PAPI User’s Guide Version 3.5.0

PAPI USER'’'S GUIDE

TABLE OF CONTENTS

PAPI USER’S GUIDE.........coictiinmnesnsnsn s s s s snnnnnms 1
TABLE OF CONTENTSccoccusmeisuessnnmenssnnssnnssnnssnnnsnnnsnss 1
PREFACEcccvemeuismesssnesssnnsssnnssnnnsssnnsssnnssmunnnssnnnssnnnnsns 4
INTENDED AUDIENCE.....ccc00uuuttssnusssnnnsssnnsssnnnsssnnssssnnsssnnnssnnnss 1
ORGANIZATION OF THIS DOCUMENT.....ccvseursnnesnnnssnnssnnssnnnsnns 4
INTRODUCTION TO PAPL . .vvoeivviiiiiiiiieiiieiieeiiaeeeiieeeienn 4
INSTALLING PAPL .o 4

C AND FORTRAN CALLING INTERFACES. c.vvveiiiuveiiiiuiieiinieeiiiieeeicveeenn.. 4
EVENTS.cooiiiiiiiieiiiiii i 4
PAPI COUNTERINTERFACES. c.ovviiiiiviiiiiiiiiiiiiieeiieeeiaieeeiien) 4
PAPI TIMERS. c..ovviiiiiiiiiiiiieiiieiiieeiee i) 5
PAPI SYSTEM INFORMATION. .ovvveieviiiiiiiiiiiiiiiieeiieeiiieeieeenn 5
ADVANCED PAPI FEATURES. ..ccvvviiiiiiiiiiieiiiieiiieieeeeieeeen 5
PAPI ERROR HANDLING. ...oveiieviiiiniiiiiiiiiiiiniiiiieieeiiiieeeiiiieeeiinennn 5
PAPI MAILING LISTS.c.vviiiuuiiiiuiiiieieiciieieeiieeieeeceeeeeeceeecveeaean 5
APPENDICES, c.ovviiiuiiiiiiiiiiiiiiiieeiiee e 5
DOCUMENT CONVENTION.....ocetuutsussanssnssansnnssnnssnssnnssnssnnssnssnes .5
INTRODUCTION TO PAPIccvvocmsuessnnssnnssnnssnnsssamennnsnnes 6
WHAT IS PAPI?.....ccuuummsunsnnssnnsnnssnnssnssnnssnssnnssnssnnss snnnnnnssnnnnsnnns 6
BACKGROUNDccevnmssmssanssnnsanssnsssnssnnsans sassnnsssnnnsssnnsssnnnssnnnnsns 6
ARCHITECTURE......0outtumeismntsunsisnnssnnssnnsssnnssn snsnnnnnssssnnnnssnsnnnnnss 7
INSTALLING PAPI .o.ovovnennnerseersenssnnennserseessunsnnnersearsensnnne 8
C AND FORTRAN CALLING INTERFACESc000mceei000ees 9
EVENTS .oo0eeaneennnerseenneennnernserseerseesseerseesseesseessennnnessensnns 10
WHAT ARE EVENTS?.....c000utiummismmmsnnessnnssnnssnnnssnnss snnsnnnnnssnnnnnss 10
NATIVE EVENTS...c.oovuuvunveeuvuennunennnevunnunnesuununsesensnsenssununneeruns 10
WHAT ARE NATIVE EVENTS? eevveieiiiiiiiiiieiiiiiiiieiiieeeiiaeeeeien 10
PRESET EVENTS.....ccvouttuutsmssanssnssnnssssnnsssnnnsssnnnsssnnsssnnnssnnnnssss 11
WHAT ARE PRESET EVENTS?.oveeivuiiiiiiiiiiiiiiiiiieeiiieiiieeieeaen 11
EVENT QUERY....cccvtuuiiumiismnssuussnnnnnssssnnnnssssnnnnsssssnnnnssssnnnnsnnas 12
EVENT TRANSLATION.....cocuttummisuussansssnnssnnssnnsssnnssnnssnnnss snsnnnas 15
PAPI'S COUNTER INTERFACEScccvieeiianeinnnsssnnnranses 17
HIGH-LEVEL API......c.coceiumuiiunusnmmmnssssnnnnssssnnnnssssnnnnssssnnnnnssnnas 17
WHAT IS THE HIGH-LEVEL API?. oo 17

-1 -

PAPI User’s Guide Version 3.5.0

INITIALIZING THEHIGH-LEVEL APIL coooiiiiiiiiiiiiaaeeiieiiiiiiiiiiieeeuniiiiisieeennnnnns 17
EXECUTION RATE CALLS o ieiiiiiiiiieeitiititessiiiiiiiisseiesssnnsiissiiissssssisssseeeens 19
READING, ACCUMULATING, AND STOPPING COUNTERS. ..vviiiiiiiiiiiiiiiiiieuienss 20
LOW-LEVEL APIL......ccccucuumusssassssnsasssnssnsnssnssnnsnnsnnnsnnnnnnnnnnnnns sns 21
WHAT IS THE LOW-LEVEL API?,...ccoveieeeeeiiiissssseieeeeeeeeeeeeeeeesssssssssssssiass 21
INITIALIZATION OF THE LOW-LEVEL APL ...uuueeeeiiiiieiieieiieeeeieeeeeeeeeeieeen. 22
EVENT SETS. . uuiuuuieuuienuienuienniennieanrasiantastastastastasrassassassassansanse 24
WHAT ARE EVENT SET S 2. iiiiiiiiiiiiiiiiiiieeuiiiiiiiiiiiiisiiieiiiimesisseiiessssssisns 24
CREATING AN EVENT SET . iiiiittttuiiiiiiiiiiiiiieiiiieisssssssssisssssssssssmessssssssses 24
ADDING EVENTS TO AN EVENT SET.uuuuiiiiiiiiiiiiiiiiiiiieuuiiiisessissssieeesssssssies 24
STARTING, READING, ADDING, AND STOPPING EVENTS IN AN EVENT SET....26
RESETTING EVENTS IN AN EVENT SET..evveiieeiiiiiiiiiiiississssssssssssssssssssssssanns 27
REMOVING EVENTS IN AN EVENT SET.uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeuuniiiisseeenns 28
EMPTYING AND DESTROYINGAN EVENT SET.uvuuiiiiiiiiiiiiiiiiiiueenunnuiiiiiiiiannn. 29
THE STATE OF AN EVENT SET..uuuiiiiiiiiitiiuiiiiiiiiiiiissinsiisssiiissssssssssseeeesnnnns 30
GETTING AND SETTING OPTIONS. .o uiiiiiiiiiiiiiiiiiiissseusssisssssmesseecessssssssees 33
SIMPLE CODE EXAMPLES......cocccucassasssasassnsasnssnsnsssnnsnnnnns sannnas 40
HIGH-LEVEL AP ..oveiiiiiiiiiiieeeeeeeeeeeeissssssseseseseeeeeeeeeesssssssssssensssssnnnes 40
LOW-LEVEL APL ettt eeieeettttttaaeauuuttiiiiiiseeeeeeeeieeessssnsisseeeens 41
PAPI TIMERSccccceecuseeuseensssnssnnsssnsmannasnnnsnnnsnnnnnnsnnnnneadd
REAL TIME.....cvveuussmunssmnnnannssnnnssnnn snnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnns 43
VIRTUAL TIME....iicsieuussmunssnsnsanssnnannnnnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnns 44
PAPI SYSTEM INFORMATIONcccocccscucncasnnnsennnnnsnnsnns:46
EXECUTABLE INFORMATION....ccccecscusassssassssnssssnsansnsannnnannnnns 46
HARDWARE INFORMATION....ccccecusmcussasssasassnsassnsnnnsnnnnnnnnnnnns 47
SUBSTRATE INFORMATION....ccoccucusssassasnsnsnssnnassnnansnsnnnnnnnnnas 49
ADVANCED PAPI FEATUREScccceccncnsensensnnnnnnsnnsnnsensemd0
MULTIPLEXING.....coccuucussasssassasssssnssssssassssnssnsnssnsnssnnnannnnnnnnnnns 50
WHAT IS MULTIPLEXING?..cuusecussaunssnnsssnnnnnnnsnnnnsssnnsnnnnnnnnnnnns 50
USING PAPI WITH MULTIPLEXING. . iiiiiiiiiiiiiieensssnsnisssssssssssssieeeiieessssmesas 50
ISSUES OF MULTIPLEXING. .o evvveeeeeeensssiissssseiissseeeeeeeesssssseeeeeessssssseeeeeeeenns 52
USING PAPI WITH PARALLEL PROGRAMS.....:vcvcucunsennnnnnnnnnns 53
THREADS. . ettt eteeettessseeseeee e e eeeeeeessssssssssssssssmeeeeeeeeeeeeeeeeeeeeeeeeeees 53

