

v data abstraction and encapsulation

v polymorphism through function overloading and

templates

v class inheritance.

chaotic relaxation. An iterative relaxation method that

uses a combination of the Gauss-Seidel and

Jacobi-Seidel methods. The array of discrete values is

divided into subregions that can be operated on in

parallel. The subregion boundaries are calculated using

the Jacobi-Seidel method, while the subregion interiors

are calculated using the Gauss-Seidel method. See also

Gauss-Seidel.

client. A function that requests services from a server

and makes them available to the user.

cluster. A group of processors interconnected through

a high-speed network that can be used for

high-performance computing.

Cluster 1600. See IBM Eserver Cluster 1600.

collective communication. A communication

operation that involves more than two processes or

tasks. Broadcasts, reductions, and the MPI_Allreduce

subroutine are all examples of collective

communication operations. All tasks in a communicator

must participate.

© Copyright IBM Corp. 1995, 2005 121

 |
 |
 |

command alias. When using the PE command-line

debugger pdbx, you can create abbreviations for

existing commands using the pdbx alias command.

These abbreviations are known as command aliases.

Communication Subsystem (CSS). A component of

the IBM AIX Parallel System Support Programs that

provides software support for the high performance

switch. CSS provides two protocols: Internet Protocol

(IP) for LAN-based communication and User Space

protocol as a message passing interface that is

optimized for performance over the switch. See also

Internet Protocol and User Space.

communicator. An MPI object that describes the

communication context and an associated group of

processes.

compile. To translate a source program into an

executable program.

condition. One of a set of specified values that a data

item can assume.

control workstation. A workstation attached to the

IBM RS/6000 SP that serves as a single point of control

allowing the administrator or operator to monitor and

manage the system using IBM AIX Parallel System

Support Programs.

core dump. A process by which the current state of a

program is preserved in a file. Core dumps are usually

associated with programs that have encountered an

unexpected, system-detected fault, such as a

Segmentation Fault or a severe user error. The current

program state is needed for the programmer to

diagnose and correct the problem.

core file. A file that preserves the state of a program,

usually just before a program is terminated for an

unexpected error. See also core dump.

current context. When using the pdbx debugger,

control of the parallel program and the display of its

data can be limited to a subset of the tasks belonging to

that program. This subset of tasks is called the current

context. You can set the current context to be a single

task, multiple tasks, or all the tasks in the program.

D

data decomposition. A method of breaking up (or

decomposing) a program into smaller parts to exploit

parallelism. One divides the program by dividing the

data (usually arrays) into smaller parts and operating

on each part independently.

data parallelism. Refers to situations where parallel

tasks perform the same computation on different sets of

data.

dbx. A symbolic command-line debugger that is often

provided with UNIX systems. The PE command-line

debugger pdbx is based on the dbx debugger.

debugger. A debugger provides an environment in

which you can manually control the execution of a

program. It also provides the ability to display the

program’ data and operation.

distributed shell (dsh). An IBM AIX Parallel System

Support Programs command that lets you issue

commands to a group of hosts in parallel. See IBM

Parallel System Support Programs for AIX: Command and

Technical Reference for details.

domain name. The hierarchical identification of a host

system (in a network), consisting of human-readable

labels, separated by decimal points.

DPCL target application. The executable program that

is instrumented by a Dynamic Probe Class Library

(DPCL) analysis tool. It is the process (or processes)

into which the DPCL analysis tool inserts probes. A

target application could be a serial or parallel program.

Furthermore, if the target application is a parallel

program, it could follow either the SPMD or the

MPMD model, and may be designed for either a

message-passing or a shared-memory system.

E

environment variable. (1) A variable that describes the

operating environment of the process. Common

environment variables describe the home directory,

command search path, and the current time zone. (2) A

variable that is included in the current software

environment and is therefore available to any called

program that requests it.

Ethernet. A baseband local area network (LAN) that

allows multiple stations to access the transmission

medium at will without prior coordination, avoids

contention by using carrier sense and deference, and

resolves contention by using collision detection and

delayed retransmission. Ethernet uses carrier sense

multiple access with collision detection (CSMA/CD).

event. An occurrence of significance to a task — the

completion of an asynchronous operation such as an

input/output operation, for example.

executable. A program that has been link-edited and

therefore can be run in a processor.

execution. To perform the actions specified by a

program or a portion of a program.

expression. In programming languages, a language

construct for computing a value from one or more

operands.

122

|
|
|
|
|
|
|
|

 |
 |
 |
 |
 |
 |
 |
 |
 |

F

fairness. A policy in which tasks, threads, or processes

must be allowed eventual access to a resource for

which they are competing. For example, if multiple

threads are simultaneously seeking a lock, no set of

circumstances can cause any thread to wait indefinitely

for access to the lock.

