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Traditional Sources of Performance
Improvement are Flat-Lining

• New Constraints
– 15 years of exponential clock

rate growth has ended

• But Moore’s Law continues!
– How do we use all of those

transistors to keep
performance increasing at
historical rates?

– Industry Response: #cores
per chip doubles every 18
months instead of clock
frequency!

Figure courtesy of Kunle Olukotun, Lance
Hammond, Herb Sutter, and Burton Smith1



What is Happening Now?

• Moore’s Law
– Silicon lithography will improve by 2x every

18 months
– Double the number of transistors per chip

every 18mo.
• CMOS Power

Total Power = V2 * f * C  + V * Ileakage                                 active power           passive power

– As we reduce feature size Capacitance   ( C
) decreases proportionally to transistor size

– Enables increase of clock frequency ( f )
proportionally to Moore’s law lithography
improvements, with same power use

– This is called “Fixed Voltage Clock
Frequency Scaling” (Borkar `99)

• Since ~90nm
–  V2 * f * C  ~= V * Ileakage

– Can no longer take advantage of frequency
scaling because passive power (V * Ileakage )
dominates

– Result is recent clock-frequency stall
reflected in Patterson Graph at right

SPEC_Int benchmark performance since 1978
from Patterson & Hennessy Vol 4.2
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We are here!We are here!
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• Current Hardware/Lithography Constraints
– Power limits leading edge chip designs

• Intel Tejas Pentium 4 cancelled due to power issues
– Yield on leading edge processes dropping dramatically

• IBM quotes yields of 10 – 20% on 8-processor Cell

– Design/validation leading edge chip is becoming unmanageable
• Verification teams > design teams on leading edge processors

• Solution: Small Is Beautiful
– Expect modestly pipelined (5- to 9-stage)

CPUs, FPUs, vector, SIMD PEs
• Small cores not much slower than large cores

– Parallel is energy efficient path to performance:CV2F
• Lower threshold and supply voltages lowers energy per op

– Redundant processors can improve chip yield
• Cisco Metro 188 CPUs + 4 spares; Sun Niagara sells 6 or 8 CPUs

– Small, regular processing elements easier to verify

Hardware: What are the problems?
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How Small is “Small”

• Power5 (Server)
– 389mm^2
– 120W@1900MHz

• Intel Core2 sc (laptop)
– 130mm^2
– 15W@1000MHz

• PowerPC 450 (autos and BG/P)
– 5mm^2
– 1W@800MHz

• Tensilica DP (cell phones /
printers)
– 0.8mm^2
– 0.09W@600MHz

Intel Core2

PPC
Tensilica

Power 5

Each core operates at 1/3 to 1/10th computational efficiency of
largest chip, but you can pack 100x more cores onto a chip
and consume 1/20 the power 5



Multicore vs. Manycore
• Multicore: current trajectory

– Stay with current fastest core design
– Replicate every 18 months (2, 4, 8 . . . Etc…)
– Advantage: Do not alienate serial workload
– Example: AMD X2 (2 core), Intel Core2 Duo (2 cores), Madison (2 cores), AMD

Barcelona (4 cores), Intel Tigerton (4 cores)

• Manycore: converging in this direction
– Simplify cores (shorter pipelines, lower clock frequencies, in-order processing)
– Start at 100s of cores and replicate every 18 months
– Advantage: easier verification, defect tolerance, highest compute/surface-area, best

power efficiency
– Examples: Cell SPE (8 cores), Nvidia G80 (128 cores), Intel Polaris (80 cores),

Cisco/Tensilica Metro (188 cores)

• Convergence: Ultimately toward Manycore
– Manycore if we can figure out how to program it!
– Hedge: Heterogenous Multicore
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Convergence of Platforms

– Multiple parallel general-purpose processors (GPPs)
– Multiple application-specific processors (ASPs)

“The Processor is
the new Transistor”

[Chris Rowen]

Intel 4004 (1971):
4-bit processor,
2312 transistors,

~100 KIPS,
10 micron PMOS,

11 mm2 chip

1000s of
processor
cores per

die

Sun Niagara
8 GPP cores (32 threads)
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Ramifications of Massive Parallelism



The Future of
HPC System Concurrency

Must ride exponential wave of increasing concurrency for forseeable
future!

You will hit 1M cores sooner than you think!
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Concerns about Multicore
(in the context of HPC)

• Programmability:  How can I possibly
program 1M+ cores in an effective manner?