| = T 56
OVERFLOW...vvcusssuussnnsssnnsssnnsnnnnssnnsnannsnnnnsnnnnnnannsnnnnsnnnnnnnnnnnnn sns 58
WHAT IS AN OVERFLOW 2, sttt iiiiiiiiitiutuinisisiiisiiisiiieeesimesessssssssseieessssssssees 58
BEGINNING OVERFIOWS IN EVENT SETS. ..ooovveiiiiiiieeieeeeiiiiseeeeeeeeesisssieeeess 58
STATISTICAL PROFILING....ccceeccucassasssasssssnnssnsansnsanansnnnnnnnnnas 60
WHAT IS STATISTICAL PROFILING?, . .iiiiiseeeeeeeeeeeeeiimereeeeeeeesseeeeeseenennes 60
GENERATINGA PCHISTOGRAM, s st tttttttetuiiiiiiiiiiiieiiiieeiiisssssussnniiiiiiiissins. 61
DATA AND INSTRUCTION ADDRESS RESTRICTION..cccssusenanss 63
INErOGQUCEION. v ettt tiiieisisse ettt teteeeesssssssssssssssseeeeeiesessssssssssssssssssssseececeen 63
The PAPL INteIfacCe. . .uuuusssieeieeeeeeeeeneenensssssissssssseeeeeeeeeeeeeeeessssssssssssseeeeenns 63

PAPI User’s Guide Version 3.5.0

Itanium IdiOSYNCIrASI€S. .ttt ettt ettt ettt ettt et ettt eesaseeeessseeeeeasees 64
Supporting SOftWAIe€. . .ueeeeeeeeeteiisssssssseeeeeeeeeeesssssssssssssemessssssssssssssssssssas 65
The data range.C TeSt CaASe...uuuuueeeeeeeteisssssssssrereeeeeeieeeiseissssssmeseeeieeieeeeeees 65
The papi _native avVail Utility.......oeeeeeeeeeeeeeeeeeeeeessiisieeseeeeeeieeeeeeeeeeeeeiieeeeens 67
PAPI ERROR HANDLING ...occovesecuseusssnssnnsannsannnannnnnnnnnns 69
ERROR CODES....cccoseeussamussnnnssnnsssnnssannssnsnssnnns sannnnnnnnnnnnnnnnnnnns 69
CONVERTING ERROR CODES TO ERROR MESSAGHES. ..cvveiiiiineeeiiiiiiineeeeeenn, 69
FURTHER INFORMATION ...cvccoveeusesusmussnnsssnsannnansnnnnnnnns 72
PAPI HOME PAGE.....covuuuuussmmmnssssnsnnsssnnnns snnannnnnsnnnsnnnnnnnnnnnnnnns 72
PAPI MAILING LISTS...ccuusseecnsnssnnssnnssnnsnnssnnsnnnssnnnannnnnnnnnsnnnnns 72
REPORTING BUGS...cciieeuusssmmmnssssnnnsssnsnnssannnnsnnnssnnnnnnnnnnnnnsnnnnns 72
PAPI PROGRAMMER’S REFERENCE......ccoucsteusssassnnsnnsnsnnnnnnnnnns 72
TABLE OF PRESET EVENTS....cccuseeusseeassssnssnsnsannsnnnnsnnnnnannns sunas 73
SUPPORTED PLATFORMS...ccuutecussasnsssunssnnnsannsnnnnnnnnns snsnnnnnnnnans 73
SUPPORTED TOOLS...ccuusseeuusssmnunsssnnsnssssnsssnssnnssnnsassnnnsnnnnsnnnnss 73
HARDWARE REFERENCES....ciceeuusssmmnnsssnnassnnssnnssnnsnnnnnnsnnnsnnnss 73
BIBLIOGRAPHY ..cvvecussessesnssssnssssnssnsnssnnnssnnnssnnnnannnnannnns 74

PAPI User’s Guide Version 3.5.0

INTENDED AUDIENCE

This document is intended to provide the PAPI user with a discussion of how to use
the different components and functions of PAPI. The intended users are application
developers and performance tool writers who need to access performance data to
tune and model application performance. The user is expected to have some level of
familiarity with either the C or Fortran programming language.

ORGANIZATION OF THIS DOCUMENT
INTRODUCTION TO PAPI

This section provides an introduction to PAPI by describing the project, its
motivation, and its architecture.

INSTALLING PAPI

This section provides an installation guide for PAPI. It states the necessary steps in
order to install PAPI on the various supported operating systems.

C AND FORTRAN CALLING INTERFACES

This section states the header files in which function calls are defined and the form
of the function calls for both the C and Fortran calling interfaces. Also, it provides a
table that shows the relation between certain pseudo-types and Fortran variable
types.

EVENTS

This section provides an explanation of events as well as an explanation of native
and preset events. The preset query and translation functions are also discussed in
this section. There are code examples using native events, preset query, and preset
translation with the corresponding output.

PAPI COUNTER INTERFACES

This section discusses the high-level and low-level interfaces in detail. The
initialization and functions of these interfaces are also discussed. Code examples
along with the corresponding output are included as well.

PAPI User’s Guide Version 3.5.0
PAPI TIMERS

This section explains the PAPI functions associated with obtaining real and virtual
time from the platform’s timers. Code examples along with the corresponding output
are included as well.

PAPI SYSTEM INFORMATION

This section explains the PAPI functions associated with obtaining hardware and
executable information. Code examples along with the corresponding output are
included as well.

ADVANCED PAPI FEATURES

This section discusses the advanced features of PAPI, which includes
multiplexing, threads, MPI, overflows, and statistical profiling. The functions
that are use to implement these features are also discussed. Code examples
along with the corresponding output are included as well.

PAPI ERROR HANDLING

This section discusses the various negative error codes that are retumed by the
PAPI functions. A table with the names, values, and descriptions of the return codes
are given as well as a discussion of the PAPI function that can be used to convert
error codes to error messages along with a code example with the corresponding
output.

PAPI MAILING LISTS

This section provides information on two PAPI mailing lists for the users to ask
various questions about the project.

APPENDICES

These appendices provide various listings and tables, such as: a table of preset
events and the platforms on which they are supported, a table of PAPI supported
tools, more information on native events, multiplexing, overflow, and etc.

DOCUMENT CONVENTION

handle error (1)

A function that passes the argument of 1. The user should provide this
function to handle errors.

PAPI User’s Guide Version 3.5.0

INTRODUCTION TO PAPI

WHAT IS PAPI?

PAPI is an acronym for Performance Application Programming Interface. The PAPI
Project is being developed at the University of Tennessee’s Innovative Computing
Laboratory in the Computer Science Department. This project was created to
design, standardize, and implement a portable and efficient API (Application
Programming Interface) to access the hardware performance counters found on
most modern microprocessors.

BACKGROUND

Hardware counters exist on every major processor today, such as Intel Pentium,
Core, IA-64, AMD Opteron,and IBM POWER series. These counters can provide
performance tool developers with a basis for tool development and application
developers with valuable information about sections of their code that can be
improved. However, there are only a few APIs that allow access to these counters,
and many of them are poorly documented, unstable, or unavailable. In addition,
performance metrics may have different definitions and different programming
interfaces on different platforms.

These considerations motivated the development of the PAPI Project. Some goals of
the PAPI Project are as follows:

» To provide a solid foundation for cross platform performance analysis tools

» To present a set of standard definitions for performance metrics on all
platforms

« To provide a standardize API among users, vendors, and academics

 To be easy to use, well documented, and freely available

http://icl.cs.utk.edu/papi

PAPI User’s Guide Version 3.5.0

ARCHITECTURE

The Figure below shows the internal design of the PAPI architecture. In this figure,
we can see the two layers of the architecture:

Tools
Portable PAPT High Level
Layer PAPT Low Level
PAPI Machine Dependent Substrate
Machine Kernel Extension
Specific
Layer Operating System

Hardware Performance Counters

The Portable Layer consists of the API (low level and high level) and machine
independent support functions.

The Machine Specific Layer defines and exports a machine independent interface
to machine dependent functions and data structures. These functions are defined in
the substrate layer, which uses kernel extensions, operating system calls, or
assembly language to access the hardware performance counters. PAPI uses the
most efficient and flexible of the three, depending on what is available.