FDDI. Fiber Distributed Data Interface.

Fiber Distributed Data Interface (FDDI). An

American National Standards Institute (ANSI) standard

for a local area network (LAN) using optical fiber

cables. An FDDI LAN can be up to 100 kilometers (62

miles) long, and can include up to 500 system units.

There can be up to 2 kilometers (1.24 miles) between

system units and concentrators.

file system. In the AIX operating system, the

collection of files and file management structures on a

physical or logical mass storage device, such as a

diskette or minidisk.

fileset. (1) An individually-installable option or

update. Options provide specific functions. Updates

correct an error in, or enhance, a previously installed

program. (2) One or more separately-installable,

logically-grouped units in an installation package. See

also licensed program and package.

foreign host. See remote host.

FORTRAN. One of the oldest of the modern

programming languages, and the most popular

language for scientific and engineering computations.

Its name is a contraction of FORmula TRANslation. The

two most common FORTRAN versions are FORTRAN

77, originally standardized in 1978, and FORTRAN 90.

FORTRAN 77 is a proper subset of FORTRAN 90.

function cycle. A chain of calls in which the first

caller is also the last to be called. A function that calls

itself recursively is not considered a function cycle.

functional decomposition. A method of dividing the

work in a program to exploit parallelism. The program

is divided into independent pieces of functionality,

which are distributed to independent processors. This

method is in contrast to data decomposition, which

distributes the same work over different data to

independent processors.

functional parallelism. Refers to situations where

parallel tasks specialize in particular work.

G

Gauss-Seidel. An iterative relaxation method for

solving Laplace’s equation. It calculates the general

solution by finding particular solutions to a set of

discrete points distributed throughout the area in

question. The values of the individual points are

obtained by averaging the values of nearby points.

Gauss-Seidel differs from Jacobi-Seidel in that, for the

i+1st iteration, Jacobi-Seidel uses only values calculated

in the ith iteration. Gauss-Seidel uses a mixture of

values calculated in the ith and i+1st iterations.

global max. The maximum value across all processors

for a given variable. It is global in the sense that it is

global to the available processors.

global variable. A variable defined in one portion of a

computer program and used in at least one other

portion of the computer program.

gprof. A UNIX command that produces an execution

profile of C, COBOL, FORTRAN, or Pascal programs.

The execution profile is in a textual and tabular format.

It is useful for identifying which routines use the most

CPU time. See the man page on gprof.

graphical user interface (GUI). A type of computer

interface consisting of a visual metaphor of a

real-world scene, often of a desktop. Within that scene

are icons, which represent actual objects, that the user

can access and manipulate with a pointing device.

GUI. Graphical user interface.

H

high performance switch. The high-performance

message-passing network of the IBM RS/6000 SP that

connects all processor nodes.

HIPPI. High performance parallel interface.

hook. A pdbx command that lets you re-establish

control over all tasks in the current context that were

previously unhooked with this command.

home node. The node from which an application

developer compiles and runs his program. The home

node can be any workstation on the LAN.

host. A computer connected to a network that

provides an access method to that network. A host

provides end-user services.

host list file. A file that contains a list of host names,

and possibly other information, that was defined by the

application that reads it.

host name. The name used to uniquely identify any

computer on a network.

hot spot. A memory location or synchronization

resource for which multiple processors compete

excessively. This competition can cause a

disproportionately large performance degradation when

one processor that seeks the resource blocks, preventing

many other processors from having it, thereby forcing

them to become idle.

Glossary 123

I

IBM Eserver Cluster 1600. An IBM Eserver Cluster

1600 is any PSSP or CSM-managed cluster comprised of

POWER™ microprocessor based systems (including

RS/6000 SMPs, RS/6000 SP nodes, and pSeries SMPs).

IBM Parallel Environment (PE) for AIX. A licensed

program that provides an execution and development

environment for parallel C, C++, and FORTRAN

programs. It also includes tools for debugging,

profiling, and tuning parallel programs.

installation image. A file or collection of files that are

required in order to install a software product on a

RS/6000 workstation or on SP system nodes. These

files are in a form that allows them to be installed or

removed with the AIX installp command. See also

fileset, licensed program, and package.

Internet. The collection of worldwide networks and

gateways that function as a single, cooperative virtual

network.

Internet Protocol (IP). (1) The TCP/IP protocol that

provides packet delivery between the hardware and

user processes. (2) The SP switch library, provided with

the IBM AIX Parallel System Support Programs, that

follows the IP protocol of TCP/IP.

IP. Internet Protocol.

J

Jacobi-Seidel. See Gauss-Seidel.