• Reliability: More “moving parts” means more
opportunity for failures

• System Balance: Concern that memory and
interconnect performance will ultimately cap
multicore performance
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Programmability



Multicore is NOT a Familiar
Programming Target

• What about Message Passing on a chip?
– MPI buffers & datastructures growing O(N) or O(N2) a problem for

constrained memory
– Redundant use of memory for shared variables and program image
– Flat view of parallelism doesn’t make sense given hierarchical nature

of multicore sys.
• What about SMP on a chip?

– Hybrid Model (MPI+OpenMP) : Long and mostly unsuccessful history
– But it is NOT an SMP on a chip

• 10-100x higher bandwidth on chip
• 10-100x lower latency on chip

– SMP model ignores potential for much tighter coupling of cores
– Failure to exploit hierarchical machine architecture will drastically

inhibit ability to efficiently exploit concurrency! (requires code structure
changes)

• Entering transition period for programming models
12



NERSC-6 Response to Uncertainty
in Programming Model

• Looking beyond SMP
– Cache Coherency: necessary but not sufficient (and not efficient

for manycore!)
– Fine-grained language elements difficult to build on top of CC

protocol
– Hardware Support for Fine-grained hardware synchronization
– Message Queues: direct hardware support for messages
– Transactions: Protect against incorrect reasoning about

concurrency
• NERSC-6 new “Full Fury” benchmark rules

– Supports innovation as a response to uncertainty regarding
future programming environments

– Allows, SMP, CMP, accelerators, and novel programming
models

– Evaluated both in terms of concrete performance improvement
over baseline AND ease of use to achieve that performance
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Application Community’s
Response to Technology Trends

• Parallel computing has thrived on weak-scaling for
past 15 years

• Flat CPU performance increases emphasis on
strong-scaling

• Workload Requirements will change accordingly
– Concurrency will increase proportional to system scale (3-5x

increase over NERSC-5)
– Timestepping algorithms will be increasingly driven towards

implict or semi-implicit stepping schemes
– Multiphysics/multiscale problems increasingly rely on spatially

adaptive approaches such as Berger-Oliger AMR
– Strong scaling will push applications towards smaller messages

sizes – requiring lighter-weight messaging
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NERSC-6 Response To Trends

• Parallel computing has thrived on weak-scaling for
past 15 years

• Flat CPU performance increases emphasis on
strong-scaling

• NERSC-6 Benchmarks changed accordingly
– Increased concurrency 4x over NERSC-5

benchmarks
– Input decks emphasize strong-scaled problems
– Emphasis on implicit methods
– New AMR benchmark
– New UPC benchmark
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Compiler Technology
Faced with increased architectural diversity



Performance Portability
• Diverse set of architectural

options == Daunting
tuning requirements

• Performance portability
was bad enough
– Diversity makes

performance portability
tough

– In many cases, basic
portability is lost

– Need new approaches such
as multi-target languages,
auto-tuning and/or code
generators
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3.5x

Multiprocessor Performance
(auto-tuned stencil kernel)

4.5x 1.4x

4.4x 4.6x

2.0x

23.3x

2.3x

Power EfficiencyPerformance Scaling
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Performance Portability
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Reliability



Reliability

• Hardware FIT rates
– Yes: as transistors get smaller, reliability is worse
– Circuit designers have headroom to mitigate reliability issues (just more

cost and less performance)
– x86 chip manufacturers are not motivated to make their chip more reliable

than MS Windows. (but not related to device scale)

• Strategy
– Adopt rigorous metrics to reliability and availability as part of contract

requirements
– Do not push more reliability management (aside from checkpointing) onto

application programmers.

• Concerns
– Increased rate of silent errors that are not flagged by hardware protections (CERN

and NCSA studies)
– CRC checks on your data files (CERN study on SW data corruption)
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Chips are designed to not exceed
reliability of OS!

•Majority of tracked system-wide outages at NERSC related to software failures
•RFP requires vendors explicitly track root cause (software vs. hardware
failures)
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Memory Bandwidth



Memory Bandwidth
(not stressed by untuned apps)
Single vs. Dual Core Performance

(wallclock time at fixed concurrency and problem size)
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Many people believe applications are memory bandwidth bound, but they usually
aren’t.  Compilers just can’t do the job (need autotuning for performance portability)
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Memory Bandwidth
(maintaining system balance)
Distribution of Time Spent in Application

In Dual Core Opteron/XT4 System
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• Neither memory bandwidth nor FLOPs dominate runtime
• The “other” category dominated by memory latency stalls
• Points to inadequacies in current CPU core design (inability to

tolerate latency)
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About Latency
(goes hand-in-hand-with bandwidth)