PAPI strives to provide a uniform environment across platforms. However, this is not
always possible. Where hardware support for features, such as overflows and
multiplexing is not supported, PAPI implements the features in software where
possible. Also, processors do not support the same metrics, thus you can monitor
different events depending on the processor in use. Therefore, the interface
remains constant, but how it is implemented can vary. Throughout this guide,
implementation decisions will be documented where it can make a difference to the
user, such as overhead costs, sampling, and etc.

-7 -

http://www.cs.utk.edu/~lparker/PAPICOUNTERINTERFACES.htm

PAPI User’s Guide Version 3.5.0

INSTALLING PAPI

On some of the systems that PAPI supports, you can install PAPI right out of the box
without any additional setup. Others require drivers or patches to be installed first.

Because installation instructions vary from platform to platform, please find
your particular Operating System and hardware section in the
/papi/INSTALL.txt file for current information on exactly how to install
PAPI for your configuration.

PAPI User’s Guide Version 3.5.0

C AND FORTRAN CALLING INTERFACES

PAPI is written in C. The function calls in the C interface are defined in the header
file, papi.h and consist of the following form:

<returned data type> PAPI function name(argl, arg2z,..)

The function calls in the Fortran interface are defined in the header file, fpapi.h and
consist of the following form:

PAPIF function name(argl, argZ2, .., check)

As you can see, the C function calls have equivalent Fortran function calls
(PAPI_<call> becomes PAPIF_<call>). This is generally true for most function calls,
except for the functions that return C pointers to structures, such as PAPI_get_opt
and PAPI_get_executable_info, which are either not implemented in the Fortran
interface, or implemented with different calling semantics. In the function calls of
the Fortran interface, the return code of the corresponding C routine is
returned in the argument, check.

For most architectures, the following relation holds between the pseudo-types listed
and Fortran variable types:

Pseudo-type Fortran type Description
C_INT INTEGER Default Integer type
C_FLOAT REAL Default Real type
C_LONG_LONG INTEGER*8 Extended size integer
C_STRING CHARACTER*(PAPI_MAX_ STR_IEN) | Fortran string
C_INT FUNCTION | EXTERNAL INTEGER FUNCTION Fortran function

returning integer result

Array arguments must be of sufficient size to hold the input/output from/to the
subroutine for predictable behavior. The array length is indicated either by the
accompanying argument or by internal PAPI definitions.

Subroutines accepting C_STRING as an argument are on most implementations
capable of reading the character string length as provided by Fortran. In these
implementations, the string is truncated or space padded as necessary. For other
implementations, the length of the character array is assumed to be of sufficient
size. No character string longer than PAPI_MAX_STR_LEN is returned by the
PAPIF interface.

PAPI User’s Guide Version 3.5.0

EVENTS

WHAT ARE EVENTS?

Events are occurrences of specific signals related to a processor’s function.
Hardware performance counters exist as a small set of registers that count events,
such as cache misses and floating point operations while the program executes on
the processor. Monitoring these events facilitates correlation between the structure
of source/object code and the efficiency of the mapping of that code to the
underlying architecture. Each processor has a humber of events that are native to
that architecture. PAPI provides a software abstraction of these architecture-
dependent native events into a collection of preset events that are accessible
through the PAPI interface.

NATIVE EVENTS

WHAT ARE NATIVE EVENTS?

Native events comprise the set of all events that are countable by the CPU. There
are generally far more native events available than can be mapped onto PAPI preset
events. Even if no preset event is available that exposes a given native event,
native events can still be accessed directly. To use native events effectively you
should be very familiar with the particular platform in use. PAPI provides access to
native events on all supported platforms through the low-level interface. Native
events use the same interface as used when setting up a preset event, but since a
PAPI preset event definition is not available for native events, a native event name
must often be translated into an event code before it can be used.

Native event codes and names are platform dependent, so native codes for
one platform are not likely to work for any other platform. To determine the
native events for your platform, see the native event lists for the various platforms
in the processor architecture manual. Every attemptis made to keep native event
names used by PAPI as similaras possible to those used in the vendor
documentation. This is not always possible. The utility code

util/papi native avail provides insight into the names of the native events for a
specific platform.

Native events are specified as arguments to the low-level function, PAPI_add_event
in @ manner similar to adding PAPI preset events. In the following code example, a
native event name is converted to an event code and added to an eventset by using
PAPI_add_event:

-10 -

http://icl.cs.utk.edu/papi/links

PAPI User’s Guide Version 3.5.0

#include <papi.h>
#include<stdio.h>

main ()

{

int retval, EventSet = PAPI NULL;
unsigned int native = 0x0;

PAPI event info t info;

/* Initialize the library */
retval = PAPI library init (PAPI VER CURRENT) ;

if (retval != PAPI_VER_CURRENT) {
printf (“PAPI library init error!\n”);
exit (1) ;

}

if (PAPI create eventset (&EventSet) != PAPI OK)

handle error(1);

/* Find the first available native event */
native = NATIVE MASK | O;
if (PAPI get event info(native, &info) != PAPI OK) {
if (PAPI enum event (&native, 0) != PAPI OK)
handle error(1l);

}

/* Add it to the eventset */
if (PAPI add event (EventSet, native) != PAPI OK)
handle error(1);

}

For more code examples using native events, see ctests/native.c and
util/native avail.c in the papi source distribution.

PRESET EVENTS

WHAT ARE PRESET EVENTS?

Preset events, also known as predefined events, are a common set of events
deemed relevant and useful for application performance tuning. These events are
typically found in many CPUs that provide performance counters and give access to
the memory hierarchy, cache coherence protocol events, cycle and instruction
counts, functional unit, and pipeline status. Furthermore, preset events are
mappings from symbolic names (PAPI preset name) to machine specific definitions
(native countable events) for a particular hardware resource. For example, Total
Cycles (in user mode) is PAPI_TOT_CYC. Also, PAPI supports presets that may be
derived from the underlying hardware metrics. For example, Total L1 Cache Misses
(PAPI_L1_TCM) might be the sum of L1 Data Misses and L1 Instruction Misses on a
given platform. A preset can be either directly available as a single counter, derived
using a combination of counters, or unavailable on any particular platform.

-11 -

PAPI User’s Guide Version 3.5.0

The PAPI library names approximately 100 preset events, which are defined in the
header file, papiStdEventDefs.h. For a given platform, a subset of these preset
events can be counted though either a simple high-level programming interface or a
more complete C or Fortran low-level interface. For a representative list of all the
preset events on some supported platforms, visit the PAPI web page:
http://icl.cs.utk.edu/projects/papi/presets.html. Note that processors and software
are revised over time, and this list may not be up to date. To determine exactly
which preset events are available on a specific platform, run util/papi avail.c in
the papi source distribution.

The exact semantics of an event counter are platform dependent. PAPI preset
names are mapped onto available events so as to map as many countable events as
possible on different platforms. Due to hardware implementation differences, it is
not necessarily feasible to directly compare the counts of a particular PAPI preset
event obtained on different hardware platforms.

EVENT QUERY

The following low-level functions can be called to query about the existence of a
preset or native event (in other words, if the hardware supports that certain event),
and to get details about that event:

C:
PAPI query event (EventCode)

PAPI get event info(EventCode, &info)
PAPI enum event (&EventCode, modifier)

Fortran:

PAPIF query event (EventCode, check)

PAPIF get event info (EventCode, symbol, longDescr, shortDescr, count,
note, flags, check)

PAPIF enum event (&EventCode, modifier, check)

ARGUMENTS
EventCode -- a defined event, such as PAPI TOT INS.
symbol -- the event symbol, or name, such as the preset name, PAPI BR CN.

longDescr -- a descriptive string for the event of length less than
PAPI_MAX STR LEN.

-12 -

http://icl.cs.utk.edu/projects/papi/presets.html

PAPI User’s Guide Version 3.5.0

shortDescr -- a short descriptive string for the event of length less than 18
characters.

count -- zero if the event CANNOT be counted.
note -- additional text information about an event (if available).

flags -- provides additional information about an event, e.g., PAPI_DERIVED for an
event derived from 2 or more other events.

modifier -- modifies the search criteria; for preset events, returns all events or
only available events; for native events, the definition is platform dependent.

PAPI query event asks the PAPI library if the preset or native event can be
counted on this architecture. If the event CAN be counted, the function returns
PAPI_OK. If the event CANNOT be counted, the function returns an error code.

PAPI get event info asks the PAPI library for a copy of an event descriptor. This
descriptor can then be used to investigate the details about the event. In Fortran,
the individual fields in the descriptor are returned as parameters.