K

Kerberos. A publicly available security and

authentication product that works with the IBM AIX

Parallel System Support Programs software to

authenticate the execution of remote commands.

kernel. The core portion of the UNIX operating

system that controls the resources of the CPU and

allocates them to the users. The kernel is

memory-resident, is said to run in kernel mode (in other

words, at higher execution priority level than user

mode), and is protected from user tampering by the

hardware.

L

Laplace’s equation. A homogeneous partial

differential equation used to describe heat transfer,

electric fields, and many other applications.

latency. The time interval between the instant when

an instruction control unit initiates a call for data

transmission, and the instant when the actual transfer

of data (or receipt of data at the remote end) begins.

Latency is related to the hardware characteristics of the

system and to the different layers of software that are

involved in initiating the task of packing and

transmitting the data.

licensed program. A collection of software packages

sold as a product that customers pay for to license. A

licensed program can consist of packages and file sets a

customer would install. These packages and file sets

bear a copyright and are offered under the terms and

conditions of a licensing agreement. See also fileset and

package.

lightweight corefiles. An alternative to standard AIX

corefiles. Corefiles produced in the Standardized

Lightweight Corefile Format provide simple process stack

traces (listings of function calls that led to the error)

and consume fewer system resources than traditional

corefiles.

LoadLeveler. A job management system that works

with POE to let users run jobs and match processing

needs with system resources, in order to make better

use of the system.

local variable. A variable that is defined and used

only in one specified portion of a computer program.

loop unrolling. A program transformation that makes

multiple copies of the body of a loop, also placing the

copies within the body of the loop. The loop trip count

and index are adjusted appropriately so the new loop

computes the same values as the original. This

transformation makes it possible for a compiler to take

additional advantage of instruction pipelining, data

cache effects, and software pipelining.

 See also optimization.

M

management domain . A set of nodes configured for

manageability by the Clusters Systems Management

(CSM) product. Such a domain has a management

server that is used to administer a number of managed

nodes. Only management servers have knowledge of

the whole domain. Managed nodes only know about

the servers managing them; they know nothing of each

other. Contrast with peer domain.

menu. A list of options displayed to the user by a

data processing system, from which the user can select

an action to be initiated.

message catalog. A file created using the AIX Message

Facility from a message source file that contains

application error and other messages, which can later

be translated into other languages without having to

recompile the application source code.

message passing. Refers to the process by which

parallel tasks explicitly exchange program data.

124

 |
 |
 |
 |
 |
 |
 |
 |

Message Passing Interface (MPI). A standardized API

for implementing the message-passing model.

MIMD. Multiple instruction stream, multiple data

stream.

Multiple instruction stream, multiple data stream

(MIMD). A parallel programming model in which

different processors perform different instructions on

different sets of data.

MPMD. Multiple program, multiple data.

Multiple program, multiple data (MPMD). A parallel

programming model in which different, but related,

programs are run on different sets of data.

MPI. Message Passing Interface.

N

network. An interconnected group of nodes, lines, and

terminals. A network provides the ability to transmit

data to and receive data from other systems and users.

Network Information Services. A set of UNIX

network services (for example, a distributed service for

retrieving information about the users, groups, network

addresses, and gateways in a network) that resolve

naming and addressing differences among computers

in a network.

NIS. See Network Information Services.

node. (1) In a network, the point where one or more

functional units interconnect transmission lines. A

computer location defined in a network. (2) In terms of

the IBM RS/6000 SP, a single location or workstation in

a network. An SP node is a physical entity (a

processor).

node ID. A string of unique characters that identifies

the node on a network.

nonblocking operation. An operation, such as

sending or receiving a message, that returns

immediately whether or not the operation was

completed. For example, a nonblocking receive will not

wait until a message is sent, but a blocking receive will

wait. A nonblocking receive will return a status value

that indicates whether or not a message was received.

O

object code. The result of translating a computer

program to a relocatable, low-level form. Object code

contains machine instructions, but symbol names (such

as array, scalar, and procedure names), are not yet

given a location in memory. Contrast with source code.

optimization. A widely-used (though not strictly

accurate) term for program performance improvement,

especially for performance improvement done by a

compiler or other program translation software. An

optimizing compiler is one that performs extensive

code transformations in order to obtain an executable

that runs faster but gives the same answer as the

original. Such code transformations, however, can make

code debugging and performance analysis very difficult

because complex code transformations obscure the

correspondence between compiled and original source

code.

option flag. Arguments or any other additional

information that a user specifies with a program name.

Also referred to as parameters or command-line options.

P

package. A number of file sets that have been

collected into a single installable image of licensed

programs. Multiple file sets can be bundled together for

installing groups of software together. See also fileset

and licensed program.

parallelism. The degree to which parts of a program

may be concurrently executed.

parallelize. To convert a serial program for parallel

execution.

