Experiences benchmarking and
optimizing GTC on High Performance
Computers

Stéphane Ethier
Princeton Plasma Physics Laboratory

NERSC Users Group meeting
June 2006

Work Supported by DOE Contract No.DE-AC02-76CH03073 and

by the DOE SciDAC Center for Gyrokinetic Particle Simulation of
Turbulent Transport in Burning Plasmas.

o 3D particle-in-cell code to study microturbulence in
magnetically confined fusion plasmas.

o Solvesthe gyro-averaged Vlasov equation.
» Gyrokinetic Poisson equation solved in real space.
e Low noise of method.

o Global code (full torus as opposed to only aflux tube).
 Massively parallel: typical runs done on 1024 processors.
» Electrostatic approximation with adiabatic electrons.

* Nonlinear and fully self-consistent. ‘
o Written in Fortran 90/95

o Waell optimized for superscalar processors:

= PPPL Particle-in-cell (PIC) method

» Particles sample distribution function.

* The particlesinteract viaagrid, on which the potential
IS calculated from deposited charges.

|
_p® ®

e

ol

=0
P

z The PIC Steps

« “SCATTER”, or deposit,

7 chargeson thegrid (nearest
neighbors)

)

« Solve Poisson equation

@0 Te

« “GATHER” forceson each
particle from potential
Q Move particles (PUSH)
T * Repeat...

2 ’PFPl Charge Deposition for charged rings:
4-point average method

Point-charge particles replaced by charged rings due to gyro-averaging
Charge Deposition Step (SCATTER oper ation)

GTC

il

Classic PIC 4-Point Average GK
(W.W. Lee)

=PPPL Quasi-2D structure of potential

» Fast particle motion along the magnetic field linesleads to a
guasi-2D structure in the electrostatic potential

» Poisson equation needs only to be solved on 2D poloidal plane

Poloidal plane (cross-section)
unstructured mesh

C/q

(W,0,0) = a=0-—

Saves afactor of about
100 in CPU time

=)

L

Field-line following coordinates

~SPPPL Origi ngl parallel_model N G‘I_'(_::
7 1D toroidal domain decomposition

e Uses Message Passing Interface (MPI)
 Each MPI process holds atoroidal section

 Most of the communications due to particles moving in and out
of the toroidal domains (10% of particles at each time step)

e Efficient “ring-type” communication when moving particles.

» Scales perfectly but limited to about 64 or 128 domains due to
(Landau) damping of shorter wavelength modes.

Scaling of original version of GTC

100

0.1

0.01

Y-axis: the number of particles (in milions) which move 1 step in 1 second

10 E

computing power

- —

Cray C-90

number of processors

1 10

100 1000 10000

W
%%HPFPI' Then came Seaborg. ..

 Thearrival of the IBM SP Power 3 Seaborg at NERSC
opened new possibilities for higher performance.

o First step: port GTC from the T3E to the SP and optimize
single processor performance
— Larger memory allowed us to reuse calculations done in the
charge deposition subroutine
* The Symmetric Multi-Processing (SMP) nodes of the IBM
SP gave an easy path to higher concurrency for GTC:
Shared memory programming

e With 16 processors per node, Mixed-model M PI+OpenMP
would allow GTC to run on 1,024 processors instead of
only 64

APPPL New level of parallelism in GTC:
K L oop-level

MPI_init

MPI process| | MPI process | | MPI process | | MPI process

Start

=[] 0 [0 [
=[] 00 00 O

MPI_finalize
l

= PPPL Why loop-level parallelism?

« VERY EASY TOIMPLEMENT...

 Although one hasto watch out for potential conflicts
between threads (processors) trying to write to the same
memory location at the same time
— Easily solved by using thread-private copies of conflicting
arrays
» 85% of thework in GTC reside in 4 loops over the
number of particles on each MPI process.

« Adding the other |oops pushes the amount of
computational work in parallel loops beyond 90%.

* The bigger the loops (problem size), the more efficient
IS the calculation (we saw 98% on large simulations).

JPPPL OpenMP example of |oop-level

—

“7 pal‘ al el | S

o Simple but powerful OpenMP directives

15omp parallel do private(psitmp,thetatmp,zetatmp,weight,&
1Somp&rhoi,r,ip,jt, ipjt,wzl,kk,wz0, larmor,rdum,ii,wpl,wp0,&
1$omp& tflr,im,tdum, joo0,wtl0,wt00,jOl1,wtll , wt0l,ij)
do m=1,mp

psitmp=phase(1,m)

thetatmp=phase(2,m)

zetatmp=phase(3,m)

weight=phase(5,m)

rhoi=phase(6,m)*g_inv

enddo

_wpppl Mixed-model MPI+OpenMP |lead to
first ITER-size smulations

o With mixed-model asingle MPI process is assigned to
each SMP node on Seaborg
— Large amount of memory per MPI process (32 GB/proc!)
— Had to wait for 64-bit MPI to access it though...