PAPI enum_event asks the PAPI library to return an event code for the next
sequential event based on the current event code and the modifier. This function
can be used to enumerate all preset or native events on any platform. See
util/papi avail.c Orutil/papi native avail.c for details.

EXAMPLE:

#include <papi.h>
#include <stdio.h>

main ()
{
int EventSet = PAPI NULL;
unsigned int native = 0x0;
int retval, 1i;
PAPI preset info t info;
PAPI preset info t *infostructs;

/* Initialize the library */
retval = PAPI library init (PAPI VER CURRENT) ;

if (retval != PAPI_VER_CURRENT) {
fprintf (stderr, "PAPI library init error!\n");
exit (1) ;

}

/* Check to see if the preset, PAPI TOT INS, exists */

if (PAPI query event (PAPI TOT INS) != PAPI OK) {
fprintf (stderr,"No instruction counter? How lame.\n");
exit (1),

- 13 -

PAPI User’s Guide Version 3.5.0
}

/* Get details about the preset, PAPI TOT INS */

if (PAPI get event info (PAPI TOT INS, &info) != PAPI OK) {
fprintf (stderr,"No instruction counter? How lame.\n");
exit (1),

}

if (info.count>0)
printf ("This event is available on this hardware.\n");

if (info.flags & PAPI DERIVED)
printf ("This event is a derived event on this hardware.\n");

/* Count the number of available preset events between
PAPI TOT INS and the end of the preset list */

retval = 0;

i = PAPI TOT INS;

while (PAPI enum event (&i, TRUE) == PAPI OK) {
retval++;

}

OUTPUT (if PAPI_TOT INS is available on your system):

This event is available on this hardware.

In the above code example, PAPI query event is used to see if a preset
(PAPI_TOT INS) exists, PAPI get event info is used to query details about the
event, and PAPI enum_event is used to count the number of events in the preset
list after this preset.

On success, all three of these functions return PAPI 0K, and on error, a non-zero
error code is returned.

-14 -

PAPI User’s Guide Version 3.5.0

EVENT TRANSLATION

A preset or native event can be referenced by name or by event code. Most PAPI
functions require an event code, while most user input and output is in terms of
names. Two low-level functions are provided to translate between these formats:

C:

PAPI event name to code (EventName, EventCode)
PAPI event code to name (EventCode, EventName)

Fortran:

PAPIF event name to code (EventName, EventCode, check)
PAPIF event code to name (EventCode, EventName, check)

ARGUMENTS

EventCode -- a preset or native event of integer type, such as PAPI TOT INS.
EventName -- the event name string, such as the preset name, “"PAPI BR CN”.

Note that the preset does not actually have to be available on a given platform to
call these functions. Native event names are platform specific and where feasible
match those given in the vendor documentation.

PAPI event name to code is used to translate an ASCII PAPI presetor native
event name into an integer PAPI event code.

PAPI event code to name iS used to translate an integer PAPI event code into an
ASCII PAPI preset or native event name.

Using PAPI event code to_ name in conjunction with PAPTI enum event is a good
way to explore the names of native events on a specific platform, as shown in the
following code example:

#include <papi.h>
#include <stdio.h>

main ()

{
int EventCode, retval;
char EventCodeStr[PAPI MAX STR LEN];

/* Initialize the library */
retval = PAPI library init (PAPI VER CURRENT) ;

- 15 -

Version 3.5.0

PAPI User’s Guide
if (retval != PAPI_VER_CURRENT) {
fprintf (stderr, “PAPI library init error!\n”);
exit (1) ;

}

EventCode = 0 | NATIVE MASK;

do {
/* Translate the integer code to a string */
if (PAPI event code to name (EventCode, EventCodeStr) == PAPI OK)
/* Print all the native events for this platform */
printf ("Name: %s\nCode: %x\n", EventCodeStr, EventCode);
} while (PAPI enum event (&EventCode, 0) == PAPI OK);
}
OUTPUT:
Name: DATA MEM REFS
Code: 40000000
Name: DCU LINES IN
Code: 40000001
Name: DCU M LINES IN
Code: 40000002
Name: SEG REG_RENAMES TOT
Code: 40000078
Name: RET SEG RENAMES
Code: 40000079

The output will vary depending on the platform. This was generated on an Intel
Pentium III processor.

On success, all the functions return PAPI_OK and on error, a non-zero error code is

retu

rned.

- 16 -

PAPI User’s Guide Version 3.5.0

PAPI'S COUNTER INTERFACES

HIGH-LEVEL API

WHAT IS THE HIGH-LEVEL API?

The high-level API (Application Programming Interface) provides the ability to start,
stop, and read the counters for a specified list of events. It is meant for
programmers wanting simple event measurements using only PAPI preset events.
Some of the benefits of using the high-level API rather than the low-level API are
that it is easier to use and requires less setup (additional calls). This ease of use
comes with somewhat higher overhead and loss of flexibility.

It should also be noted that the high-level API can be used in conjunction with the
low-level API and in fact does call the low-level API. However, the high-level API by
itself is only able to access those events countable simultaneously by the underlying
hardware.

There are eight functions that represent the high-level API that allow the user to
access and count specific hardware events. Note that these functions can be
accessed from both C and Fortran. For a code example of using the high-level
interface, see Simple Code Examples: High Level API or ctests/high-level.c in
the PAPI source distribution.

For full details on the calling semantics of these functions, please refer to
the PAPI Programmer’s Reference.

INITIALIZING THE HIGH-LEVEL API

The PAPI library is initialized implicitly by several high-level API calls. In addition to
the three rate calls discussed later, either of the following two functions also
implicitly initializes the library:

C:

PAPI num counters()
PAPI start counters (*events, array length)

Fortran:

PAPIF num counters (check)
PAPIF start counters (*events, array length, check)

-17 -

PAPI User’s Guide Version 3.5.0
ARGUMENTS

*events --an array of codes for events such as PAPI INT INSor a native event code.
array length --the numberof items in the events array.

PAPI num counters returns the optimal length of the values array for high-level
functions. This value corresponds to the number of hardware counters supported by
the current substrate. PAPI num counters initializes the PAPI library using

PAPI library init if necessary.

PAPI start counters initializes the PAPI library (if necessary) and starts counting
the events named in the events array. This function implicitly stops and initializes
any counters running as a result of a previous call to PAPT start counters. Itis
the user’s responsibility to choose events that can be counted simultaneously by
reading the vendor’s documentation. The size of array_length should be no larger
than the value returned by PAPI num counters.

In the following code example, PAPI num counters is used to initialize the library
and to get the number of hardware counters available on the system. Also,
PAPI start counters is used to start counting events:

#include <papi.h>

main ()

{
int Events[2] = { PAPI TOT CYC, PAPI TOT INS };
int num hwcntrs = 0

/* Initialize the PAPI library and get the number of counters available */
if ((num _hwcntrs = PAPI num counters()) <= PAPI OK)
handle error(1l);

printf ("This system has %d available counters.", num hwcntrs);

if (num_hwcntrs > 2)
num_hwcntrs = 2;

/* Start counting events */
if (PAPI start counters (Events, num hwcntrs) != PAPI OK)
handle error(1l);

POSSIBLE OUTPUT (varies on different systems):

This system has 4 available counters.

- 18 -

PAPI User’s Guide Version 3.5.0

On success, PAPI num counters returns the number of hardware counters available
on the system and on error, a non-zero error code is returned.

Optionally, the PAPI library can be initialized explicitly by using
PAPI library init. This can be useful if you wish to call PAPI low-level API

functions before using the high-level functions.

EXECUTION RATE CALLS

Three PAPI high-level functions are available to measure floating point or total
instruction rates. These three calls are shown below:

C:

PAPI flips(*real time, *proc time, *flpins, *mflips)
PAPI flops(*real time, *proc time, *flpins, *mflops)
PAPI ipc(*real time, *proc time, *ins, *ipc)

Fortran:

PAPIF flips(real time, proc time, flpins, mflips, check)
PAPIF flops(real time, proc time, flpins, mflops, check)
PAPIF ipc(real time, proc time, ins, ipc, check)

ARGUMENTS

*real time -- the total real (wallclock) time since the first rate call.

*proc time -- the total process time since the first rate call.

*flpins -- the total floating point instructions since the first rate call.

*mflips, *mflops — Millions of floating point operations or instructions per second
achieved since the latest rate call.

*ins -- the total instructions executed since the first PAPI_ipc call.

*ipc - instructions per cycle achieved since the latest PAPI_ipc call.