Parallel Operating Environment (POE). An execution

environment that smooths the differences between

serial and parallel execution. It lets you submit and

manage parallel jobs. It is abbreviated and commonly

known as POE.

parameter. (1) In FORTRAN, a symbol that is given a

constant value for a specified application. (2) An item

in a menu for which the operator specifies a value or

for which the system provides a value when the menu

is interpreted. (3) A name in a procedure that is used to

refer to an argument that is passed to the procedure. (4)

A particular piece of information that a system or

application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) In

terms of the IBM RS/6000 SP, a logical collection of

nodes to be viewed as one system or domain. System

partitioning is a method of organizing the SP system

into groups of nodes for testing or running different

levels of software of product environments.

Partition Manager. The component of the Parallel

Operating Environment (POE) that allocates nodes, sets

up the execution environment for remote tasks, and

manages distribution or collection of standard input

(STDIN), standard output (STDOUT), and standard

error (STDERR).

pdbx. The parallel, symbolic command-line debugging

facility of PE. pdbx is based on the dbx debugger and

has a similar interface.

Glossary 125

PE. The IBM Parallel Environment for AIX licensed

program.

peer domain. A set of nodes configured for high

availability by the RSCT configuration manager. Such a

domain has no distinguished or master node. All nodes

are aware of all other nodes, and administrative

commands can be issued from any node in the domain.

All nodes also have a consistent view of the domain

membership. Contrast with management domain.

performance monitor. A utility that displays how

effectively a system is being used by programs.

PID. Process identifier.

POE. Parallel Operating Environment.

pool. Groups of nodes on an SP system that are

known to LoadLeveler, and are identified by a pool

name or number.

point-to-point communication. A communication

operation that involves exactly two processes or tasks.

One process initiates the communication through a send

operation. The partner process issues a receive operation

to accept the data being sent.

procedure. (1) In a programming language, a block,

with or without formal parameters, whose execution is

invoked by means of a procedure call. (2) A set of

related control statements that cause one or more

programs to be performed.

process. A program or command that is actually

running the computer. It consists of a loaded version of

the executable file, its data, its stack, and its kernel data

structures that represent the process’s state within a

multitasking environment. The executable file contains

the machine instructions (and any calls to shared

objects) that will be executed by the hardware. A

process can contain multiple threads of execution.

 The process is created with a fork() system call and

ends using an exit() system call. Between fork and exit,

the process is known to the system by a unique process

identifier (PID).

 Each process has its own virtual memory space and

cannot access another process’s memory directly.

Communication methods across processes include

pipes, sockets, shared memory, and message passing.

prof. A utility that produces an execution profile of an

application or program. It is useful to identify which

routines use the most CPU time. See the man page for

prof.

profiling. The act of determining how much CPU

time is used by each function or subroutine in a

program. The histogram or table produced is called the

execution profile.

Program Marker Array. An X-Windows run time

monitor tool provided with Parallel Operating

Environment, used to provide immediate visual

feedback on a program’s execution.

pthread. A thread that conforms to the POSIX Threads

Programming Model.

R

reduced instruction-set computer. A computer that

uses a small, simplified set of frequently-used

instructions for rapid execution.

reduction operation. An operation, usually

mathematical, that reduces a collection of data by one

or more dimensions. For example, the arithmetic SUM

operation is a reduction operation that reduces an array

to a scalar value. Other reduction operations include

MAXVAL and MINVAL.

Reliable Scalable Cluster Technology. A set of

software components that together provide a

comprehensive clustering environment for AIX. RSCT is

the infrastructure used by a variety of IBM products to

provide clusters with improved system availability,

scalability, and ease of use.

remote host. Any host on a network except the one

where a particular operator is working.

remote shell (rsh). A command supplied with both

AIX and the IBM AIX Parallel System Support

Programs that lets you issue commands on a remote

host.

RISC. See reduced instruction-set computer.

RSCT. See Reliable Scalable Cluster Technology.

RSCT peer domain. See peer domain.

S

shell script. A sequence of commands that are to be

executed by a shell interpreter such as the Bourne shell

(sh), the C shell (csh), or the Korn shell (ksh). Script

commands are stored in a file in the same format as if

they were typed at a terminal.

segmentation fault. A system-detected error, usually

caused by referencing an non-valid memory address.

server. A functional unit that provides shared services

to workstations over a network — a file server, a print

server, or a mail server, for example.

signal handling. A type of communication that is

used by message passing libraries. Signal handling

involves using AIX signals as an asynchronous way to

move data in and out of message buffers.

126

|
|
|
|
|
|
|

Single program, multiple data (SPMD). A parallel

programming model in which different processors

execute the same program on different sets of data.

source code. The input to a compiler or assembler,

written in a source language. Contrast with object code.

source line. A line of source code.