• Little’s Law: BW*latency = concurrency
– bandwidth * latency =

#memory_fetches_in_flight
• For Power5+ single-core: 120ns * 25

Gigabytes/sec
• 3000 bytes of data must be in flight to balance

Little’s Law!
• 375 DP operands (> number of registers and

OOO depth!)
• 23.4 cache lines (cache line size cannot hide

the latency)
• Various ways to manipulate memory fetch

concurrency
– 2x memory bandwidth: Need 6000 bytes/flight
– 2x cores: Each only needs 1500 bytes/flight
– 2 threads/core: Each needs 750 bytes/flight
– 128 slower cores/threads?:  24 bytes in flight (3 DP

words)
– Vectors (not SIMD!): 64-128 words per vec load

(1024 bytes)
– Software Controlled Memory: multi-kilobytes/DMA

(eg. Cell, ViVA)

Cell STRIAD (64KB concurrency)
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Concerns About Memory
And Interconnects

• Growing Memory Power Consumption
– Memory poised to consume more power than CPU (GDDR3

on GPU consumes 50W for 256Megs!!!)
– Its not the memory cells (it’s sense amps and device

interface burning the power)
– Motivates changes in memory packaging technology

(memory stacking and photonics)
• Balancing Little’s Law

– Concurrency = Bandwidth * Latency
– Latency is fixed and Concurrency is growing
– Copper: Power consumption is proportional to

length*signal_rate demands spatially localized
communication

– Optical: Reduces power as a function of length Flat
Bandwidth model  Easier to balance C=B*L where constraint
is fixed latency and growing concurrency
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Power Trends



New Design Constraint: POWER

• Transistors still getting smaller
– Moore’s Law is alive and well

• But Dennard scaling is dead
– No power efficiency improvements with

smaller transistors
– No clock frequency scaling with smaller

transistors
– All “magical improvement of silicon

goodness” has ended
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Power Consumption by Top500
Systems

Growth in Power Consumption (Top50)
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Other Power Growth Estimates
• Baltimore Sun (Jan 23, 2007): NSA drawing 65-75 MW in Maryland

– Crisis: Baltimore Gas & Electric doesn’t have power for city of Baltimore!
– Expected to increase by 10-15 MW next year

• LBNL IJHPCA Study for ~1/5 Exaflop for Climate Science in 2008
– Extrapolation of Blue Gene and AMD design trends
– Estimate: 20 MW for BG and 179 MW for AMD

• DOE E3 Report
– Extrapolation of existing design trends to exascale in 2016
– Estimate: 130 MW

• DARPA Study
– More detailed assessment of component technologies
– Estimate: 20 MW just for memory alone, 60 MW aggregate extrapolated from

current design trend
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NERSC-6 Response To
Power Trends

• New emphasis on power efficiency
– 3.5 MW power limit for Oakland Facility (OSF)
– Require 480VAC 3-phase power distribution for efficiency
– Increased cooling efficiency if systems operate at high-end of

ASHRAE allowable temperature range

• Memory is also increasing source of power
consumption
– Expect bids with constrained memory
– Modified benchmark rules to allow strong-scaling to

accommodate constrained memory

• Manycore offers good performance/joule
– Anticipate some bids with “accelerators” for NERSC-6
– Have modified benchmark rules to accommodate (“Full Fury”)
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Evolving OS Requirements



Challenging Old OS
Assumptions

• Assumes limited number of CPUs that must be shared
– Old OS: time-multiplexing (context switching and cache pollution)
– New OS: spatial partitioning

• Greedy allocation of finite I/O device interfaces (eg. 100 cores go
after the network interface simultaneously)
– Old OS: First process to acquire lock gets device (resource/lock contention

Nondeterm delay)
– New OS: QoS management for symmetric device access

• Background task handling via threads and signals
– Old OS: Interrupts and threads (time-multiplexing) (inefficient!)
– New OS: side-cores dedicated to DMA and async I/O

• Fault Isolation
– Old OS: CPU failure --> Kernel Panic (will happen with increasing frequency in

future silicon)
– New OS: CPU failure --> Partition Restart (partitioned device drivers)

• Inter-Processor Communication
– Old OS: invoked for ANY interprocessor communication or scheduling
– New OS: direct HW access mediated by hypervisor
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More Info

• The Berkeley View
– http://view.eecs.berkeley.edu

• NERSC Science Driven System
Architecture Group
– http://www.nersc.gov/projects/SDSA
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