* Allowed size scaling study of turbulent transport in
tokamaks, including ITER size:

_5

— 1 billion particles

— 125 million grid points 0 gyroBohm |
— 1,024 processors
— largest GTC run at thetime

Bohm

05

alp

0 200 400 G00 800 1000

~PPPL |nteresting benchmark of OpenMP
K on IBM SP and SGI Origin 2000

« SGI O2k hasred Iy Only 2 Loop—level OpenMP speedups
prOCFS that share local Comparison between IBM SP and SGI Origin 2000

memory symmetrically.

e The NUMA architecture *°y
performs poorly unless

processor placement is
used. 0

e The symmetric memory E
access for the processors
onthe IBM SP nodeis 20t
Ideally adapted to the
mixed-model algorithm.

C——O IBEM SP-2M particles
E——FH1TEM SP-1M particles
O—OSGI O2k—1M particles

1 D [1 1 [
1 2) 8 16
Mumbet of processors

Seaborg allows GTC to routinely
run on 1000+ processors

1[][]5 I I IIIIII| I I IIIIII| I I IIIIII|

IBM SP

computing power

01 = =

= Cray C-90

number ot processors

0.01 Ll Lol Ll T
1 10 100 1000 10000

Y -axis: the number of particles {in millons)which move 1 step in 1 second

W\
—;:-f—g%,ﬁpppl- Then came the others...

 Newer, bigger, and faster computers continuously
emerge.

* The 2002 record-breaking performance of the Earth
Simulator vector computer took everybody by surprise.

|t prompted arenewed interest in vector processing.
e Cray introduced the X1 vector machine soon after.

e | wasinvited to participate in a study of modern vector
architectures compared to current superscalar ones such
asthe |IBM SP.

e The study was lead by Dr Leonid Oliker of the Future
Technologies Group at LBL.

A : :
‘;':%%PFPI' GTC vectorization work

o Started on the single-node NEC SX-6 at ARSC

* Porting GTC was very easy although thefirst testson a
single processor gave avery low performance

» Real work starts: profiling, vectorizing, optimizing,
test, and... repeat several times

o Multi-processor optimization done on to the Earth
Simulator and CRAY X1

APPPL Vectorization challenge for PIC:
, s}ﬂ,

Scatter operation

The charge deposition step (scatter operation) writes to the
charge accumulation array in arandom fashion (particle

positions are random), producing dependencies and memory
conflicts whenever 2 or more particles have a common

neighboring grid point - this prevents vectorization

In 1D, the charge deposition step with linear interpolation looks
like this:

do 1=1,nparticles
x = particle_position(i) |ndirect addressing!
IX_grid = iﬂt(X‘)/wa/ Potential Conflicts
dx = x — real(i1x _gri
charge(ix _grid)“<= arge(ix_grid)+g*(1-dx)

= charge(ix_grid+1)+g*dx

charge(ix_grid+1
end do

APPPL Avoiding memory dependencies:
7 The work-vector method (Nishiguchi “85)

Example of loop with indirect addressing similar to charge deposition:
DO 1=1,np

charge(ix(ir))=charge(ix(1)) + q(i)
END DO

Fully vectorizable loop using multiple copies (vector length of 256):
ALLOCATE(charge_tmp(256,ngrid)) Uses256* ngrid*sizeof(charge tmp)
DO i=1,np,256 of extra memory! (can be 1GB)

DO j=1,min(256,np-i1+1)
charge_tmp(, i1x(i+j-1))=charge_tmp(g,ix(i+j-1)) + q(i+j-1)
END DO
END DO
DO 1=1,256
DO 1g=1,ngrid
charge(ig)=charge(ig) + charge tmp(i,igrid)
END DO
END DO

~PPPL L oop-level multithreading competes
K directly with vectorization

e Each Earth Simulator node has 8 vector processors
sharing 16 GBytes of memory, allowing usto use
GTC’' s mixed-model MPI+OpenMP.

 However, loop-level work splitting with OpenMP
reduces the number of loop operations, which in turn
degrades vector efficiency - Lower performance

o Charge deposition loop with OpenMP requires private
copies of the grid array for each processor on the node.

« Combined with the 256 copies of the same grid array

needed for vectorization, the loop-level OpenM P
requires too much memaory.