The first execution rate call initializes the PAPI library if needed, sets up the
counters to monitor either PAPI FP INS, PAPI FP OPS Or PAPI TOT INS

(depending on the call), and PAPTI TOT CYC events, and starts the counters.
Subsequent calls to the same rate function will read the counters and return total
real time, total process time, total instructions or operations, and the appropriate
rate of execution since the last call. A call to PAPI stop counters will reinitialize all
values to 0. Sequential calls to different execution rate functions will return an error.

Note that on many platforms there may be subtle differences between floating point
instructions and operations. Instructions are typically those execution elements
most directly measured by the hardware counters. They may include floating point
load and store instructions, and may count instructions such as FMA as one, even

- 19 -

PAPI User’s Guide Version 3.5.0

though two floating point operations have occurred. Consult the hardware
documentation for your system for more details. Operations represent a derived
value where an attempt is made, when possible, to more closely map to the
theoretical definition of a floating point event.

On success, the rate calls return PAPI OK and on error, a non-zero error code is
returned.

For a code example, see ctest/flops.c Or ctest/ipc.c in the papi source
distribution.

READING, ACCUMULATING, AND STOPPING COUNTERS

Counters can be read, accumulated, and stopped by calling the following high-level
functions, respectively:

C:

PAPI read counters(*values, array length)
PAPI accum counters (*values, array length)
PAPI stop counters(*values, array length)

Fortran:

PAPIF read counters(*values, array length, check)
PAPIF accum counters(*values, array length, check)
PAPIF stop counters(*values, array length, check)

ARGUMENTS

*values -- an array where to put the counter values.
array length -- the number of items in the *values array.

PAPI read counters, PAPI accum counters and PAPI stop counters all
capture the values of the currently running counters into the array, values. Each of
these functions behaves somewhat differently.

PAPI read counters copies the current counts into the elements of the values
array, resets the counters to zero, and leaves the counters running.

PAPI accum_counters adds the current counts into the elements of the values
array and resets the counters to zero, leaving the counters running. Care should be
exercised not to mix calls to PAPT accum counters with calls to the execution rate
functions. Such intermixing is likely to produce unexpected results.

-20 -

PAPI User’s Guide Version 3.5.0
PAPI stop counters stops the counters and copies the current counts into the
elements of the values array. This call can also be used to reset the rate functions
if used with a NULL pointer to the values array.

In the following code example, PAPI read counters and PAPI stop counters are
used to copy and stop event counters in an array, respectively:

#include <papi.h>
#define NUM EVENTS 2

main ()

{
int Events[NUM EVENTS] = {PAPI TOT INS, PAPI TOT CYC};
long long values[NUM EVENTS];

/* Start counting events */
if (PAPI start counters (Events, NUM EVENTS) != PAPI OK)
handle error(1l);

/* Do some computation here*/

/* Read the counters */
if (PAPI read counters(values, NUM EVENTS) != PAPI OK)
handle error (1);

/* Do some computation here */

/* Stop counting events */
if (PAPI stop counters(values, NUM EVENTS) != PAPI OK)
handle error(l);

On success, all of these functions return PAPI OK and on error, a non-zero error
code is retumed.

LOW-LEVEL API

WHAT IS THE LOW-LEVEL API?

The low-level API (Application Programming Interface) manages hardware events in
user-defined groups called Event Sets. It is meant for experienced application
programmers and tool developers wanting fine-grained measurement and control of
the PAPI interface. Unlike the high-level interface, it allows both PAPI preset and
native events. Other features of the low-level API are the ability to obtain
information about the executable and the hardware as well as to set options for
multiplexing and overflow handling. Some of the benefits of using the low-level API
rather than the high-level API are that it increases efficiency and functionality.

-21 -

PAPI User’s Guide Version 3.5.0

It should also be noted that the low-level interface could be used in conjunction with
the high-level interface, as long as attention is paid to insure that the PAPI library is
initialized prior to the first low-level PAPI call.

The low-level API is only as powerful as the substrate upon which it is built. Thus,
some features may not be available on every platform. The converse may also be
true, that more advanced features may be available on every platform and defined
in the header file. Therefore, the user is encouraged to read the documentation for
each platform carefully. There are approximately 50 functions that represent the
low-level API. For a code example of using the low-level interface, see Simple Code
Examples: Low-Level API or ctests/low level.c in the PAPI source distribution.

Note that most functions are implemented in both C and Fortran, but some
are implemented in only one of these two languages. For full details on the
calling semantics of these functions, please refer to the PAPI Programmer’s
Reference.

INITIALIZATION OF THE LOW-LEVEL API

The PAPI library must be initialized before it can be used. It can be initialized
explicitly by calling the following low-level function:

C:

PAPI library init (version)
Fortran:

PAPIF library init (check)
ARGUMENT

version -- upon initialization, PAPI checks the argument against the internal value
of PAPI_VER CURRENT when the library was compiled. This guards against portability
problems when updating the PAPI shared libraries on your system.

Note that this function must be called before calling any other low-level
PAPI function.

On success, this function returns PAPI VER CURRENT.

On error, a positive return code other than PAPI VER CURRENT indicates a library
version mismatch and a negative return code indicates an initialization error.

Beginning with PAPI 3.0, there are a number of options for examining the current
version number of PAPI:

-22 -

PAPI User’s Guide Version 3.5.0

PAPI VERSION produces an integer containing the complete current version
including MAJOR, MINOR, and REVISION components. Typically the REVISION
component changes with bug fixes or minor enhancements, the MINOR
component changes with feature additions or API changes, and the MAJOR
component changes with significant API structural changes.

PAPI VER_CURRENT contains the MAJOR and MINOR components and is useful for
determining library compatibility changes.

PAPI VERSION MAJOR,

PAPI VERSION MINOR,

PAPI VERSION REVISION are macros that extract specified component from the
version number.

The following is a code example of using PAPI library init to initialize the PAPI
library:

#include <papi.h>
#include <stdio.h>
int retval;

main ()

{

/* Initialize the PAPI library */
retval = PAPI library init (PAPI VER CURRENT) ;

if (retval != PAPI_VER_CURRENT && retval > 0) {
fprintf (stderr, "PAPI library version mismatch!\n");
exit (1) ;

}

if (retval < 0) {
fprintf (stderr, “Initialization error!\n”);
exit (1),

}

fprintf (stdout, “PAPI Version Number\n”);

fprintf (stdout, “MAJOR: $d\n”, PAPI MAJOR (retval));
fprintf (stdout, “MINOR: $d\n”, PAPI MINOR (retval));
fprintf (stdout, “REVISION: %d\n”, PAPI REVISION (retval));

OUTPUT FOR PAPI VERSION 3.5.0

PAPI Version Number
MAJOR: 3
MINOR: 5
REVISION: O

- 23 -

PAPI User’s Guide Version 3.5.0
EVENT SETS

WHAT ARE EVENT SETS?

Event Sets are user-defined groups of hardware events (preset or native), which are
used in conjunction with one another to provide meaningful information. The user
specifies the events to be added to an Event Set, and other attributes, such as: the
counting domain (user or kernel), whether or not the events in the Event Set are to
be multiplexed, and whether the Event Set is to be used for overflow or profiling.
Other settings for the Event Set are maintained by PAPI, such as: what low-level
hardware registers to use, the most recently read counter values, and the state of
the Event Set (running/not running). Event Sets provide an effective abstraction for
the organization of information associated with counting hardware events. The PAPI
library manages the memory for Event Sets with a user interface through integer
handles to simplify calling conventions. The user is free to allocate and use any
number of them provided the substrate can provide the required resources. Only
one Event Set can be in active use at any timein a given thread or process.

CREATING AN EVENT SET

An event set can be created by calling the following the low-level function:
C:

PAPI create eventset (*EventSet)

Fortran:
PAPIF create eventset (EventSet, check)
ARGUMENT

EventSet -- Address of an integer location to store the new EventSet handle.

Once it has been created, the user may add hardware events to the EventSet by
calling PAPI_add_event or PAPI_add_events.

On success, this function returns PAPI_OK. On error, a non-zero error code is
returned.

For a code example using this function, see the next section.

ADDING EVENTS TO AN EVENT SET

Hardware events can be added to an event set by calling the following the low-level
functions:

- 24 -

PAPI User’s Guide Version 3.5.0
C:

PAPI add event (EventSet, EventCode)
PAPI add events (EventSet, *EventCode, number)

Fortran:

PAPIF add event (EventSet, EventCode, check)
PAPIF add events (EventSet, EventCode, number, check)

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by

PAPI create eventset.

EventCode -- a defined event such as PAPI TOT INS.