SP. IBM RS/6000 SP; a scalable system arranged in

various physical configurations, that provides a

high-powered computing environment.

SPMD. Single program, multiple data.

standard input (STDIN). In the AIX operating system,

the primary source of data entered into a command.

Standard input comes from the keyboard unless

redirection or piping is used, in which case standard

input can be from a file or the output from another

command.

standard output (STDOUT). In the AIX operating

system, the primary destination of data produced by a

command. Standard output goes to the display unless

redirection or piping is used, in which case standard

output can go to a file or to another command.

STDIN. Standard input.

STDOUT. Standard output.

stencil. A pattern of memory references used for

averaging. A 4-point stencil in two dimensions for a

given array cell, x(i,j), uses the four adjacent cells,

x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose

execution is invoked by a call. (2) A sequenced set of

instructions or statements that can be used in one or

more computer programs and at one or more points in

a computer program. (3) A group of instructions that

can be part of another routine or can be called by

another program or routine.

synchronization. The action of forcing certain points

in the execution sequences of two or more

asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer

installation who designs, controls, and manages the use

of the computer system. (2) The person who is

responsible for setting up, modifying, and maintaining

the Parallel Environment.

System Data Repository. A component of the IBM

AIX Parallel System Support Programs software that

provides configuration management for the SP system.

It manages the storage and retrieval of system data

across the control workstation, file servers, and nodes.

T

target application. See DPCL target application.

task. A unit of computation analogous to an AIX

process.

thread. A single, separately dispatchable, unit of

execution. There can be one or more threads in a

process, and each thread is executed by the operating

system concurrently.

tracing. In PE, the collection of information about the

execution of the program. This information is

accumulated into a trace file that can later be examined.

tracepoint. Tracepoints are places in the program that,

when reached during execution, cause the debugger to

print information about the state of the program.

trace record. In PE, a collection of information about a

specific event that occurred during the execution of

your program. For example, a trace record is created

for each send and receive operation that occurs in your

program (this is optional and might not be

appropriate). These records are then accumulated into a

trace file that can later be examined.

U

unrolling loops. See loop unrolling.

user. (1) A person who requires the services of a

computing system. (2) Any person or any thing that

can issue or receive commands and message to or from

the information processing system.

User Space. A version of the message passing library

that is optimized for direct access to the high

performance switch, that maximizes the performance

capabilities of the SP hardware.

utility program. A computer program in general

support of computer processes; for example, a

diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the

processes of a computer; for example, an input routine.

V

variable. (1) In programming languages, a named

object that may take different values, one at a time. The

values of a variable are usually restricted to one data

type. (2) A quantity that can assume any of a given set

of values. (3) A name used to represent a data item

whose value can be changed while the program is

running. (4) A name used to represent data whose

value can be changed, while the program is running,

by referring to the name of the variable.

Glossary 127

 |
 |
 |
 |

view. (1) To display and look at data on screen. (2) A

special display of data, created as needed. A view

temporarily ties two or more files together so that the

combined files can be displayed, printed, or queried.

The user specifies the fields to be included. The

original files are not permanently linked or altered;

however, if the system allows editing, the data in the

original files will be changed.

X

X Window System. The UNIX industry’s graphics

windowing standard that provides simultaneous views

of several executing programs or processes on high

resolution graphics displays.