~APPPL Cache-less memory access Issues
on the SX-6 and ES

o Better memory access is the secret to higher performance
e Truefor STORING to memory aswell as FETCHING from it!

do m=1,mi

_ _ Repeatedly accessing the same
psitmp=zion(1,m) memory bank beforethe bank busy
thetatmp=zion(2,m) : y

zetatmp=zion(3,m) timeisover from thelast access
rhoi=zion(6,m)*smu_inv leads to poor memory perfor mance!

r=sqrt(2.0*psitmp)
1p=max(0,min(mpsi,int((r-ad)*delr+0.5)))
Jt=max(0,min(mtheta(ip), int(thetatmp*pi12_inv*delt(ip)+0.5)))
ipjt=igrad(ip)+jt

wzl=(zetatmp-zetamin)*delz

Duplicate small arrayslike“igrid” and “mtheta’: !$duplicate
37% Improvement on chargel, but uses even more memory...

~pppl Vector performance of main routines
on the Earth Simulator

.-5'-3.

ORIGINAL CODE BEFORE MODIFICATIONS:

PROG.UNIT EXCLUSIVE MFLOPS V.OP AVER. BANK

TIME[sec](%) RATIO V.LEN CONF
chargei 282.677(54.4) 62.0 0.65 98.1 0.0000
pushi 125.211(24.1) 320.1 67.51 196.8 4.3336
poisson 57.878(11.1) 418.9 94.26 107.2 0.3158

Note: the 2 tests do CODE AFTER MODIFICATIONSTO CHARGEI, PUSHI, POISSON:
not have the same

number of time steps

o the times are PROG.UNIT EXCLUSIVE MFLOPS V.OP AVER. BANK
0

dfferent ThWELsecl€ D RATIO VALER O

chargei 89.924(33.3) 1314.3 99.65 248.1 6.5002

pushi 93.877(34.7) 2426.6 99.38 255.9 8.8139

poisson 26.239(9.7) 918.1 99.71 252.7 3.2485

Total = 1.412 Gflops per proc

=PPPL GTC onthe CRAY X1U/X1E

e Must deal with multi-streaming on top of vectorization
e Same vectorizations apply.
« Easier to prevent vectorization of small inner loops

* Also needs the work-vector method with the same
dimensions of 256 in MSP mode:
— 4 streams x 64 (vector length)
— Uses as much extramemory as the Earth Simulator

* Unvectorized and unstreamed loop in “shifti” slows
down the calculation to a crawl

— 54% of the time spent in that routine according to “pat”
— Wasonly 11% onthe ES

The culprit in shifti

e “Unstreamed’ and “unvectorized” loop due to nested if

blocks:

do m=mO,mi
zetaright=min(2.0*pi1,zion(3,m))-zetamax
zetaleft=zion(3,m)-zetamin
1T(zetaright*zetaleft > 0)then
zetaright=zetaright*0.5*pi1_1inv
zetaright=zetaright-real (floor(zetaright))
msend=msend+1
kzi1(msend)=m
1T(zetaright < 0.5)then
msendright(l)=msendright(1)+1
iright(msendright(l))=m
else
msendleft(1l)=msendleft(1)+1
1left(msendleft(1l))=m
endif
endif
enddo

New loop In shift

1dir$ preferstream
do 1mm=1,4
1dir$ prefervector

do

m=Cimm-1)*mi/4+1, imm*mi/4
zetaright=min(2.0*pi1,zion(3,m))-zetamax
zetaleft=zetamin-zion(3,m)
alpha=pi12*aint(1.0-pi4_inv*zetaleft)
beta=pi12*aint(1.0-pi4_i1nv*zetaright)
kappa=pi12*aint(1l.0+zetaleft*zetaright*pi2sqg_inv)
aright=(alphatzetaleft) - (betatzetaright) - kappa
aleft=(alphatzetaleft) - (betatzetaright) + kappa
1T aright > 0.0)then
msend_r(imm)=msend_r(imm)+1
kzi_r(msend r(imm), imm)=m
endif
1IT(aleft < 0.0)then
msend_1(imm)=msend_ 1(imm)+1
kzi_I(msend I (imm), imm)=m
endif

enddo

enddo

PPPL Did it work?

Y es, the overall time spent in shifti went from 54% to only 4%!!

On the Earth Simulator, the compiler can only deal with asingle
conditional statement within aloop in order to vectorize that
loop. Solution: split the loop in 2 parts.

|mproved performance on the ES but not as dramatic as on the
X1.