*EventCode — address of an array of defined events.

number -- an integer indicating the number of events in the array *EventcCode.

PAPI add event adds a single hardware event to a PAPI event set.

PAPI add events does the same as PAPI add event, but for an array of hardware
event codes.

In the following code example, the preset event, PAPI TOT INS is added to an
event set:

#include <papi.h>
#include <stdio.h>

main ()

{
int EventSet = PAPI NULL;

int retval;

/* Initialize the PAPI library */
retval = PAPI library init (PAPI VER CURRENT) ;

if (retval != PAPI_VER_CURRENT) {
fprintf (stderr, "PAPI library init error!\n");
exit (1) ;

}

/* Create an EventSet */
if (PAPI create eventset (&EventSet) != PAPI OK)
handle error(1l);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) = PAPI_OK)
handle error(1l);

- 25 -

PAPI User’s Guide Version 3.5.0

On success, both of these functions return PAPI 0K and on error, a non-zero error
code is retumed.

STARTING, READING, ADDING, AND STOPPING EVENTS IN AN
EVENT SET

Hardware events in an event set can be started, read, added, and stopped by calling
the following low-level functions, respectively:

C:

PAPI start (EventSet)

PAPI read(EventSet, *values)
PAPI accum(EventSet, *values)
PAPI stop (EventSet, *values)

Fortran:

PAPIF start (EventSet, check)

PAPIF read(EventSet, values, check)
PAPIF accum(EventSet, values, check)
PAPIF stop (EventSet, values, check)

ARGUMENTS

EventSet -- an integer handle for a PAPI Event Set as created by
PAPI create eventset.
*values -- an array to hold the counter values of the counting events.

PAPI start starts the counting events in a previously defined event set.

PAPI read reads (copies) the counters of the indicated event set into the array,
values. The counters are left counting after the read without resetting.

PAPI accum adds the counters of the indicated event set into the array, values.
The counters are reset and left counting after the call of this function.

PAPI stop stops the counting events in a previously defined event set and returns
the current events.

The following is a code example of using PAPI start to start the counting of events
in an event set, PAPI read to read the counters of the same event set into the
array values, and PAPI stop to stop the counting of events in the event set:

#include <papi.h>

- 26 -

PAPI User’s Guide Version 3.5.0

#include <stdio.h>

main ()

{
int retval, EventSet = PAPI NULL;
long long values[1];

/* Initialize the PAPI library */
retval = PAPI library init (PAPI_VER_CURRENT) ;

if (retval != PAP17VER7CURRENT) {
fprintf (stderr, "PAPI library init error!\n");
exit (1) ;

}
/* Create the Event Set */
if (PAPI create eventset (&EventSet) != PAPI OK)
handle error(1l);
/* Add Total Instructions Executed to our EventSet */
if (PAPI add event (EventSet, PAPI TOT INS) != PAPI OK)
handle error(1l);
/* Start counting */
if (PAPI start (EventSet) != PAPI OK)
handle error (1);

/* Do some computation here */

if (PAPI read(EventSet, values) != PAPI OK)
handle error(1l);

/* Do some computation here */

if (PAPI stop (EventSet, values) != PAPI OK)
handle error(1l);

On success, these functions return PAPI OK and on error, a non-zero error code is
returned.

RESETTING EVENTS IN AN EVENT SET

The hardware event counts in an event set can be reset to zero by calling the
following low-level function:

C:
PAPI reset (EventSet)

Fortran:

-27 -

PAPI User’s Guide Version 3.5.0
PAPI reset (EventSet, check)

ARGUMENT

EventSet =-- an integer handle for a PAPI event set as created by
PAPI create eventset.

For example, the EventSet in the code example of the previous section could have
been reset to zero by adding the following lines:

if (PAPI reset (EventSet) != PAPI OK)
handle error(1l);

On success, this function returns PAPI OK and on error, a non-zero error code is
returned.

REMOVING EVENTS IN AN EVENT SET

A hardware event and an array of hardware events can be removed from an event
set by calling the following low-level functions, respectively:

C:

PAPI remove event (EventSet, EventCode)
PAPI remove events (EventSet, EventCode, number)

Fortran:

PAPIF remove event (EventSet, EventCode, check)
PAPIF remove events (EventSet, EventCode, number, check)

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by

PAPI create eventset

EventCode -- a defined event such as PAPI TOT_ INS or a native event.
*EventCode -- an array of defined events.

number -- an integer indicating the number of events in the array *EventCode.

PAPI remove event removes a single hardware event from a PAPI event set.

PAPI remove events, does the same as PAPI remove event, but for an array of
hardware event codes.

In the following code example, PAPI remove event is used to remove the event,
PAPI TOT INS, from an event set:

- 28 -

PAPI User’s Guide Version 3.5.0

#include <papi.h>
#include <stdio.h>
main ()

{

int retval, EventSet = PAPI NULL;

/* Initialize the PAPI library */
retval = PAPI library init (PAPI VER CURRENT) ;

if (retval != PAPI VER CURRENT) {
fprintf (stderr, "PAPI library init error!\n");
exit (1) ;

}

/* Create an EventSet */

if (PAPI create eventset (&EventSet) != PAPI OK)
handle error(1l);

/* Add Total Instructions Executed to our EventSet */

if (PAPI_add_event(EventSet, PAPI_TOT_INS) I= PAPI_OK)
handle error(l);

/* Remove event */

if (PAPI remove event (EventSet, PAPI TOT INS) != PAPI OK)
handle error(1l);

On success, these functions return PAPI OK and on error, a non-zero error code is
returned.

EMPTYING AND DESTROYING AN EVENT SET

All the events in an event set can be emptied and destroyed by calling the following
low-level functions, respectively:

C:

PAPI cleanup eventset (EventSet)
PAPI destroy eventset (EventSet)

Fortran:

PAPIF cleanup eventset (EventSet, check)
PAPIF destroy eventset (EventSet, check)

ARGUMENT

EventSet -- an integer handle for a PAPI event set as created by
PAPI create eventset.

- 20 -

PAPI User’s Guide Version 3.5.0

Note that the event set must be empty in order to use
PAPI destroy eventset.

In the following code example, PAPI cleanup eventset is used to empty all the
events from an event set and PAPI remove eventset is used to deallocate the
memory associated with the empty event set:

#include <papi.h>
#include <stdio.h>

main ()

{
int retval, EventSet = PAPI NULL;

/* Initialize the PAPI library */
retval = PAPI library init (PAPI VER CURRENT) ;

if (retval != PAPI_VER_CURRENT) {
fprintf (stderr, "PAPI library init error!\n");
exit (1) ;

}

/* Create the EventSet */

if (PAPI create eventset (&EventSet) != PAPI OK)
handle error(1l);

/* Add Total Instructions Executed to our EventSet */

if (PAPI add event (§EventSet, PAPI TOT INS) != PAPI OK)
handle error (1);

/* Remove all events in the eventset */

if (PAPI cleanup eventset (&EventSet) != PAPI OK)

handle error(1);
/* Free all memory and data structures, EventSet must be empty. */

if (PAPI destroy eventset (&EventSet) != PAPI OK)
handle error(1);

On success, these functions return PAPI 0K and on error, a non-zero error code is
returned.

THE STATE OF AN EVENT SET

The counting state of an Event Set can be obtained by calling the following low-level
function:

C:
PAPI state(EventSet, *status)
Fortran:

- 30 -

PAPI User’s Guide Version 3.5.0
PAPIF state (EventSet, status, check)

ARGUMENTS

EventSet -- an integer handle for a PAPI event set as created by
PAPI create eventset.

status -- an integer containing a Boolean combination of one or more of the
following nonzero constants as defined in the PAPI header file, papi.h:

PAPI STOPPED EventSet is stopped

PAPI RUNNING EventSet is running

PAPI PAUSED EventSet temporarily disabled by the library
PAPI NOT INIT EventSet defined, but not initialized

PAPI OVERFLOWING EventSet has overflow enabled

PAPI PROFILING EventSet has profiling enabled

PAPI MULTIPLEXING EventSet has multiplexing enabled

PAPI ATTACHED EventSet is attached to another thread/process

In the following code example, PAPI state is used to return the counting state of
an EventSet.