128

Index

Special characters
-coredir command 43

-euilib 11

-hostfile option 10

-ilevel option 10

-infolevel option 10, 12, 40, 109

-labelio option 5, 10

-llfile 11

-pmdlog option 10

-procs option 5, 10

-rmpool 11

-stdoutmode option 6, 11

Numerics
4-point stencil 68

A
abbreviated names x

access, to nodes 2

Accessibility 115

acknowledgements 119

acronyms for product names x

AIX trace file 84

ALLMSG 102

allocation, node
high performance switch 11

host list file 11

attach debugger option 53

attaching the debugger 53

audience of this book ix

B
b_vand 102

b_vor 102

b_vxor 102

bad output 60

bad results 60

error messages 60

bad results 60

BROADCAST 98

C
checkpoint

complete user-initiated 35

file system 35

partial user-initiated 35

scenario 35

system-initiated 35

checkpointing
how it works 35

limitations 34

restrictions 34

checkpointing a program 35

cluster security services 2

collective communications 98

collective communications (continued)
BROADCAST 98

COMBINE 98

CONCAT 98

GATHER 99

GETLABEL 100

GETMEMBERS 100

GETRANK 100

GETSIZE 100

GETTASKID 100

GROUP 100

INDEX 99

PARTITION 101

PREFIX 99

REDUCE 99

SCATTER 99

SHIFT 99

SYNC 99

COMBINE 98

command
poerestart 35

common problems 37

bad output 60

cannot compile a parallel

program 39

cannot connect with the remote

host 40

cannot execute a parallel program 41

cannot start a parallel job 39

core dumps 43

hangs 51

no output 50

user not authorized on remote

host 40

compiler scripts 9, 113

for threaded programs 9

compiling 8

C example 8

examples 8

Fortran example 9

scripts 9, 113

CONCAT 98

constants, global 102

conventions x

core dump 43

core dumps
threaded programs 50

core files 43

creating MPI objects 102

attribute keys 102

communicators 102

data types 102

error handlers 102

groups 102

reduction ops 102

requests 102

status 102

D
d_vadd 102

d_vmax 102

d_vmin 102

d_vmul 102

data decomposition 21, 22

dbx 45

debugger, attaching to POE job 53

debugging
threaded programs 60

DFS/DCE-based user authorization 3

DONTCARE 102

duplication 32

E
efficiency 63

ENVIRON 97

environment variables 11

LANG 37

MP_COREDIR 43

MP_EUIDEVELOP 60

MP_EUILIB 11

MP_HOSTFILE 10, 39

MP_INFOLEVEL 10, 40, 109

MP_LABELIO 7, 10, 60

MP_LLFILE 11

MP_PMDLOG 11

MP_PROCS 7, 10, 39

MP_RESD 39, 41

MP_RMPOOL 11, 39

MP_STDOUTMODE 11, 50

NLSPATH 37

running POE with 7

error handling 103

error messages 60

errors
logging to a file 38

F
functional decomposition 21, 29

functions, user-defined 102

G
GATHER 99

GETLABEL 100

GETMEMBERS 100

GETRANK 100

GETSIZE 100

GETTASKID 100

global variables and constants 102

GROUP 100

H
hangs 59

threaded programs 53

© Copyright IBM Corp. 1995, 2005 129

high performance switch 41

and node allocation 11

host list file 4, 11

host list file, examples 4

I
i_vadd 101

i_vmax 102

i_vmin 102

i_vmul 102

INDEX 99

inetd 40

initialization, how implemented 32

installation 2

Installation Verification Program

(IVP) 2, 38

IP protocol 33

J
Jumpshot 86

L
l_vand 102

l_vor 102

LANG 37

LAPI 32

Laplace equation 68

last error code 102

lightweight core file 47

LoadLeveler 1, 5, 11, 12, 33, 42

and User Space support 42

logging errors to a file 38

LookAt message retrieval tool xii

loops, unrolling 22

example 22

M
message length, MPL vs. MPI 102

message passing 21, 95

definition 21

synchronization 21

message retrieval tool, LookAt xii

messages
and problem determination 37

finding 37

format 38

interpreted 111

level reported 12, 109

PE message catalog components 38

PE message catalog errors 37

types 111

mp_chkpt 35

MP_COREDIR 43

MP_EUIDEVELOP 60

MP_EUILIB 11

MP_HOSTFILE 10, 11

MP_INFOLEVEL 10, 40, 109

MP_LABELIO 7, 10, 60

MP_LLFILE 11

MP_PMDLOG 11

MP_PROCS 7, 10

MP_RESD 41

MP_RMPOOL 11

MP_STDOUTMODE 50

MP_STOUTMODE 11

MPI 95

MPI objects, creating 102

MPI to MPL equivalents
ALLGRP 102

ALLMSG 102

DONTCARE 102

NULLTASK 102

MPI trace files 84

MPI_COMM WORLD 31

MPI_Comm_rank 23

MPI_Comm_size 23

MPI_Finalize 23

MPI_Init 23

MPI_PROD 31

MPI_REDUCE 31

MPI_Scan 31

MPI_SCAN 31

MPI_SUM 31

MPL 95

MPL to MPI equivalents
b_vand 102

b_vor 102

b_vxor 102

BROADCAST 98

COMBINE 98

CONCAT 98

d_vadd 102

d_vmax 102

d_vmin 102

d_vmul 102

ENVIRON 97

GATHER 99

GETLABEL 100

GETMEMBERS 100

GETRANK 100

GETSIZE 100

GETTASKID 100

GROUP 100

i_vadd 101

i_vmax 102

i_vmin 102

i_vmul 102

INDEX 99

l_vand 102

l_vor 102

mperrno 102

PACK 97

PARTITION 101

PREFIX 99

PROBE 98

RECEIVE (Blocking) 95

RECEIVE (Non-Blocking) 95

REDUCE 99

s_vadd 101

s_vmax 102

s_vmin 102

s_vmul 102

SCATTER 99

SEND (Blocking) 95

SEND (Non-Blocking) 95