Memory per CPU (MBytes)

2000

=
a
-
o

=
o
-
o

a1
)
o

Memory used by the vectorized
version of GTC (per processor)

 For micell=10
memory on the
_ ESisupto8

times more than
one the Power 3!
- eIt getsbetter as
the number of
particles per call

20 40 60 80 100
Number of particles per cell

Flops/sec for higher

particle resolution

Performance (Gflops)

120

100

o0}
o

64-Processor/M SP test runs

20

40 60 80
Number of particles per cell

100

A : : : :
—;:-f—g%,ﬁpppl- High resolution simulations

 Thealgorithm to “push” the particlesisvery efficient
on vector machines.

o Thisalowsusto run high resolution ssmulations using
alarge number of particles.

* More particles means
— more phase space resolution (velocity + configuration space)
— lower discrete particle noise/fluctuations
— longer smulations
— higher efficiency on vector computers

o Without using OpenM P, we are back to only 1D
domain decomposition and a max of 64-128 processors

e How to iImprove concurrency?

~PPPL New parallel model: Domain
K decomposition + particle splitting

1D Domain decomposition:

— Several MPI processes can now sit
a section of the torus

o Particle splitting method

— The particlesin atoroidal section a
equally divided between several MPI
Processes

o Particlesrandomly distributed between
processors within atoroidal domain.

e NoOpenMP
e Pure MPI version

Processor 2
Processor 3

Processor 0

~PPPL Pure MPI parallel model ideal
K for newest large scale computers

* New large scale computers such as Blue Gene/L. and
Cray XT3 alow only message passing for
communication between processors.

 The MPI-only version of GTC has been very successful
on those platforms.

|t achieved the highest performance of 7.2 THops on
the Earth Simulator using 4,096 processors.

e Used over 16,000 processors on the Blue Gene/L
computer at IBM Watson.

o Largest GTC production ssmulation recently carried out
on 4,800 processors of the Cray XT3 at ORNL using
28 billion particles.

~PPPL L atest benchmark: weak scaling study
K with fixed device size

Compute Power of the Gyrokinetic Toroidal Code

Number of particles (in million) moved 1 step in 1 second
10000 | | | | | | |

M L atest vector optimizations

) i Not tested on Earth Simulator]
g 1000 3 \ E
S -]
%) - i
c i i
Q

E e—e Phoenix (CRAY X1E)
< 100k v—v NEC SX-8 (HLRS) —
O = m—a Earth Simulator(05)
5 - Phoenix (CRAY X1) 1
O - e—e Jaguar (CRAY XT3)
5 - A—4 Jacquard (opteron+IB)
g Thunder (1A64+Quad)
8 10 e—e Blue Gene/L (Watson)

=—a Seaborg (IBM SP3)
Seaborg (MPI+OMP)

I I I I I I I I
128 256 512 1024 2048 4096 8192 16384

g

Number of processors _
S. Ethier, PPPL, Nov. 2005

“ .
_;':%HPFPI' Conclusions

e Benchmarking and optimizing work never ends

* New platforms with more processors and different
characteristics are continuously being developed.

e To cope with the changes while wanting to achieve top
performance, codes must be flexible and developers must
be willing to modify their codes.

« Secret to high performance (in my opinion...)
— Data access (must feed the processor as fast as possible)

— Fast data access = good data layout
— Minimize communications

e Speed isnot asubstitute to “right answer” ...

	Experiences benchmarking and optimizing GTC on High Performance Computers
	The Gyrokinetic Toroidal Code
	Particle-in-cell (PIC) method
	Charge Deposition for charged rings:4-point average method
	Quasi-2D structure of potential
	GTC mesh and geometry
	Original parallel model in GTC:1D toroidal domain decomposition
	Scaling of original version of GTC
	Then came Seaborg…
	New level of parallelism in GTC:Loop-level
	Why loop-level parallelism?
	OpenMP example of loop-levelparallelism
	Mixed-model MPI+OpenMP lead tofirst ITER-size simulations
	Interesting benchmark of OpenMPon IBM SP and SGI Origin 2000
	Seaborg allows GTC to routinelyrun on 1000+ processors
	Then came the others…
	GTC vectorization work
	Vectorization challenge for PIC:Scatter operation
	Avoiding memory dependencies:The work-vector method (Nishiguchi ‘85)
	Loop-level multithreading competesdirectly with vectorization
	Cache-less memory access issueson the SX-6 and ES
	Vector performance of main routineson the Earth Simulator
	GTC on the CRAY X1/X1E
	The culprit in shifti
	New loop in shift
	Did it work?
	Memory used by the vectorizedversion of GTC (per processor)
	Flops/sec for higherparticle resolution
	High resolution simulations
	New parallel model: Domaindecomposition + particle splitting
	Pure MPI parallel model idealfor newest large scale computers
	Latest benchmark: weak scaling studywith fixed device size
	Conclusions