#include <papi.h>
#include <stdio.h>

main ()

{
int retval, status = 0, EventSet = PAPI NULL;

/* Initialize the PAPI library */
retval = PAPI library init (PAPI VER CURRENT) ;

if (retval != PAPI VER CURRENT) {
fprintf (stderr, "PAPI library init error!\n");
exit (1),

}

/* Create the EventSet */
if (PAPI create eventset (&EventSet) != PAPI OK)
handle error (1);

/* Add Total Instructions Executed to our EventSet */
if (PAPI_add_event(&EventSet, PAPI_TOT_INS) = PAPI_OK)
handle error(1l);

/* Start counting */
if (PAPI state(EventSet, &status) != PAPI OK)
handle error(1l);

printf ("State is now %d\n", status);

if (PAPI start(EventSet) != PAPI OK)

- 31 -

PAPI User’s Guide Version 3.5.0

handle error(1l);

if (PAPI state(EventSet, &status) != PAPI OK)
handle error(1l);

printf ("State is now %d\n", status);

OUTPUT:

State is now 1
State is now 2

On success, this function returns PAPI OK and on error, a non-zero error code is
returned.

-32 -

PAPI User’s Guide Version 3.5.0

GETTING AND SETTING OPTIONS

The options of the PAPI library or a specific event set can be obtained and set by
calling the following low-level functions, respectively:

C:

PAPI get opt (option, ptr)
PAPI set opt(option, ptr)

Fortran:

PAPIF get clockrate (clockrate)

PAPIF get domain(EventSet, domain, mode, check)

PAPIF get granularity(EventSet, granularity, mode, check)
PAPIF get preload(preload, check)

ARGUMENTS

option -- is an input parameter describing the course of action. The Fortran
calls are implementations of specific options. Possible values are defined in
papi.h and briefly described below:

Option name Explanation

General information requests

PAPI_ CLOCKRATE Get clockrate in MHz.

PAPI_MAX CPUS Get number of CPUs.

PAPI_MAX HWCTRS Get number of counters.

PAPI_EXEINFO Get Executable addresses for text/data/bss.
PAPI_HWINFO Get information about the hardware.

PAPI_ SHLIBINFO Get shared library information used by the program.

PAPI_SUBSTRATEINFO Get the PAPI featuresthe substrate supports.
PAPI_LIB_VERSION Get the full PAPI version of the library.
PAPI PRELOAD Get “LD_PRELOAD" environment equivalent.

Defaults for the global library

PAPI_DEFDOM Get/Set the default counting domain for newly created
event sets.

PAPI_DEFGRN Get/Set the default counting granularity.

PAPI_ DEBUG Get/Set the PAPI debug state and the debug handler. The

- 33 -

PAPI User’s Guide

Version 3.5.0

PAPI MULTIPLEX
PAPI MAX MPX CTRS

PAPI DEF MPX USEC

PAPI ATTACH

PAPI DETACH

PAPI DOMAIN

PAPTI GRANUL

PAPI DATA ADDRESS

PAPT INSTR ADDRESS

available debug states are defined in papi.h. The debug
state is available in ptr->debug.level. The debug handler is
available in ptr->debug.hander. For information regarding
the behavior of the handler, please see the man page for
PAPI_set_debug.

Multiplexing control
Get/Set options for multiplexing.
Get maximum number of multiplexing counters.

Get/Set the sampling time slice in microseconds for
multiplexing.

Manipulating individual event sets

Get thread or process id to which event set is attached.
Returns TRUE if currently attached. Set event set specified
in ptr->ptr->attach.eventset to be attached to thread or
process id specified in in ptr->attach.tid.

Get thread or process id to which event set is attached.
Returns TRUE if currently detached. Set event set specified
in ptr->ptr->attach.eventset to be detached from any
thread or process id.

Get/Set domain for a single event set. The event set is
specified in ptr->domain.eventset

Get/Set granularity for a single event set. The event set is
specified in ptr->granularity.eventset.
Currently unimplemented.

Platform Specific Options

Set data address range to restrict event counting for event
set specified in ptr->addr.eventset. Starting and ending
addresses are specified in ptr->addr.start and ptr-
>addr.end, respectively. If exact addresses cannot be
instantiated, offsets are returned in ptr->addr.start_off and
ptr->addr.end_off. Currently implemented on Itanium only.

Set instruction address range as described above. Itanium
only.

ptr --is a pointer to a structure that acts as both an input and output parameter.
It is defined in papi.h and below.

EventSet -- input; a reference to an EventSetInfo structure

clockrate -- output; cycle time of this CPU in MHz; *may* be an estimate
generated at init time with a quick timing routine

domain -- output; execution domain for which events are counted

-34 -

PAPI User’s Guide Version 3.5.0
granularity -- output; execution granularity for which events are counted
mode -- input; determines if domain or granularity are default or for the current

event set
preload-- output; environment variable string for preloading libraries

PAPI get opt and PAPI set opt query or change the options of the PAPI library or
a specific event set created by PAPI create eventset. In the C interface, these
functions pass a pointer to the PAPT option t structure. Not all options require or
return information in this structure. The Fortran interface is a series of calls
implementing various subsets of the C interface. Not all options in C are
available in Fortran.

Note that a number of options are available as separate entry points in both C and
Fortran. This can make calling sequences simpler. Calls that are simply wrappers to
PAPI get opt and PAPI set opt are listed below:

PAPI get_executable info Get the executable’s address space information.
PAPI_get hardware_info Get information about the system hardware.
PAPI get multiplex Get the multiplexing status of specified event set.

PAPI get_ shared lib_info Get information about the shared libraries used by
the process.

PAPI get substrate info Get information about the substrate features.

PAPI set debug Set the current debug level for PAPI.

PAPI set domain Set the default execution domain for new event
sets.

PAPI_set_granularity Get/Set the default granularity for new event sets.

PAPI_set multiplex Convert a standard event set to a multiplexed event
set.

The PAPI option t structure is actually a union of structures that provide specific
information for each of the options defined in the table above. This union is defined
as shown below:

- 35 -

PAPI User’s Guide Version 3.5.0

typedef union {
PAPI preload info t preload;
PAPI debug option_t debug;
PAPI granularity option t granularity;
PAPI granularity option t defgranularity;
PAPI domain option t domain;
PAPI domain option t defdomain;
PAPI attach option t attach;
PAPI multiplex option_ t multiplex;
PAPI hw info_ t *hw info;
PAPI shlib info t *shlib info;
PAPI exe info t *exe info;
PAPI substrate info t *sub info;
PAPI addr range option t addr;

} PAPI option t;

Each of these individual structures, as defined in papi .h, is shown below:

For pPAP I _PRELOAD:

typedef struct papi preload option {
char 1lib preload env[PAPI MAX STR LEN];
char lib preload sep;
char lib dir env[PAPI MAX STR LEN];
char lib dir sep;

} PAPI preload info t;

For paP I DEBUG:

typedef int (*PAPI debug handler t) (int code);
typedef struct papi debug option {

int level;

PAPI debug handler t handler;
} PAPI debug option t;

ForPAPI_DEFGRN and PAPI_GRANUL:

typedef struct papi granularity option {
int eventset;
int granularity;

} PAPI granularity option t;

ForPAPI_DEFDOM and PAPI DOMAIN:

typedef struct papi domain option {
int eventset;
int domain;

} PAPI domain option t;

ForPAPI_ATTACH and PAPI DETACH:

typedef struct papi attach option {
int eventset;
unsigned long tid;

} PAPI attach option t;

- 36 -

PAPI User’s Guide Version 3.5.0

For PAPI_MULTIPLEX and PAPI_DEF_MPX USEC:

typedef struct papi multiplex option {
int eventset;
int us;
int flags;

} PAPI multiplex option t;

FOFPAPI_HWINFO:

typedef struct papi hw info {

int ncpu; /* Number of CPU's in an SMP Node */

int nnodes; /* Number of Nodes in the entire system */

int totalcpus; /* Total number of CPU's in the entire system */
int vendor; /* Vendor number of CPU */

char vendor string[PAPI MAX STR LEN]; /* Vendor string of CPU */

int model; /* Model number of CPU */

char model string[PAPI MAX STR LEN]; /* Model string of CPU */

float revision; /* Revision of CPU */

float mhz; /* Cycle time of this CPU */

PAPI mh info t mem hierarchy; /* PAPI memory heirarchy description */

} PAPI hw info_ t;
FOfPAPI_SHLIBINFO and PAPI_EXEINFO:

typedef struct papi address map {
char name[PAPI HUGE STR LEN];

caddr_t text start; /* Start address of program text segment */
caddr_t text end; /* End address of program text segment */
caddr_t data_start; /* Start address of program data segment */
caddr t data_end; /* End address of program data segment */
caddr t bss start; /* Start address of program bss segment */
caddr_t bss_end; /* End address of program bss segment */

} PAPI address map t;

typedef struct papi shared 1lib info {
PAPI address map t *map;
int count;