SEND/RECEIVE (Blocking) 96

SHIFT 99

STATUS 96

MPL to MPI equivalents (continued)
STOPALL 97

SYNC 99

TASK_QUERY 96

TASK_SET 96

UNPACK 97

VRECV 98

VSEND 98

WAIT 96

myhosts file 11

N
NLSPATH 37

node allocation
high performance switch 11

host list file 11

NULLTASK 102

O
options

-euilib 11

-hostfile 10

-ilevel 10

-infolevel 10, 12, 109

-labelio 10

-llfile 11

-pmdlog 10

-procs 10

-rmpool 11

-stdoutmode 11

P
PACK 97

parallel debugger 42

Parallel Operating Environment
-hostfile option 10

-ilevel option 10

-infolevel option 10, 12, 109

-labelio option 10

-pmdlog option 10

-procs option 10

-stdoutmode option 11

communication with nodes 113

compiling programs 113

description 1

exit status 114

how it works 113

internals 113

options 10

running 4

running, examples 5

signal handling 114

starting applications 113

Parallel Operating Environment (POE),

description 1

parallel program 21

parallel programs 37

checkpointing 34

communication 64

load balancing 88

profiling 69, 72, 76

restarting 34

safe 105

130

parallel programs (continued)
slow 84

tuning 63

tuning summary 93

wrong answer 80

parallel task 21

parallelizing program 79

PARTITION 101

Partition Manager Daemon 40

pdbx 46, 53, 80

performance 63

Performance Collection Tool 72

POE
-euilib 11

-hostfile option 10

-ilevel option 10

-infolevel option 10, 12, 109

-labelio option 10

-llfile option 11

-pmdlog option 10

-proc option 10

-rmpool option 11

-stdoutmode option 11

communication with nodes 113

compiling programs 113

description 1

exit status 114

how it works 113

internals 113

options 10

running 4

running, examples 5

signal handling 114

starting applications 113

POE options 10

poerestart 35

point-to-point communication 95

ENVIRON 97

PACK 97

PROBE 98

RECEIVE (Blocking) 95

RECEIVE (Non-Blocking) 95

SEND (Blocking) 95

SEND (Non-Blocking) 95

SEND/RECEIVE (Blocking) 96

STATUS 96

STOPALL 97

TASK_QUERY 96

TASK_SET 96

UNPACK 97

VRECV 98

VSEND 98

WAIT 96

preface ix

PREFIX 99

prerequisite knowledge for this book ix

PROBE 98

problem diagnosis 38

problems, common
bad output 60

cannot compile a parallel

program 39

cannot connect with the remote

host 40

cannot execute a parallel program 41

cannot start a parallel job 39

core dumps 43

problems, common (continued)
hangs 51

no output 50

user not authorized on remote

host 40

processor node, defined 2

Profile Visualization Tool 76

profiling program 69

protocol
IP 33

User Space (US) 32

R
RECEIVE (Blocking) 95

RECEIVE (Non-Blocking) 95

REDUCE 99

reduction functions 101, 103

b_vand 102

b_vor 102

b_vxor 102

d_vadd 102

d_vmax 102

d_vmin 102

d_vmul 102

i_vadd 101

i_vmax 102

i_vmin 102

i_vmul 102

l_vand 102

l_vor 102

s_vadd 101

s_vmax 102

s_vmin 102

s_vmul 102

redundancy 32

restart
scenario 35

restarting a program 35

return code 50

running POE 4

running 5

with environment variables 7

S
s_vadd 101

s_vmax 102

s_vmin 102

s_vmul 102

safe coding practices 107

fairness 107

order 106

resource limitations 107

safe program, described 105

safety
MPI programs 59

threaded programs 105

sample program, to illustrate

messages 109

SCATTER 99

security, AIX 3

security, cluster 2

security, DCE 3

security, supported methods 2

SEND (Blocking) 95

SEND (Non-Blocking) 95

SEND/RECEIVE (Blocking) 96

sequential program 21

shared memory protocol 33

SHIFT 99

sine series algorithm 29

SLOG file 84

SLOG2 files 86

starting applications with POE 113

startup problems 41

STATUS 96

STOPALL 97

stopping a program 35

SYNC 99

synchronization 21

T
task identifiers, MPL vs. MPI 102

TASK_QUERY 96

TASK_SET 96

threaded programs
core dumps 50

debugging 34, 60

hangs 53

performance tuning 68

protocol implications 33

safety 105

trademarks 119

tuning 63

serial algorithm 68

threaded programs 68

U
UNPACK 97

unrolling loops 22

example 22

user authorization 3

DFS/DCE-based 3

User Space (US) protocol 32

user-defined functions 102

using assistive technologies 115

UTE interval files 85, 86

V
variables, global 102

VRECV 98

VSD
See IBM Virtual Shared Disk

VSEND 98

W
WAIT 96

wildcard receives 103

wildcards 102

wildcards, MPL to MPI equivalents
ALLGRP 102

ALLMSG 102

DONTCARE 102

NULLTASK 102

Index 131

X
Xprofiler 69

132

Reader’s Comments– We’d like to hear from you

IBM Parallel Environment for AIX 5L

Introduction

Version 4

 Publication No. SA22-7947-02

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SA22-7947-02

SA22-7947-02

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-F83

SA22-7947-02

	Contents
	Figures
	About this book
	What is all this?
	Conventions and terminology used in this book
	Abbreviated names