} PAPI shlib info t;

typedef struct papi program info {
char fullname[PAPI HUGE STR LEN]; /* path+tname */
PAPI address map t address_info;

} PAPI exe info t;

-37 -

PAPI User’s Guide Version 3.5.0
FOFPAPI_SUBSTRATEINFO:
typedef struct papi substrate option {
char name[PAPI MAX STR LEN]; /* Name of the substrate we're using,

usually CVS RCS Id */

char version[PAPI MIN STR LEN]; /* Version of this substrate,

usually CVS Revision */

char support version[PAPI MIN STR LEN]; /* Version of the support library */
char kernel version[PAPI MIN STR LEN]; /* Version of the kernel PMC

support driver */

int num_cntrs; /* Number of hardware counters substrate supports */

int num mpx cntrs; /* Number of multiplexed counters the substrate or
PAPI supports */

int num preset events; /* Number of preset events the substrate supports */

int num native events; /* Number of native events the substrate supports */

int default domain; /* The default domain when this substrate is used */

int available domains; /* Available domains */

int default granularity; /*

Default granularity when this substrate is used */

int available granularities; /* Available granularities */

int multiplex timer sig; /* Signal number used by the multiplex timer,

0 if not */
int multiplex timer num; /* Number of the itimer or POSIX 1 timer used

by the multiplex timer */
int multiplex timer us; /* uS between switching of sets */
int hardware intr sig; /* Signal used by hardware to deliver PMC events */
int opcode match width; /* Width of opcode matcher if exists, 0 if not */
int reserved ints[4];

unsigned int

unsigned int
unsigned int

unsigned int

unsigned int
unsigned int
unsigned int

unsigned int

unsigned int
unsigned int
unsigned int
unsigned int

unsigned int
unsigned int
unsigned int

unsigned int
unsigned int

hardware intr:1; /* hw overflow intr, does not need to be
emulated in software*/
precise intr:1; /* Performance interrupts happen precisely */
posixlb timers:1; /* Using POSIX 1lb interval timers
(timer create) instead of setitimer */
kernel profile:1; /* Has kernel profiling support (buffered
interrupts or sprofil-like) */
kernel multiplex:1; /* In kernel multiplexing */
data address range:1l; /* Supports data address range limiting */
instr address range:1l; /* Supports instruction address range
limiting */

fast counter read:1; /* Supports user level PMC read
instruction */

fast real timer:1; /* Supports a fast real timer */

fast virtual timer:1; /* Supports a fast virtual timer */

attach:1; /* Supports attach */

attach must ptrace:1; /* Attach must first ptrace and
stop the thread/process*/

edge detect:1; /* Supports edge detection on events */
invert:1; /* Supports invert detection on events */
profile ear:1; /* Supports data/instr/tlb miss

address sampling */
grouped cntrs:1; /* Underlying hardware uses counter groups */

reserved bits:16;

} PAPI substrate info t;

- 38 -

PAPI User’s Guide Version 3.5.0
For PAPI_DATA ADDRESS and PAPI_INSTR ADDRESS:

/* address range specification for range restricted counting */
typedef struct papi addr range option { /* if both are zero, range disabled */

int eventset; /* eventset to restrict */

caddr_t start; /* user requested start address of address range */
caddr_t end; /* user requested end address of an address range */
int start off; /* hardware specified offset from start address */
int end off; /* hardware specified offset from end address */

} PAPI addr range option t;

The file, papi .h, contains current definitions for the structures unioned in the
PAPI option t structure. Users should refer to papi.h for specifics on the use of
fields in these structures.

In the following code example, PAPI get opt is used to acquire the option,
PAPI MAX HWCTRS, of an event set and PAPI set opt is used to set the option,
PAPI DOMAIN, to the same event set:

#include <papi.h>
#include <stdio.h>

main ()

{
int num, retval, EventSet = PAPI NULL;
PAPI option t options;

/* Initialize the PAPI library */
retval = PAPI library init (PAPI_VER_CURRENT) ;

if (retval != PAP17VER7CURRENT) {
fprintf (stderr, "PAPI library init error!\n");
exit (1) ;

}

if ((num = PAPI_get_opt(PAPI_MAX_HWCTRS,NULL)) <= 0)
handle error();

printf ("This machine has %d counters.0,num);

if (PAPI create eventset (&EventSet) != PAPI OK)
handle error();

/* Set the domain of this EventSet
to counter user and kernel modes for this
process */

memset (&options, 0x0, sizeof (options)) ;
options.domain.eventset = EventSet;
options.domain.domain = PAPI DOM ALL;

if (PAPI set opt (PAPI DOMAIN, &options) != PAPI OK)
handle error();

-39 -

PAPI User’s Guide Version 3.5.0
POSSIBLE OUTPUT (VARIES ON DIFFERENT PLATFORMS):

This machine has 4 counters.

On success, these functions return PAPI 0K and on error, a non-zero error code is
returned.

For more code examples, see ctests/second.c Or ctests/third.c in the PAPI
source distribution.

SIMPLE CODE EXAMPLES

HIGH-LEVEL API

The following is a simple code example of using the high-level API:

#include <papi.h>

#define NUM FLOPS 10000
#define NUM EVENTS 1

main ()

{
int Events[NUM EVENTS] = {PAPI TOT INS};
long long values[NUM EVENTS];

/* Start counting events */
if (PAPI start counters (Events, NUM EVENTS) != PAPI OK)

handle error(1l);

/* Defined in tests/do loops.c in the PAPI source distribution */
do flops (NUM FLOPS) ;

/* Read the counters */

if (PAPI read counters(values, NUM EVENTS) != PAPI OK)
handle error (1);

printf ("After reading the counters: %11d\n",values[0]);

do flops (NUM FLOPS) ;

/* Add the counters */

if (PAPI accum counters(values, NUM EVENTS) != PAPI OK)
handle error(1l);

printf ("After adding the counters: $11d\n", values[0]);

do flops (NUM FLOPS) ;

/* Stop counting events */

if (PAPI stop counters(values, NUM EVENTS) != PAPI OK)

handle error(1l);

printf ("After stopping the counters: $%$11d\n", values[0]);

- 40 -

PAPI User’s Guide Version 3.5.0
}

POSSIBLE OUTPUT:

After reading the counters: 441027
After adding the counters: 891959
After stopping the counters: 443994

Notice that on the second line (after adding the counters) the value is approximately
twice as large as the first line (after reading the counters) because

PAPI read counters resets and leaves the counters running, then

PAPI accum_counters adds the value of the current counter into the values array.

LOW-LEVEL API

The following is a simple code example that applies the same technique as the
above example, except it uses the Low-Level API:

#include <papi.h>
#include <stdio.h>

#define NUM FLOPS 10000

main ()

{
int retval, EventSet=PAPI NULL;
long long values[1l];

/* Initialize the PAPI library */
retval = PAPI library init (PAPI_VER CURRENT) ;

if (retval != PAPI_VER_CURRENT) {
fprintf (stderr, "PAPI library init error!\n");
exit (1) ;

}

/* Create the Event Set */
if (PAPI create eventset (&EventSet) != PAPI OK)
handle error(1l);

/* Add Total Instructions Executed to our Event Set */
if (PAPI add event (EventSet, PAPI TOT INS) != PAPI OK)
handle error(1l);

/* Start counting events in the Event Set */
if (PAPI start(EventSet) != PAPI OK)
handle error(1l);

/* Defined in tests/do loops.c in the PAPI source distribution */
do flops (NUM FLOPS) ;

/* Read the counting events in the Event Set */

if (PAPI read(EventSet, values) != PAPI OK)
handle error(1);

-41 -

PAPI User’s Guide Version 3.5.0

printf ("After reading the counters: %11d\n",values[0]);

/* Reset the counting events in the Event Set */
if (PAPI reset (EventSet) != PAPI OK)
handle error(1);

do flops (NUM FLOPS) ;
/* Add the counters in the Event Set */
if (PAPI accum(EventSet, values) != PAPI OK)
handle error(1l);
printf ("After adding the counters: %11d\n",values[0]);
do_ flops (NUM FLOPS) ;
/* Stop the counting of events in the Event Set */
if (PAPI stop (EventSet, values) != PAPI OK)

handle error(1);

printf ("After stopping the counters: %11d\n",values[0]);

POSSIBLE OUTPUT:

After reading the counters: 440973
After adding the counters: 882256
After stopping the counters: 443913

Notice that in order to get the desired results (the second line approximately twice
as large as the first line), PAPI_reset was called to reset the counters, since
PAPI_read d