	Prerequisite and related information
	Summary of changes for Parallel Environment 4.2
	Using LookAt to look up message explanations

	National language support (NLS)

	Chapter 1. Understanding the environment
	What is IBM Parallel Environment for AIX?
	What is the Parallel Operating Environment?
	Before you start
	Installation
	Access
	AIX-based user authorization
	DFS/DCE-based user authorization
	Host list file

	Running POE
	Some examples of running POE
	Running POE with environment variables
	Compiling
	POE options

	Who is in control?
	Managing jobs
	Getting a little more information

	Chapter 2. Message passing
	Message passing
	Data decomposition
	Functional decomposition
	Duplication versus redundancy
	Protocols supported
	Shared memory message passing
	To thread or not to thread - protocol implications

	Thread debugging implications

	Checkpointing and restarting a parallel program
	Limitations
	How checkpointing and restarting works
	A checkpoint/restart scenario

	Chapter 3. Don't panic
	Messages
	Message catalog errors
	Finding PE messages
	Logging POE errors to a file
	Message format
	Diagnosing problems using IVP

	Cannot compile a parallel program
	Cannot start a parallel job
	Cannot execute a parallel program
	The program runs but...
	The parallel debugger is your friend
	The simplest problem
	The next simplest problem
	OK, the worst problem

	When a core dump is created
	Debugging core dumps

	No output at all
	Should there be output?
	There should be output

	It hangs
	Hangs and threaded programs

	Let's attach the debugger
	Fix the problem
	What's the hang up?

	Other hang ups
	Bad output
	Error messages
	Bad results

	Debugging and threads

	Chapter 4. Is it efficient
	Tuning the performance of a parallel application
	How much communication is enough?
	Tuning the performance of threaded programs
	Why is this so slow?
	Profile it
	Profile the program using Xprofiler
	Profile the program using the Performance Collection Tool
	Profile the program using the Profile Visualization Tool

	Parallelize it
	Wrong answer!
	Here is the fix!
	It is still not fast enough!
	Step 1 - Determine which SLOG file to generate
	Step 2 - Link program with the library that created MPI trace files
	Step 3 - Gather performance data to AIX trace file
	Step 4 - Convert AIX trace file to UTE interval files
	Step 5 - Convert UTE interval files to SLOG2 files
	Step 6 - Run Jumpshot
	Step 7 - Analyze results, make changes, verify improvements

	Tuning summary

	Chapter 5. MPL to MPI
	Point-to-point communication
	SEND (Non-Blocking)
	RECEIVE (Non-Blocking)
	SEND (Blocking)
	RECEIVE (Blocking)
	SEND/RECEIVE (Blocking)
	STATUS
	WAIT
	TASK_SET
	TASK_QUERY
	ENVIRON
	STOPALL
	PACK
	UNPACK
	VSEND (Blocking)
	VRECV (Blocking)
	PROBE

	Collective communications
	BROADCAST
	COMBINE
	CONCAT
	GATHER
	INDEX
	PREFIX
	REDUCE
	SCATTER
	SHIFT
	SYNC
	GETLABEL
	GETMEMBERS
	GETRANK
	GETSIZE
	GETTASKID
	GROUP
	PARTITION

	Reduction functions
	User-defined reduction functions

	Global variables and constants
	Last error code
	Wildcards

	Other considerations for converting from MPL to MPI
	Task identifiers
	Message length
	Creating MPI objects
	Using wildcard receives
	Reduction functions
	Error handling
	Before and after using MPI functions
	Using message passing handlers

	Chapter 6. Mostly harmless
	What is a safe program?
	Safety and threaded programs
	Using threaded programs with non-thread-safe libraries

	Message ordering
	Program progress when two processes initiate two matching sends and receives
	Communication fairness
	Resource limitations

	Appendix A. A sample program to illustrate messages
	Figuring out what all of this means

	Appendix B. Parallel Environment internals
	What happens when I compile my applications?
	How do my applications start?
	How does POE talk to the nodes?
	How are signals handled?
	What happens when my application ends?

	Appendix C. Accessibility
	Using assistive technologies

	Notices
	Trademarks
	Acknowledgements

	Glossary
	Index
	Reader's Comments– We'd like to hear from you

